

[image: cover]

 DREAMPAL

 Dynamic Reconfigurable Massively Parallel Architectures and Languages

 2015 Project-Team Activity Report
	

 Research centre:
 Lille - Nord Europe

 Field: Algorithmics, Programming, Software and Architecture
Theme: Architecture, Languages and Compilation

 Computer Science and Digital Science:

 	1.1.12. - Non-conventional architectures

 	1.1.2. - Hardware accelerators (GPGPU, FPGA, etc.)

 	2.1.1. - Semantics of programming languages

 	2.4.2. - Verification

 Other Research Topics and Application Domains:

 	6.6. - Embedded systems

 	7.2.1. - Smart vehicles

 Project-Team Dreampal

 Members

 Overall Objectives	Executive Summary

 Research Program	New Models for New Technologies
	Multi-softcore on 3D FPGA
	When Hardware Meets Software

 Highlights of the Year

 New Software and Platforms	HoMade
	JHomade

 New Results	HoMade in 2015
	Language-Parametric Formal Methods
	The SCAC Model : a weakly-coupled execution model for MPSoC

 Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Partnerships and Cooperations	International Initiatives

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Publications of the year

 Creation of the Team: 2013 January 01, updated into Project-Team: 2015 January 01
Section: Members
Research Scientist
Vlad Rusu [Team leader, Inria, Researcher, HdR]
Faculty Members
Ahmad Shadi Aljendi [Univ. Lille I, Teaching Assistant]
Rabie Ben Atitallah [Univ. Valenciennes, Associate Professor, HdR]
Jean-Luc Dekeyser [Univ. Lille I, Professor, HdR]
Frédéric Guyomarch [Univ. Lille I, Associate Professor]
Philippe Marquet [Univ. Lille I, Associate Professor]
Samy Meftali [Univ. Lille I, Associate Professor]
PhD Students
Karim Ali [Univ. Valenciennes]
Wissem Chouchene [Univ. Lille I]
Hana Krichene [until Oct 2015]
Venkatasubramanian Viswanathan [until Jun 2015, granted by CIFRE]
Post-Doctoral Fellow
Andrei Arusoaie [Inria]
Administrative Assistant
Corinne Jamroz [Inria]
Other
Jean Perier [Inria, intern from Mar 2015 until Jul 2015]

 Overall Objectives

 	Overall Objectives	Executive Summary

 Section:
 Overall Objectives

 Executive Summary

 Standard Integrated Circuits are reaching their limits and need to
evolve in order to meet the requirements of next-generation
computing. We anticipate that FPGAs (Field Programmable Gate Arrays)
will play a major role in this evolution: FPGAs are currently only
one or two generations behind the most advanced technologies for
standard processors, and their application-specific hardware is an
order of magnitude faster than software solutions on standard
processors. One of the most promising evolutions are
next-generation 3D-FPGAs, which, thanks to their fast
reconfiguration and inherent parallelism, will enable users to build
dynamically reconfigurable, massively parallel hardware
architectures around them. This new paradigm opens many
opportunities for research, since, to our best knowledge, there are
no methodologies for building such architectures, and there are no
dedicated languages for programming on them.

 We shall thus address the following topics: proposing an execution
model and a design environment, in which users can build customized
massively parallel dynamically reconfigurable hardware architectures,
benefiting from the reconfiguration speed and parallelism of
3D-FPGAs; proposing dedicated languages for programming applications
on such architectures; and designing software engineering tools for
those languages: compilers, simulators, and formal verifiers. The
overall objective is to enable an efficient and safe programming on
the customized architectures. Our target application domain are
embedded systems performing intensive signal/image processing (e.g.,
smart cameras, radars, and set-top boxes)

 Research Program

 	Research Program	New Models for New Technologies
	Multi-softcore on 3D FPGA
	When Hardware Meets Software

 Section:
 Research Program

 New Models for New Technologies

 Over the past 25 years there have been several hardware-architecture generations dedicated to massively parallel computing. We have contributed to them in the past, and shall continue doing so in the Dreampal project. The three generations, chronologically ordered, are:

 	
 Supercomputers from the 80s and 90s, based on massively parallel architectures that are more or less distributed (from the Cray T3D or Connection Machine CM2 to GRID 5000). Computer scientists have proposed methods and tools for mapping sequential algorithms to those parallel architectures in order to extract maximum power from them. We have contributed in this area in the past: http://www.lifl.fr/west/team.html .

 	
 Parallelism pervades the chips! A new challenge appears:
hardware/software co-design, in order to obtain performance gains by
designing algorithms together with the parallel architectures of
chips adapted to the algorithms. During the previous decade many
studies, including ours in the Inria DaRT team, were dedicated to this type of co-design. DaRT has contributed to the development of the OMG MARTE standard (http://www.omgmarte.org) and to its implementation on several parallel platforms. Gaspard2, our implementation of this concept, was identified as one of the key software tools developed at Inria: http://www.inria.fr/en/centre/lille/research/platforms-and-flagship-software/flagship-software .

 	
 The new challenge of the 2010s is, in our opinion, the integration of dynamic reconfiguration and massive parallelism. New circuits with high-density integration and supporting dynamic hardware reconfiguration have been proposed. In such architectures one can dynamically change the architecture while an algorithm is running on it. The Dynamic Partial Reconfiguration (DPR) feature offered by recent FPGA boards even allows, in theory, to generate optimized hardware at runtime, by adding, removing, and replacing components on a by-need basis. This integration of dynamic reconfiguration and massive parallelism induces a new degree of complexity, which we, as computer scientists, need to understand and deal with order to make possible the design of applications running on such architectures. This is the main challenge that we address in the Dreampal project. We note that we adress these problems as computer scientists; we do, however, collaborate with electronics specialists in order to benefit from their expertise in 3-D FPGAs.

