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        Section: 
      Overall Objectives

        Overall Objectives

        The CAMUS team is focusing on developping, adapting and extending automatic parallelizing and optimizing techniques, as well as proof and certification methods, for the efficient use of current and future multicore processors.

        The team's research activities are organized into five main issues that are closely related to reach the following objectives: performance, correction and productivity. These issues are: static parallelization and optimization of programs (where all statically detected parallelisms are expressed as well as all “hypothetical” parallelisms which would be eventually taken advantage of at runtime), profiling and execution behavior modeling (where expressive representation models of the program execution behavior will be used as engines for dynamic parallelizing processes), dynamic parallelization and optimization of programs (such transformation processes running inside a virtual machine), object-oriented programming and compiling for multicores (where object parallelism, expressed or detected, has to result in efficient runs), and finally program transformations proof (where the correction of many static and dynamic program transformations has to be ensured).
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        Section: 
      Research Program

        Research directions

        The various objectives we are expecting to reach are directly related to the search of adequacy between the sofware and the new multicore processors evolution. They also correspond to the main research directions suggested by Hall, Padua and Pingali in [28] . Performance, correction and productivity must be the users' perceived effects. They will be the consequences of research works dealing with the following issues:

        
          	
             Issue 1: Static parallelization and optimization

          

          	
             Issue 2: Profiling and execution behavior modeling

          

          	
             Issue 3: Dynamic program parallelization and optimization, virtual machine

          

          	
             Issue 4: Object-oriented programming and compiling for multicores

          

          	
             Issue 5: Proof of program transformations for multicores

          

        

        Efficient and correct applications development for multicore processors needs stepping in every application development phase, from the initial conception to the final run.

        Upstream, all potential parallelism of the application has to be exhibited. Here static analysis and transformation approaches (issue 1) must be processed, resulting in a multi-parallel intermediate code advising the running virtual machine about all the parallelism that can be taken advantage of. However the compiler does not have much knowledge about the execution environment. It obviously knows the instruction set, it can be aware of the number of available cores, but it does not know the effective available resources at any time during the execution (memory, number of free cores, etc.).

        That is the reason why a “virtual machine” mechanism will have to adapt the application to the resources (issue 3). Moreover the compiler will be able to take advantage only of a part of the parallelism induced by the application. Indeed some program information (variables values, accessed memory adresses, etc.) being available only at runtime, another part of the available parallelism will have to be generated on-the-fly during the execution, here also, thanks to a dynamic mechanism.

        This on-the-fly parallelism extraction will be performed using speculative behavior models (issue 2), such models allowing to generate speculative parallel code (issue 3). Between our behavior modeling objectives, we can add the behavior monitoring, or profiling, of a program version. Indeed current and future architectures complexity avoids assuming an optimal behavior regarding a given program version. A monitoring process will allow to select on-the-fly the best parallelization.

        These different parallelizing steps are schematized on figure 1 .

        
          
            
          
          
            Figure
	1. Automatic parallelizing steps for multicore architectures
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        The more and more widespread usage of object-oriented approaches and languages emphasizes the need for specific multicore programming tools. The object and method formalism implies specific execution schemes that translate in the final binary by quite distant elementary schemes. Hence the execution behavior control is far more difficult. Analysis and optimization, either static or dynamic, must take into account from the outset this distortion between object-oriented specification and final binary code: how can object or method parallelization be translated (issue 4).

        Our project lies on the conception of a production chain for efficient execution of an application on a multicore architecture. Each link of this chain has to be formally verified in order to ensure correction as well as efficiency. More precisely, it has to be ensured that the compiler produces a correct intermediate code, and that the virtual machine actually performs the parallel execution semantically equivalent to the source code: every transformation applied to the application, either statically by the compiler or dynamically by the virtual machine, must preserve the initial semantics. They must be proved formally (issue 5).

        In the following, those different issues are detailed while forming our global and long term vision of what has to be done.
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        Static parallelization and optimization

        Participants :
	Vincent Loechner, Philippe Clauss, Éric Violard, Jean-François Dollinger, Aravind Sukumaran-Rajam, Juan Manuel Martinez Caamaño.

        Static optimizations, from source code at compile time, benefit from two decades of research in automatic parallelization: many works address the parallelization of loop nests accessing multi-dimensional arrays, and these works are now mature enough to generate efficient parallel code [27] .
Low-level optimizations, in the assembly code generated by the compiler, have also been extensively dealt for single-core and require few adaptations to support multicore architectures.
Concerning multicore specific parallelization, we propose to explore two research directions to take full advantage of these architectures: adapting parallelization to multicore architecture and expressing many potential parallelisms.
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        Profiling and execution behavior modeling

        Participants :
	Alain Ketterlin, Philippe Clauss, Aravind Sukumaran-Rajam.

