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        Overall Objectives

        The scientific objectives of ASPI are the design, analysis and
implementation of interacting Monte Carlo methods, also known as particle
methods, with focus on

        
          	
             statistical inference in hidden Markov models
and particle filtering,

          

          	
             risk evaluation and simulation of rare events,

          

          	
             global optimization.

          

        

        The whole problematic is multidisciplinary,
not only because of the many scientific and engineering areas
in which particle methods are used,
but also because of the diversity of the scientific communities
which have already contributed to establish the foundations
of the field

        
          target tracking,
interacting particle systems,
empirical processes,
genetic algorithms (GA),
hidden Markov models and nonlinear filtering,
Bayesian statistics,
Markov chain Monte Carlo (MCMC) methods, etc.

        

        Intuitively speaking, interacting Monte Carlo methods are sequential
simulation methods, in which particles

        
          	
             explore the state space by mimicking the evolution
of an underlying random process,

          

          	
             learn their environment by evaluating a fitness function,

          

          	
             and interact so that only the most successful particles
(in view of the fitness function) are allowed to survive
and to get offsprings at the next generation.

          

        

        The effect of this mutation / selection mechanism is to automatically
concentrate particles (i.e. the available computing power) in regions of
interest of the state space. In the special case of particle filtering,
which has numerous applications under the generic heading of positioning,
navigation and tracking, in

        
          target tracking,
computer vision,
mobile robotics,
wireless communications,
ubiquitous computing and ambient intelligence,
sensor networks, etc.,

        

        each particle represents a possible hidden state, and is replicated
or terminated at the next generation on the basis of its consistency with
the current observation, as quantified by the likelihood function.
With these genetic–type algorithms, it becomes easy to efficiently combine
a prior model of displacement with or without constraints, sensor–based
measurements, and a base of reference measurements, for example in the
form of a digital map (digital elevation map, attenuation map, etc.).
In the most general case, particle methods provide approximations of
Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann
distributions, by means of the weighted empirical probability distribution
associated with an interacting particle system,
with applications that go far beyond filtering, in

        
          simulation of rare events,
global optimization,
molecular simulation, etc.

        

        The main applications currently considered are
geolocalisation and tracking of mobile terminals,
terrain–aided navigation,
data fusion for indoor localisation,
optimization of sensors location and activation,
risk assessment in air traffic management,
protection of digital documents.
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        Interacting Monte Carlo methods
and particle approximation of Feynman–Kac distributions

        Monte Carlo methods are numerical methods that are widely used
in situations where
(i) a stochastic (usually Markovian) model is given for some underlying
process, and (ii) some quantity of interest should be evaluated, that
can be expressed in terms of the expected value of a functional of the
process trajectory, which includes as an important special case the
probability that a given event has occurred.
Numerous examples can be found, e.g. in financial engineering (pricing of options and derivative
securities)  [46] ,
in performance evaluation of communication networks (probability of buffer
overflow), in statistics of hidden Markov models (state estimation,
evaluation of contrast and score functions), etc.
Very often in practice, no analytical expression is available for
the quantity of interest, but it is possible to simulate trajectories
of the underlying process. The idea behind Monte Carlo methods is
to generate independent trajectories of this process
or of an alternate instrumental process,
and to build an approximation (estimator) of the quantity of interest
in terms of the weighted empirical probability distribution
associated with the resulting independent sample.
By the law of large numbers, the above estimator converges
as the size N of the sample goes to infinity, with rate 1/N
and the asymptotic variance can be estimated using an appropriate
central limit theorem.
To reduce the variance of the estimator, many variance
reduction techniques have been proposed.
Still, running independent Monte Carlo simulations can lead to
very poor results, because trajectories are generated blindly,
and only afterwards are the corresponding weights evaluated.
Some of the weights can happen to be negligible, in which case the
corresponding trajectories are not going to contribute to the estimator,
i.e. computing power has been wasted.

        A recent and major breakthrough,
has been the introduction of interacting Monte Carlo methods,
also known as sequential Monte Carlo (SMC) methods,
in which a whole (possibly weighted) sample,
called system of particles, is propagated in time, where
the particles

        
          	
             explore the state space under the effect of
a mutation mechanism which mimics the evolution of the
underlying process,

          

          	
             and are replicated or terminated, under
the effect of a selection mechanism which automatically
concentrates the particles, i.e. the available computing power,
into regions of interest of the state space.

          

        

        In full generality, the underlying process is a discrete–time Markov
chain, whose state space can be

        
          finite,
continuous,
hybrid (continuous / discrete),
graphical,
constrained,
time varying,
pathwise, etc.,

        

        the only condition being that it can easily be simulated.

        In the special case of particle filtering,
originally developed within the tracking community,
the algorithms yield a numerical approximation of the optimal Bayesian
filter, i.e. of the conditional probability distribution
of the hidden state given the past observations, as a (possibly
weighted) empirical probability distribution of the system of particles.
In its simplest version, introduced in several different scientific
communities under the name of
bootstrap filter  [49] ,
Monte Carlo filter  [54] 
or condensation (conditional density propagation)
algorithm  [51] ,
and which historically has been the first algorithm to include
a redistribution step,
the selection mechanism is governed by the likelihood function:
at each time step, a particle is more likely to survive
and to replicate at the next generation if it is consistent with
the current observation.
The algorithms also provide as a by–product a numerical approximation
of the likelihood function, and of many other contrast functions for
parameter estimation in hidden Markov models, such as the prediction
error or the conditional least–squares criterion.

        Particle methods
are currently being used in many scientific and engineering areas

        
          positioning, navigation, and tracking  [50] , [43] ,
visual tracking  [51] ,
mobile robotics  [44] , [66] ,
ubiquitous computing and ambient intelligence,
sensor networks,
risk evaluation and simulation of rare events  [47] ,
genetics, molecular simulation  [45] , etc.