 Excerpt from the HiPEAC vision 2011/12

 “The advent of 3D stacking enables higher levels of
integration and reduced costs for off-chip communications. The
overall complexity is managed due to the separation in different
dies, independently designed.”

 FPGAs (Field Programmable Gate Arrays) are configurable circuits that have emerged as a privileged target platform for intensive signal processing applications. FPGAs take advantage of the latest technological developments in circuits. For example, the Virtex7 from Xilinx offers a 28-nanometer integration, which is only one or two generations behind the latest general-purpose processors. 3D-Stacked Integrated Circuits (3D SICs) consist of two or more conventional 2D circuits stacked on the top of each other and built into the same IC. Recently, 3D SICs have been released by Xilinx for the Virtex 7 FPGA family. 3D integration will vastly increase the integration capabilities of FPGA circuits. The convergence of massive parallelism and dynamic reconfiguration in inevitable: we believe it is one of the main challenges in computing for the current decade.

 By incorporating the configuration and/or data/program memory on the top of the FPGA fabric, with fast and numerous connections between memory and elementary logic blocks (∼10000 connections between dies), it will be possible to obtain dynamically reconfigurable computing platforms with a very high reconfiguration rate. Such a rate was not possible before, due to the serial nature of the interface between the configuration memory and the FPGA fabric itself. The FPGA technology also enables massively parallel architectures due to the large number of programmable logic fabrics available on the chip. For instance, Xilinx demonstrated 3600 8-bit picoBlaze softcore processors running simultaneously on the Virtex-7 2000T FPGA. For specific applications, picoBlaze can be replaced by specialized hardware accelerators or other IPs (Intellectual Property) components. This opens the possibility of creating massively parallel IP-based machines.

 Section:
 Research Program

 Multi-softcore on 3D FPGA

 From the 2010 Xilinx white paper on FPGAs:

 “Unlike a processor, in which architecture of the ALU is
fixed and designed in a general-purpose manner to execute
various operations, the CLBs (configurable logic blocks) can be
programmed with just the operations needed by the
application... The FPGA architecture provides the flexibility to
create a massive array of application-specific ALUs..The new
solution enables high-bandwidth connectivity between multiple
die by providing a much greater number of
connections... enabling the integration of massive quantities of
interconnect logic resources within a single package”

 Softcore processors are processors implemented using hardware synthesis. Proprietary solutions include PicoBlaze, MicroBlaze, Nios, and Nios II; open-source
solutions include Leon, OpenRisk, and FC16. The choice is wide and many new solutions emerge, including multi-softcore implementations on FPGAs. An alternative
to softcores are hardware accelerators on FPGAs, which are dedicated circuits that are an order of magnitude faster than softcores. Between these two approaches,
there are other various approaches that connect IPs to softcores, in which, the processor's machine-code language is extended, and IP invocations become new
instructions. We envisage a new class of softcores (we call them reflective softcores (Hereafter, by reflective system, we mean a system that is able
to modify its own structure and behaviour while it is running. A reflective softcore thus dynamically adds, removes, and replaces IPs in the application running on it,
and is able to dynamically modify its own program memory, thereby dynamically altering the program it is executing.)), where almost everything is implemented in IPs;
only the control flow is assigned to the softcore itself. The partial dynamic reconfiguration of next-generation FPGAs makes such dynamic IP management possible in
practice. We believe that efficient reflective softcores on the new 3D-FPGAs should be as small as possible: low-performance generic hardware components (ALU,
registers, memory, I/O...) should be replaced by dedicated high-performance IPs.

 We are developing a sofcore processor called HoMade (http://www.lifl.fr/~dekeyser/Homade) following these ideas.

 In the multi-reflective softcores that we develop, some softcores will be slaves and others will be masters. Massively parallel dynamically reconfigurable architectures of softcores can thus be envisaged. This requires, additionally, a parallel management of the partial dynamic reconfiguration system. This can be done, for example, on a given subset of softcores: a massively parallel reconfiguration will replace the current replication of a given IP with the replication of a new IP. Thanks to the new 3D-FPGAs this task can be performed efficiently and in parallel using the large number of 3D communication links (Through-Silicon-Vias). Our roadmap for HoMade is to evolve towards this multi-reflective softcore model.

 Section:
 Research Program

 When Hardware Meets Software

 HIPEAC vision 2011/12: "The number of cores and instruction set extensions increases with every new generation, requiring changes in the software to effectively exploit the new features."

 When the new massively parallel dynamically reconfigurable
architectures become reality users will need languages for programming
software applications on them. The languages will be
themselves dynamic and parallel, in order to reflect and to fully
exploit the dynamicity and parallelism of the architectures. Thus,
developers will be able to invoke reconfiguration and call parallel
instructions in their programs. This expressiveness comes with a cost,
however, because new classes of bugs can be induced by the interaction
between dynamic reconfiguration and parallelism; for example,
deadlocks due to waiting for output from an IP that does not exist any
more due to a reconfiguration. The detection and elimination of such
bugs before deployment is paramount for cost-effectiveness and safety
reasons.