        The increasing complexity of programs and hardware architectures
makes it ever harder to characterize beforehand a given program's
run time behavior. The sophistication of current compilers and the
variety of transformations they are able to apply cannot hide their
intrinsic limitations. As new abstractions like transactional
memories appear, the dynamic behavior of a program strongly
conditions its observed performance. All these reasons explain why
empirical studies of sequential and parallel program
executions have been considered increasingly relevant. Such studies
aim at characterizing various facets of one or several program runs,
e.g., memory behavior, execution phases, etc. In some cases, such
studies characterize more the compiler than the program itself.
These works are of tremendous importance to highlight all aspects
that escape static analysis, even though their results may have a
narrow scope, due to the possible incompleteness of their input data
sets.
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        Dynamic parallelization and optimization, virtual machine

        Participants :
	Aravind Sukumaran-Rajam, Juan Manuel Martinez Caamaño, Jean-François Dollinger, Alexandra Jimborean, Philippe Clauss, Vincent Loechner, Alain Ketterlin.

        This link in the programming chain has become essential with the advent of the new multicore architectures. Still being considered as secondary with mono-core architectures, dynamic analysis and optimization are now one of the keys for controling those new mechanisms complexity. From now on, performed instructions are not only dedicated to the application functionalities, but also to its control and its transformation, and so in its own interest. Behaving like a computer virus, such a process should rather be qualified as a “vitamin”. It perfectly knows the current characteristics of the execution environment and owns some qualitative information thanks to a behavior modeling process (issue 2). It appends a significant part of optimizing ability compared to a static compiler, while observing live resources availability evolution.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Research Program

        Proof of program transformations for multicores

        Participants :
	Éric Violard, Julien Narboux, Nicolas Magaud.

        Our main objective consists in certifying the critical modules of our
optimization tools (the compiler and the virtual machine). First we will prove
the main loop transformation algorithms which constitute the core of our system.

        The optimization process can be separated into two stages: the transformations
consisting in optimizing the sequential code and in exhibiting parallelism, and
those consisting in optimizing the parallel code itself.
The first category of optimizations can be proved within a sequential semantics.
For the other optimizations, we need to work within a concurrent semantics.
We expect the first stage of optimizations to produce data-race free code. For the
second stage of optimizations, we will first assume that the input code is
data-race free.
We will prove those transformations using Appel's concurrent separation
logic  [29] . Proving transformations involving program which are not
data-race free will constitute a longer term research goal.
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        Section: 
      Application Domains

        Application domains

        Performance being our main objective, our developments' target applications are characterized by intensive computation phases. Such applications are numerous in the domains of scientific computations, optimization, data mining and multimedia.

        Applications involving intensive computations are necessarily high energy consumers. However this consumption can be significantly reduced thanks to optimization and parallelization. Although this issue is not our prior objective, we can expect some positive effects for the following reasons:

        
          	
             Program parallelization tries to distribute the workload equally among the cores. Thus an equivalent performance, or even a better performance, to a sequential higher frequency execution on one single core, can be obtained.

          

          	
             Memory and memory accesses are high energy consumers. Lowering the memory consumption, lowering the number of memory accesses and maximizing the number of accesses in the low levels of the memory hierarchy (registers, cache memories) have a positive consequence on execution speed, but also on energy consumption.
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        Section: 
      New Software and Platforms

        PolyLib

        Participant :
	Vincent Loechner.

        PolyLib (http://icps.u-strasbg.fr/PolyLib )
is a C library of polyhedral functions, that can manipulate unions of
rational polyhedra of any dimension.
It was the first to provide an implementation of the computation of
parametric vertices of a parametric polyhedron, and the computation of an
Ehrhart polynomial (expressing the number of integer points contained in
a parametric polytope) based on an interpolation method.
Vincent Loechner is the maintainer of this software.
It is distributed under GNU General Public License version 3 or later.

        Apart from normal maintenance, it was parallelized using OpenMP with the
support of Master student Adilla Susungi, funded by the ICPS team
(ICube laboratory, University of Strasbourg).

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        APOLLO software and LLVM

        Participants :
	Aravind Sukumaran-Rajam, Juan Manuel Martinez Caamaño, Willy Wolff, Luis Esteban Campostrini, Matías Perez, Alexandra Jimborean, Philippe Clauss.

        We are developing a framework called APOLLO (Automatic speculative POLyhedral Loop Optimizer) whose main concepts are based on our previous framework VMAD. However, several important implementation issues are now handled differently in order to improve the performance and usability of the framework, and also to open its evolution to new interesting perspectives. APOLLO is dedicated to automatic, dynamic and speculative parallelization of loop nests that cannot be handled efficiently at compile-time. It is composed of a static part consisting of specific passes in the LLVM compiler suite, plus a modified Clang frontend, and a dynamic part consisting of a runtime system. Its last extensions are presented in subsection 
	6.2 .
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      New Software and Platforms

        IBB source-to-source xfor compiler

        Participants :
	Imen Fassi, Philippe Clauss, Cédric Bastoul.