        

        Other examples of the many applications of particle filtering can be
found in the contributed volume  [30]  and in the special
issue of IEEE Transactions on Signal Processing devoted
to Monte Carlo Methods for Statistical Signal Processing
in February 2002,
where the tutorial paper  [31]  can be found,
and in the textbook  [63]  devoted
to applications in target tracking.
Applications of sequential Monte Carlo methods to other areas,
beyond signal and image processing, e.g. to genetics,
can be found in  [62] .
A recent overview can also be found in  [32] .

        Particle methods are very easy to implement, since it is sufficient
in principle to simulate independent trajectories of the underlying
process.
The whole problematic is multidisciplinary,
not only because of the already mentioned diversity of the scientific
and engineering areas in which particle methods are used,
but also because of the diversity of the scientific communities
which have contributed to establish the foundations of the field

        
          target tracking,
interacting particle systems,
empirical processes,
genetic algorithms (GA),
hidden Markov models and nonlinear filtering,
Bayesian statistics,
Markov chain Monte Carlo (MCMC) methods.

        

        These algorithms can be interpreted as numerical approximation schemes
for Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann
distributions,
in terms of the weighted empirical probability distribution
associated with a system of particles.
This abstract point of view  [38] , [36] ,
has proved to be extremely fruitful in providing a very general
framework to the design and analysis of numerical approximation schemes,
based on systems of branching and / or interacting particles,
for nonlinear dynamical systems with values in the space of probability
distributions, associated with Feynman–Kac distributions.
Many asymptotic results have been proved as the number N of
particles (sample size) goes to infinity,
using techniques coming from applied probability (interacting particle
systems, empirical processes  [68] ),
see e.g. the survey article  [38] 
or the textbooks  [36] , [35] ,
and references therein

        
          convergence in 𝕃p,
convergence as empirical processes indexed by classes of functions,
uniform convergence in time, see also  [59] , [60] ,
central limit theorem, see also  [56] , [40] ,
propagation of chaos,
large deviations principle,
etc.

        

        The objective here is to
systematically study the impact of the many algorithmic variants
on the convergence results.
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        Statistics of HMM

        Hidden Markov models (HMM) form a special case of partially
observed stochastic dynamical systems, in which the state of a Markov
process (in discrete or continuous time, with finite or continuous
state space) should be estimated from noisy observations.
The conditional probability distribution of the hidden state given
past observations is a well–known example of a normalized (nonlinear)
Feynman–Kac distribution,
see 
	3.1 .
These models are very flexible, because of the introduction of latent
variables (non observed) which allows to model complex time dependent
structures, to take constraints into account, etc.
In addition, the underlying Markovian structure makes it possible
to use numerical algorithms (particle filtering, Markov chain Monte Carlo
methods (MCMC), etc.) which are computationally intensive
but whose complexity is rather small.
Hidden Markov models are widely used in various applied areas, such as
speech recognition, alignment of biological sequences, tracking in
complex environment, modeling and control of networks, digital
communications, etc.

        Beyond the recursive estimation of a hidden state from noisy
observations, the problem arises of statistical inference of HMM
with general state space  [33] , [41] ,
including estimation of model parameters,
early monitoring and diagnosis of small changes in model parameters,
etc.

        Large time asymptotics   A fruitful approach is the asymptotic study, when the observation
time increases to infinity, of an extended Markov chain, whose
state includes (i) the hidden state, (ii) the observation,
(iii) the prediction filter (i.e. the conditional probability
distribution of the hidden state given observations at all previous
time instants), and possibly (iv) the derivative of the prediction
filter with respect to the parameter.
Indeed, it is easy to express the log–likelihood function,
the conditional least–squares criterion, and many other clasical
contrast processes, as well as their derivatives with respect to
the parameter, as additive functionals of the extended Markov chain.

        The following general approach has been proposed

        
          	
             first, prove an exponential stability property (i.e. an exponential forgetting property of the initial condition) of the
prediction filter and its derivative, for a misspecified model,

          

          	
             from this, deduce a geometric ergodicity property
and the existence of a unique invariant probability distribution
for the extended Markov chain, hence a law of large numbers
and a central limit theorem for a large class of contrast processes
and their derivatives, and a local asymptotic normality property,

          

          	
             finally, obtain the consistency (i.e. the convergence
to the set of minima of the associated contrast function), and the
asymptotic normality of a large class of minimum contrast estimators.

          

        

        This programme has been completed in the case of a finite state
space [8] , and has been generalized  [39] 
under an uniform minoration assumption for the Markov transition kernel,
which typically does only hold when the state space is compact.
Clearly, the whole approach relies on the existence of an exponential
stability property of the prediction filter, and the main challenge
currently is to get rid of this uniform minoration assumption for
the Markov transition kernel  [37] , [60] ,
so as to be able to consider more interesting situations, where
the state space is noncompact.

        Small noise asymptotics   Another asymptotic approach can also be used, where it is rather easy
to obtain interesting explicit results, in terms close to the language
of nonlinear deterministic control theory  [55] .
Taking the simple example where the hidden state is the solution to
an ordinary differential equation, or a nonlinear state model, and
where the observations are subject to additive Gaussian white noise,
this approach consists in assuming that covariances matrices
of the state noise and of the observation noise go simultaneously
to zero. If it is reasonable in many applications to consider that
noise covariances are small, this asymptotic approach is less natural
than the large time asymptotics, where it is enough (provided a
suitable ergodicity assumption holds) to accumulate observations
and to see the expected limit laws (law of large numbers, central
limit theorem, etc.). In opposition, the expressions obtained in the
limit (Kullback–Leibler divergence, Fisher information matrix, asymptotic
covariance matrix, etc.) take here a much more explicit form than in the
large time asymptotics.