 Thus, we shall build an environment for developing software on
parallel, dynamically reconfigurable architectures that will include
languages and adequate formal analyses and verification tools for
them, in addition to more traditional tools (emulators, compilers,
etc). To this end we shall be using formal-semantics frameworks
associated with easy-to-use formal verification tools in order to
formally define our languages of interest and allow users to formally
verify their programs. The K semantic framework
(http://k-framework.org), developed jointly by Univs. Urbana
Champaign, USA, and Iasi, Romania) is one such framework, which is
mature enough (it has allowed defining a formal semantics of the
largest subset of the C language to date, as well as many other
languages from essentially all programming paradigms) and is familiar
to us from previous work. In K, one can rapidly prototype a language
definition and try several versions of the syntax and semantics of
instructions. This is important in our project, where the proposed
programming languages (in particular, the HoMade assembly language)
will go through several versions before being stabilized. Moreover,
once a language is defined in K one gets an interpreter of the
language and one gains access to formal verification tools for
free. We are also developing new analysis verification tools for K (in
collaboration with the K team), which will be adapted and used in the
Dreampal project.

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 2015 has been a good year in terms of journal publications for Dreampal, with 8 articles mostly in very high-quality venues.

 New Software and Platforms

 	New Software and Platforms	HoMade
	JHomade

 Section:
 New Software and Platforms

 HoMade

 Keywords: SoC - Multicore - Softcore

 Functional Description

 HoMade is a softcore processor. The current version is reflective (i.e., the program it executes is self-modifiable), and statically configurable, dynamically reconfigurable multi-processors are the next steps. Users have to add to it the functionality they need in their applications via IPs. We have also being developing a library of IPs for the most common processor functions (ALU, registers, ...). All the design is in VHDL except for some schematic specifications.

 	
 Participant: Jean Luc Dekeyser

 	
 Partner: LIFL

 	
 Contact: Jean Luc Dekeyser

 	
 URL: https://sites.google.com/site/homadeguideen/home

 Section:
 New Software and Platforms

 JHomade

 Functional Description

 JHomade is a software suite written in JAVA, including compilers and
tools for the HoMade processor. It allows us to compile HiHope
programs to Homade machine code and load the resulting binaries on
FPGA boards. It was first released in 2013. The second version in 2014
includes several new features, like a C-frontend, a few optimizations
(automatic inlining and more compact byte-code), a binary decoder and
a code-generator for VHDL simulation. New features of the HiHope
language are described in [19] .

 	
 Contact: Frédéric Guyomarch

 	
 URL: https://gforge.inria.fr/frs/?group_id=3646

 New Results

 	New Results	HoMade in 2015
	Language-Parametric Formal Methods
	The SCAC Model : a weakly-coupled execution model for MPSoC

 Section:
 New Results

 HoMade in 2015

 Interruption support

 In the last release of HoMade we introduced interruptions. Up to 7 interruptions are supported. The priority is static and each trap is associated to one of the 7 first VCs of the master, they are called trap1 .. trap7. Trap is par nature reflective. When a trap is raised the HoMade master reaches a no-preemptive kernel. Traps have no effect on the slaves, they can continue to work. At the end of trap execution, HoMade master resumes the sequential execution, trap codes should be clean and should restitute the stack as it was when they began. A WAIT instruction and a long IP cannot be interrupted. An example of interrupts is provided in the reconfiguration part later.

 New assembly language

 HoMade waits for two binary codes: one for the master and one for the
slaves. These two codes are loaded via the UART port and triggers a
global reset of all the softcores after. Binary codes are a sequence
of 16 bits words finishing by a long word filled with 4 NULL. Our post
fixed macro assembler generates some binary codes from text
files. This assembly language introduces some flow controls like if
for repeat. It is also based on PC and VC definitions. Now the
particular operator := generates reflective behaviors via WIM
instructions. The syntax is so simple than everybody can understand a
program. A full new syntax description is available with the assembler
on the official HoMade web site : https://sites.google.com/site/homadeguide/assembleur-homade-v6 .
Here is the code for a mono HoMade to implement a reflective execution of Fibonacci suite. Switches values are put on the top on the stack to indicate the position in the list we want to process. Different input buttons affect the execution:
• Button 0 changes to soft fibo execution using some library IPs. SWAP ROT DUP = - + are IPs to change the tops of the stack or to process dyadic integer operators.
• Button 1 changes to hard execution using fibo vhdl long IP
• Other buttons process the current fibo (hard or soft).

 :IP fibo $AC54 ; // fibo hard IPcode 54

 // XX = 1 YY = 1

 program

 : read

 $1f // immediate hexa

 btnpush // IP reads buttons pushed

 switch // IP reads switches

 ;

 : fibo_soft // function declare

 1 1 rot

 3 -

 for

 dup rot +

 next

 swap

 drop

 ;

 VC fibo_dyn := fibo_soft // VC init soft

 start

 begin

 read

 swap dup

 0 = // test button

 if // reflective process

 fibo_dyn := fibo_soft

 endif

 1 =

 if

 fibo_dyn := fibo

 endif

 fibo_dyn // call VC

 7seg // IP to print result

 $1f

 btn // button to pause

 7seg

 again // infinite loop

 endprogram

 When the VC fibo_dyn is called, you call hard or soft Fibonacci
version depending of the sequence of pushed button. The soft code is 7
time slower than the hard code. The extra cost due to reflective
facility is 2 cycles by VC call.