        Imen Fassi has developped a source-to-source xfor compiler called IBB (Iterate-But-Better) which is automatically translating any C source code containing xfor-loops into an equivalent source code where xfor-loops have been transformed into equivalent for-loops. The polyhedral code generator CLooG [27]  is used to generate the corresponding code. The IBB compiler has been improved in some aspects in 2014: loop bounds can now be min and max functions, IBB uses the OpenScop format to encode statements and iteration domains.

        The xfor structure is also currently incorporated in the polyhedral parser Clan (http://icps.u-strasbg.fr/~bastoul/development/clan ), opening the door of xfor usage to polyhedral compilation tools. Additionally, an xfor programming wizard is currently being developed, providing automatic dependence analysis and code verification to users, thanks to the dependence analyzer Candl (http://icps.u-strasbg.fr/~bastoul/development/candl ).

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        CLooG

        Participant :
	Cédric Bastoul.

        CLooG (http://www.cloog.org ) is a free software and
library to generate code (or an abstract syntax tree of a code)
for scanning Z-polyhedra.
That is, it finds a code (e.g. in C, FORTRAN...) that
reaches each integral point of one or more parameterized polyhedra.
CLooG has been originally written to solve the code generation problem
for optimizing compilers based on the polyhedral model. Nevertheless it
is used now in various area e.g. to build control automata for high-level
synthesis or to find the best polynomial approximation of a function.
CLooG may help in any situation where scanning polyhedra matters.
While the user has full control on generated code quality, CLooG is
designed to avoid control overhead and to produce a very effective code.
CLooG is widely used (including by GCC and LLVM compilers),
disseminated (it is installed by default by the main Linux
distributions) and considered as the state of the art in polyhedral
code generation.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        OpenScop

        Participant :
	Cédric Bastoul.

        OpenScop (http://icps.u-strasbg.fr/~bastoul/development/openscop )
is an open specification that defines a file format and a set of
data structures to represent a static control part (SCoP for short),
i.e., a program part that can be represented in the polyhedral model.
The goal of OpenScop is to provide a common interface to the different
polyhedral compilation tools in order to simplify their interaction.
To help the tool developers to adopt this specification, OpenScop
comes with an example library (under 3-clause BSD license) that provides
an implementation of the most important functionalities necessary to
work with OpenScop.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        Clan

        Participants :
	Cédric Bastoul, Imen Fassi.

        Clan (http://icps.u-strasbg.fr/~bastoul/development/clan )
is a free software and library which translates some particular
parts of high level programs written in C, C++, C# or Java into a polyhedral
representation called OpenScop. This representation may be manipulated by
other tools to, e.g., achieve complex analyses or program restructurations (for
optimization, parallelization or any other kind of manipulation). It
has been created to avoid tedious and error-prone input file writing for
polyhedral tools (such as CLooG, LeTSeE, Candl etc.). Using Clan, the user
has to deal with source codes based on C grammar only (as C, C++, C# or Java).
Clan is notably the frontend of the two major high-level compilers Pluto and PoCC.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        Clay

        Participant :
	Cédric Bastoul.

        Clay (http://icps.u-strasbg.fr/~bastoul/development/clay )
is a free software and library devoted to
semi-automatic optimization using the polyhedral model. It can
input a high-level program or its polyhedral representation
and transform it according to a transformation script.
Classic loop transformations primitives are provided. Clay
is able to check for the legality of the complete sequence
of transformation and to suggest corrections to the
user if the original semantics is not preserved. Clay is still
experimental at this report redaction time but is already used during
advanced compilation labs at Paris-Sud University and is one of the
foundations of our ongoing work on simplifying code manipulation by
programmers.
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      New Results

        Highlights of the Year

        One of Philippe Clauss' early papers on Ehrhart polynomials has been celebrated, 18 years later, in a selection of papers for the International Conference on Supercomputing (ICS) 25th anniversary retrospective [13] . 35 papers have been selected among roughly 1800 papers published between 1987 and 2011. The paper is:

        "Counting Solutions to Linear and Nonlinear Constraints Through Ehrhart Polynomials: Applications to Analyze and Transform Scientific Programs", by Philippe Clauss, ICS'96, which introduced Ehrhart polynomials in the field of program analysis and optimization.

        Philippe Clauss wrote an additional retrospective [12]  related to this research which complements the paper in the ICS special issue.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
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        APOLLO (Automatic speculative POLyhedral Loop Optimizer)

        The goal of the APOLLO project is to provide a set of annotations (pragmas) that the user can insert in the source code to perform advanced analyses and optimizations, for example dynamic speculative parallelization. It is based on the prototype named VMAD which was developed previously by the team between 2009 and 2012. Alexandra Jimborean defended her PhD thesis on this topic in 2012 [30] .

        APOLLO includes a modified LLVM compiler and a runtime system. The program binary files are first generated by our compiler to include necessary data, instrumentation instructions, parallel code skeletons, and callbacks to the runtime system which is implemented as a dynamic library. External modules associated to specific analyses and transformations are dynamically loaded when required at runtime.