        The following results have been obtained using this approach

        
          	
             the consistency of the maximum likelihood estimator (i.e. the convergence to the set M of global minima of the Kullback–Leibler
divergence), has been obtained using large deviations techniques,
with an analytical approach  [52] ,

          

          	
             if the abovementioned set M does not reduce to the true
parameter value, i.e. if the model is not identifiable, it is still
possible to describe precisely the asymptotic behavior of the
estimators  [53] : in the simple case where the state
equation is a noise–free ordinary differential equation and using
a Bayesian framework,
it has been shown that (i) if the rank r of the Fisher
information matrix I is constant in a neighborhood of the
set M, then this set is a differentiable submanifold of
codimension r, (ii) the posterior probability distribution of the
parameter converges to a random probability distribution in the limit,
supported by the manifold M, absolutely continuous w.r.t. the Lebesgue measure on M, with an explicit expression for the density,
and (iii) the posterior probability distribution of the suitably
normalized difference between the parameter and its projection on
the manifold M, converges to a mixture of Gaussian probability
distributions on the normal spaces to the manifold M, which
generalized the usual asymptotic normality property,

          

          	
             it has been shown  [61] 
that (i) the parameter dependent
probability distributions of the observations are locally asymptotically
normal (LAN)  [58] , from which the asymptotic
normality of the maximum likelihood estimator follows, with an explicit
expression for the asymptotic covariance matrix, i.e. for the Fisher
information matrix I, in terms of the Kalman filter
associated with the linear tangent linear Gaussian model,
and (ii) the score function (i.e. the derivative of the log–likelihood
function w.r.t. the parameter), evaluated at the true value of the
parameter and suitably normalized, converges to a Gaussian r.v. with
zero mean and covariance matrix I.
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        Multilevel splitting for rare event simulation

        
          See 
	4.2 ,
and 
	7.1 ,

	7.2 ,

	7.3 ,
and 
	7.4 .

        

        The estimation of the small probability of a rare but critical event,
is a crucial issue in industrial areas such as

        
          nuclear power plants,
food industry,
telecommunication networks,
finance and insurance industry,
air traffic management, etc.

        

        In such complex systems, analytical methods cannot be used, and
naive Monte Carlo methods are clearly unefficient to estimate accurately
very small probabilities.
Besides importance sampling, an alternate widespread technique
consists in multilevel splitting  [57] ,
where trajectories going towards the
critical set are given offsprings, thus increasing the number of
trajectories that eventually reach the critical set.
As shown in [5] , the Feynman–Kac formalism
of 
	3.1  is well suited for the design
and analysis of splitting algorithms for rare event simulation.

        Propagation of uncertainty   Multilevel splitting can be used in static situations. Here, the
objective is to learn the probability distribution of an output random
variable Y=F(X), where the function F is only defined pointwise
for instance by a computer programme, and where the probability distribution
of the input random variable X is known and easy to simulate from.
More specifically, the objective
could be to compute the probability of the output random variable
exceeding a threshold, or more generally to evaluate the
cumulative distribution function of the output random variable for
different output values.
This problem is characterized by
the lack of an analytical expression for the function, the
computational cost of a single pointwise evaluation of the function,
which means that the number of calls to the function should be limited as
much as possible, and finally the complexity and / or unavailability of the
source code of the computer programme, which makes any modification
very difficult or even impossible, for instance to change the model as in
importance sampling methods.

        The key issue is to learn as fast as possible regions of the input space
which contribute most to the computation of the target quantity. The
proposed splitting methods consists in (i) introducing a sequence of
intermediate regions in the input space, implicitly defined by exceeding
an increasing sequence of thresholds or levels, (ii) counting the fraction
of samples that reach a level given that the previous level has been
reached already, and (iii) improving the diversity of the selected
samples, usually using an artificial Markovian dynamics.
In this way, the algorithm learns

        
          	
             the transition probability between successive levels, hence
the probability of reaching each intermediate level,

          

          	
             and the probability distribution of the input random variable,
conditionned on the output variable reaching each intermediate level.

          

        

        A further remark, is that this conditional probability distribution is
precisely the optimal (zero variance) importance distribution needed to
compute the probability of reaching the considered intermediate level.

        Rare event simulation   To be specific, consider a complex dynamical system modelled as a Markov
process, whose state can possibly contain continuous components and
finite components (mode, regime, etc.), and the objective is to
compute the probability, hopefully very small, that a critical region
of the state space is reached by the Markov process before a final
time T, which can be deterministic and fixed, or random (for instance
the time of return to a recurrent set, corresponding to a nominal
behaviour).

        The proposed splitting method consists in (i) introducing a decreasing
sequence of intermediate, more and more critical, regions in the state
space, (ii) counting the fraction of trajectories that reach an
intermediate region before time T, given that the previous intermediate
region has been reached before time T, and (iii) regenerating the
population at each stage, through redistribution. In addition to the
non–intrusive behaviour of the method, the splitting methods make it
possible to learn the probability distribution of typical critical
trajectories, which reach the critical region before final time T,
an important feature that methods based on importance sampling usually
miss.
Many variants have been proposed, whether

        
          	
             the branching rate (number of offsprings allocated to a
successful trajectory) is fixed, which allows for depth–first exploration
of the branching tree, but raises the issue of controlling the population
size,

          

          	
             the population size is fixed, which requires a breadth–first
exploration of the branching tree, with random (multinomial) or deterministic
allocation of offsprings, etc.

          

        

        Just as in the static case, the algorithm learns

        
          	
             the transition probability between successive levels, hence
the probability of reaching each intermediate level,

          

          	
             and the entrance probability distribution of the Markov process
in each intermediate region.

          

        

        Contributions have been given to

        
          	
             minimizing the asymptotic variance, obtained through a
central limit theorem, with respect to the shape of the intermediate
regions (selection of the importance function), to the thresholds (levels),
to the population size, etc.

          

          	
             controlling the probability of extinction (when not even one
trajectory reaches the next intermediate level),

          

          	
             designing and studying variants suited for hybrid state space
(resampling per mode, marginalization, mode aggregation),

          

        

        and in the static case, to

        
          	
             minimizing the asymptotic variance, obtained through a central
limit theorem, with respect to intermediate levels, to the Metropolis
kernel introduced in the mutation step, etc.

