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2. Overall Objectives

2.1. Overall Objectives
The scientific objectives of ASPI are the design, analysis and implementation of interacting Monte Carlo
methods, also known as particle methods, with focus on

• statistical inference in hidden Markov models and particle filtering,

• risk evaluation and simulation of rare events,

• global optimization.

The whole problematic is multidisciplinary, not only because of the many scientific and engineering areas in
which particle methods are used, but also because of the diversity of the scientific communities which have
already contributed to establish the foundations of the field

target tracking, interacting particle systems, empirical processes, genetic algorithms (GA),
hidden Markov models and nonlinear filtering, Bayesian statistics, Markov chain Monte Carlo
(MCMC) methods, etc.

Intuitively speaking, interacting Monte Carlo methods are sequential simulation methods, in which particles

• explore the state space by mimicking the evolution of an underlying random process,

• learn their environment by evaluating a fitness function,

• and interact so that only the most successful particles (in view of the fitness function) are allowed to
survive and to get offsprings at the next generation.

The effect of this mutation / selection mechanism is to automatically concentrate particles (i.e. the available
computing power) in regions of interest of the state space. In the special case of particle filtering, which has
numerous applications under the generic heading of positioning, navigation and tracking, in

target tracking, computer vision, mobile robotics, wireless communications, ubiquitous com-
puting and ambient intelligence, sensor networks, etc.,

each particle represents a possible hidden state, and is replicated or terminated at the next generation on the
basis of its consistency with the current observation, as quantified by the likelihood function. With these
genetic–type algorithms, it becomes easy to efficiently combine a prior model of displacement with or without
constraints, sensor–based measurements, and a base of reference measurements, for example in the form of a
digital map (digital elevation map, attenuation map, etc.). In the most general case, particle methods provide
approximations of Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann distributions,
by means of the weighted empirical probability distribution associated with an interacting particle system,
with applications that go far beyond filtering, in

simulation of rare events, global optimization, molecular simulation, etc.

The main applications currently considered are geolocalisation and tracking of mobile terminals, terrain–aided
navigation, data fusion for indoor localisation, optimization of sensors location and activation, risk assessment
in air traffic management, protection of digital documents.
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3. Research Program
3.1. Interacting Monte Carlo methods and particle approximation of

Feynman–Kac distributions
Monte Carlo methods are numerical methods that are widely used in situations where (i) a stochastic (usually
Markovian) model is given for some underlying process, and (ii) some quantity of interest should be evaluated,
that can be expressed in terms of the expected value of a functional of the process trajectory, which includes
as an important special case the probability that a given event has occurred. Numerous examples can be found,
e.g. in financial engineering (pricing of options and derivative securities) [36], in performance evaluation
of communication networks (probability of buffer overflow), in statistics of hidden Markov models (state
estimation, evaluation of contrast and score functions), etc. Very often in practice, no analytical expression
is available for the quantity of interest, but it is possible to simulate trajectories of the underlying process.
The idea behind Monte Carlo methods is to generate independent trajectories of this process or of an alternate
instrumental process, and to build an approximation (estimator) of the quantity of interest in terms of the
weighted empirical probability distribution associated with the resulting independent sample. By the law of
large numbers, the above estimator converges as the sizeN of the sample goes to infinity, with rate 1/

√
N and

the asymptotic variance can be estimated using an appropriate central limit theorem. To reduce the variance
of the estimator, many variance reduction techniques have been proposed. Still, running independent Monte
Carlo simulations can lead to very poor results, because trajectories are generated blindly, and only afterwards
are the corresponding weights evaluated. Some of the weights can happen to be negligible, in which case the
corresponding trajectories are not going to contribute to the estimator, i.e. computing power has been wasted.

A major breakthrough made in the mid 90’s, has been the introduction of interacting Monte Carlo methods,
also known as sequential Monte Carlo (SMC) methods, in which a whole (possibly weighted) sample, called
system of particles, is propagated in time, where the particles
• explore the state space under the effect of a mutation mechanism which mimics the evolution of the

underlying process,
• and are replicated or terminated, under the effect of a selection mechanism which automatically

concentrates the particles, i.e. the available computing power, into regions of interest of the state
space.

In full generality, the underlying process is a discrete–time Markov chain, whose state space can be

finite, continuous, hybrid (continuous / discrete), graphical, constrained, time varying, pathwise,
etc.,

the only condition being that it can easily be simulated.

In the special case of particle filtering, originally developed within the tracking community, the algorithms
yield a numerical approximation of the optimal Bayesian filter, i.e. of the conditional probability distribution
of the hidden state given the past observations, as a (possibly weighted) empirical probability distribution of
the system of particles. In its simplest version, introduced in several different scientific communities under
the name of bootstrap filter [38], Monte Carlo filter [43] or condensation (conditional density propagation)
algorithm [42], and which historically has been the first algorithm to include a resampling step, the selection
mechanism is governed by the likelihood function: at each time step, a particle is more likely to survive and to
replicate at the next generation if it is consistent with the current observation. The algorithms also provide as
a by–product a numerical approximation of the likelihood function, and of many other contrast functions for
parameter estimation in hidden Markov models, such as the prediction error or the conditional least–squares
criterion.

Particle methods are currently being used in many scientific and engineering areas

positioning, navigation, and tracking [39], [32], visual tracking [42], mobile robotics [33], [55],
ubiquitous computing and ambient intelligence, sensor networks, risk evaluation and simulation
of rare events [37], genetics, molecular simulation [34], etc.
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Other examples of the many applications of particle filtering can be found in the contributed volume [22] and
in the special issue of IEEE Transactions on Signal Processing devoted to Monte Carlo Methods for Statistical
Signal Processing in February 2002, where the tutorial paper [23] can be found, and in the textbook [51]
devoted to applications in target tracking. Applications of sequential Monte Carlo methods to other areas,
beyond signal and image processing, e.g. to genetics, can be found in [48]. A recent overview can also be
found in [25].