 Dynamic IP reconfiguration

 Xilinx chips are offering capabilities to program some pre-reserved chip areas with different bitsreams and this during the execution itself. It is not instantaneous and even worse the reconfiguration time depends of the length of the bitstream (the size of the area). Do not abuse of partial reconfigurations! But for some applications where context evolves at a “human speed”, our design can benefit of this functionality to adapt the hardware to the current context. It is easy to introduce this notion in HoMade: just insert an IP!
This IP has to manage the bitstream memory and the ICAP to load them in the predefined areas. We develop a such IP for the master, without broadcast of bitstream to the slaves for the moment. This IP reconfiguration only needs to know the bitstream address. Effectively for Xilinx, the data inside the bitstream are sufficient to achieve the reconfiguration.
We introduced the new keyword `in the assembler in order to express IP reconfigurations. The declaration of reconfigurable IPs may also include the bitstream address.
Now we can program dynamic partial reconfiguration of IPs using our dedicated IP that we developed. Furthermore we can couple the dynamic reconfiguration with the reflective notion.
Here is a simple example with dynamic image filters. The filter processes 1 block of 3x3 pixels. The 9 pixels are stored on the 3 top of the stack by aggregation of 3 pixels per word. External actuators can change from one IP to the other. We used interrupts and traps to apply this migration.

 program // bistream addresses between ()

 :IP IP_median $EC11 ($0);

 :IP IP_Sobel $EC22 ($49E);

 VC filter

 : T1

 IP_median ^^

 filter := IP_median

 ;

 : T2

 IP_moyenne ^^

 filter := IP_moyenne

 trap1 := T1 // interrupt level 1

 trap2 := T2 // Interrupt level 2

 : get3pix // must be defined &

 ;

 start

 begin

 $7D for

 get3Pix // 3x3 pixels on stack

 get3Pix

 get3Pix

 -rot swap

 $7D for

 filter // current IP

 get3Pix // next 3 pixels

 -rot

 next

 next

 again

 endprogram

 Concerning dynamic reconfiguration of IPs, we are testing a dedicated IP to manage directly the ICAP of Xilinx. The different bitstreams are stored in DDR3 and this IP finds the starting address from the stack. Of course this is a long IP. Some optimization to broadcast efficiently the same bitstream towards different slave reconfigurable areas are still a big challenge with Xilinx architecture.

 IP fusion

 To be free from EDA companies, we are deploying IP fusion strategies to manage the dynamic reconfiguration by ourselves. We obtain good results concerning the reconfiguration time, but for large and very different IPs, the fusion works like an aggregation of two IPs and the surface gain is insignificant.

 Using hardware parallelism for reducing power consumption in video streaming applications

 In the PhD thesis of Karim Ali we exploited using a flexible parallel hardware-based architecture in conjunction with frequency scaling as a technique for reducing power consumption in video streaming applications.
In this work, we derived equations to ease the calculation for the level of parallelism and the maximum depth for the FIFOs used for clock domain crossing. Accordingly, a design space was formed including all the design alternatives for the application.
The preferable design alternative is selected in aware of how much hardware it costs and what power reduction goal it can satisfy. We used Xilinx Zynq ZC706 evaluation board to implement two video streaming applications: Video downscaler (1:16) and AES encryption algorithm to verify our approach. The experimental results showed up to 19.6% power reduction for the video downscaler and up to 5.4% for the AES encryption. The architecture and experimental results were published in a paper entitled "Using hardware parallelism for reducing power consumption in video streaming applications" at the 10th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC) in Jun 2015, Bremen, Germany [12] .

 In collaboration with NAVYA, we started the first steps to implement a stereo vision algorithm over a parallel architecture using FPGA technologies. The algorithm is based on a local approach for calculating the disparity map using sum of absolute difference between the right and the left image. As a first step, we exploited the possible optimization levels that can be applied at the software level. After that by using high level synthesis tool (Vivado HLS from Xilinx) the code was written in C in a way that facilitates its conversion into HDL files. Optimization techniques were applied to reduce both the hardware resources and time required for processing one frame. This design was tested experimentally to show around 50% decrease in the time required for processing one frame if compared to the software one.
Currently, we are in the step of exploring more techniques for hardware optimization and decreasing the processing time to meet the industrial requirements of our partner.

 A scalable flexible and dynamic reconfigurable architecture for high performance embedded computing

 In collaboration with Nolam Embedded Systems (NES) and in the framework of the CIFRE PhD of Venkatasubramanian Viswanathan, we proposed a scalable and customizable reconfigurable computing platform, with a parallel full-duplex switched communication network, and a software execution model to redefine the computation, communication and reconfiguration paradigms in high performance embedded systems. High Performance Embedded Computing (HPEC) applications are becoming highly sophisticated and resource consuming for three reasons. First, they should capture and process real-time data from several I/O sources in parallel. Second, they should adapt their functionalities according to the application or environment variations within given Size Weight and Power (SWaP) constraints. Third, since they process several parallel I/O sources, applications are often distributed on multiple computing nodes making them highly parallel. Due to the hardware parallelism and I/O bandwidth offered by Field Programmable Gate Arrays (FPGAs), application can be duplicated several times to process parallel I/Os, making Single Program Multiple Data (SPMD) the favorite execution model for designers implementing parallel architectures on FPGAs. Furthermore Dynamic Partial Reconfiguration (DPR) feature allows efficient reuse of limited hardware resources, making FPGA a highly attractive solution for such applications. The problem with current HPEC systems is that, they are usually built to meet the needs of a specific application, i.e., lacks flexibility to upgrade the system or reuse existing hardware resources. On the other hand, applications that run on such hardware architectures are constantly being upgraded. Thus there is a real need for flexible and scalable hardware architectures and parallel execution models in order to easily upgrade the system and reuse hardware resources within acceptable time bounds. Thus these applications face challenges such as obsolescence, hardware redesign cost, sequential and slow reconfiguration, and wastage of computing power.