          

        

        A related issue is global optimization. Indeed, the difficult problem
of finding the set M of global minima of a real–valued function V
can be replaced by the apparently simpler problem of sampling a population
from a probability distribution depending on a small parameter,
and asymptotically supported by the set M as the small parameter goes
to zero. The usual approach here is to use the cross–entropy
method  [64] , [34] , which relies on learning
the optimal importance distribution within a prescribed parametric
family. On the other hand, multilevel splitting methods could provide
an alternate nonparametric approach to this problem.
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        Statistical learning: pattern recognition
and nonparametric regression

        In pattern recognition and statistical learning, also known as machine
learning, nearest neighbor (NN) algorithms are amongst the simplest but
also very powerful algorithms available.
Basically, given a training set of data, i.e. an N–sample of i.i.d. object–feature pairs, with real–valued features,
the question is how to generalize,
that is how to guess the feature associated with any new object.
To achieve this, one chooses some integer k smaller than N, and
takes the mean–value of the k features associated with the k objects
that are nearest to the new object, for some given metric.

        In general, there is no way to guess exactly the value of the feature
associated with the new object, and the minimal error that can be done
is that of the Bayes estimator, which cannot be computed by lack of knowledge
of the distribution of the object–feature pair, but the Bayes estimator
can be useful to characterize the strength of the method.
So the best that can be expected is that the NN estimator converges, say
when the sample size N grows, to the Bayes estimator. This is what has been
proved in great generality by Stone  [65]  for the mean square
convergence, provided that the object is a finite–dimensional random
variable, the feature is a square–integrable random variable,
and the ratio k/N goes to 0.
Nearest neighbor estimator is not the only local averaging estimator with
this property, but it is arguably the simplest.

        The asymptotic behavior when the sample size grows is well understood in
finite dimension, but the situation is radically different in
general infinite dimensional spaces, when the objects to be classified
are functions, images, etc.

        Nearest neighbor classification in infinite dimension   In finite dimension, the k–nearest neighbor classifier
is universally consistent, i.e. its probability of error converges to
the Bayes risk as N goes to infinity, whatever the joint probability
distribution of the pair, provided that the ratio k/N goes to zero.
Unfortunately, this result is no longer valid in general metric spaces,
and the objective is to find out reasonable sufficient conditions for
the weak consistency to hold. Even in finite dimension, there are exotic
distances such that the nearest neighbor does not even get closer (in the
sense of the distance) to the point of interest, and the state space
needs to be complete for the metric, which is the first condition.
Some regularity on the regression function is required next. Clearly,
continuity is too strong because it is not required in finite dimension,
and a weaker form of regularity is assumed. The following consistency
result has been obtained: if the metric space is separable and
if some Besicovich condition holds, then the nearest neighbor classifier
is weakly consistent.
Note that the Besicovich condition is always fulfilled in finite dimensional
vector spaces (this result is called the Besicovich theorem), and that
a counterexample [3]  can be given in an infinite
dimensional space with
a Gaussian measure (in this case, the nearest neighbor classifier is clearly
nonconsistent). Finally, a simple example has been found which verifies
the Besicovich condition with a noncontinuous regression function.

        Rates of convergence of the functional k–nearest neighbor
estimator   Motivated by a broad range of potential applications, such as regression
on curves, rates of convergence of the k–nearest neighbor estimator
of the regression function, based on N independent copies of the
object–feature pair, have been investigated
when the object is in a suitable ball in some functional space.
Using compact embedding theory, explicit and general finite sample bounds
can be obtained for the expected squared difference between the k–nearest
neighbor estimator and the Bayes regression function, in a very general
setting. The results have also been
particularized to classical function spaces such as Sobolev spaces,
Besov spaces and reproducing kernel Hilbert spaces.
The rates obtained are genuine nonparametric convergence rates,
and up to our knowledge the first of their kind for k–nearest neighbor
regression.

        This topic has produced several theoretical
advances [1] , [2] 
in collaboration with Gérard Biau (université Pierre et Marie Curie,
ENS Paris and EPI CLASSIC, Inria Paris—Rocquencourt).
A few possible target application domains have been identified in

        
          	
             the statistical analysis of recommendation systems,

          

          	
             the design of reduced–order models and analog samplers,

          

        

        that would be a source of interesting problems.
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        Localisation, navigation and tracking

        Among the many application domains of particle methods, or interacting
Monte Carlo methods, ASPI has decided to focus on applications
in localisation (or positioning), navigation and
tracking  [50] , [43] , which already covers a very broad
spectrum of application domains. The objective here is to estimate
the position (and also velocity, attitude, etc.) of a mobile object,
from the combination of different sources of information, including

        
          	
             a prior dynamical model of typical evolutions of the mobile,
such as inertial estimates and prior model for inertial errors,

          

          	
             measurements provided by sensors,

          

          	
             and possibly a digital map providing some useful feature
(terrain altitude, power attenuation, etc.) at each possible position.

          

        

        In some applications, another useful source of information is provided by

        
          	
             a map of constrained admissible displacements, for instance in
the form of an indoor building map,

          

        

        which particle methods can easily handle (map-matching).
This Bayesian dynamical estimation problem is also called filtering,
and its numerical implementation using particle methods, known as
particle filtering, has been introduced by the target tracking
community  [49] , [63] , which has already contributed
to many of the most interesting algorithmic improvements and is still
very active, and has found applications in

        
          target tracking,
integrated navigation,
points and / or objects tracking in video sequences,
mobile robotics,
wireless communications,
ubiquitous computing and ambient intelligence,
sensor networks, etc.

        

        ASPI is contributing (or has contributed recently)
to several applications of particle filtering in
positioning, navigation and tracking, such as
geolocalisation and tracking in a wireless network,
terrain–aided navigation,
and data fusion for indoor localisation.
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        Rare event simulation

        
          See 
	3.3 ,
and 
	7.1 ,

	7.2 ,

	7.3 ,
and 
	7.4 .