Particle methods are very easy to implement, since it is sufficient in principle to simulate independent
trajectories of the underlying process. The whole problematic is multidisciplinary, not only because of the
already mentioned diversity of the scientific and engineering areas in which particle methods are used, but
also because of the diversity of the scientific communities which have contributed to establish the foundations
of the field

target tracking, interacting particle systems, empirical processes, genetic algorithms (GA),
hidden Markov models and nonlinear filtering, Bayesian statistics, Markov chain Monte Carlo
(MCMC) methods.

These algorithms can be interpreted as numerical approximation schemes for Feynman–Kac distributions, a
pathwise generalization of Gibbs–Boltzmann distributions, in terms of the weighted empirical probability
distribution associated with a system of particles. This abstract point of view [30], [29], has proved
to be extremely fruitful in providing a very general framework to the design and analysis of numerical
approximation schemes, based on systems of branching and / or interacting particles, for nonlinear dynamical
systems with values in the space of probability distributions, associated with Feynman–Kac distributions.
Many asymptotic results have been proved as the number N of particles (sample size) goes to infinity, using
techniques coming from applied probability (interacting particle systems, empirical processes [58]), see e.g.
the survey article [30] or the textbooks [29], [28], and references therein

convergence in Lp, convergence as empirical processes indexed by classes of functions, uniform
convergence in time, see also [46], [47], central limit theorem, see also [44], [31], propagation
of chaos, large deviations principle, etc.

The objective here is to systematically study the impact of the many algorithmic variants on the convergence
results.

3.2. Multilevel splitting for rare event simulation
See 4.2, 5.1, and 5.2.

The estimation of the small probability of a rare but critical event, is a crucial issue in industrial areas such as

nuclear power plants, food industry, telecommunication networks, finance and insurance indus-
try, air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive Monte Carlo methods are clearly un-
efficient to estimate accurately very small probabilities. Besides importance sampling, an alternate widespread
technique consists in multilevel splitting [45], where trajectories going towards the critical set are given off-
springs, thus increasing the number of trajectories that eventually reach the critical set. As shown in [6], the
Feynman–Kac formalism of 3.1 is well suited for the design and analysis of splitting algorithms for rare event
simulation.

Propagation of uncertainty Multilevel splitting can be used in static situations. Here, the objective is to learn
the probability distribution of an output random variable Y = F (X), where the function F is only defined
pointwise for instance by a computer programme, and where the probability distribution of the input random
variable X is known and easy to simulate from. More specifically, the objective could be to compute the
probability of the output random variable exceeding a threshold, or more generally to evaluate the cumulative
distribution function of the output random variable for different output values. This problem is characterized
by the lack of an analytical expression for the function, the computational cost of a single pointwise evaluation
of the function, which means that the number of calls to the function should be limited as much as possible,
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and finally the complexity and / or unavailability of the source code of the computer programme, which makes
any modification very difficult or even impossible, for instance to change the model as in importance sampling
methods.

The key issue is to learn as fast as possible regions of the input space which contribute most to the computation
of the target quantity. The proposed splitting methods consists in (i) introducing a sequence of intermediate
regions in the input space, implicitly defined by exceeding an increasing sequence of thresholds or levels,
(ii) counting the fraction of samples that reach a level given that the previous level has been reached already,
and (iii) improving the diversity of the selected samples, usually with an artificial Markovian dynamics for the
input variable. In this way, the algorithm learns
• the transition probability between successive levels, hence the probability of reaching each interme-

diate level,
• and the probability distribution of the input random variable, conditionned on the output variable

reaching each intermediate level.

A further remark, is that this conditional probability distribution is precisely the optimal (zero variance)
importance distribution needed to compute the probability of reaching the considered intermediate level.

Rare event simulation To be specific, consider a complex dynamical system modelled as a Markov process,
whose state can possibly contain continuous components and finite components (mode, regime, etc.), and the
objective is to compute the probability, hopefully very small, that a critical region of the state space is reached
by the Markov process before a final time T , which can be deterministic and fixed, or random (for instance
the time of return to a recurrent set, corresponding to a nominal behaviour).

The proposed splitting method consists in (i) introducing a decreasing sequence of intermediate, more and
more critical, regions in the state space, (ii) counting the fraction of trajectories that reach an intermediate
region before time T , given that the previous intermediate region has been reached before time T , and
(iii) regenerating the population at each stage, through resampling. In addition to the non–intrusive behaviour
of the method, the splitting methods make it possible to learn the probability distribution of typical critical
trajectories, which reach the critical region before final time T , an important feature that methods based on
importance sampling usually miss. Many variants have been proposed, whether
• the branching rate (number of offsprings allocated to a successful trajectory) is fixed, which allows

for depth–first exploration of the branching tree, but raises the issue of controlling the population
size,

• the population size is fixed, which requires a breadth–first exploration of the branching tree, with
random (multinomial) or deterministic allocation of offsprings, etc.

Just as in the static case, the algorithm learns
• the transition probability between successive levels, hence the probability of reaching each interme-

diate level,
• and the entrance probability distribution of the Markov process in each intermediate region.

Contributions have been given to
• minimizing the asymptotic variance, obtained through a central limit theorem, with respect to the

shape of the intermediate regions (selection of the importance function), to the thresholds (levels),
to the population size, etc.

• controlling the probability of extinction (when not even one trajectory reaches the next intermediate
level),

• designing and studying variants suited for hybrid state space (resampling per mode, marginalization,
mode aggregation),

and in the static case, to
• minimizing the asymptotic variance, obtained through a central limit theorem, with respect to

intermediate levels, to the Metropolis kernel introduced in the mutation step, etc.