        APOLLO uses sampling, multi-versioning and code skeletons to limit the runtime overhead (profiling, analysis, and code generation). At runtime, targeted codes are launched by successive chunks that can be either original, instrumented or optimized/parallelized versions. These latter versions are generated on-the-fly through fast instantiation of the code skeletons. After each chunk execution, decisions can be taken relatively to the current optimization strategy. APOLLO is handling advanced memory access profiling through linear interpolation of the addresses, dynamic dependence analysis, version selection and speculative polyhedral parallelization [9] .

        Several extensions and improvements have been implemented inside Apollo in 2014:

        
          	
             the scheduler of the polyhedral compiler Pluto has been integrated inside the framework. Thus, the runtime decision regarding what optimizing and parallelizing transformation is now entirely depending on Pluto, whose input is generated by the instrumentation and interpolation phase of Apollo [20] .

          

          	
             the static compilation phase of Apollo has been significantly enforced. Linear dependencies between values of scalars and memory addresses are identified in order to alleviate the cost of the instrumented code version. Additionally, memory reference functions that can be disambiguated at compile-time are now fully handled. These improvements are using analysis passes of the LLVM compiler, as well as passes that were specifically developed.

          

          	
             Apollo is now using the LLVM JIT compiler to further optimize the instantiated code skeletons. Previously, code skeletons were generated as binary executable at compile-time with global variables instantiated at runtime. This approach yielded sub-optimal code including unnecessary or invariant computations. Code skeletons are now kept in LLVM intermediate form until being instantiated and compiled at runtime using the LLVM JIT compiler, thus resulting in faster optimized codes.

          

          	
             Other memory behavior modeling approaches are now being studied and implemented, in order to allow Apollo handling codes that do not have a completely linear behavior. Three main cases are addressed:

            
              	
                 quasi-linear behavior in which memory accesses which do not fit the linear prediction are checked on-the-fly, i.e., if these delinquent accesses do not invalidate the current parallel schedule.

              

              	
                 linear regression behavior in which memory accesses are staying inside a “tube” bordered by linear functions.

              

              	
                 behavior in which memory accesses are staying inside disjointed address ranges.
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        The XFOR programming structure

        We have proposed a new programming control structure called “xfor” or “multifor”, providing users a way to schedule explicitly the statements of a loop nest, and take advantage of optimization and parallelization opportunities that are not easily attainable using the standard programming structures. This work is the PhD work of Imen Fassi, who started her work in 2013 and who is co-advised by Yosr Slama, Assistant Professor at the University El Manar in Tunis, Tunisia, and Philippe Clauss.

        Data locality optimization is a well-known goal when handling programs that must run as fast as possible or use a minimum amount of energy. However, usual techniques never address the significant impact of numerous stalled processor cycles that may occur when consecutive load and store instructions are accessing the same memory location. In [15] , we show that two versions of the same program may exhibit similar memory performance, while performing very differently regarding their execution times because of the stalled processor cycles generated by many pipeline hazards. The xfor structure enables the explicit control of the way data locality is optimized in a program and thus, to control the amount of stalled processor cycles. In [15] , we also show the benefits of xfor regarding execution time and energy saving.

        While many advanced and fully automatic program analysis and optimization techniques have been developed thanks to the accuracy and expressiveness of the polyhedral model, these techniques may fail in producing efficient codes in some circumstances. The xfor structure eases the manual application of optimizing transformations on loop nests for expert programmers and allows to generate executable codes that may be significantly faster than those generated automatically using well-established polyhedral strategies. we highlight five main gaps regarding these strategies and discuss some ideas on how to bridge them in [14] .
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        CPU+GPU adaptive computation

        We aim to automatically use CPU and GPU to jointly execute a parallel code. To ensure load balance between different PUs, thus to preserve performance, it is necessary to consider the underlying hardware and the program parameters. Compiler optimizations, execution context, hardware availability and specification make it difficult to determine execution times statically. To overcome this hurdle we rely on a portable and automatic method for predicting execution times of statically generated codes on multicore CPUs and on CUDA GPUs. This approach relies on three stages: automatic code generation, offline profiling of the target code and online prediction.

        This is mainly the work of PhD student Jean-François Dollinger, advised by Vincent Loechner since 2011. Preliminary results, a "fastest-wins" algorithm between a multicore CPU and the best predicted GPU code version, was published in 2013 in ICPP. Our latest advances, load balancing code between multiple cores CPUs and multiple GPUs will be presented at the IMPACT 2015 workshop [25]  in conjunction with the HiPEAC conference. We are currently preparing an extended journal paper to present this work, and Jean-François Dollinger will defend his PhD in 2015.
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        Minimizing the synchronization overhead of X10 programs

        The CAMUS team has for long focused on compiling, optimizing, and
parallelizing sequential programs. The project described in
this section is somewhat unusual in this context, in that it targets
programs written in an explicitly parallel language, and applies
polyhedral modeling techniques to reschedule computations, effectively
introducing parallel-to-parallel program transformations. This work
has been done in collaboration with the Inria COMPSYS team at ENS
Lyon, and first results were presented at the Compiler
Construction conference (CC'14) in April 2014.

