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        Overall Objectives

        The Parietal team focuses on mathematical methods for statistical
inference based on neuroimaging data, with a particular reliance on
machine learning techniques and applications of human functional
imaging.
This general theme splits into four research axes: Mathematical
methods for multi-modal brain atlases, Statistical methods for
high-dimensional data, Modeling brain function through neuroimaging
and Parallel reconstruction and high-resolution MRI.
Parietal is also strongly involved in open-source software development
in scientific Python (machine learning) and for neuroimaging
applications.
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        Inverse problems in Neuroimaging

        Many problems in neuroimaging can be framed as forward and inverse
problems. For instance, the neuroimaging inverse problem
consists in predicting individual information (behavior, phenotype)
from neuroimaging data, while the forward problem consists in
fitting neuroimaging data with high-dimensional (e.g. genetic)
variables. Solving these problems entails the definition of two
terms: a loss that quantifies the goodness of fit of the solution
(does the model explain the data reasonably well ?), and a
regularization schemes that represents a prior on the expected
solution of the problem. In particular some priors enforce some
properties of the solutions, such as sparsity, smoothness or being
piece-wise constant.

        Let us detail the model used in the inverse problem: Let 𝐗
be a neuroimaging dataset as an (nsubj,nvoxels) matrix, where
nsubj and nvoxels are the number of subjects under study,
and the image size respectively, 𝐘 an array of values that
represent characteristics of interest in the observed population,
written as (nsubj,nf) matrix, where nf is the number of
characteristics that are tested, and β an array of shape
(nvoxels,nf) that represents a set of pattern-specific maps. In
the first place, we may consider the columns 𝐘1,..,𝐘nf of Y independently, yielding nf problems to be
solved in parallel:
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        where the vector contains βi is the ith row of
β. As the problem is clearly ill-posed, it is
naturally handled in a regularized regression framework:
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        where Ψ is an adequate penalization used to regularize the
solution:
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        with λ1,λ2,η1,η2≥0 (this
formulation particularly highlights the fact that convex regularizers
are norms or quasi-norms). In general, only one or two of these
constraints is considered (hence is enforced with a non-zero
coefficient):

        
          	
             When λ1>0 only (LASSO), and to some extent, when λ1,λ2>0 only (elastic net), the optimal solution β is
(possibly very) sparse, but may not exhibit a proper image structure;
it does not fit well with the intuitive concept of a brain map.

          

          	
             Total Variation regularization (see Fig. 1 ) is obtained for
(η1>0 only), and typically yields a piece-wise constant
solution. It can be associated with Lasso to enforce both sparsity and
sparse variations.

          

          	
             Smooth lasso is obtained with (η2>0 and λ1>0
only), and yields smooth, compactly supported spatial basis
functions.

          

        

        
          
            
          
          
            Figure
	1. Example of the regularization of a brain map with total
variation in an inverse problem. The problem here consists in
predicting the spatial scale of an object presented as a stimulus,
given functional neuroimaging data acquired during the observation
of an image. Learning and test are performed across
individuals. Unlike other approaches, Total Variation regularization
yields a sparse and well-localized solution that enjoys particularly high
accuracy.
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        The performance of the predictive model can simply be evaluated as the
amount of variance in 𝐘i fitted by the model, for each i∈{1,..,nf}. This can be computed through cross-validation, by
learning β^i on some part of the dataset, and then
estimating (Yi-Xβ^i) using the remainder of the dataset.

        This framework is easily extended by considering

        
          	
             Grouped penalization, where the penalization explicitly
includes a prior clustering of the features, i.e. voxel-related
signals, into given groups. This is particularly important to include
external anatomical priors on the relevant solution.

          

          	
             Combined penalizations, i.e. a mixture of simple and
group-wise penalizations, that allow some variability to fit the
data in different populations of subjects, while keeping some common
constraints.

          

          	
             Logistic regression, where a logistic non-linearity is
applied to the linear model so that it yields a probability of
classification in a binary classification problem.

          

          	
             Robustness to between-subject variability is an important
question, as it makes little sense that a learned model depends
dramatically on the particular observations used for learning. This is
an important issue, as this kind of robustness is somewhat opposite to
sparsity requirements.

          

          	
             Multi-task learning: if several target variables
are thought to be related, it might be useful to constrain the
estimated parameter vector β to have a shared support across all
these variables.

             For instance, when one of the variables 𝐘i is not well fitted by
the model, the estimation of other variables 𝐘j,j≠i may
provide constraints on the support of βi and thus, improve the
prediction of 𝐘i. Yet this does not impose constraints on the
non-zero parameters of the parameters βi.
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        Multivariate decompositions

        Multivariate decompositions are an important tool to model complex
data such as brain activation images: for instance, one might be
interested in extracting an atlas of brain regions from a given
dataset, such as regions depicting similar activities during a
protocol, across multiple protocols, or even in the absence of
protocol (during resting-state). These data can often be factorized
into spatial-temporal components, and thus can be estimated through
regularized Principal Components Analysis (PCA) algorithms,
which share some common steps with regularized regression.

        Let 𝐗 be a neuroimaging dataset written as an (nsubj,nvoxels) matrix, after proper centering; the model reads
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        where 𝐃 represents a set of ncomp spatial maps, hence a matrix
of shape (ncomp,nvoxels), and 𝐀 the associated subject-wise
loadings. While traditional PCA and independent components analysis
are limited to reconstruct components 𝐃 within the space spanned by
the column of 𝐗, it seems desirable to add some constraints on the
rows of 𝐃, that represent spatial maps, such as sparsity, and/or
smoothness, as it makes the interpretation of these maps clearer in
the context of neuroimaging.

        This yields the following estimation problem:
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        where (𝐀i),i∈{1..nf} represents the columns of
𝐀. Ψ can be chosen such as in Eq. (2 ) in order to
enforce smoothness and/or sparsity constraints.

        The problem is not jointly convex in all the variables but each
penalization given in Eq (2 ) yields a convex problem on
𝐃 for 𝐀 fixed, and conversely. This readily
suggests an alternate optimization scheme, where 𝐃 and
𝐀 are estimated in turn, until convergence to a local
optimum of the criterion. As in PCA, the extracted components can be
ranked according to the amount of fitted variance. Importantly, also,
estimated PCA models can be interpreted as a probabilistic model of
the data, assuming a high-dimensional Gaussian distribution
(probabilistic PCA).
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        Covariance estimation

        Another important estimation problem stems from the general issue of
learning the relationship between sets of variables, in particular
their covariance. Covariance learning is essential to model the
dependence of these variables when they are used in a multivariate
model, for instance to assess whether an observation is aberrant or
not or in classification problems. Covariance learning is necessary
to model latent interactions in high-dimensional observation spaces,
e.g. when considering multiple contrasts or functional connectivity
data.