 Addressing the challenges described above, we propose an architecture that allows the customization of computing nodes (FPGAs), broadcast of data (I/O, bitstreams) and reconfiguration several or a subset of computing nodes in parallel. The software environment leverages the potential of the hardware switch, to provide support for the SPMD execution model. Finally, in order to demonstrate the benefits of our architecture, we have implemented a scalable distributed secure H.264 encoding application along with several avionic communication protocols for data and control transfers between the nodes. We have used a FMC based high-speed serial Front Panel Data Port (sFPDP) data acquisition protocol to capture, encode and encrypt RAW video streams. The system has been implemented on 3 different FPGAs, respecting the SPMD execution model. In addition, we have also implemented modular I/Os by swapping I/O protocols dynamically when required by the system. We have thus demonstrated a scalable and flexible architecture and a parallel runtime reconfiguration model in order to manage several parallel input video sources. These results represent a conceptual proof of a massively parallel dynamically reconfigurable next generation embedded computers [16] [15] . The PhD of Venkatasubramanian Viswanathan has been defended in the 12th of october 2015 .

 Section:
 New Results

 Language-Parametric Formal Methods

 The HoMade assembly language is still evolving. Thus, our research in formal methods for programming languages kept the language-parametric nature that
we decided upon when we started the project. The techniques and tools developed here will be instantiated on the HoMade assembly when it stabilizes. Our results are also applicable to general programming languages in order to target a broader audience.

 In 2015 we have consolidated the results obtained in previous years, by making them more generally available and publishing them in high-end venues.

 Language Definitions as Rewrite Theories

 In [9] we study the foundations of 𝕂, a formal framework for defining operational semantics of programming languages.
The 𝕂-Maude compiler translates 𝕂 language definitions to Maude rewrite
theories.
The compiler enables program execution by using the Maude rewrite engine with
the compiled definitions, and program analysis by using various Maude analysis
tools.
𝕂 supports symbolic execution in Maude by means of an automatic transformation of language definitions.
The transformed definition is called the symbolic extension of the
original definition.
In this paper we investigate the theoretical relationship between 𝕂 language
definitions and their Maude translations, between symbolic extensions of 𝕂
definitions and their Maude translations, and how the relationship between 𝕂
definitions and their symbolic extensions is reflected on their respective
representations in Maude.
In particular, the results show how analysis performed with Maude tools can be
formally lifted up to the original language definitions.

 A Generic Framework for Symbolic Execution: Theory and Applications

 In [10] , [17] we propose a language-independent symbolic execution framework. The approach is parameterised by a language definition, which consists of a signature for the language's syntax and execution infrastructure, a model interpreting the signature, and rewrite rules for the language's operational semantics. Then, symbolic execution amounts to computing symbolic paths using a derivative operation.
We prove that the symbolic execution thus defined has the properties naturally expected from it, meaning that the feasible symbolic executions of a program and the concrete executions of the same program mutually simulate each other. We also show how a coinduction-based extension of symbolic execution can be used for the deductive verification of programs. We show how the proposed symbolic-execution approach, and the coinductive verification technique based on it, can be seamlessly implemented in language definition frameworks based on rewriting such as the 𝕂 framework.
A prototype implementation of our approach has been developed in 𝕂. We illustrate it on the symbolic analysis and deductive verification of nontrivial programs.

 Symbolic Execution by Language Transformation

 In [2] we propose a language-independent symbolic execution framework for languages endowed with a formal operational semantics based on term rewriting. Starting from a given definition of a language, a new language definition is generated, with the same syntax as the original one, but whose semantical rules are transformed in order to rewrite over logical formulas denoting possibly infinite sets of program states. Then, the symbolic execution of concrete programs is, by definition, the execution of the same programs with the symbolic semantics. We prove that the symbolic execution thus defined has the properties naturally expected from it (with respect to concrete program execution). A prototype implementation of our approach was developed in the K Framework. We demonstrate the tool's genericity by instantiating it on several languages, and illustrate it on the reachability analysis and model checking of several programs.

 Program Equivalence by Circular Reasoning

 In [7] we propose a logic and a deductive system for stating and automatically proving the equivalence of programs written in languages having a rewriting-based operational semantics. The chosen equivalence is parametric in a so-called observation relation, and it says that two programs satisfying the observation relation will inevitably be, in the future, in the observation relation again. This notion of equivalence generalises several well-known equivalences and is appropriate for deterministic (or, at least, for confluent) programs. The deductive system is circular in nature and is proved sound and weakly complete; together, these results say that, when it terminates, our system correctly solves the given program-equivalence problem. We show that our approach is suitable for proving equivalence for terminating and non-terminating programs as well as for concrete and symbolic programs. The latter are programs in which some statements or expressions are symbolic variables. By proving the equivalence between symbolic programs, one proves the equivalence of (infinitely) many concrete programs obtained by replacing the variables by concrete statements or expressions. The approach is illustrated by proving program equivalence in two languages from different programming paradigms. The examples in the paper, as well as other examples, can be checked using an online tool.