6 Activity Report INRIA 2017

A related issue is global optimization. Indeed, the difficult problem of finding the set M of global minima of
a real–valued function V can be replaced by the apparently simpler problem of sampling a population from
a probability distribution depending on a small parameter, and asymptotically supported by the set M as the
small parameter goes to zero. The usual approach here is to use the cross–entropy method [52], [27], which
relies on learning the optimal importance distribution within a prescribed parametric family. On the other hand,
multilevel splitting methods could provide an alternate nonparametric approach to this problem.

3.3. Statistical learning: pattern recognition and nonparametric regression
In pattern recognition and statistical learning, also known as machine learning, nearest neighbor (NN)
algorithms are amongst the simplest but also very powerful algorithms available. Basically, given a training
set of data, i.e. an N–sample of i.i.d. object–feature pairs, with real–valued features, the question is how to
generalize, that is how to guess the feature associated with any new object. To achieve this, one chooses some
integer k smaller than N , and takes the mean–value of the k features associated with the k objects that are
nearest to the new object, for some given metric.

In general, there is no way to guess exactly the value of the feature associated with the new object, and the
minimal error that can be done is that of the Bayes estimator, which cannot be computed by lack of knowledge
of the distribution of the object–feature pair, but the Bayes estimator can be useful to characterize the strength
of the method. So the best that can be expected is that the NN estimator converges, say when the sample
size N grows, to the Bayes estimator. This is what has been proved in great generality by Stone [53] for the
mean square convergence, provided that the object is a finite–dimensional random variable, the feature is a
square–integrable random variable, and the ratio k/N goes to 0. Nearest neighbor estimator is not the only
local averaging estimator with this property, but it is arguably the simplest.

The asymptotic behavior when the sample size grows is well understood in finite dimension, but the situation
is radically different in general infinite dimensional spaces, when the objects to be classified are functions,
images, etc.

Nearest neighbor classification in infinite dimension In finite dimension, the k–nearest neighbor classifier
is universally consistent, i.e. its probability of error converges to the Bayes risk as N goes to infinity, whatever
the joint probability distribution of the pair, provided that the ratio k/N goes to zero. Unfortunately, this result
is no longer valid in general metric spaces, and the objective is to find out reasonable sufficient conditions
for the weak consistency to hold. Even in finite dimension, there are exotic distances such that the nearest
neighbor does not even get closer (in the sense of the distance) to the point of interest, and the state space
needs to be complete for the metric, which is the first condition. Some regularity on the regression function is
required next. Clearly, continuity is too strong because it is not required in finite dimension, and a weaker form
of regularity is assumed. The following consistency result has been obtained: if the metric space is separable
and if some Besicovich condition holds, then the nearest neighbor classifier is weakly consistent. Note that the
Besicovich condition is always fulfilled in finite dimensional vector spaces (this result is called the Besicovich
theorem), and that a counterexample [4] can be given in an infinite dimensional space with a Gaussian measure
(in this case, the nearest neighbor classifier is clearly nonconsistent). Finally, a simple example has been found
which verifies the Besicovich condition with a noncontinuous regression function.

Rates of convergence of the functional k–nearest neighbor estimator Motivated by a broad range of
potential applications, such as regression on curves, rates of convergence of the k–nearest neighbor estimator
of the regression function, based on N independent copies of the object–feature pair, have been investigated
when the object is in a suitable ball in some functional space. Using compact embedding theory, explicit
and general finite sample bounds can be obtained for the expected squared difference between the k–nearest
neighbor estimator and the Bayes regression function, in a very general setting. The results have also been
particularized to classical function spaces such as Sobolev spaces, Besov spaces and reproducing kernel Hilbert
spaces. The rates obtained are genuine nonparametric convergence rates, and up to our knowledge the first of
their kind for k–nearest neighbor regression.
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This topic has produced several theoretical advances [1], [2] in collaboration with Gérard Biau (université
Pierre et Marie Curie). A few possible target application domains have been identified in
• the statistical analysis of recommendation systems,
• the design of reduced–order models and analog samplers,

that would be a source of interesting problems.

4. Application Domains
4.1. Localisation, navigation and tracking

See 6.1.

Among the many application domains of particle methods, or interacting Monte Carlo methods, ASPI has
decided to focus on applications in localisation (or positioning), navigation and tracking [39], [32], which
already covers a very broad spectrum of application domains. The objective here is to estimate the position
(and also velocity, attitude, etc.) of a mobile object, from the combination of different sources of information,
including
• a prior dynamical model of typical evolutions of the mobile, such as inertial estimates and prior

model for inertial errors,
• measurements provided by sensors,
• and possibly a digital map providing some useful feature (terrain altitude, power attenuation, etc.) at

each possible position.

In some applications, another useful source of information is provided by
• a map of constrained admissible displacements, for instance in the form of an indoor building map,

which particle methods can easily handle (map-matching). This Bayesian dynamical estimation problem is
also called filtering, and its numerical implementation using particle methods, known as particle filtering, has
been introduced by the target tracking community [38], [51], which has already contributed to many of the
most interesting algorithmic improvements and is still very active, and has found applications in

target tracking, integrated navigation, points and / or objects tracking in video sequences,
mobile robotics, wireless communications, ubiquitous computing and ambient intelligence,
sensor networks, etc.

ASPI is contributing (or has contributed recently) to several applications of particle filtering in positioning,
navigation and tracking, such as geolocalisation and tracking in a wireless network, terrain–aided navigation,
and data fusion for indoor localisation.

4.2. Rare event simulation
See 3.2, 5.1, and 5.2.

Another application domain of particle methods, or interacting Monte Carlo methods, that ASPI has decided
to focus on is the estimation of the small probability of a rare but critical event, in complex dynamical systems.
This is a crucial issue in industrial areas such as

nuclear power plants, food industry, telecommunication networks, finance and insurance indus-
try, air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive Monte Carlo methods are clearly un-
efficient to estimate accurately very small probabilities. Besides importance sampling, an alternate widespread
technique consists in multilevel splitting [45], where trajectories going towards the critical set are given off-
springs, thus increasing the number of trajectories that eventually reach the critical set. This approach not
only makes it possible to estimate the probability of the rare event, but also provides realizations of the ran-
dom trajectory, given that it reaches the critical set, i.e. provides realizations of typical critical trajectories, an
important feature that methods based on importance sampling usually miss.
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ASPI is contributing (or has contributed recently) to several applications of multilevel splitting for rare event
simulation, such as risk assessment in air traffic management, detection in sensor networks, and protection of
digital documents.