        The difficulties are two-fold: on the one hand, there is a shortage of
data to learn a good covariance model from an individual subject, and
on the other hand, subject-to-subject variability poses a serious
challenge to the use of multi-subject data. While the covariance
structure may vary from population to population, or depending on the
input data (activation versus spontaneous activity), assuming some
shared structure across problems, such as their sparsity pattern, is
important in order to obtain correct estimates from noisy data. Some of the most important models are:

        
          	
             Sparse Gaussian graphical models, as they express meaningful
conditional independence relationships between regions, and do
improve conditioning/avoid overfit.

          

          	
             Decomposable models, as they enjoy good computational properties
and enable intuitive interpretations of the network structure. Whether they can faithfully or not represent
brain networks is an important question that needs to be addressed.

          

          	
             PCA-based regularization of covariance which
is powerful when modes of variation are more important than
conditional independence relationships.

          

        

        Adequate model selection procedures are necessary to achieve the right
level of sparsity or regularization in covariance estimation; the
natural evaluation metric here is the out-of-samples likelihood of the
associated Gaussian model.
Another essential remaining issue is to develop an adequate
statistical framework to test differences between covariance models in
different populations.
To do so, we consider different means of parametrizing covariance
distributions and how these parametrizations impact the test of
statistical differences across individuals.

        
          
            
          
          
            Figure
	2. Example of functional connectivity analysis: The correlation
matrix describing brain functional connectivity in a post-stroke
patient (lesion volume outlined as a mesh) is compared to a group of
control subjects. Some edges of the graphical model show a
significant difference, but the statistical detection of the
difference requires a sophisticated statistical framework for the
comparison of graphical models.
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        Human neuroimaging data and their use

        Human neuroimaging consists in acquiring non-invasively image
data from normal and diseased human populations.
Magnetic Resonance Imaging (MRI) can be used to acquire information on
brain structure and function at high spatial resolution.

        
          	
             T1-weighted MRI is used to obtain a segmentation of the brain into
different different tissues, such as gray matter, white matter, deep
nuclei, cerebro-spinal fluid, at the millimeter or sub-millimeter
resolution. This can then be used to derive geometric and anatomical
information on the brain, e.g. cortical thickness.

          

          	
             Diffusion-weighted MRI measures the local diffusion of water
molecules in the brain at the resolution of 1 to 2mm, in a set of
directions (60 typically). Local anisotropy, observed in white
matter, yields a local model of fiber orientation that can be
integrated into a geometric model of fiber tracts along which water
diffusion occurs, and thus provides information on the connectivity
structure of the brain.

          

          	
             Functional MRI measures the blood-oxygen-level-dependent (BOLD)
contrast that reflects neural activity in the brain, at a spatial
resolution of 1.5 to 3mm, and a temporal resolution of about
2s. This yields a spatially resolved image of brain functional
networks that can be modulated either by specific cognitive tasks or
exhibit spontaneous co-activations.

          

          	
             Electro- and Magneto-encephalography (MEEG) are two additional
modalities that complement functional MRI, as they directly measure
the electric and magnetic signals elicited by neural activity, at the
millisecond scale. These modalities rely on surface measurements and
do not localize brain activity very accurately in the spatial domain.
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        High-field MRI

        High field MRI as performed at NeuroSpin (7T on humans, 11.7T in 2017,
17.6T on rats) brings an improvement over traditional MRI acquisitions
at 1.5T or 3T, related to to a higher signal-to-noise ratio in the
data. Depending on the data and applicative context, this gain in SNR
can be traded against spatial resolution improvements, thus helping in
getting more detailed views of brain structure and function. This
comes at the risk of higher susceptibility distortions of the MRI
scans and signal inhomogeneities, that need to be corrected
for. Improvements at the acquisition level may come from the use of
new coils (such as the 32 channels coil on the 7T at NeuroSpin), as
well as the use of multi-band sequences [44] .
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Technical challenges for the analysis of neuroimaging data

        The first limitation of Neuroimaging-based brain analysis is the
limited Signal-to-Noise Ratio of the data. A particularly striking
case if functional MRI, where only a fraction of the data is actually
understood, and from which it is impossible to observe by eye the
effect of neural activation on the raw data. Moreover, far from
traditional i.i.d. Gaussian models, the noise in MRI typically
exhibits local and long-distance correlations (e.g. motion-related
signal) and has potentially large amplitude, which can make it hard to
distinguish from true signal on a purely statistical basis.
A related difficulty is the lack of salient structure in the
data: it is hard to infer meaningful patterns (either through
segmentation or factorization procedures) based on the data only. A
typical case is the inference of brain networks from resting-state
functional connectivity data.

        Regarding statistical methodology, neuroimaging problems also suffer
from the relative paucity of the data, i.e. the relatively small
number of images available to learn brain features or models,
e.g. with respect to the size of the images or the number of potential
structures of interest.
This leads to several kinds of difficulties, known either as
multiple comparison problems or curse of dimensionality.
One possibility to overcome this challenge is to increase the amount
of data by using images from multiple acquisition centers, at the risk
of introducing scanner-related variability, thus challenging the
homogeneity of the data. This becomes an important concern with the
advent of cross-modal neuroimaging-genetics studies.
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          Scikit learn
        

        Participants :
	Olivier Grisel [correspondant] , Gaël Varoquaux, Bertrand Thirion, Michael Eickenberg, Loïc Estève, Alexandre Gramfort, Fabian Pedregosa Izquierdo.

        Scikit-learn is an open-source machine learning toolkit written in
Python/C that provides generic tools to learn information for the
classification of various kinds of data, such as images or
texts. It is tightly associated to the scientific Python software
suite (Numpy/Scipy) for which it aims at providing a complementary
toolkit for machine learning (classification, clustering,
dimension reduction, regression). There is an important focus on
code quality (API consistency, code readability, tests,
documentation and examples), and on efficiency, as the
scikit-learn compares favorably to state-of-the-art modules
developed in R in terms of computation time or memory
requirements. Scikit-learn is currently developed by more than 60
contributors, but the core developer team has been with the
Parietal Inria team at Saclay-Île-de-France since January
2010. The scikit-learn has recently become the reference machine
learning library in Python.

        
          	
             Version: 0.15.2

          

          	
             Programming language: Python, C/Cython
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          Nilearn
        

        Participants :
	Gaël Varoquaux [correspondant] , Bertrand Thirion, Loïc Estève, Alexandre Abraham, Michael Eickenberg, Alexandre Gramfort, Fabian Pedregosa Izquierdo, Elvis Dohmatob, Virgile Fritsch.