        

        Another application domain of particle methods, or interacting Monte Carlo
methods, that ASPI has decided to focus on is the estimation of the small
probability of a rare but critical event, in complex dynamical systems.
This is a crucial issue in industrial areas such as

        
          nuclear power plants,
food industry,
telecommunication networks,
finance and insurance industry,
air traffic management, etc.

        

        In such complex systems, analytical methods cannot be used, and naive
Monte Carlo methods are clearly unefficient to estimate accurately
very small probabilities.
Besides importance sampling, an alternate widespread technique
consists in multilevel splitting  [57] ,
where trajectories going towards the
critical set are given offsprings, thus increasing the number of
trajectories that eventually reach the critical set.
This approach not only makes it possible to estimate the probability of
the rare event, but also provides realizations of the random trajectory,
given that it reaches the critical set, i.e. provides realizations of typical
critical trajectories, an important feature that methods based on importance
sampling usually miss.

        ASPI is contributing (or has contributed recently)
to several applications of multilevel splitting for
rare event simulation, such as risk assessment in air traffic management,
detection in sensor networks,
and protection of digital documents.
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      New Results

        Adaptive multilevel splitting

        Participants :
	Frédéric Cérou, Arnaud Guyader.

        We have show last year that an adaptive version of multilevel splitting
for rare events is strongly consistent and that the estimates satisfy
a CLT (central limit theorem), with the same asymptotic variance as the
non–adaptive algorithm with the optimal choice of the parameters.
This year we have generalized these results to include Markov kernels used
to move the particles (or shakers) are of Metropolis–Hastings type.
This is a non–trivial generalization to a very important case.
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        Adaptive multilevel splitting
as a Fleming–Viot system

        Participants :
	Frédéric Cérou, Arnaud Guyader.

        This is a collaboration with Bernard Delyon (université de Rennes 1)
and Mathias Rousset (EPI MATHERIALS,
Inria Paris Rocquencourt).

        By considering the adaptive multilevel splitting algorithm as a Fleming–Viot
particle system for a
stochastic wave, in the sense of  [42] , we have shown
the mean square convergence using a general result  [67] 
about the convergence of Fleming–Viot (Villemonais, 2013).
We are currently working on the proof of a central limit theorem, but
the proof is not yet complete. We have nevertheless identified the expression
of the asymptotic variance.
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        Bias and variance reduction in rare event simulation

        Participant :
	François Le Gland.

        This is a collaboration with Damien Jacquemart (ONERA, Palaiseau)
and Jérôme Morio (ONERA, Toulouse).

        In [17] ,
we highlight a bias induced by the discretization
of the sampled Markov paths in the splitting algorithm, and we propose
to correct this bias using a deformation of the intermediate regions,
as proposed in  [48] .
Moreover, we propose two numerical methods to design intermediate regions
in the splitting algorithm that minimise the variance.
One is connected with a partial differential equation
approach, the other one is based on the discretization of the state
space of the process.
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        Simulation–based algorithms for the
optimization of sensor deployment

        Participant :
	François Le Gland.

        This is a collaboration with Christian Musso (ONERA, Palaiseau)
and with Sébastien Paris (LSIS, université du Sud Toulon Var).

        The problem considered here can be described as follows:
a limited number of sensors should be deployed by a carrier in a given
area, and should be activated at a limited number of time instants within
a given time period, so as to maximize the probability of detecting a
target (present in the given area during the given time period).
There is an information dissymmetry in the problem: if the target is
sufficiently close to a sensor position when it is activated, then
the target can learn about the presence and exact position of the sensor,
and can temporarily modify its trajectory so as to escape away
before it is detected. This is referred to as the target intelligence.
Two different simulation–based algorithms have been designed
in [23]  to solve
separately or jointly this optimization problem,
with different and complementary features.
One is fast, and sequential: it proceeds
by running a population of targets and by dropping and activating a new sensor
(or re–activating a sensor already available) where and when this action
seems appropriate.
The other is slow, iterative, and non–sequential: it proceeds by updating
a population of deployment plans with guaranteed and increasing criterion
value at each iteration, and for each given deployment plan,
there is a population of targets running to evaluate the criterion.
Finally, the two algorithms can cooperate in many different ways, to try
and get the best of both approaches. A simple and efficient way is to use
the deployment plans provided by the sequential algorithm as the initial
population for the iterative algorithm.
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        Kalman Laplace filtering

        Participant :
	François Le Gland.

        This is a collaboration with Paul Bui Quang (CEA, Bruyères–le–Châtel)
and Christian Musso (ONERA, Palaiseau).

        We propose in [21] 
a new nonlinear Bayesian filtering algorithm
where the prediction step is performed like in the extended Kalman filter,
and the update step is done thanks to the Laplace method for integral
approximation. This algorithm is called the Kalman Laplace filter (KLF).
The KLF provides a closed–form non–Gaussian approximation of
the posterior density. The hidden state is estimated by the maximum a
posteriori. We describe a way to alleviate the computation cost of
this maximization, when the likelihood is a function of a vector whose
dimension is smaller than the state space dimension. The KLF is tested
on three simulated nonlinear filtering problems: target tracking with
angle measurements, population dynamics monitoring, motion
reconstruction by neural decoding. It exhibits a good performance,
especially when the observation noise is small.
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        Combining analog method and ensemble
data assimilation

        Participants :
	François Le Gland, Valérie Monbet, Chau Thi Tuyet Trang.

        This is a collaboration with Pierre Ailliot (université de Bretagne
Occidentale),
Ronan Fablet and Pierre Tandéo (Télécom Bretagne),
Anne Cuzol (université de Bretagne Sud)
and Bernard Chapron (IFREMER, Brest).