5. New Results

5.1. Central limit theorem for adaptive multilevel splitting
Participants: Frédéric Cérou, Arnaud Guyader, Mathias Rousset.

See 3.2, and 4.2.

This is a collaboration with Bernard Delyon (université de Rennes 1).

Fleming–Viot type particle systems represent a classical way to approximate the distribution of a Markov
process with killing, given that it is still alive at a final deterministic time. In this context, each particle evolves
independently according to the law of the underlying Markov process until its killing, and then branches
instantaneously on another randomly chosen particle. While the consistency of this algorithm in the large
population limit has been recently studied in several articles, our purpose here is to prove central limit theorems
under very general assumptions. For this, we only suppose that the particle system does not explode in finite
time, and that the jump and killing times have atomless distributions. In particular, this includes the case of
elliptic diffusions with hard killing.

5.2. Adaptive multilevel splitting for Monte Carlo particle transport
Participant: Mathias Rousset.

See 3.2, and 4.2.

Simulation of neutron transport with Monte Carlo methods is a central issue in order to assess the aging of
french nucelar plants.

In [49], we propose an alternative version of the AMS (adaptive multilevel splitting) algortihm, adapted for
the first time to the field of particle tranport. Within this context, it can be used to build an unbiased estimator
of any quantity associated with particle tracks, such as flux, reaction rates or even non–Boltzmann tallies.
Furthermore, the effciency of the AMS algorithm is shown not to be very sensitive to variations of its input
parameters, which makes it capable of significant variance reduction without requiring extended user effort.

5.3. Weak overdamped limit theorem for Langevin processes
Participant: Mathias Rousset.

This is a collaboration with Pierre-André Zitt (université Paris Est Marne-la-Vallée).

The Langevin stochastic process is the main model used in molecular dynamics simulation, for instance for
the simulation of reactive trajectories of bio-chemical systems with rare event techniques.

In [21], we prove convergence in distribution of Langevin processes in the overdamped diffusion asymptotics.
The proof relies on the classical perturbed test function (or corrector) method, which is used both to show
tightness in path space, and to identify the extracted limit with a martingale problem. The result holds assuming
the continuity of the gradient of the potential energy, and a mild control of the initial kinetic energy.

5.4. Particle–Kalman filter for structural health monitoring
Participant: Frédéric Cérou.

This is a joint work with EPI I4S (Inria Rennes–Bretagne Atlantique).
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Standard filtering techniques for structural parameter estimation assume that the input force either is known
exactly or can be replicated using a known white Gaussian model. Unfortunately for structures subjected to
seismic excitation, the input time history is unknown and also no previously known representative model
is available. This invalidates the aforementioned idealization. To identify seismic induced damage in such
structures using filtering techniques, a novel algorithm is proposed to estimate the force as additional state in
parallel to the system parameters. Two concurrent filters are employed for parameters and force respectively.
For the parameters, interacting particle–Kalman filter is employed targeting systems with correlated noise.
Alongside a second filter is employed to estimate the seismic force acting on the structure. The proposal is
numerically validated on a sixteen degrees–of–freedom mass–spring–damper system. The estimation results
confirm the applicability of the proposed algorithm.

In another work, the same approach has been used for varying system parameters with correlated state and
observation noise. The idea is to nest a bank of linear KFs (Kalman filters) for state estimation within a PF
(particle filter) environment that estimates the parameters. This facilitates employing relatively less expensive
linear KF for linear state estimation problem while costly PF is employed only for parameter estimation.
Additionally, the proposed algorithm also takes care of those systems for which system and measurement
noises are not uncorrelated as it is commonly idealized in standard filtering algorithms. As an example,
for mechanical systems under ambient vibration it happens when acceleration response is considered as
measurement. Thus the process and measurement noise in these system descriptions are obviously correlated.
For this, an improved description for the Kalman gain is developed. Further, to enhance the consistency of
particle filtering based parameter estimation involving high dimensional parameter space, a new temporal
evolution strategy for the particles is defined. This strategy aims at restricting the solution from diverging
(up to the point of no return) because of an isolated event of infeasible estimation which is very much likely
especially when dealing with high dimensional parameter space.

5.5. Reduced modeling of unknown trajectories
Participant: Patrick Héas.

This is a collaboration with Cédric Herzet (EPI FLUMINANCE, Inria Rennes–Bretagne Atlantique)

In [12], we deal with model order reduction of parametrical dynamical systems. We consider the specific
setup where the distribution of the system’s trajectories is unknown but the following two sources of
information are available: (i) some “rough” prior knowledge on the system’s realisations, and (ii) a set of
“incomplete” observations of the system’s trajectories. We propose a Bayesian methodological framework to
build reduced–order models (ROMs) by exploiting these two sources of information.

We emphasise that complementing the prior knowledge with the collected data provably enhances the
knowledge of the distribution of the system’s trajectories. We then propose an implementation of the proposed
methodology based on Monte Carlo methods. In this context, we show that standard ROM learning techniques,
such as proper orthogonal decomposition (POD) or dynamic mode decomposition (DMD), can be revisited
and recast within the probabilistic framework considered in this work. We illustrate the performance of the
proposed approach by numerical results obtained for a standard geophysical model.