        NiLearn is the neuroimaging library that adapts the concepts
and tools of scikit-learn to neuroimaging problems.
As a pure Python library, it depends on scikit-learn and nibabel,
the main Python library for neuroimaging I/O.
It is an open-source project, available under BSD license.
The two key components of NiLearn are i) the analysis of
functional connectivity (spatial decompositions and covariance
learning) and ii) the most common tools for multivariate
pattern analysis.
A great deal of efforts has been put on the efficiency of the
procedures both in terms of memory cost and computation time.
NiLearn is maintained both through the help of Inria: a developer
funded by Saclay CRI in 2012-2013, a 2013-2014 ADT and through the
NiConnect project.

        
          	
             Version: 0.1

          

          	
             Programming language: Python
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          Mayavi
        

        Participant :
	Gaël Varoquaux [Correspondant] .

        Mayavi is the most used scientific 3D visualization Python software
(http://mayavi.sourceforge.net/ ). It has been developed by
Prabhu Ramachandran (IIT Bombay) and Gaël Varoquaux (Parietal ,
Inria Saclay). Mayavi can be used as a visualization tool, through
interactive command line or as a library. It is distributed under
Linux through Ubuntu, Debian, Fedora and Mandriva, as well as in
PythonXY and EPD Python scientific distributions. Mayavi is used by
several software platforms, such as PDE solvers (fipy, sfepy),
molecule visualization tools (http://pyrx.scripps.edu ) and
brain connectivity analysis tools (connectomeViewer).

        See also the web page http://mayavi.sourceforge.net/  and the
following paper http://hal.inria.fr/inria-00528985/en .

        
          	
             Version: 3.4.0
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          Nipy
        

        Participants :
	Bertrand Thirion [correspondant] , Elvis Dohmatob, Gaël Varoquaux.

        Nipy is an open-source Python library for neuroimaging data
analysis, developed mainly at Berkeley, Stanford, MIT and
Neurospin. It is open to any contributors and aims at developing
code and tools sharing. Some parts of the library are completely
developed by Parietal. It is devoted to algorithmic solutions for
various issues in neuroimaging data analysis. The Nipy project is
available, under BSD license, and within NeuroDebian.

        See also the web page http://nipy.org .

        
          	
             Version: 0.3

          

        

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        
          PyHRF
        

        Participants :
	Philippe Ciuciu [correspondant] , Aina Frau Pascual, Salma Torkhani.

        PyHRF is a set of tools for within-subject fMRI data
analysis, focused on the characterization of the hemodynamics.
Within the chain of fMRI data processing, these tools provide
alternatives to the classical within-subject GLM estimation
step. The inputs are preprocessed within-subject data and the
outputs are statistical maps and/or fitted HRFs.
The package is mainly written in Python and provides the implementation of the two following methods:

        
          	
             The joint-detection estimation (JDE) approach, that divides
the brain into functionally homogeneous regions and provides
one HRF estimate per region as well as response levels
specific to each voxel and each experimental condition. This
method embeds a temporal regularization on the estimated HRFs
and an adaptive spatial regularization on the response levels.

          

          	
             The Regularized Finite Impulse Response (RFIR) approach, that
provides HRF estimates for each voxel and experimental
conditions. This method embeds a temporal regularization on
the HRF shapes, but proceeds independently across voxels (no
spatial model).

          

        

        The development of PyHRF is now funded by an Inria ADT, in
collaboration with MISTIS.

        
          	
             Version: 0.1

          

          	
             Keywords: Hemodynamic response function; estimation; detection; fMRI

          

          	
             License: BSD 4

          

          	
             Multiplatform: Windows - Linux - MacOSX

          

          	
             Programming language: Python
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        Highlights of the Year

        
          	
             Congratulations also to Alex and Daniel Strohmeier for their best
paper award at the PRNI 2014 conference: “Improved MEG/EEG source
localization with reweighted mixed-norms“.

          

          	
             Elvis Dohmatob got a honorable mention for the student paper award at
PRNI 2014 for the work “Benchmarking solvers for TV-l1 least-squares
and logistic regression in brain imaging”
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        Which fMRI clustering gives good brain parcellations?

        Participants :
	Bertrand Thirion [Correspondant] , Gaël Varoquaux, Elvis Dohmatob.

        Analysis and interpretation of neuroimaging data often require one to
divide the brain into a number of regions, or parcels, with
homogeneous characteristics, be these regions defined in the brain
volume or on on the cortical surface. While predefined brain atlases
do not adapt to the signal in the individual subjects images,
parcellation approaches use brain activity (e.g. found in some
functional contrasts of interest) and clustering techniques to define
regions with some degree of signal homogeneity. In this work, we
address the question of which clustering technique is appropriate and
how to optimize the corresponding model. We use two principled
criteria: goodness of fit (accuracy), and reproducibility of the
parcellation across bootstrap samples. We study these criteria on
both simulated and two task-based functional Magnetic Resonance
Imaging datasets for the Ward, spectral and K-means clustering
algorithms. We show that in general Ward's clustering performs better
than alternative methods with regard to reproducibility and accuracy
and that the two criteria diverge regarding the preferred models
(reproducibility leading to more conservative solutions), thus
deferring the practical decision to a higher level alternative,
namely the choice of a trade-off between accuracy and stability.

        
          
            
          
          
            Figure
	3. Practitioner have to decide which clustering method to use
and how to select the number of clusters. In
[21] , we provide empirical guidelines and
criteria to guide that choice in the context of functional brain
imaging.
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        More details can be found in [21] .
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        Principal Component Regression predicts functional responses across individuals

        Participants :
	Bertrand Thirion [Correspondant] , Gaël Varoquaux, Olivier Grisel.

        Inter-subject variability is a major hurdle for neuroimaging
group-level inference, as it creates complex image patterns that are
not captured by standard analysis models and jeopardizes the
sensitivity of statistical procedures. A solution to this problem is
to model random subjects effects by using the redundant information
conveyed by multiple imaging contrasts. In this paper, we introduce a
novel analysis framework, where we estimate the amount of variance
that is fit by a random effects subspace learned on other images; we
show that a principal component regression estimator outperforms other
regression models and that it fits a significant proportion (10% to
25%) of the between-subject variability. This proves for the first
time that the accumulation of contrasts in each individual can provide
the basis for more sensitive neuroimaging group analyzes.