        The need to leverage the computing power of multi-core processors (and
distributed computers) has lead to the design of explicitly parallel
programming languages. Such languages often employ a fork/join model,
and include syntax to launch and synchronize tasks (also called
activities) with well-defined semantics. This brings parallel
constructions under the control of the compiler, and introduces new
optimization opportunities. Our work has focused on the various
synchronization primitives available to the programmer, and more
specifically on how one type of synchronization can be replaced with
another for specific classes of programs, the goal being to minimize
the synchronization overhead. We have demonstrated significant
speedups on programs written using the X10 programming language,
and have obtained similar results on equivalent Habanero-Java programs.

        More specifically, our work focused on synchronization primitives of X10.
The X10 language basically has two
activity synchronization primitives: one is the explicit use of
“clocks” (synchronization barriers) during activity execution, the
other is the implicit use of activity containers that synchronize only
on the end of activities. Under reasonable conditions on the patterns
of activity creation and control, we showed that long-running
activities using clocks can be replaced by short-lived activities
synchronized only on the end of their containers, and that this
transformation provides a significant gain at run time.

        We have studied the converse transformation, i.e. starting with an unclocked X10 program, obtaining a system of sequential threads executing in parallel and synchronizing with clocks. This transformation is interesting since it yields
to further optimization opportunities. We have elaborated a system of rules to execute the transformation. Applying these rules to "regular" programs gives good results, but fails on some paradigmatic X10 codes. For irregular programs, some parallelism may be lost. We now are investigating a new set of rules to give a correct result for arbitrary X10 programs. A main difficulty is bringing the proof that the set of upgraded rules will give a correct result.

        This work has been done in collaboration with Paul Feautrier, member
of the COMPSYS Inria team, in ENS Lyon. The CAMUS team has invited
Paul Feautrier one more time for one week in June 2014 in Strasbourg.
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        Hardware/Software helper thread prefetching

        Heterogeneous Many Cores (HMC) architectures that mix many
simple/small cores with a few complex/large cores are emerging as a
design alternative that can provide both fast sequential performance
for single threaded workloads and power-efficient execution for
through-put oriented parallel workloads. The availability of many
small cores in a HMC presents an opportunity to utilize them as
low-power helper cores to accelerate memory-intensive sequential
programs mapped to a large core. However, the latency overhead of
accessing small cores in a loosely coupled system limits their utility
as helper cores. Also, it is not clear if small cores can execute
helper threads sufficiently in advance to benefit applications running
on a larger, much powerful, core.

        In this project, we designed a hardware/software framework called
core-tethering to support efficient helper threading on heterogeneous
manycores. Core-tethering provides a co-processor like interface to
the small cores that (a) enables a large core to directly initiate and
control helper execution on the helper core and (b) allows efficient
transfer of execution context between the cores, thereby reducing the
performance overhead of accessing small cores for helper execution.
Our evaluation on a set of memory intensive programs chosen from the
standard benchmark suites shows that helper threads using moderately
sized small cores can significantly accelerate a larger core compared
to using a hardware prefetcher alone. We find that a small core provides
a good trade-off against using an equivalent large core to run helper
threads in a HMC. Additionally, helper prefetching on small cores when
used along with hardware prefetching, can provide an alternate design
point to growing instruction window size for achieving higher
sequential performance on memory intensive applications.

        This work is a collaboration between the ALF team in Rennes and CAMUS
in Strasbourg. Our contribution is mainly on the generation of helper
thread code (as a followup to our work on program skeletonization).
The result of the work has been published in October 2014 in the
Proceedings of the SBAC-PAD
conference [17] .


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Loop-based Modeling of Parallel Communication Traces

        Parallel communication traces are traces of the various actions
performed by parallel programs (typically written using MPI or some
such library). The traces usually contain actions like message
sending and receiving, and entering and exiting collective
operations. The goal of this project is to build a model of the
parallel program from the traces of the various processes that form
the program. Consolidating on our previous work on sequential
traces, we have developed an
algorithm that takes the traces of the individual processes and
merges them into a global model.

        The main characteristics of our algorithm is that the result takes
the form of loops enclosing various parallel constructs and
communication actions. The driving goal of this work is to use the
model for various analyzes, mainly to draw qualitative conclusions
on the program (like the affinity of the various processes
involved), but also to extract quantitative information (like
communication matrices). A long term goal is to use the parallel
loops to suggest program optimizations.

        As of today, our algorithm has been evaluated on several
applications. The most obvious is trace compression, with
spectacular results because of the underlying loop-nest model (as
was already the case for our sequential trace analysis algorithm).
Another application is replay, where the program's (actual, i.e.,
traced) behavior can be simulated on a different parallel
architecture. The last application is to build a lightweight model
from a subset of trace data, and use the model to index into
potentially massive quantitative data associated to the various
events.