5.6. Model reduction from partial observations
Participant: Patrick Héas.

This is a collaboration with Angélique Drémeau (ENSTA Bretagne, Brest) and Cédric Herzet (EPI FLUMI-
NANCE, Inria Rennes–Bretagne Atlantique)

In [11], we deal with model-order reduction of parametric partial differential equations (PPDE). More
specifically, we consider the problem of finding a good approximation subspace of the solution manifold
of the PPDE when only partial information on the latter is available. We assume that two sources of
information are available: i) a “rough” prior knowledge, taking the form of a manifold containing the target
solution manifold, and ii) partial linear measurements of the solutions of the PPDE (the term partial refers
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to the fact that observation operator cannot be inverted). We provide and study several tools to derive
good approximation subspaces from these two sources of information. We first identify the best worst-case
performance achievable in this setup and propose simple procedures to approximate the corresponding optimal
approximation subspace. We then provide, in a simplified setup, a theoretical analysis relating the achievable
reduction performance to the choice of the observation operator and the prior knowledge available on the
solution manifold.

5.7. Low–rank dynamic mode decomposition: optimal solution in polynomial
time
Participant: Patrick Héas.

This is a collaboration with Cédric Herzet (EPI FLUMINANCE, Inria Rennes–Bretagne Atlantique)

The works [15] and [41] study the linear approximation of high–dimensional dynamical systems using low-
rank dynamic mode decomposition (DMD). Searching this approximation in a data–driven approach can be
formalised as attempting to solve a low-rank constrained optimisation problem. This problem is non–convex
and state–of–the–art algorithms are all sub–optimal. We show that there exists a closed-form solution, which
can be computed in polynomial time, and characterises the `2–norm of the optimal approximation error.
The theoretical results serve to design low–complexity algorithms building reduced models from the optimal
solution, based on singular value decomposition or low–rank DMD. The algorithms are evaluated by numerical
simulations using synthetic and physical data benchmarks.

5.8. Optimal kernel–based dynamic mode decomposition
Participant: Patrick Héas.

This is a collaboration with Cédric Herzet (EPI FLUMINANCE, Inria Rennes–Bretagne Atlantique)

The state–of–the–art algorithm known as kernel-based dynamic mode decomposition (K–DMD) provides
a sub–optimal solution to the problem of reduced modeling of a dynamical system based on a finite
approximation of the Koopman operator. It relies on crude approximations and on restrictive assumptions.
The purpose of the work in [20] is to propose a kernel–based algorithm solving exactly this low–rank
approximation problem in a general setting.

5.9. Non parametric state–space model for missing–data imputation
Participants: Thi Tuyet Trang Chau, François Le Gland, Valérie Monbet, Mathias Rousset.

This is a collaboration with Pierre Ailliot (université de Bretagne Occidentale, Brest), Ronan Fablet and Pierre
Tandéo (Télécom Bretagne, Brest), Anne Cuzol (université de Bretagne Sud, Vannes) and Bernard Chapron
(IFREMER, Brest).

Missing data are present in many environmental data–sets and this work aims at developing a general method
for imputing them. State–space models (SSM) have already extensively been used in this framework. The basic
idea consists in introducing the true environmental process, which we aim at reconstructing, as a latent process
and model the data available at neighboring sites in space and/or time conditionally to this latent process. A key
input of SSMs is a stochastic model which describes the temporal evolution of the environmental process of
interest. In many applications, the dynamic is complex and can hardly be described using a tractable parametric
model. Here we investigate a data-driven method where the dynamical model is learned using a non-parametric
approach and historical observations of the environmental process of interest. From a statistical point of view,
we will address various aspects related to SSMs in a non–parametric framework. First we will discuss the
estimation of the filtering and smoothing distributions, that is the distribution of the latent space given the
observations, using sequential Monte Carlo approaches in conjunction with local linear regression. Then, a
more difficult and original question consists in building a non–parametric estimate of the dynamics which
takes into account the measurement errors which are present in historical data. We will propose an EM–like
algorithm where the historical data are corrected recursively. The methodology will be illustrated and validated
on an univariate toy example.
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6. Bilateral Contracts and Grants with Industry
6.1. Bilateral grants with industry

See 4.1.

6.1.1. Hybrid indoor navigation — PhD project at CEA LETI
Participants: François Le Gland, Kersane Zoubert–Ousseni.

This is a collaboration with Christophe Villien (CEA LETI, Grenoble).

The issue here is user localization, and more generally localization–based services (LBS). This problem is
addressed by GPS for outdoor applications, but no such general solution has been provided so far for indoor
applications. The desired solution should rely on sensors that are already available on smartphones and other
tablet computers. Inertial solutions that use MEMS (microelectromechanical system, such as accelerometer,
magnetometer, gyroscope and barometer) are already studied at CEA. An increase in performance should
be possible, provided these data are combined with other available data: map of the building, WiFi signal,
modeling of perturbations of the magnetic field, etc. To be successful, advanced data fusion techniques should
be used, such as particle filtering and the like, to take into account displacement constraints due to walls in
the building, to manage several possible trajectories, and to deal with rather heterogeneous information (map,
radio signals, sensor signals).

The main objective of this thesis is to design and tune localization algorithms that will be tested on platforms
already available at CEA. Special attention is paid to particle smoothing and particle MCMC algorithms, to
exploit some very precise information available at special time instants, e.g. when the user is clearly localized
near a landmark point.

In some applications, real time estimation of the trajectory is not needed, and a post processing framework
may provide a better estimation of this trajectory. In [57], we present and compare three different algorithms
to improve a real time trajectory estimation. Actually, two different smoothing algorithms and the Viterbi
algorithm are implemented and evaluated. These methods improve the regularity of the estimated trajectory
by reducing switches between hypotheses.

Post processing indoor navigation is interesting, for example to develop crowdsourcing analysis. The post
processing framework allows to provide a better estimation than in a real time framework. The main
contribution of [17] is to present a piecewise parametrization using IMU (inertial measurement unit) and RSS
(received signal strength) measurements only, which lead to an optimization problem. A Levenberg–Marquardt
algorithm improved with simulated annealing and an adjustment of RSS measurements data leads to a good
estimation (55% of the error less than 5 meters) of the trajectory.