        
          
            
          
          
            Figure
	4. In most brain regions, knowing the amount of activation
related to a set of reference contrasts yields an accurate
prediction of the activation for a target contrast.
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        More details can be found in [36] .
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        Deriving a multi-subject functional-connectivity atlas to inform connectome estimation

        Participants :
	Ronald Phlypo [Correspondant] , Bertrand Thirion, Gaël Varoquaux.

        The estimation of functional connectivity structure from functional
neuroimaging data is an important step toward understanding the
mechanisms of various brain diseases and building relevant
biomarkers. Yet, such inferences have to deal with the low
signal-to-noise ratio and the paucity of the data. With at our
disposal a steadily growing volume of publicly available neuroimaging
data, it is however possible to improve the estimation procedures
involved in connectome mapping. In this work, we propose a novel
learning scheme for functional connectivity based on sparse Gaussian
graphical models that aims at minimizing the bias induced by the
regularization used in the estimation, by carefully separating the
estimation of the model support from the coefficients. Moreover, our
strategy makes it possible to include new data with a limited
computational cost. We illustrate the physiological relevance of the
learned prior, that can be identified as a functional connectivity
atlas, based on an experiment on 46 subjects of the Human Connectome
Dataset.

        
          
            
          
          
            Figure
	5. Prior on the functional connectivity: the coefficient of the
matrix represent the frequency of an edge at each position. This
model can be interpreted as a data-driven atlas of brain functional
connections. In the current framework, it can easily be updated to
take into account more data.
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        More details can be found in [35] .
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        Machine Learning Patterns for Neuroimaging-Genetic Studies in the Cloud

        Participants :
	Virgile Fritsch, Bertrand Thirion, Gaël Varoquaux.

        Brain imaging is a natural intermediate phenotype to understand the
link between genetic information and behavior or brain pathologies
risk factors. Massive efforts have been made in the last few years to
acquire high-dimensional neuroimaging and genetic data on large
cohorts of subjects. The statistical analysis of such data is carried
out with increasingly sophisticated techniques and represents a great
computational challenge. Fortunately, increasing computational power
in distributed architectures can be harnessed, if new neuroinformatics
infrastructures are designed and training to use these new tools is
provided. Combining a MapReduce framework (TomusBLOB) with machine
learning algorithms (Scikit-learn library), we design a scalable
analysis tool that can deal with non-parametric statistics on
high-dimensional data. End-users describe the statistical procedure to
perform and can then test the model on their own computers before
running the very same code in the cloud at a larger scale. We
illustrate the potential of our approach on real data with an
experiment showing how the functional signal in subcortical brain
regions can be significantly fit with genome-wide genotypes. This
experiment demonstrates the scalability and the reliability of our
framework in the cloud with a two weeks deployment on hundreds of
virtual machines.

        
          
            
          
          
            Figure
	6. Overview of the multi site deployment of a hierarchical
Tomus-MapReduce compute engine. 1) The end-user uploads the data and
configures the statistical inference procedure on a webpage. 2) The
Splitter partitions the data and manages the workload. The compute
engines retrieves job information trough the Windows Azure
Queues. 3) Compute engines perform the map and reduce jobs. The
management deployment is informed of the progression via the Windows
Azure Queues system and thus can manage the execution of the global
reducer. 4) The user downloads the results of the computation on the
webpage of the experiment.
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        More details can be found in [17] .
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        Data-driven HRF estimation for encoding and decoding models

        Participants :
	Fabian Pedregosa Izquierdo [correspondant] , Michael Eickenberg, Alexandre Gramfort, Philippe Ciuciu, Bertrand Thirion, Gaël Varoquaux.

        Despite the common usage of a canonical, data-independent, hemodynamic
response function (HRF), it is known that the shape of the HRF varies
across brain regions and subjects. This suggests that a data-driven
estimation of this function could lead to more statistical power when
modeling BOLD fMRI data. However, unconstrained estimation of the HRF
can yield highly unstable results when the number of free parameters
is large. We develop a method for the joint estimation of activation
and HRF using a rank constraint causing the estimated HRF to be equal
across events/conditions, yet permitting it to be different across
voxels. Model estimation leads to an optimization problem that we
propose to solve with an efficient quasi-Newton method exploiting fast
gradient computations. This model, called GLM with Rank-1 constraint
(R1-GLM), can be extended to the setting of GLM with separate designs
which has been shown to improve decoding accuracy in brain activity
decoding experiments. We compare 10 different HRF modeling methods in
terms of encoding and decoding score in two different datasets. Our
results show that the R1-GLM model significantly outperforms competing
methods in both encoding and decoding settings, positioning it as an
attractive method both from the points of view of accuracy and
computational efficiency.

        
          
            
          
          
            Figure
	7. Illustration of the hemodynamic response function estimation
framework introduced in [19] .
            
              	
                
                  
                    
                      [image: IMG/hrf.jpg]
                    
                  

                

              
            

          

        

        More details can be found in [19] .
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        Benchmarking solvers for TV-l1 least-squares and logistic regression in brain imaging

        Participants :
	Elvis Dohmatob [correspondant] , Michael Eickenberg, Gaël Varoquaux, Bertrand Thirion.

        Learning predictive models from brain imaging data, as in decoding
cognitive states from fMRI (functional Magnetic Resonance Imaging),
is typically an ill-posed problem as it entails estimating many more
parameters than available sample points. This estimation problem thus
requires regularization. Total variation regularization, combined
with sparse models, has been shown to yield good predictive
performance, as well as stable and interpretable maps. However, the
corresponding optimization problem is very challenging: it is
non-smooth, non-separable and heavily ill-conditioned. For the
penalty to fully exercise its structuring effect on the maps, this
optimization problem must be solved to a good tolerance, resulting in
a computational challenge. In this work, we explore a wide variety of solvers
and exhibit their convergence properties on fMRI data. We introduce a
variant of smooth solvers and show that it is a promising approach in
these settings. Our findings show that care must be taken in solving
TV-l1 estimation in brain imaging and highlight the successful
strategies.

        
          
            
          
          
            Figure
	8. TV−l1 maps for a face-house discrimination task taken from a
visual recognition dataset, with regularization parameters chosen by
cross-validation, for different stopping criteria. Note that the
stopping criterion is defined as a threshold on the energy decrease
per one iteration of the algorithm. This figure shows the importance
of convergence of the multivariate estimator, and motivates the need
for a fast solver.
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        More details can be found in [30] 
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        Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks

        Participant :
	Philippe Ciuciu [correspondant] .