        It turns out that it is difficult to publish such algorithms without
evaluating them in “realistic” settings, on applications running
on massively parallel hardware, something we don't have easy access
to. Also, there are currently a few algorithms that provide similar
solutions to practitioners, in a way that we think are fundamentally
inferior to our proposition but that seem to be good enough for
their current use. Waiting for better opportunities to illustrate
the power of our method, we have published a research report
summarizing our work [26] .
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        Switcheable scheduling

        Parallel applications used to be executed alone until their termination
on partitions of supercomputers. The recent shift to multicore architectures for
desktop and embedded systems is raising the problem of the coexistence
of several parallel programs. Operating systems already take into
account the affinity mechanism to ensure a thread will run
only onto a subset of available processors (e.g., to reuse data remaining in
the cache since its previous execution). But this is not enough, as demonstrated by the large
performance gaps between executions of a given parallel program on
desktop computers running several processes. To support many
parallel applications, advances must be made on the system side
(scheduling policies, runtimes, memory management...).
However, automatic optimization and parallelization can play a significant
role by generating programs with dynamic-auto-tuning capabilities to
adapt themselves to the complete execution context, including the system load.

        Our approach is to design at compile-time programs that can adapt
at run-time to the execution context. The originality of our solution
is to rely on switcheable scheduling, a selected set of
program restructuring which allows to swap between program versions
at some meeting points without backtracking. A first step selects
pertinent versions according to their performance behavior on some
execution contexts. The second step builds the auto-adaptive program
with the various versions. Then at runtime the program selects the
best version by a low overhead sampling and profiling of the versions,
ensuring every computation is useful.

        This is an ongoing work with the
PhD student Lénaïc Bagnères (POSTALE Team at
Inria Saclay-Île-de-France, co-advised by Christine Eisenbeis and
Cédric Bastoul). The first results have been presented in 2014
at the Euro-Par International Conference [11] .
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        Interactive Code Restructuring

        This work falls within the exploration and development of semi-automatic
programs optimization techniques. It consists in designing and evaluating
new visualization and interaction techniques for code restructuring,
by defining and taking advantage of visual representations of the
underlying mathematical model. The main goal is to assist programmers
during program optimization tasks in a safe and efficient way, even
if they neither have expertise into code restructuring nor knowledge
of the underlying theories. This project is an important step for the
efficient use and wider acceptance of semi-automatic optimization
techniques, which are still tedious to use and incomprehensible for
most programmers. More generally, this research is also investigating
new presentation and manipulation techniques for code, algorithms and
programs, which could lead to many practical applications: collaboration,
tracking and verification of changes, visual search in large
amount of code, teaching, etc.

        This is a rather new research direction which strengthen CAMUS's
static parallelization and optimization issue. It has been initiated
at Paris-Sud University as a collaboration between Compilation,
represented by Cédric Bastoul before he joined CAMUS,
and Human-Machine Interaction, represented by Stéphane Huot from
the IN-SITU Team at Inria Saclay-Île-de-France. This work is
essentially the PhD topic of Alexander Zinenko (IN-SITU Team at
Inria Saclay-Île-de-France, co-advised by Stéphane Huot and
Cédric Bastoul, CORDI Grant) which started in 2013. The first
results have been presented in 2014 to the IEEE VL/HCC Conference
 [22] . Moreover, another paper on the
topic has been accepted to the International IMPACT 2015 Workshop
to be held in conjunction with the HiPEAC International Conference.
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        Section: 
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        Bilateral Contracts with Industry

        The CAMUS team is taking part of the NANO 2017 national research program and its sub-project PSAIC (Performance and Size Auto-tuning thru Iterative Compilation) with the company STMicroelectronics, starting January 2015. Luis Esteban Campostrini has been recruited as PhD student in this project. His work will focus on extending the Apollo framework to dynamic analysis providing useful feedbacks to users regarding code optimization opportunities, and to code generation for ARM Cortex platforms.
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        Promoting Scientific Activities

        
        Scientific events organisation

        
        member of the organizing committee

        Cédric Bastoul has been co-organizing the HIP3ES 2015 workshop (High Performance Energy Efficient Embedded Systems) held in conjunction with the international conference HiPEAC 2015.

        
        Scientific events selection

        
        member of the conference program committee

        Philippe Clauss, Cédric Bastoul and Vincent Loechner have been part of the program committee of IMPACT 2014 (International Workshop on Polyhedral Compilation Techniques), held in conjunction with the international conferences HiPEAC 2014. Philippe Clauss, and Vincent Loechner have been part of the program committee of IMPACT 2015, held in conjunction with HiPEAC 2015.

        Vincent Loechner and Cédric Bastoul have been part of the program committee of HIP3ES 2015 workshop (High Performance Energy Efficient Embedded Systems), held in conjunction with the international conference HiPEAC 2015.