        Nowadays, ocean and atmosphere sciences face a deluge of data from
spatial observations, in situ monitoring as well as numerical simulations.
The availability of these different data sources offer new opportunities,
still largely underexploited, to improve the understanding, modeling
and reconstruction of geophysical dynamics. The classical way to
reconstruct the space–time variations of a geophysical system from
observations relies on data assimilation methods using multiple runs
of the known dynamical model. This classical framework may have severe
limitations including its computational cost, the lack of adequacy of
the model with observed data, modeling uncertainties.
In [24] ,
we explore an alternative approach and develop a fully data–driven
framework, which combines machine learning and statistical sampling to
simulate the dynamics of complex system. As a proof concept, we
address the assimilation of the chaotic Lorenz–63 model. We
demonstrate that a nonparametric sampler from a catalog of historical
datasets, namely a nearest neighbor or analog sampler, combined with a
classical stochastic data assimilation scheme, the ensemble Kalman
filter and smoother, reach state–of–the–art performances, without
online evaluations of the physical model.
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        Markov–switching vector autoregressive models

        Participant :
	Valérie Monbet.

        This is a collaboration with Pierre Ailliot (université de Bretagne
Occidentale),
Julie Bessac (Argonne National Laboratory, Chicago)
and Julien Cattiaux (Météo–France, Toulouse).

        Multivariate time series are of interest in many fields including
economics and environment. The most popular tools for studying
multivariate time series are the vector autoregressive (VAR) models
because of their simple specification and the existence of efficient
methods to fit these models. However, the VAR models do not allow to
describe time series mixing different dynamics. For instance, when
meteorological variables are observed, the resulting time series exhibit
an alternance of different temporal dynamics corresponding to weather
regimes. The regime is often not observed directly and is thus introduced
as a latent process in time series models in the spirit of hidden Markov
models. Markov switching vector autoregressive (MSVAR) models have been
introduced as a generalization of autoregressive models and hidden Markov
models. They lead to flexible and interpretable models. In this mutivariate
context, several questions occur.

        
          	
             The discrete hidden variable also called regime has to be correctly
defined. Indeed the regime can be local (e.g. link to a subset of the
variables) or global (e.g. the same for all the variables). It can also be
observed and inferred a priori or hidden. In the second case, it has to be
estimated at the same time as the model parameters.

             The question of the definition of the regime is investigated
in [26]  for the specific problem of multi site wind
modeling.

          

          	
             Markov Switching VAR models (MSVAR) suffer of the same dimensionality
problem as VAR models. For large (and even moderate) dimensions, the number
of autoregressive coefficients in each regime can be prohibitively large
which results in noisy estimates. When the variables are correlated, which
is the standard situation in multivariate time series, over–learning is
frequent. The estimated parameters contains spurious non–zero coefficients
and are then difficult to interpret. The predictions associated to the model
are usually unstable. Collinearity causes also ill–conditioning of the
innovation covariance. In [29] , we propose a likelihood
penalization method with hard thresholding for MSVAR models leading
to sparse MSVAR. Both autoregressive matrices and precision matrices
are penalized using smoothly clipped absolute deviation (SCAD) penalties.
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        Dependent time changed processes

        Participant :
	Valérie Monbet.

        This is a collaboration with Pierre Ailliot (université de Bretagne
Occidentale), Bernard Delyon (université de Rennes 1)
and Marc Prevosto (IFREMER, Brest).

        Many records in environmental sciences exhibit asymmetric trajectories
and there is a need for simple and tractable models which can reproduce
such feature. In [25]  we explore an approach based
on applying both a time change and a marginal transformation on Gaussian
processes. The main originality of the proposed model is that the time change
depends on the observed trajectory. We first show that the proposed model
is stationary and ergodic and provide an explicit characterization of the
stationary distribution. This result is then used to build both parametric
and non–parametric estimate of the time change function whereas the
estimation of the marginal transformation is based on up–crossings.
Simulation results are provided to assess the quality of the estimates.
The model is applied to wave data and it is shown that the fitted model
is able to reproduce important statistics of the data such as its spectrum
and marginal distribution which are important quantities for practical
applications. An important benefit of the proposed model is its ability
to reproduce the observed asymmetries between the crest and the troughs
and between the front and the back of the waves by accelerating the
chronometer in the crests and in the front of the waves.
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        An efficient algorithm for video
super–resolution based on a sequential model

        Participant :
	Patrick Héas.

        This is a collaboration with Angélique Drémeau (ENSTA Bretagne, Brest)
and Cédric Herzet (EPI FLUMINANCE, Inria Rennes–Bretagne Atlantique)

        In the work [27] , we propose a novel procedure for
video super–resolution, that is the recovery of a sequence of
high–resolution images from its low–resolution counterpart. Our
approach is based on a sequential model (i.e. each high–resolution
frame is supposed to be a displaced version of the preceding one) and
considers the use of sparsity–enforcing priors. Both the recovery of the
high–resolution images and the motion fields relating them is tackled.
This leads to a large–dimensional, non–convex and non–smooth problem.
We propose an algorithmic framework to address the latter. Our approach
relies on fast gradient evaluation methods and modern optimization techniques
for non–differentiable/non–convex problems. Unlike some other previous works,
we show that there exists a provably–convergent method with a complexity
linear in the problem dimensions. We assess the proposed optimization method
on several video benchmarks and emphasize its good performance with respect
to the state of the art.
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        Reduced–order modeling of
hidden dynamics

        Participant :
	Patrick Héas.

        This is a collaboration with Cédric Herzet (EPI FLUMINANCE,
Inria Rennes–Bretagne Atlantique).

        The objective of the paper [28]  is to investigate how
noisy and incomplete observations can be integrated in the process of building
a reduced–order model. This problematic arises in many scientific domains
where there exists a need for accurate low–order descriptions of
highly–complex phenomena, which can not be directly and/or deterministically
observed. Within this context, the paper proposes a probabilistic framework
for the construction of POD–Galerkin reduced–order models.
Assuming a hidden Markov chain, the inference integrates the uncertainty of
the hidden states relying on their posterior distribution. Simulations show
the benefits obtained by exploiting the proposed framework.
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        Bilateral contracts with industry

        
        Optimization of sensors location and
activation (DUCATI) — contract with DGA / Techniques navales

        Participant :
	François Le Gland.

        
          See 
	3.3 ,

	4.2 
and 
	7.4 

          Inria contract ALLOC 7326 — April 2013 to December 2016.