        Studies employing functional connectivity-type analyses have
established that spontaneous fluctuations in functional magnetic
resonance imaging (fMRI) signals are organized within large-scale
brain networks. Meanwhile, fMRI signals have been shown to exhibit
1/f-type power spectra – a hallmark of scale-free dynamics. We studied
the interplay between functional connectivity and scale-free dynamics
in fMRI signals, utilizing the fractal connectivity framework – a
multivariate extension of the univariate fractional Gaussian noise
model, which relies on a wavelet formulation for robust parameter
estimation. We applied this framework to fMRI data acquired from
healthy young adults at rest and performing a visual detection
task. First, we found that scale-invariance existed beyond univariate
dynamics, being present also in bivariate cross-temporal
dynamics. Second, we observed that frequencies within the scale-free
range do not contribute evenly to inter-regional connectivity, with a
systematically stronger contribution of the lowest frequencies, both
at rest and during task. Third, in addition to a decrease of the Hurst
exponent and inter-regional correlations, task performance modified
cross-temporal dynamics, inducing a larger contribution of the highest
frequencies within the scale-free range to global correlation.

        
          
            
          
          
            Figure
	9. Networks definition and correlation structure. Top (A): ROIs
mapped onto the cortical surface, with each color denoting a
different network. Middle (B): Group-averaged inter-regional
correlation matrix at rest (p < 0.05, Bonferroni corrected). Regions
are grouped by network to ease visualization. Middle (C):
Group-averaged inter-regional correlation matrix during the visual
detection task (p < 0.05, Bonferroni corrected). Bottom (D):
Difference of the correlation coefficients between rest and task
(thresholded at p < 0.01, uncorrected, two-sample t-test for rest
vs. task). The ROIs are grouped by networks; these networks
correspond to the diagonal triangles surrounded by white dashed
lines.
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        More details can be found in [16] .
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        Supramodal processing optimizes visual perceptual learning and plasticity

        Participants :
	Philippe Ciuciu [correspondant] , Alexandre Gramfort.

        Multisensory interactions are ubiquitous in cortex and it has been
suggested that sensory cortices may be supramodal i.e. capable of
functional selectivity irrespective of the sensory modality of
inputs. Here, we asked whether learning to discriminate visual
coherence could benefit from supramodal processing.
To this end, three groups of participants were briefly trained to
discriminate which of a red or green intermixed population of
random-dot-kinematograms (RDKs) was most coherent in a visual display
while being recorded with magnetoencephalography (MEG).
During training, participants heard no sound (V), congruent acoustic
textures (AV) or auditory noise (AVn); importantly, congruent acoustic
textures shared the temporal statistics – i.e. coherence – of visual
RDKs. After training, the AV group significantly outperformed
participants trained in V and AVn although they were not aware of
their progress. In pre- and post-training blocks, all participants
were tested without sound and with the same set of RDKs.
When contrasting MEG data collected in these experimental blocks,
selective differences were observed in the dynamic pattern and the
cortical loci responsive to visual RDKs. First and common to all three
groups, vlPFC showed selectivity to the learned coherence levels
whereas selectivity in visual motion area hMT+ was only seen for the
AV group. Second and solely for the AV group, activity in multisensory
cortices (mSTS, pSTS) correlated with post-training performances;
additionally, the latencies of these effects suggested feedback from
vlPFC to hMT+ possibly mediated by temporal cortices in AV and AVn
groups.
Altogether, we interpret our results in the context of the Reverse
Hierarchy Theory of learning in which supramodal processing optimizes
visual perceptual learning by capitalizing on sensory-invariant
representations - here, global coherence levels across sensory
modalities.

        More details can be found in [25] .


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Variable density sampling with continuous trajectories. Application to MRI.

        Participants :
	Nicolas Chauffert, Philippe Ciuciu [correspondant] .

        Reducing acquisition time is a crucial challenge for many imaging
techniques. Compressed Sensing (CS) theory offers an appealing
framework to address this issue since it provides theoretical
guarantees on the reconstruction of sparse signals by projection on a
low dimensional linear subspace. In this paper, we focus on a setting
where the imaging device allows to sense a fixed set of
measurements. We first discuss the choice of an optimal sampling
subspace (smallest subset) allowing perfect reconstruction of sparse
signals. Its standard design relies on the random drawing of
independent measurements. We discuss how to select the drawing
distribution and show that a mixed strategy involving partial
deterministic sampling and independent drawings can help breaking the
so-called "coherence barrier". Unfortunately, independent random
sampling is irrelevant for many acquisition devices owing to
acquisition constraints. To overcome this limitation, the notion of
Variable Density Samplers (VDS) is introduced and defined as a
stochastic process with a prescribed limit empirical measure. It
encompasses samplers based on independent measurements or continuous
curves. The latter are crucial to extend CS results to actual
applications. Our main contribution lies in two original continuous
VDS. The first one relies on random walks over the acquisition space
whereas the second one is heuristically driven and rests on the
approximate solution of a Traveling Salesman Problem. Theoretical
analysis and retrospective CS simulations in magnetic resonance
imaging highlight that the TSP-based solution provides improved
reconstructed images in terms of signal-to-noise ratio compared to
standard sampling schemes (spiral, radial, 3D iid...).

        
          
            
          
          
            Figure
	10. (a): Target distribution π to be approximated. Continuous
random trajectories reaching distribution π based on Markov
chains (b) and on a TSP solution (c). The latter is much more
accurate.
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        More details can be found in [15] .


      

      
      

      
    

  
    Bilateral Contracts and Grants with Industry

    
      	Bilateral Contracts and Grants with Industry	The LearnClues Labcomm
	The Wendelin FUI project



    

  
    
    
      
      
      

      
      
        
        Section: 
      Bilateral Contracts and Grants with Industry

        The LearnClues Labcomm

        The LearnClues LabComm has been granted on Oct 2.

        Statistical learning is a field of mathematics and computer science that
enables the extraction of predictive models from data with weak signal to
noise ratio. These techniques are behind the successes of Google or the
progresses of automatic medical diagnostic. Combined with a knowledge of
the field of application, they open the door to optimal decisions.
Tinyclues is a start-up that applies statistical learning to e-commerce,
adapting the marketing practice from customer databases. Parietal is an
Inria research group that develops statistical learning for neurosciences
and is the driving force behind the software tool "scikit-learn", that is
a standard in statistical learning.

        The goal of this proposed common lab is to transfer the expertise of
Parietal on big data and to improve statistical learning techniques and
implementation on distributed systems to open the door to faster analysis
of very large datasets. Indeed, processing more data implies detecting
smaller effects in the signals. Tinyclues already uses the tools
developed par Parietal on the "cloud", and thus in distributed computing
environments. The practical experience of Parietal enables us to plan
substantial improvements to computational performance as well as to the
amount of information extracted from big data.