6.1.2. Bayesian tracking from raw data — CIFRE grant with DCNS Nantes
Participants: François Le Gland, Audrey Cuillery.

This is a collaboration with Dann Laneuville (DCNS Nantes).

After the introduction of MHT (multi–hypothesis tracking) techniques in the nineties, multitarget tracking has
recently seen promising developpments with the introduction of new algorithms such as the PHD (probability
hypothesis density) filter [50], [56] or the HISP (hypothesised filter for independent stochastic populations)
filter [40]. These techniques provide a unified multitarget model in a Bayesian framework [54], which makes
it possible to design recursive estimators of a multitarget probability density. Two main approaches can be
used here: sequential Monte Carlo (SMC, also kown as particle filtering), and Gaussian mixture (GM). A third
approach, based on discretizing the state–space in a possibly adaptive way, could also be considered despite its
larger computational load. These methods are well studied and provide quite good results for contact output
data, which correspond to regularly spaced measurements of targets with a large SNR (signal–to–noise ratio).
Here, the data is processed (compared with a detection threshold) in each resolution cell of the sensor, so
as to provide a list of detections at a given time instant. Among these methods, the HISP filter has the best
performance/computational cost ratio.
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However, these classical methods are unefficient for targets with a low SNR, e.g. targets in far range or small
targets with a small detection probability. For such targets, preprocessing (thresholding) the data is not a good
idea, and a much better idea is to feed a tracking algorithm with the raw sensor output data directly. These new
methods [24] require a precise modeling of the sensor physics and a direct access to the radar (or the sonar)
raw data, i.e. to the signal intensity level in each azimuth/range cell. Note that these new methods seem well
suited to new types of sensors such as lidar, since manufacturers do not integrate a detection module and do
provide raw images of the signal intensity level in each azimuth/range cell.

The objective of the thesis is to study and design a tracking algorithm using raw data, and to implement it on
radar (or sonar, or lidar) real data.

7. Partnerships and Cooperations
7.1. Regional initiatives
7.1.1. Stochastic Model-Data Coupled Representations for the Upper Ocean Dynamics

(SEACS) — inter labex project
Participants: François Le Gland, Valérie Monbet.

January 2015 to December 2017.

This is a joint research initiative supported by the three labex active in Brittany, CominLabs (Communication
and Information Sciences Laboratory), Lebesgue (Centre de Mathématiques Henri Lebesgue) and LabexMER
(Frontiers in Marine Research).

This project aims at exploring novel statistical and stochastic methods to address the emulation, reconstruction
and forecast of fine–scale upper ocean dynamics. The key objective is to investigate new tools and methods
for the calibration and implementation of novel sound and efficient oceanic dynamical models, combining
• recent advances in the theoretical understanding, modeling and simulation of upper ocean dynamics,
• and mass of data routinely available to observe the ocean evolution.

In this respect, the emphasis will be given to stochastic frameworks to encompass multi–scale/multi–source
approaches and benefit from the available observation and simulation massive data. The addressed scientific
questions constitute basic research issues at the frontiers of several disciplines. It crosses in particular
advanced data analysis approaches, physical oceanography and stochastic representations. To develop such an
interdisciplinary initiative, the project gathers a set of research groups associated with these different scientific
domains, which have already proven for several years their capacities to interact and collaborate on topics
related to oceanic data and models. This project will place Brittany with an innovative and leading expertise
at the frontiers of computer science, statistics and oceanography. This transdisciplinary research initiative is
expected to resort to significant advances challenging the current thinking in computational oceanography.

7.2. National initiatives
7.2.1. Computational Statistics and Molecular Simulation (COSMOS) — ANR challenge

Information and Communication Society
Participant: Frédéric Cérou.

Inria contract ALLOC 9452 — January 2015 to December 2017.

The COSMOS project aims at developing numerical techniques dedicated to the sampling of high–dimensional
probability measures describing a system of interest. There are two application fields of interest: computational
statistical physics (a field also known as molecular simulation), and computational statistics. These two fields
share some common history, but it seems that, in view of the quite recent specialization of the scientists
and the techniques used in these respective fields, the communication between molecular simulation and
computational statistics is not as intense as it should be.

http://www.cominlabs.ueb.eu/
http://www.cominlabs.ueb.eu/
http://www.lebesgue.fr/
http://www.labexmer.eu/en
http://www.labexmer.eu/en
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We believe that there are therefore many opportunities in considering both fields at the same time: in particular,
the adaption of a successful simulation technique from one field to the other requires first some abstraction
process where the features specific to the original field of application are discarded and only the heart of the
method is kept. Such a cross–fertilization is however only possible if the techniques developed in a specific
field are sufficiently mature: this is why some fundamental studies specific to one of the application fields are
still required. Our belief is that the embedding in a more general framework of specific developments in a
given field will accelerate and facilitate the diffusion to the other field.

7.2.2. Advanced Geophysical Reduced–Order Model Construction from Image Observations
(GERONIMO) — ANR programme Jeunes Chercheuses et Jeunes Chercheurs
Participant: Patrick Héas.

Inria contract ALLOC 8102 — March 2014 to February 2018.

The GERONIMO project aims at devising new efficient and effective techniques for the design of geophysical
reduced–order models (ROMs) from image data. The project both arises from the crucial need of accurate
low–order descriptions of highly–complex geophysical phenomena and the recent numerical revolution which
has supplied the geophysical scientists with an unprecedented volume of image data. Our research activities
are concerned by the exploitation of the huge amount of information contained in image data in order to reduce
the uncertainty on the unknown parameters of the models and improve the reduced–model accuracy. In other
words, the objective of our researches to process the large amount of incomplete and noisy image data daily
captured by satellites sensors to devise new advanced model reduction techniques. The construction of ROMs
is placed into a probabilistic Bayesian inference context, allowing for the handling of uncertainties associated
to image measurements and the characterization of parameters of the reduced dynamical system.