 Verifying Reachability-Logic Properties on Rewriting-Logic Specifications

 Rewriting Logic is a simply, flexible, and powerful framework for specifying and analysing concurrent systems. Reachability Logic is a recently introduced formalism, which is currently used for defining the operational semantics of programming languages and for stating properties about program executions. Reachability Logic has its roots in a wider-spectrum framework, namely, in Rewriting Logic Semantics. In the invited paper [10] we show how Reachability Logic can be adapted for stating properties of transition systems described by Rewriting-Logic specifications. We propose a procedure for verifying Rewriting-Logic specifications against Reachability-Logic properties. We prove the soundness of the procedure and illustrate it by verifying a communication protocol specified in Maude.

 A Theoretical Foundation for Programming Languages Aggregation

 This work was published as [11] . Programming languages should be formally specified in order to reason about programs written in them. We show that, given two formally specified programming languages, it is possible to construct the formal semantics of an aggregated language, in which programs consist of pairs of programs from the initial languages. The construction is based on algebraic techniques and it can be used to reduce relational properties (such as equivalence of programs) to reachability properties (in the aggregated language).

 Section:
 New Results

 The SCAC Model : a weakly-coupled execution model for MPSoC

 Synchronous Communication Asynchronous Computation (SCAC) is an execution model that separates the execution of communication phases from those of computation in order to facilitate their overlapping, thus covering the data transfer time. To allow the simultaneous execution of these two phases, we propose an approach based on three levels : two globally-centralized/locally-distributed hierarchical control levels and a parallel computation level.

 G-MPSoC [5] is a SCAC System-on-Chip implementation based on a grid of clusters of Hardware and Software Computation Elements with different size, performance, and complexity. It is composed of parametric IP-reused modules: processor, controller, accelerator, memory, interconnection network, etc. to build different architecture configurations. The generic structure of G-MPSoC facilitates its adaptation to the intensive signal processing applications requirements.

 The communication phase in SCAC System-on-Chip should be as fast as
possible to avoid compromising parallel computing, using small and low
power consumption modules to facilitate the interconnection network
extensibility in a scalable system. To meet these criteria and based
on a module reuse methodology, we chose to integrate a reconfigurable
SCAC-Net [14] interconnection network to communicate data in our system. The SCAC-Net network is composed of communication modules as the number of the nodes used by the system. Using generic parameters, the topology of SCAC-Net network can be easily configured according to the needed communication which give more flexibility to the system.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Contracts with Industry

 Collaboration contract with Nolam Embedded Systems: In conjunction with the CIFRE grant of Venkatasubramanian Viswanathan, a collaboration contract is established with Nolam ES. The objective is to design an innovative embedded computing platform supporting massively parallel dynamically reconfigurable execution model. The use­-cases of this platform cover several application domains such as medical, transportation and aerospace.

 Collaboration contract with NAVYA: In conjunction with the doctoral grant of Karim Ali, a collaboration contract is established with NAVYA. The objective is to design an innovative embedded system dedicated for dynamic obstacle detection and tracking for autonomous vehicle navigation.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific events organisation

 member of the organizing committee

 F. Guyomarch, P. Marquet and S. Meftali were members of the ComPAS 2015
organizing committee (Lille, 2015).

 F. Guyomarch and S. Meftali were members of the Archi summer school organizing
committee (Lille, 2015).

 Scientific events selection

 responsable of the conference program committee

 S. Meftali was responsible of the ComPAS 2015 conference program committee.

 Member of the conference program committees

 J.-L. Dekeyser was member of the ComPAS 2015 conference program committee and is
member in the Reconfig 2016 and ReCoSoc 2016 program committees.

 F. Guyomarch is member of the ComPAS 2016 program committee, which will take place in Lorient (http://compas2016.sciencesconf.org).

 V. Rusu is member of the WRLA 2016 program committee, which will take place in Eindhoven (https://fmse.info.uaic.ro/events/WRLA2016/).

 Research administration

 V. Rusu is elected member of the Inria evaluation committee.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Licence : Philippe Marquet, Introduction to Computer
Science, 15h, Secondary Education Teatcher Training,
Université Lille 1, France

 	
 Licence : Philippe Marquet, System Programming, 60h, L3,
Université Lille 1, France

 	
 Master: Philippe Marquet, Design of Operating System,
60h, M1, Université Lille 1, France

 	
 Master: Philippe Marquet, Web of Things: Embedded
System Programming, 20h, M1, Université Lille 1, France

 	
 Master: Philippe Marquet, Parallel and Distributed
Programming, 24h, M1, Université Lille 1, France

 	
 Master: Philippe Marquet, Introduction to Innovation and
Research, 15h, M2, Université Lille 1, France

 	
 Licence : Samy Meftali, Architecture des ordinateurs, 75h, L2, UFR IEEA, Université Lille 1, France

 	
 Licence : Samy Meftali, Programmation du matériel, 40h, L3, UFR IEEA, Université Lille 1, France

 	
 Master: Samy Meftali, Architectures évoluées des ordinateurs, 80h, M1, UFR IEEA, Université Lille 1, France

 	
 Master: Samy Meftali, Vérification des SoC, 16h, M2, UFR IEEA, Université Lille 1, France

 	
 Licence : Jean-Luc Dekeyser, Architecture des ordinateurs, 80h, L2, UFR IEEA, Université Lille 1, France