        From a strategical standpoint for Tinyclues, such progress are
important to vary the number of domain scenarios that it can address,
by analyzing jointly more data of a wider type, and to render fully
automatic the data analysis platform that it is offering to its
customers, replacing challenging tasks currently performed by
experts. These developments are particularly important given that
Tinyclues is developing at a very fast rate and is processing bigger
and bigger datasets and an increasing number of different problems.

        The project partners are:

        
          	
             Parietal, Inria

          

          	
             Tiny Clues
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        The Wendelin FUI project

        The Wendelin project has been granted on December 3rd, 2014. It has
been selected at the Programme d’Investissements d’Avenir (PIA)
that supports "cloud computing et Big Data".
It gives visibility and fosters the French technological big data
sector, and in particular the scikit-learn library, the NoSQL “NEO”
et the decentralized “SlapOS” cloud, three open-source software
supported by the Systematic pôle de compétitivité.

        Scikit-learn is a worldwide reference library for machine
learning. Gael Varoquaux, Olivier Grisel and Alexandre Gramfort have
been major players in the design of the library and Scikit-learn has
then been supported by the growing scientific Python community.
It is currently used by major internet companies as well as dynamic
start-ups, including Google, Airbnb, Spotify, Evernote, AWeber,
TinyClues; it wins more than half of the data science "Kaggle"
competitions.
Scikit-learn makes it possible to predict future outcomes given a
training data, and thus to optimize company decisions.
Almost 1 million euros will be invested to improve the
algorithmic core of scikit-learn through the Wendelin project thanks to
the Inria, ENS and Institut Mines Télécom teams.
In particular, scikit-learn will be extended in order to ease online
prediction and to include recent stochastic gradient algorithms.

        NEO is the native NoSQL base of the Python language. It was initially
designed by Nexedi and is currently used and embedded in the main
software of company information systems. More than one million euros
will be invested into NEO, so that scikit-learn can process within 10
years (out-of-core) data of 1 exabyte size.

        Paris13 university and the Mines Télécom institute will extend the
SlapOS distributed mesh cloud to deploy Wendelin in Big Data as
a Service (BDaaS) mode, to achieve the interoperability between the
Grid5000 and Teralab infrastructures and to extend the cloud toward
smart sensor systems.

        The combination of scikit-learn, NEO and SlapOS will improve the
predictive maintenance of industrial plants with two major use cases:
connected windmills (GDF SUEZ, Woelfel) and customer satisfaction in
car sale systems (MMC Rus). In both cases it is about non-personal,
yet profitable big data.
The Wendelin project actually demonstrates that Big data can improve
infrastructure and everyday-life equipment without intrusive data
collection. For more information, please see www.wendelin.io .

        The project partners are:

        
          	
             Nexedi (leader)

          

          	
             GDF SUEZ

          

          	
             Abilian

          

          	
             2ndQuadrant

          

          	
             Institut Mines Télécom

          

          	
             Inria

          

          	
             Université Paris 13
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        Promoting Scientific Activities

        
        Scientific events organisation

        
        Member of the organizing committee

        
          	
             Gaël Varoquaux: PRNI, Euroscipy

          

          	
             Philippe Ciuciu: ISBI

          

        

        
        Scientific events selection

        
        Member of the conference program committee

        P.Ciuciu: ICASSP 2014, Associate Editor of the BISP (Bio
Imaging Signal Processing) section

        
        Reviewer

        
          	
             Bertrand Thirion: IEEE ISBI, IPMI, MICCAI, IEEE PRNI, MLINI, NIPS

          

          	
             Gaël Varoquaux: IPMI, MICCAI, IEEE PRNI, MLINI

          

          	
             Philippe Ciuciu: MICCAI, IEEE ICASSP, IEEE ISBI, EUSIPCO, IEEE EMBC, IEEE PRNI

          

        

        
        Journal

        
        Member of the editorial board

        
          	
             Bertrand Thirion: Frontiers in Neuroscience, Brain Imaging Methods

          

          	
             Gaël Varoquaux: NeuroImage, Frontiers in NeuroInformatics
and Frontiers in Brain Imaging methods

          

          	
             Philippe Ciuciu: Frontiers in Neuroscience, Brain Imaging Methods

          

        

        
        Reviewer

        
          	
             Bertrand Thirion: Medical Image Analysis, IEEE
Transactions on Medical Imaging, NeuroImage, Human Brain
Mapping, PNAS, Nature Neuroscience.

          

          	
             Gaël Varoquaux: HBM, MedIA, TMI, Frontiers in
NeuroInformatics, Frontiers in Brain Imaging methods, Trends in cognitive science

          

          	
             Philippe Ciuciu: SIAM Journal on Imaging Science, IEEE Trans Image Processing, IEEE Trans Medical Imaging, Proceedings of the IEEE, Signal Processing, NeuroImage, Journal of Neuroscience Methods, Plos One, MAGMA, Human Brain Mapping, Journal of Neural Systems, Journal of Neuroscience.

          

        

        
        Scientific workshop

        Bertrand Thirion took part to the CCC Brain workshop, Washington DC,
Dec. 3-5.
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        Teaching - Supervision - Juries

        
        Teaching

        
          	Gael Varoquaux
            	 Stat Course cogmaster (3 × 3H)

	 Python course Inria Rocquencourt et Rennes: 8Hrs each time

	 Optimization tutoral at Euroscipy: 2H

	 Scikit-learn tutorial at Scipy: 4H

	 Functional connectivity course at OHBM: 30mn

	 MSR TechDays 2014 : Scikit-Learn: Machine Learning en Python (2H)



          

          	Bertrand Thirion
            	 Master MVA, Imagerie fonctionnelle cérébrale et interface cerveau
machine, 12h + 3h, M2, ENS Cachan, France.

	 Functional connectivity course at ISMRM: 30mn

	 Machine learning course, cortical mapping course at OHBM: 2
× 30 mn.



          

          	Philippe Ciuciu
            	 Master 2 Biomedical Engineering Université Paris V & Télécom Paris-Tech

	 Master 2 Imagerie Médicale Université Paris-Sud



          

        

        
        Supervision

        PhD defense:

        
          	
             Viviana Siless: July 8th, Multi-modal registration of T1
brain image and geometric descriptors of white matter tracts.

          

          	
             Nicolas Zilber: March 10th, ERF and scale-free analyses of
source-reconstructed MEG brain signals during a multisensory
learning paradigm.

          

          	
             Hao Xu: March 31st,  Probabilistic atlas statistical
estimation with multimodal datasets and its application to atlas
based segmentation.