        Cédric Bastoul has been part of the program committee of PARMA+DITAM 2015 (6th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures 4th Workshop on Design Tools and Architerctures for Multicore Embedded Computing Platforms), held in conjunction with HiPEAC 2015.

        
        reviewer

        Vincent Loechner has been reviewer for the IMPACT 2015 workshop.

        Philippe Clauss has been reviewer for the following conferences: ISMM ’14 (International Symposium on Memory Management), IMPACT 2015.

        Cédric Bastoul has been reviewer for the following conferences: CGO 2014 (International Conference on Code Generation and Optimization), PARMA 2014 and 2015 (International Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures), IMPACT 2014 (International Workshop on Polyhedral Compilation Techniques), HIP3ES 2015 (International Workshop on High Performance Energy Efficient Embedded Systems).

        
        Journal

        
        reviewer

        Philippe Clauss has been reviewer for the following journals: IEEE Transactions on Computers, ACM Transactions on Programming Languages and Systems (TOPLAS), ACM Transactions on Architecture and Code Optimization (TACO), IEEE Transactions on Parallel and Distributed Systems (TPDS).

        Cédric Bastoul has been reviewer for the following journals: Journal of Parallel and Distributed Computing (JPDC), ACM Transactions on Architecture and Code Optimization (TACO), Parallel Computing (ParCo).
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        Teaching - Supervision - Juries

        
        Teaching

        Philippe Clauss and Alain Ketterlin did not teach during the first semester of 2014 since they were detached at Inria (délégation).

        
          	
             Licence : Vincent Loechner, Operating Systems, 38h, L2, Strasbourg University, France

          

          	
             Master : Vincent Loechner, Python Programming, 38h, M1, Strasbourg University, France

          

          	
             Master : Vincent Loechner, Parallelism, 15h, M1, Strasbourg University, France

          

          	
             Master : Vincent Loechner, Parallel Programming, 32h, M1, Strasbourg University, France

          

          	
             Master : Vincent Loechner, Parallel Programming, 30h, M2, Strasbourg University, France

          

          	
             Master : Vincent Loechner, Advanced compilation, 8h, M1, Strasbourg University, France

          

          	
             Master : Vincent Loechner, Embedded Systems, 32h, M2, Strasbourg University, France

          

          	
             Master : Vincent Loechner, Real-time Programming, 22h, M1, Strasbourg University, France

          

        

        
          	
             Licence : Philippe Clauss, Computer Architecture, 45h, L2, Strasbourg University, France

          

          	
             Master : Philippe Clauss, Compilation, 78h, M1, Strasbourg University, France

          

        

        
          	
             Licence : Cédric Bastoul, System Programming, 49h, L2, Strasbourg University, France

          

          	
             Master : Cédric Bastoul, Compiler Design, 48h, M1, Strasbourg University, France

          

          	
             Master : Cédric Bastoul, Advanced compilation, 29h, M1, Strasbourg University, France

          

          	
             Master : Cédric Bastoul, Parallelism, 20h, M2, Strasbourg University, France

          

          	
             Master : Cédric Bastoul, Introduction to Research, 7h, M1, Strasbourg University, France

          

        

        
          	
             Licence : Éric Violard, Functional Programming, 42h, L2, Strasbourg University, France

          

          	
             Licence : Éric Violard, Computer Architectures, 23h, L2, Strasbourg University, France

          

          	
             Licence : Éric Violard, Algorithms and Data Structures, 34h, L2, Strasbourg University, France

          

          	
             Master : Éric Violard, Compiler Design, 54h, M1, Strasbourg University, France

          

          	
             Master : Éric Violard, Semantics, 48h, M1, Strasbourg University, France

          

          	
             Master : Éric Violard, Introduction to Research, 6h, M1, Strasbourg University, France

          

        

        
          	
             Licence : Alain Ketterlin, Computer Networks, 66h, L3, Strasbourg University, France

          

          	
             Licence : Alain Ketterlin, Algorithms and Data Structures, 40h, L3, Strasbourg University, France

          

        

        
        Supervision

        
          	
             PhD in progress : Aravind Sukumaran-Rajam, Enlarging the scope of polyhedral speculative parallelization, November 2012, Philippe Clauss and Alain Ketterlin

          

          	
             PhD in progress : Juan Manuel Martinez Caamaño, Dynamic and flexible generation of parallel loops using a dedicated intermediate representation, November 2013, Philippe Clauss and Philippe Helluy (IRMA lab., University of Strasbourg)

          

          	
             PhD in progress : Jean-François Dollinger, Heterogeneous speculative parallelization, September 2010, Vincent Loechner and Philippe Clauss

          

          	
             PhD in progress : Imen Fassi, Multifor for Multicore, June 2013, Philippe Clauss and Yosr Slama (University El Manar, Tunisia)

          

          	
             PhD in progress : Nabil Hallou, Dynamic binary optimizations, January 2013, Erven Rohou (ALF team) and Philippe Clauss

          

          	
             PhD in progress : Lénaïc Bagnères, Automatic parallelization and optimization for manycore architectures, November 2012, Christine Eisenbeis and Cédric Bastoul

          

          	
             PhD in progress : Alexander Zinenko, Interactive program manipulation, September 2013, Stéphane Huot and Cédric Bastoul

          

          	
             PhD in progress : Yann Barsamian, A Parallel Programming Environment based on the Xfor Control Structure, October 2014, Éric Violard

          

        

        
        Juries

        Philippe Clauss participated to the following PhD jurys in 2014:

        
          
            Table 
	1. 
          