 	
 Master: Jean-Luc Dekeyser, Architectures évoluées des ordinateurs, 105h, M1, UFR IEEA, Université Lille 1, France

 	
 Licence : F. Guyomarch, Algorithmique et programmation, 72h, L1, IUT-A (Univ. Lille 1)

 	
 Licence : F. Guyomarch, Conception de sites web, 8h, L1, IUT-A (Univ. Lille 1)

 	
 Licence : F. Guyomarch, Modélisation et théorie des langages, 64h, L2, IUT-A (Univ. Lille 1)

 	
 Licence : F. Guyomarch, Algorithmique avancée, 44h, L2, IUT-A (Univ. Lille 1)

 	
 Licence : F. Guyomarch, Modélisation mathématique, 28h, L2, IUT-A (Univ. Lille 1)

 	
 Licence : Rabie Ben Atitallah, Introduction to Computer
Architecture and Operating System, 36h, L2,
Université de Valenciennes et du Hainaut-Cambrésis, France

 	
 Licence : Rabie Ben Atitallah, Algorithms and Language C Programming, 48h, L2,
Université de Valenciennes et du Hainaut-Cambrésis, France

 	
 Master: Rabie Ben Atitallah, Tools for Embedded System Design,
32h, M2, Université de Valenciennes et du Hainaut-Cambrésis, France

 	
 Master: Rabie Ben Atitallah, Development and Compilation of Embedded Application,
32h, M2, Université de Valenciennes et du Hainaut-Cambrésis, France

 	
 Licence : V. Rusu, Logique , 30h, M1, UFR IEEA, (Univ. Lille 1)

 	
 Master : V. Rusu, Architecture avancée des ordinateurs, 36h, M1, UFR IEEA, (Univ. Lille 1)

 Supervision

 	
 PhD : H. Krichene, SCAC : Modèle d'exécution générique faiblement couplé pour les architectures massivement parallèle sur puce, March 2011, Philippe Marque & Jean-Luc Dekeyser

 	
 PhD : V. Viswanathan, Parallel and Dynamic reconfigurable computing system, 01/02/2012, Jean-Luc Dekeyser and Rabie Ben Atitallah

 	
 PhD in progress : W. Chouchene, Partial reconfiguration model for dynamic and massively parallel architecture : towards 3D FPGAs, 01/10/2013, Jean-Luc Dekeyser, Rabie Ben Atitallah and Samy Meftali

 	
 PhD in progress : K. Ali, Massively parallel dynamically reconfigurable architecture for real-time vidéo processing applications, 01/10/2013, Jean-Luc Dekeyser, Rabie Ben Atitallah

 Section:
 Dissemination

 Popularization

 Philippe Marquet is vice-president of the Société
informatique de France, the French learned society in
computer science.

 Philippe Marquet is involved in scientific popularization and
co-animate the group of people interested in science
popularization within the Inria Lille - Nord Europe Research
Center. He is also of member of the group for networking about
computer science popularization inside Inria.

 He organizes and participates to the visit of classrooms on the
Inria Plateau at EuraTechnologies, promoting interactions between
the scientific community and secondary school students and their
teachers. He organizes and/or animates events with children and/or
adults in order to initiate them to code via Scratch or to
computer science via unplugged activities, and more generally
promoting computer science education.

 Philippe Marquet is a member of the editorial board of 1024, the
bulletin of the Société informatique de France that
aims at showing informatics, science and technology, in all its
dimensions. 1024 targets a wide audience, from high school
students to researcher, including anyone interested in computer
science.

 Bibliography

 Publications of the year

 Articles in International Peer-Reviewed Journals

 	[1]

 	A. Ait El Cadi, O. Souissi, R. Ben Atitallah, N. Belanger, A. Artiba.
Mathematical programming models for scheduling in a CPU/FPGA architecture with heterogeneous communication delays, in: Journal of Intelligent Manufacturing, April 2015, pp. 1-12. [
DOI : 10.1007/s10845-015-1075-z]
https://hal.inria.fr/hal-01247399

 	[2]

 	A. Arusoaie, D. Lucanu, V. Rusu.
Symbolic execution based on language transformation, in: Computer Languages, Systems and Structures, 2015, 42 p. [
DOI : 10.1016/j.cl.2015.08.004]
https://hal.inria.fr/hal-01186008

 	[3]

 	M. Baklouti, P. Marquet, J.-L. Dekeyser, M. Abid.
FPGA-based many-core System-on-Chip design, in: Microprocessors and Microsystems, 2015, 38 p. [
DOI : 10.1016/j.micpro.2015.03.007]
https://hal.inria.fr/hal-01144977

 	[4]

 	S. Ciobaca, D. Lucanu, V. Rusu, G. Rosu.
A Language-Independent Proof System for Mutual Program Equivalence, in: Formal Aspects of Computing, 2016, forthcoming.
https://hal.inria.fr/hal-01245528

 	[5]

 	H. Krichene, M. Baklouti, M. Abid, P. Marquet, J.-L. Dekeyser.
G-MPSoC: Generic Massively Parallel Architecture on FPGA, in: WSEAS Transactions on Circuits and Systems, November 2015, vol. 14.
https://hal.inria.fr/hal-01246675

 	[6]

 	D. Lucanu, V. Rusu, A. Arusoaie.
A Generic Framework for Symbolic Execution: Theory and Applications, in: Journal of Symbolic Computation, 2016, forthcoming.
https://hal.inria.fr/hal-01238696