        

        This is a collaboration with Christian Musso (ONERA, Palaiseau)
and with Sébastien Paris (LSIS, université du Sud Toulon Var).

        The objective of this project is to optimize the position and activation
times of a few sensors deployed by one or several platforms over a search
zone, so as to maximize the probability of detecting a moving target.
The difficulty here is that the target can detect an activated sensor before
it is detected itself, and it can then modify its own trajectory to escape
from the sensor. This makes the optimization problem a spatio–temporal
problem.
Our contribution has been
to study different ways to merge two different solutions to the optimization
problem : a fast, though suboptimal, solution developped by ONERA in which
sensors are deployed where and when the probability of presence of a target
is high enough, and the optimal population–based solution developped by LSIS
and Inria in a previous contract (Inria contract ALLOC 4233)
with DGA / Techniques navales.
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        Bilateral grants with industry

        
        Hybrid indoor navigation — PhD grant at CEA LETI

        Participants :
	François Le Gland, Kersane Zoubert--Ousseni.

        This is a collaboration with Christophe Villien (CEA LETI, Grenoble).

        The issue here is user localization, and more generally localization–based
services (LBS). This problem is addressed by GPS for outdoor applications,
but no such general solution has been provided so far for indoor applications.
The desired solution should rely on sensors that are already available
on smartphones and other tablet computers.
Inertial solutions that use MEMS (microelectromechanical system, such as
accelerometer, magnetometer, gyroscope and barometer) are already studied
at CEA. An increase in performance should be possible, provided these data
are combined with other available data: map of the building, WiFi signal,
modeling of perturbations of the magnetic field, etc. To be successful,
advanced data fusion techniques should be used, such as particle filtering
and the like, to take into account displacement constraints due to walls
in the building, to manage several possible trajectories, and to deal with
rather heterogeneous information (map, radio signals, sensor signals).

        The main objective of this thesis is to design and tune localization
algorithms that will be tested on platforms already available at CEA.
Special attention is paid to particle smoothing and particle MCMC algorithms,
to exploit some very precise information available at special time instants,
e.g. when the user is clearly localized near a landmark point.
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        Promoting scientific activities

        
        Scientific events organisation

        Valérie Monbet has co–organized the workshop
on Stochastic Model­-Data Coupled Representations
for the Upper Ocean
Dynamics ,
the kick–off meeting of the SEACS project,
held in Landeda in May 2015.

        
        Journal

        Valérie Monbet has been the guest editor of a special issue
(volume 156, number 1) on stochastic weather generators,
in Journal de la Société Française de Statistique.

        
        Invited talks

        Valérie Monbet has given an invited talk on
Markov–switching vector autoregressive models for multivariate time series
of air temperature,
at 47èmes Journées de Statistique,
held in Lille in June 2015.
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        Teaching, supervision, thesis committees

        
        Teaching

        Patrick Héas gives a course on
Monte Carlo simulation methods in image
analysis 
at université de Rennes 1,
within the SISEA (signal, image, systèmes embarqués, automatique,
école doctorale MATISSE) track
of the master in electronical engineering and telecommunications.

        François Le Gland gives

        
          	
             a course on
Kalman filtering and hidden Markov
models ,
at université de Rennes 1,
within the SISEA (signal, image, systèmes embarqués, automatique,
école doctorale MATISSE) track
of the master in electronical engineering and telecommunications,

          

          	
             a 3rd year course on
Bayesian filtering and particle
approximation ,
at ENSTA (école nationale supérieure de techniques avancées), Paris,
within the systems and control module,

          

          	
             a 3rd year course on
linear and nonlinear
filtering ,
at ENSAI (école nationale de la statistique et de l'analyse de
l'information), Ker Lann, within the statistical engineering track,

          

          	
             and a 3rd year course on
hidden Markov
models ,
at Télécom Bretagne, Brest.

          

        

        Valérie Monbet gives several courses
on data analysis,
on time series,
and on mathematical statistics,
all at université de Rennes 1 within the master on statistics and
econometrics.

        
        Supervision

        François Le Gland and Valérie Monbet are jointly supervising one PhD
student

        
          	
             Chau Thi Tuyet Trang,
provisional title: Non parametric filtering for Metocean multi–source
data fusion,
université de Rennes 1,
started in October 2015,
expected defense in October 2018,
co–direction: Pierre Ailliot (université de Bretagne Occidentale).

          

        

        François Le Gland is supervising two others PhD students

        
          	
             Alexandre Lepoutre,
provisional title: Detection issues in track–before–detect,
université de Rennes 1,
started in October 2010,
expected defense in 2016,
funding: ONERA grant,
co–direction: Olivier Rabaste (ONERA, Palaiseau),

          

          	
             Kersane Zoubert–Ousseni,
provisional title: Particle filters for hybrid indoor navigation
with smartphones,
université de Rennes 1,
started in December 2014,
expected defense in 2017,
funding: CEA grant,
co–direction: Christophe Villien (CEA LETI, Grenoble).

          

        

        Valérie Monbet is supervising one other PhD student

        
          	
             Audrey Poterie,
provisional title: Régression d'une variable ordinale par des données
longitudinales de grande dimension : application à la modélisation des
effets secondaires suite à un traitement par radiothérapie,
université de Rennes 1,
started in October 2015,
expected defense in October 2018,
co–direction : Jean–François Dupuy (INSA de Rennes),
Laurent Rouvière (université de Haute Bretagne).

          

        

        
        Thesis committees

        François Le Gland has been a reviewer for the PhD theses of
Jana Kalawoun (université Paris Sud, Orsay, advisors: Gilles Celeux
and Patrick Pamphile)
and
Antoine Campi (université Paul Sabatier, Toulouse, advisors: Christophe
Baehr, Alain Dabas and Pierre Del Moral).
He has also been a member of the committee for the PhD thesis of
Eugenia Koblents (Universidad Carlos III de Madrid,
advisor: Joaquín Míguez).