7.3. European initiatives
7.3.1. Molecular Simulation: Modeling, Algorithms and Mathematical Analysis (MSMaths) —

ERC Consolidator Grant
Participant: Mathias Rousset.

January 2014 to December 2019.

PI: Tony Lelièvre, Civil Engineer in Chief, Ecole des Ponts Paris-Tech.

Note that 1/3 of Mathias Rousset research activities are held within the MSMath ERC project.

With the development of large–scale computing facilities, simulations of materials at the molecular scale are
now performed on a daily basis. The aim of these simulations is to understand the macroscopic properties of
matter from a microscopic description, for example, its atomistic configuration.

In order to make these simulations efficient and precise, mathematics have a crucial role to play. Indeed,
specific algorithms have to be used in order to bridge the time and space scales between the atomistic level
and the macroscopic level. The objective of the MSMath ERC project is thus to develop and study efficient
algorithms to simulate high–dimensional systems over very long times. These developments are done in
collaboration with physicists, chemists and biologists who are using these numerical methods in an academic
or industrial context.

In particular, we are developping mathematical tools at the interface between the analysis of partial differential
equations and stochastic analysis in order to characterize and to quantify the metastability of stochastic pro-
cesses. Metastability is a fundamental concept to understand the timescale separation between the microscopic
model and the macroscopic world. Many algorithms which aim at bridging the timescales are built using this
timescale separation.

7.3.2. Design of Desalination Systems Based on Optimal Usage of Multiple Renewable Energy
Sources (DESIRES) — ERANETMED NEXUS–14–049
Participant: Valérie Monbet.

https://cermics-lab.enpc.fr/erc-msmath/
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January 2016 to December 2018.

This project is funded by the ERA–NET Initiative ERANETMED (Euro–Mediterranean Cooperation through
ERA–NET Joint Activities and Beyond). It is a collaboration with Greece, Tunisia and Marocco, coordinated
by Technical University of Crete (TUC). The French staff includes: Pierre Ailliot (Université de Bretagne
Occidentale, Brest), Denis Allard (INRA Avignon), Anne Cuzol (Université de Bretagne Sud, Vannes),
Christophe Maisondieu (IFREMER Brest) and Valérie Monbet.

The aim of DESIRES is to develop an Internet–based, multi–parametric electronic platform for optimum
design of desalination plants, supplied by renewable energy sources (RES). The platform will rely upon (i) a
solar, wind and wave energy potential database, (ii) existing statistical algorithms for processing energy-related
data, (iii) information regarding the inter-annual water needs, (iv) a database with the technical characteristics
of desalination plant units and the RES components, and (v) existing algorithms for cost effective design,
optimal sizing and location selection of desalination plants.

7.4. International initiatives
7.4.1. Rare event simulation in epidemiology — PhD project at université de Ziguinchor

Participants: Ramatoulaye Dabo, François Le Gland.

This is the subjet of the PhD project of Ramatoulaye Dabo (université Assane Seck de Ziguinchor and
université de Rennes 1).

The question here is to develop adaptive multilevel splitting algorithms for models that are commonly used in
epidemiology, such as SIR (susceptible, infectious, recovered) models [26], or more complex compartmental
models. A significant advantage of adaptive multilevel splitting is its robustness, since it does not require
too much knowledge about the behavior of the system under study. An interesting challenge would be to
understand how to couple the algorithm with numerically efficient simulation methods such as τ–leaping
[35]. Complexity bounds and estimation error bounds could also be studied.

7.5. International research visitors
7.5.1. Visits to international teams

Patrick Héas has been invited to present his work on 3D wind field reconstruction by infrared sounding,
at EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) in Darmstadt in
February 2017.

8. Dissemination

8.1. Promoting scientific activities
8.1.1. Scientific events organisation

Valérie Monbet has co–organized the workshop and summer school on Data Science and Environment, held
in Brest in July 2017. The conference gathered researchers that have an expertise in one of the two areas
(data science, environmental data) and some interest for the other. Its main goal was to explore the fruitful
interplay between the two areas, and ultimately to help create new connections and collaborations between the
scientific communities involved. Another objective was to propose some high level courses and practices at
the interaction of these two areas.

8.1.2. Participation in workshops, seminars, lectures, etc.
In addition to presentations with a publication in the proceedings, which are listed at the end of the document,
members of ASPI have also given the following presentations.

http://desires.tuc.gr
http://conferences.telecom-bretagne.eu/dse2017/
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Frédéric Cérou has given an invited talk on the convergence of adaptive multilevel splitting at the workshop
Quasistationary Distributions: Analysis and Simulation held in Paderborn in September 2017.

Patrick Héas has presented his joint work with Mamadou Lamarana Diallo and Cédric Herzet (EPI FLUMI-
NANCE, Inria Rennes–Bretagne Atlantique) on model reduction with “multi-space” prior information, at the
European Conference on Numerical Mathematics and Advanced Applications (ENUMATH), held in Voss,
Norway, in September 2017.

Thi Tuyet Trang Chau has presented her work on non parametric state–space model for missing–data
imputation, at the workshop on Data Science and Environment, held in Brest in July 2017.

8.1.3. Research administration
François Le Gland is a member of the conseil d’UFR of the department of mathematics of université de
Rennes 1. He is also a member of the conseil scientifique for the EDF/Inria scientific partnership.

Valérie Monbet is a member of both the comité de direction and the conseil of IRMAR (institut de recherche
mathématiques de Rennes, UMR 6625). She is also the deputy head of the department of mathematics of
université de Rennes 1, where she is a member of both the conseil scientifique and the conseil d’UFR.