          
            
              Date
            
            
              Candidate
            
            
              Place
            
            
              Role
            
          

          
            Sept. 22
            Michael KRUSE
            Univ. Paris Sud
            Reviewer
          

          
            June 20
            Pierre ESTERIE
            Univ. Paris Sud
            Reviewer
          

        

        Cédric Bastoul participated to the following PhD jurys in 2014:

        
          
            Table 
	2. 
          
          
            
              Date
            
            
              Candidate
            
            
              Place
            
            
              Role
            
          

          
            November 19
            Rachid Habel
            École des Mines de Paris
            Reviewer
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        Popularization

        
          	
             Cédric Bastoul participated to the event Kids University at the University of Strasbourg in November 2014

          

          	
             Cédric Bastoul prepared activities for Fête de la Science at University of Paris-Sud in October 2014
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        International Initiatives


        
        Inria Associate Teams


        
        
          ANCOME
        


        
          		
             Title: Memory and applications memory behavior


          


          		
             International Partner (Institution - Laboratory - Researcher):


            
              		
                 Universidad de Buenos Aires (ARGENTINE)


              


            


          


          		
             Duration: 2011 - ___AT.ANNEEMOISFIN???___


          


          		
             See also: http://lafhis.dc.uba.ar/wiki/index.php/EA-Ancome


          


          		
             This associate team focuses on developing original methods for the analysis of programs memory behavior, in particular in the context of applications using dynamic memory allocation. The proposed approaches consist in analyzing and modeling the runtime behavior, where extracted properties are then verified thanks to static analysis processes. Thus pure static approaches limits will be overpassed. Further, the case of multi-threaded applications run on multi-core architectures will be studied in order to elaborate and extend our analysis techniques and to extract properties specific to this context. The issues are mainly concerned with the conception of real-time applications using dynamic memory allocation.


          


        


        
        Inria International Partners


        
        Informal International Partners


        The CAMUS team maintains regular contacts with the following entities:


        
          		
             Reservoir Labs, New York, NY, USA


          


          		
             Intel, Santa Clara, CA, USA


          


          		
             UPMARC, University of Uppsala, Sweden


          


          		
             University of Batna, Algeria


          


          		
             University El Manar, Tunis, Tunisia


          


          		
             Ohio State University, Colombus, USA


          


          		
             Louisiana State University, Baton Rouge, USA


          


          		
             Indian Institute of Science (IIIS) Bangalore, India


          


          		
             University of Delaware, DE, USA
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        National Initiatives


        Philippe Clauss, Alain Ketterlin, Cédric Bastoul and Vincent Loechner are involved in the Inria Project Lab entitled “Large scale multicore virtualization for performance scaling and portability” and regrouping several french researchers in compilers, parallel computing and program optimization (https://team.inria.fr/multicore ). The project started officially in January 2013. In this context and since January 2013, Philippe Clauss is co-advising with Erven Rohou of the Inria team ALF, Nabil Hallou's PhD thesis focusing on dynamic optimization of binary code.
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        Collaborations in European Programs, except FP7 & H2020


        
          		
             Program: ITEA


          


          		
             Project acronym: MANY


          


          		
             Project title: Many-core Programming and Resource Management for High-Performance Embedded Systems


          


          		
             Duration: 09/2011 - 12/2014


          


          		
             Coordinator: XDIN


          


          		
             Other partners: France: Thales Communications and Security, CAPS Entreprise, Telecom SudParis; Spain: UAB; Sweden: XDIN; Korea: ETRI, TestMidas, SevenCore; Netherlands: Vector Fabrics, ST-Ericsson, TU Eindhoven; Belgium: UMONS.


          


          		
             Abstract: Adapting Industry for the for the disruptive landing of many-core processors in Embedded Systems in order to provide scalable, reusable and very fast sofware development.
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        International Research Visitors


        
        Visits of International Scientists


        
        Internships


        
          		
             Matías Hernando Pérez Matías


            
              		
                 Date: May 2014 - Nov 2014


              


              		
                 Institution: Universidad de Buenos Aires (Argentina)


              


            


          


        


        
          		
             Sabater César Rufino


            
              		
                 Date: May 2014 - Oct 2014


              


              		
                 Institution: Universidad Nacional de Rosario (Argentina)


              


            


          


        


        
          		
             Campostrini Luis Esteban


            
              		
                 Date: Jul 2014 - Dec 2014


              


              		
                 Institution: Universidad Nacional de Rosario (Argentina)
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