        Valérie Monbet has been a member of the committee for the PhD theses of
Xavier Kergadallan (École des Pont ParisTech,
advisor: Michel Benoit)
and Khalil El Waled (université de Haute Bretagne, advisor: Dominique Dehay).
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        Participation in workshops, seminars,
lectures, etc.

        In addition to presentations with a publication in the proceedings,
which are listed at the end of the document in the bibliography,
members of ASPI have also given the following presentations.

        Frédéric Cérou has presented the results about the convergence of ABC
at the probability and stochastic processes seminar
of université de Rennes 1, and at the applied mathematics seminar
of université de Nantes, both in November 2015.

        Patrick Héas has given a talk
on 3D wind field reconstruction by infrared sounding,
at EUMETSAT (European Organisation for the Exploitation of Meteorological
Satellites) in Darmstadt, Germany, in June 2015,
and a talk
on reduced–order modeling of hidden dynamics,
at the international workshop on reduced basis, POD and PGD
model reduction techniques, held in Cachan in November 2015.

        François Le Gland has given a talk on
simulation–based algorithms for the optimization of sensor deployment
at the department of signal theory and communications of Universidad Carlos III
de Madrid, in February 2015,
and a talk on
marginalization in rare event simulation for switching diffusions
at the ONERA workshop on particle algorithms,
held in Toulouse in May 2015.

        Valérie Monbet has given a talk on
switching autoregressive models for stochastic weather generators, and
application to temperature series,
at the kick–off meeting of the SEACS project,
held in Landeda in May 2015.

        Kersane Zoubert–Ousseni has given a poster presentation
at the summer school on
Foundations and Advances in Stochastic
Filtering ,
held in Barcelona in June 2015.
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        Regional initiatives


        
        Stochastic Model­-Data Coupled Representations
for the Upper Ocean Dynamics (SEACS) — inter labex project


        Participants :
	François Le Gland, Valérie Monbet.


        
          

January 2015 to December 2017.


        


        This is a joint research initiative supported by the three labex
active in Brittany,
CominLabs (Communication and Information Sciences
Laboratory) ,
Lebesgue (Centre de Mathématiques Henri
Lebesgue) 
and LabexMER (Frontiers in Marine
Research) .


        This project aims at exploring novel statistical and stochastic methods
to address the emulation, reconstruction and forecast of fine–scale upper
ocean dynamics.
The key objective is
to investigate new tools and methods for the calibration and implementation
of novel sound and efficient oceanic dynamical models, combining


        
          		
             recent advances in the theoretical understanding,
modeling and simulation of upper ocean dynamics,


          


          		
             and mass of data
routinely available to observe the ocean evolution.


          


        


        In this respect, the emphasis will
be given to stochastic frameworks to encompass
multi–scale/multi–source approaches and benefit from the available
observation and simulation massive data. The addressed scientific
questions constitute basic research issues at the frontiers of several
disciplines. It crosses in particular advanced data analysis
approaches, physical oceanography and stochastic representations. To
develop such an interdisciplinary initiative, the project gathers a set of
research groups associated with these different scientific domains,
which have already proven for several years their capacities to
interact and collaborate on topics related to oceanic data and
models. This project will place Brittany with an innovative and
leading expertise at the frontiers of computer science, statistics and
oceanography. This transdisciplinary research initiative is expected
to resort to significant advances challenging the current thinking in
computational oceanography.
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        National initiatives


        
        Computational Statistics and Molecular Simulation (COSMOS) — ANR
challenge Information and Communication Society


        Participant :
	Frédéric Cérou.


        
          

Inria contract ALLOC 9452 — January 2015 to December 2017.


        


        The COSMOS project aims at developing numerical techniques dedicated
to the sampling of high–dimensional probability measures describing a
system of interest. There are two application fields of interest:
computational statistical physics (a field also known as molecular
simulation), and computational statistics. These two fields share some
common history, but it seems that, in view of the quite recent
specialization of the scientists and the techniques used in these
respective fields, the communication between molecular simulation and
computational statistics is not as intense as it should be.


        We believe that there are therefore many opportunities in considering
both fields at the same time: in particular, the adaption of a
successful simulation technique from one field to the other requires
first some abstraction process where the features specific to the
original field of application are discarded and only the heart of the
method is kept. Such a cross–fertilization is however only possible if
the techniques developed in a specific field are sufficiently mature:
this is why some fundamental studies specific to one of the
application fields are still required. Our belief is that the
embedding in a more general framework of specific developments in a
given field will accelerate and facilitate the diffusion to the other
field.


        
        Advanced Geophysical Reduced–Order Model Construction from Image Observations (GERONIMO) — ANR programme Jeunes Chercheuses et Jeunes Chercheurs


        Participant :
	Patrick Héas.


        
          

Inria contract ALLOC 8102 — March 2014 to February 2018.


        


        The GERONIMO project aims at devising new efficient and effective
techniques for the design of geophysical reduced–order models (ROMs)
from image data. The project both arises from the crucial need of
accurate low–order descriptions of highly–complex geophysical
phenomena and the recent numerical revolution which has supplied the
geophysical scientists with an unprecedented volume of image data.
Our research activities are concerned by the exploitation of the huge
amount of information contained in image data in order to reduce the
uncertainty on the unknown parameters of the models and improve the
reduced–model accuracy. In other words, the objective of our
researches to process the large amount of incomplete and noisy image
data daily captured by satellites sensors to devise new advanced model
reduction techniques. The construction of ROMs is placed into a
probabilistic Bayesian inference context, allowing for the handling of
uncertainties associated to image measurements and the
characterization of parameters of the reduced dynamical system.


      

      
      

      
    

  

OEBPS/highlights.html


OEBPS/uid68.html

    
    
      
      
      

      
      
        
        Section: 
      Partnerships and Cooperations


        International research visitors


        
        Visits to international teams


        François Le Gland has been invited by Joaquín Míguez to visit
the department of signal theory and communications of Universidad Carlos III
de Madrid, in February 2015.
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