8.2. Teaching, supervision, thesis committees
8.2.1. Teaching

Patrick Héas gives a course on Monte Carlo simulation methods in image analysis, at université de Rennes 1,
within the SISEA (signal, image, systèmes embarqués, automatique) track of the master in electronical
engineering and telecommunications.

François Le Gland gives
• a 2nd year course on introduction to stochastic differential equations, at INSA (institut national

des sciences appliquées) Rennes, within the GM/AROM (risk analysis, optimization and modeling)
major in mathematical engineering,

• a 3rd year course on Bayesian filtering and particle approximation, at ENSTA (école nationale
supérieure de techniques avancées), Palaiseau, within the statistics and control module,

• a 3rd year course on linear and nonlinear filtering, at ENSAI (école nationale de la statistique et de
l’analyse de l’information), Ker Lann, within the statistical engineering track,

• a course on Kalman filtering and hidden Markov models, at université de Rennes 1, within the SISEA
(signal, image, systèmes embarqués, automatique, école doctorale MATISSE) track of the master in
electronical engineering and telecommunications,

• and a 3rd year course on hidden Markov models, at Télécom Bretagne, Brest.

Valérie Monbet gives
• a course on machine learning for biology at université de Rennes 1, within

– the G2B (genetics, genomics, biochemistry) track of the master in molecular and cellular
biology,

– the MODE (modélisation en écologie) track of the master in biodiversity, ecology, evolu-
tion

– and the master in scientific computing and modelling,
• a course on machine learning for environmental data, at the summer school on Data Science and

Environment, held in Brest in July 2017,
• a course on graphical models at université de Rennes 1, within the master on applied mathematics

and statistics,
• a course on MATLAB at université de Rennes 1, within the master in economics and financial

engineering.

https://math.uni-paderborn.de/en/ag/research-group-probability-theory/research/conferences/
http://www.uib.no/en/enumath2017
http://conferences.telecom-bretagne.eu/dse2017/
http://people.rennes.inria.fr/Patrick.Heas/cours.html
http://www.irisa.fr/aspi/legland/insa-rennes/
http://www.irisa.fr/aspi/legland/ensta/
http://www.irisa.fr/aspi/legland/ensai/
http://www.irisa.fr/aspi/legland/rennes-1/
http://www.irisa.fr/aspi/legland/telecom-bretagne/
http://conferences.telecom-bretagne.eu/dse2017/
http://conferences.telecom-bretagne.eu/dse2017/
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8.2.2. Supervision
François Le Gland and Valérie Monbet are jointly supervising one PhD student

• Thi Tuyet Trang Chau, provisional title: Non parametric filtering for Metocean multi–source data
fusion, université de Rennes 1, started in October 2015, expected defense in October 2018, funding:
Labex Lebesgue grant and Brittany council grant, co–direction: Pierre Ailliot (université de Bretagne
Occidentale, Brest).

François Le Gland is supervising three other PhD students

• Kersane Zoubert–Ousseni, provisional title: Particle filters for hybrid indoor navigation with smart-
phones, université de Rennes 1, started in December 2014, expected defense in 2017, funding: CEA
grant, co–direction: Christophe Villien (CEA LETI, Grenoble),

• Audrey Cuillery, provisional title: Bayesian tracking from raw data, université du Sud Toulon Var,
started in April 2016, expected defense in 2019, funding: CIFRE grant with DCNS, co–direction:
Claude Jauffret (université du Sud Toulon Var) and Dann Laneuville (DCNS, Nantes).

• Ramatoulaye Dabo, provisional title: Rare event simulation in epidemiology, université Assane Seck
de Ziguinchor (Senegal) and université de Rennes 1, started in September 2015, expected defense
in 2018, co–direction: Alassane Diedhiou (université Assane Seck de Ziguinchor).

Valérie Monbet is supervising two other PhD students

• Audrey Poterie, provisional title: Régression d’une variable ordinale par des données longitudinales
de grande dimension : application à la modélisation des effets secondaires suite à un traitement par
radiothérapie, université de Rennes 1, started in October 2015, expected defense in 2018, funding:
INSA grant, co–direction: Jean–François Dupuy (INSA Rennes) and Laurent Rouvière (université
de Haute Bretagne, Rennes).

• Marie Morvan, provisional title: Modèles de régression pour données fonctionnelles. Application à
la modélisation de données de spectrométrie dans le proche infra rouge, université de Rennes 1,
started in October 2016, expected defense in 2019, funding: MESR grant, co–direction: Joyce
Giacofci (université de Haute Bretagne, Rennes) and Olivier Sire (université de Bretagne Sud,
Vannes).

Mathias Rousset is supervising one PhD student

• Yushun Xu, provisional title: Variance reduction of overdamped Langevin dynamics simulation,
université Paris-Est, started in October 2015, expected defense in 2018, co–direction: Pierre-André
Zitt (université Paris–Est).

Patrick Héas has been supervising two post–doctoral fellows

• Hassan Maatouk, title: Compressing the model by exploiting observations, EPI ASPI, Inria
Rennes–Bretagne Atlantique, started in September 2016, ended in September 2017, funding:
ANR GERONIMO, co–supervision: Cédric Herzet (EPI FLUMINANCE, Inria Rennes–Bretagne
Atlantique).

• Mamadou Lamarana Diallo, title: Model reduction with “multi-space” prior information,
EPI FLUMINANCE, Inria Rennes–Bretagne Atlantique, started in October 2016, ended in
October 2017, funding: ANR GERONIMO, co–supervision: Cédric Herzet (EPI FLUMINANCE,
Inria Rennes–Bretagne Atlantique).

8.2.3. Thesis committees
François Le Gland has been a member of the committee for the HDR of Christian Musso (université du Sud,
Toulon).

Mathias Rousset has been a member of the committee for the PhD thesis of Gérôme Faure (CERMICS Ecole
des Ponts Paris-Tech and CEA DAM, advisor: Gabriel Stoltz and Jean–Bernard Maillet).
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