 	[7]

 	D. Lucanu, V. Rusu.
Program Equivalence by Circular Reasoning, in: Formal Aspects of Computing, 2015, vol. 27, no 4, pp. 701-726. [
DOI : 10.1007/s00165-014-0319-6]
https://hal.inria.fr/hal-01065830

 	[8]

 	J. Perier, W. Chouchene, J.-L. Dekeyser.
Circuit Merging versus Dynamic Partial Reconfiguration -The HoMade Implementation, in: i-manager's Journal on Embedded Systems(JES), 2016.
https://hal.inria.fr/hal-01245800

 	[9]

 	V. Rusu, D. Lucanu, T.-F. Şerbănuţă, A. Arusoaie, A. Ştefănescu, G. Roşu.
Language Definitions as Rewrite Theories, in: Journal of Logic and Algebraic Methods in Programming, 2015, 48 p, forthcoming. [
DOI : 10.1016/j.jlamp.2015.09.001]
https://hal.inria.fr/hal-01186005

 Invited Conferences

 	[10]

 	D. Lucanu, V. Rusu, A. Arusoaie, D. Nowak.
Verifying Reachability-Logic Properties on Rewriting-Logic Specifications, in: Logic, Rewriting, and Concurrency - Festschrift Symposium in Honor of José Meseguer, Urbana Champaign, United States, Logic, Rewriting, and Concurrency Essays Dedicated to José Meseguer on the Occasion of His 65th Birthday, Springer Verlag, September 2015, vol. 9200. [
DOI : 10.1007/978-3-319-23165-5_21]
https://hal.inria.fr/hal-01158941

 International Conferences with Proceedings

 	[11]

 	S. Ciobaca, D. Lucanu, V. Rusu, G. Rosu.
A Theoretical Foundation for Programming Languages Aggregation, in: 22nd International Workshop on Algebraic Development Techniques, Sinaia, Romania, LNCS, Spriger Verlag, 2015, vol. 9463.
https://hal.inria.fr/hal-01076641

 Conferences without Proceedings

 	[12]

 	K. M. A. Ali, R. B. Atitallah, N. Fakhfakh, J.-L. Dekeyser.
Using hardware parallelism for reducing power consumption in video streaming applications, in: 10th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2015, Bremen, Germany, June 2015. [
DOI : 10.1109/ReCoSoC.2015.7238104]
https://hal.inria.fr/hal-01247130

 	[13]

 	J.-L. Dekeyser, A. S. Aljendi.
Adopting New Learning Strategies for Computer Architecture in Higher Education Case Study: Building the S3 Microprocessor in 24 Hours, in: Workshop on Computer Architecture Education held in conjunction with the 42nd International Symposium on Computer Architeture, Portland, United States, June 2015.
https://hal.inria.fr/hal-01152144

 	[14]

 	H. Krichene, M. Baklouti, M. Abid, P. Marquet, J.-L. Dekeyser, S. Meftali.
SCAC-Net: Reconfigurable Interconnection Network in SCAC Massively parallel SoC, in: The 24th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, Heraklion, Greece, February 2016.
https://hal.inria.fr/hal-01247298

 	[15]

 	V. Viswanathan, R. B. Atitallah, J.-L. Dekeyser.
Massively Parallel Dynamically Reconfigurable Multi-FPGA Computing System , in: IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2015, Vancouver, BC , Canada, May 2015. [
DOI : 10.1109/FCCM.2015.13]
https://hal.inria.fr/hal-01247116

 	[16]

 	V. Viswanathan, R. Ben Atitallah, J.-L. Dekeyser, B. Nakache, M. Nakache.
A Parallel And Scalable Multi-FPGA based Architecture for High Performance Applications, in: The 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA '15, Monterey, California, United States, February 2015. [
DOI : 10.1145/2684746.2689115]
https://hal.inria.fr/hal-01247133

 Internal Reports

 	[17]

 	A. Arusoaie, D. Lucanu, V. Rusu.
A Generic Framework for Symbolic Execution: Theory and Applications, Inria, September 2015, no RR-8189, 41 p.
https://hal.inria.fr/hal-00766220

 	[18]

 	A. Arusoaie, D. Nowak, V. Rusu, D. Lucanu.
Formal Proof of Soundness for an RL Prover, Inria Lille - Nord Europe ; Alexandru Ioan Cuza, University of Iasi, December 2015, no RR-471, 27 p.
https://hal.inria.fr/hal-01244578

 	[19]

 	J. Forget, F. Guyomarch, V. Rusu.
Programming with hardware/software functions, Inria Lille Nord Europe, December 2015, no 8835, 18 p.
https://hal.inria.fr/hal-01248163

 Patents

 	[20]

 	G. Afonso, W. GODARD, R. Ben Atitallah, J.-L. Dekeyser.
Système de Simulation et de Test, July 2015, no WO 2015097105.
https://hal.inria.fr/hal-01247395

 OEBPS/uid30.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria International Partners

 Informal International Partners

 We have a long-lasting collaboration with the universities of Illinois at Urbana Champaign (USA) and Iasi (Romania), which has been particularly fruitful in 2015 with 5 co-signed articles published or accepted for publication in high-quality journals.

OEBPS/international.html

OEBPS/domaine.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/iTunesArtwork.png
Activity Report 2015
Project-Team Dreampal

Dynamic Reconfigurable
Massively Parallel
Architectures and
Languages