          

        

        
        Juries

        Bertrand Thirion was reviewer in the following PhD thesis committees:

        
          	
             Mathieu Ruiz

          

          	
             Ben Cassidy, university of South Wales, Australia

          

          	
             Kasper Winther Andersen, April 22nd, DTU, Denmark

          

        

        He was Examiner in the following PhD thesis committee:

        
          	
             Hugo Raguet, Sept 22nd, Université Paris Dauphine.
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        Popularization

        
          	
             Bertrand Thirion has taken part to the Autour de la question
broadcast program on Feb. 24th.

          

          	
             Bertrand Thirion co-authored the popularization paper : "Le décodage
cérébral : exemple de la vision” in Clefs CEA, issue 62.

          

          	
             Gaël Varoquaux gave a tutorial on scikit learn at the Microsoft Tech
Days (February).
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             Type: FP7


          


          		
             Defi: Future and Emerging Technologies


          


          		
             Instrument: Collaborative Project with Coordination and Support Action


          


          		
             Objectif: FET Flagships


          


          		
             Duration: October 2013 - March 2016


          


          		
             Coordinator: Henry Markram (EPFL, Switzerland)


          


          		
             Partners: 86 partners, https://www.humanbrainproject.eu/fr/discover/the-community/partners


          


          		
             Inria contact: Olivier Faugeras


          


          		
             Abstract:


             Understanding the human brain is one of the greatest challenges facing
21st century science. If we can rise to the challenge, we can gain
profound insights into what makes us human, develop new treatments for
brain disease and build revolutionary new computing
technologies. Today, for the first time, modern ICT has brought these
goals within sight.


             Convergence of ICT and Biology
The convergence between biology and ICT has reached a point at which
it can turn the goal of understanding the human brain into a
reality. This realization motivates the Human Brain Project
– an EU Flagship initiative in which over 80 partners will work
together to realize a new "ICT-accelerated" vision for brain research
and its applications.


             One of the major obstacles to understanding the human brain is the
fragmentation of brain research and the data it produces. Our most
urgent need is thus a concerted international effort that uses
emerging emerging ICT technologies to integrate this data in a unified
picture of the brain as a single multi-level system.


             Research Areas
The HBP will make fundamental contributions to neuroscience, to
medicine and to future computing technology.


             In neuroscience, the project will use neuroinformatics and brain
simulation to collect and integrate experimental data, identifying and
filling gaps in our knowledge, and prioritizing future experiments.


             In medicine, the HBP will use medical informatics to identify
biological signatures of brain disease, allowing diagnosis at an early
stage, before the disease has done irreversible damage, and enabling
personalized treatment, adapted to the needs of individual
patients. Better diagnosis, combined with disease and drug simulation,
will accelerate the discovery of new treatments, drastically lowering
the cost of drug discovery.


             In computing, new techniques of interactive supercomputing,
driven by the needs of brain simulation, will impact a vast range of
industries. Devices and systems, modeled after the brain, will
overcome fundamental limits on the energy-efficiency, reliability and
programmability of current technologies, clearing the road for systems
with brain-like intelligence.


            
               
              The Future of Brain Research
            


             Applying ICT to brain research and its applications promises huge
economic and social benefits. But to realize these benefits, the
technology needs to be made accessible to scientists – in the form of
research platforms they can use for basic and clinical research, drug
discovery and technology development. As a foundation for this effort,
the HBP will build an integrated system of ICT-based research
platforms, building and operating the platforms will require a clear
vision, strong, flexible leadership, long-term investment in research
and engineering, and a strategy that leverages the diversity and
strength of European research. It will also require continuous
dialogue with civil society, creating consensus and ensuring the
project has a strong grounding in ethical standards.


             The Human Brain Project will last ten years and will consist of a
ramp-up phase (2013-2016) followed by an operational phase
(2016-2023). Bertrand Thirion is responsible for the 2.1.1 task,
Anatomo-functional mapping of the human brain.
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        Section: 
      Partnerships and Cooperations


        National Initiatives


        
        ANR


        
        BrainPedia project


        Participants :
	Bertrand Thirion [Correspondant] , Gaël Varoquaux, Yannick Schwartz, Virgile Fritsch.


        BrainPedia is an ANR JCJC (2011-2015) which addresses the following
question: Neuroimaging produces huge amounts of complex data that are
used to better understand the relations between brain structure and
function. While the acquisition and analysis of this data is getting
standardized in some aspects, the neuroimaging community is still
largely missing appropriate tools to store and organize the knowledge
related to the data. Taking advantage of common coordinate systems to
represent the results of group studies, coordinate-based meta-analysis
approaches associated with repositories of neuroimaging publications
provide a crude solution to this problem, that does not yield reliable
outputs and looses most of the data-related information. In this
project, we propose to tackle the problem in a statistically rigorous
framework, thus providing usable information to drive neuroscientific
knowledge and questions.


        
        IRMgroup project


        Participants :
	Bertrand Thirion [Correspondant] , Alexandre Gramfort, Michael Eickenberg.


        This is a joint project with Polytechnique/CMAP
http://www.cmap.polytechnique.fr/ : Stéphanie Allassonnière and
Stéphane Mallat (2010-2014).


        Much of the visual cortex is organized into visual field maps, which
means that nearby neurons have receptive fields at nearby locations in
the image. The introduction of functional magnetic resonance imaging
(fMRI) has made it possible to identify visual field maps in human
cortex, the most important one being the medial occipital cortex
(V1,V2,V3). It is also possible to relate directly the activity of
simple cells to an fMRI activation pattern and Parietal developed some
of the most effective methods. However, the simple cell model is not
sufficient to account for high-level information on visual scenes,
which requires the introduction of specific semantic features. While
the brain regions related to semantic information processing are now
well understood, little is known on the flow of visual information
processing between the primary visual cortex and the specialized
regions in the infero-temporal cortex. A central issue is to better
understand the behavior of intermediate cortex layers.


        Our proposition is to use our mathematical approach to formulate
explicitly some generative model of information processing, such as
those that characterize complex cells in the visual cortex, and then
to identify the brain substrate of the corresponding processing units
from fMRI data. While fMRI resolution is still too coarse for a very
detailed mapping of detailed cortical functional organization, we
conjecture that some of the functional mechanisms that characterize
biological vision processes can be captured through fMRI; in parallel
we will push the fMRI resolution to increase our chance to obtain a
detailed mapping of visual cortical regions.


        
        Niconnect project


        Participants :
	Bertrand Thirion, Gaël Varoquaux [Correspondant] , Alexandre Abraham.


        
          		
             Context: The NiConnect project (2012-2016) arises from
an increasing need of medical imaging tools to diagnose efficiently
brain pathologies, such as neuro-degenerative and psychiatric
diseases or lesions related to stroke. Brain imaging provides a
non-invasive and widespread probe of various features of brain
organization, that are then used to make an accurate diagnosis,
assess brain rehabilitation, or make a prognostic on the chance of
recovery of a patient. Among different measures extracted from brain
imaging, functional connectivity is particularly attractive, as it
readily probes the integrity of brain networks, considered as
providing the most complete view on brain functional organization.


          


          		
             Challenges: To turn methods research into popular tool
widely usable by non specialists, the NiConnect project puts
specific emphasis on producing high-quality open-source
software. NiConnect addresses the many data analysis tasks that
extract relevant information from resting-state fMRI
datasets. Specifically, the scientific difficulties are i)
conducting proper validation of the models and tools, and
ii) providing statistically controlled information to
neuroscientists or medical doctors. More importantly, these
procedures should be robust enough to perform analysis on limited
quality data, as acquiring data on diseased populations is
challenging and artifacts can hardly be controlled in clinical
settings.


          


          		
             Outcome of the project: In the scope of computer science
and statistics, NiConnect pushes forward algorithms and
statistical models for brain functional connectivity. In particular,
we are investigating structured and multi-task graphical models to
learn high-dimensional multi-subject brain connectivity models, as
well as spatially-informed sparse decompositions for segmenting
structures from brain imaging. With regards to neuroimaging methods
development, NiConnect provides systematic comparisons and
evaluations of connectivity biomarkers and a software library
embedding best-performing state-of-the-art approaches. Finally,
with regards to medical applications, the NiConnect project
also plays a support role in on going medical studies and clinical
trials on neurodegenerative diseases.


          


          		
            
               
              Consortium
            


            
              		
                 Parietal Inria research team: applied mathematics and computer
science to model the brain from MRI


              


              		
                 LIF INSERM research team: medical image data analysis and modeling
for clinical applications


              


              		
                 CATI center: medical image processing center for large scale brain
imaging studies


              


              		
                 Henri-Mondor hospital neurosurgery and neuroradiology: clinical
teams conducting research on treatments for neurodegenerative
diseases, in particular Huntington and Parkinson diseases


              


              		
                 Logilab: consulting in scientific computing
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        Section: 
      Partnerships and Cooperations


        International Research Visitors


        
        Visits of International Scientists


        
        Internships


        Gaspar Pizarro made a three months internship (January-March 2014),
funded by Inria Chile and Conycit. His research topic was
Improving the fit of functional MRI data through the use of sparse linear models..


        
        Other visitors


        Danilo Bzdok (Forschungszentrum Jülich, institue of neuroscience and
medicine) visited Parietal several months in 2014 (February-March,
then September-), to develop collaborations on the use of machine
learning techniques to model behavioral variables and find data-driven
characterization of brain diseases.


        
        Visits to International Teams


        
        Research stays abroad


        As part of the SubSample Digiteo chair, Alexandre Abraham spent six
months in the USA at Stony Brook University and Nathan Klein
Institute.
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        Section: 
      Partnerships and Cooperations


        Regional Initiatives


        
        iConnectom project


        Participants :
	Bertrand Thirion [Correspondant] , Gaël Varoquaux, Elvis Dohmatob.


        This is a Digiteo project (2014-2017).


        Mapping brain functional connectivity from functional Magnetic
Resonance Imaging (MRI) data has become a very active field of
research. However, analysis tools are limited and many important
tasks, such as the empirical definition of brain networks, remain
difficult due to the lack of a good framework for the statistical
modeling of these networks. We propose to develop population models of
anatomical and functional connectivity data to improve the alignment
of subjects brain structures of interest while inferring an average
template of these structures. Based on this essential contribution,
we will design new statistical inference procedures to compare the
functional connections between conditions or populations and improve
the sensitivity of connectivity analysis performed on noisy
data. Finally, we will test and validate the methods on multiple
datasets and distribute them to the brain imaging community.


        
        SUBSAMPLE Digiteo chair


        Participants :
	Bertrand Thirion [Correspondant] , Gaël Varoquaux, Alexandre Abraham.


        Parietal is associated with this Digiteo Chair by Dimitris Samaras, in
which we will address the probabilistic structure learning of salient
brain states (PhD of Alexandre Abraham, 2012-2015).


        Cognitive tasks systematically involve several brain regions, and
exploratory approaches are generally necessary given the lack of
knowledge of the complex mechanisms that are observed. The goal of the
project is to understand the neurobiological mechanisms that are
involved in complex neuro-psychological disorders. A crucial and
poorly understood component in this regard refers to the interaction
patterns between different regions in the brain. In this project we
will develop machine learning methods to capture and study complex
functional network characteristics. We hypothesize that these
characteristics not only offer insights into brain function but also
can be used as concise features that can be used instead of the full
dataset for tasks like classification of healthy versus diseased
populations or for clustering subjects that might exhibit similarities
in brain function. In general, the amount of correlation between
distant brain regions may be a more reliable feature than the
region-based signals to discriminate between two populations e.g. in
schizophrenia. For such exploratory methods to be
successful, close interaction with neuroscientists is necessary, as the
salience of the features depends on the population and the observed
effects of psychopathology. For this aim we propose to develop a
number of important methodological advances in the context of
prediction of treatment outcomes for drug addicted populations, e.g.
for relapse prediction.


        
        Medilearn/braincodes Inria-MSR project


        Participants :
	Bertrand Thirion [Correspondant] , Gaël Varoquaux, Andrés Hoyos Idrobo.


        Neuroimaging is accumulating large functional MRI datasets that
display –among artefacts and noise– brain activation patterns giving
access to a meaningful representation of brain spatial
organization. This ongoing accumulation is intensified via new
large-scale international initiatives such as the Human
Connectome Project (www.humanconnectomeproject.org ). but
also to existing open repositories of functional neuroimaging datasets
(https://openfmri.org/ ) or http://www.fmridc.org/ . These
datasets represent a very significant resource for the community, but
require new analytic approaches in order to be fully exploited.
The MediLearn/BrainCodes project strives to provide a synthetic
picture of the brain substrate of human cognition and its pathologies.
In practice, this can be achieved by learning from large-scale
datasets a brain atlas that summarizes adequately these functional
activation maps drawing from a large number of protocols and subjects.
Once learned, such an atlas is extremely useful to understand the
large-scale functional organization of the brain: it is a tool for
understanding brain segregation, the different encoding of
many cognitive parameters into different brain regions, as well as
brain integration, i.e. how remote brain regions
co-activate across subjects and experiments.
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