

[image: cover]

 CAMUS

 Compilation pour les Architectures MUlti-coeurSInria teams are typically groups of researchers working on the definition of a common project, and objectives, with the goal to arrive at the creation of a project-team. Such project-teams may include other partners (universities or research institutions).

 2017 Team Activity Report
	

 Research centre:
 Nancy - Grand Est

 Field: Algorithmics, Programming, Software and Architecture
Theme: Architecture, Languages and Compilation

 Computer Science and Digital Science:

 	A1.1.1. - Multicore, Manycore

 	A1.1.4. - High performance computing

 	A2.1.1. - Semantics of programming languages

 	A2.1.6. - Concurrent programming

 	A2.2.1. - Static analysis

 	A2.2.3. - Run-time systems

 	A2.2.4. - Parallel architectures

 	A2.2.5. - GPGPU, FPGA, etc.

 	A2.2.6. - Adaptive compilation

 Other Research Topics and Application Domains:

 	B4.5.1. - Green computing

 	B6.1.1. - Software engineering

 	B6.6. - Embedded systems

 Team Camus

 Personnel

 Overall Objectives

 Research Program	Research Directions
	Static Parallelization and Optimization
	Profiling and Execution Behavior Modeling
	Dynamic Parallelization and Optimization, Virtual Machine
	Proof of Program Transformations for Multicores

 Application Domains	Application Domains

 Highlights of the Year

 New Software and Platforms	APOLLO
	Clan
	Clay
	CLooG
	IBB
	OpenScop
	PolyLib
	ORWL
	P99
	stdatomic
	musl
	Modular C
	arbogast
	CFML
	TLC

 New Results	Automatic (Un-)Collapsing of Non-Rectangular Loops
	Code-Bones for Fast and Flexible Runtime Code Generation
	Formal Proofs about
Explicitly Parallel Programs with Clocks
	High-Performance Particle-in-Cell Simulations
	Granularity Control for Parallel Programs
	Program verification and formal languages
	Combining Locking and Data Management Interfaces
	Automatic Generation of Adaptive Simulation Codes
	Parallel Polyhedral Regions
	Optimization of Sparse Triangular and Banded Matrix Codes

 Bilateral Contracts and Grants with Industry	NANO 2017/PSAIC
	Caldera

 Partnerships and Cooperations	National Initiatives
	European Initiatives
	International Initiatives

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Team: 2009 July 01
Section: Personnel
Research Scientists
Arthur Charguéraud [Inria, Researcher]
Jens Gustedt [Inria, Senior Researcher, HDR]
Faculty Members
Philippe Clauss [Team leader, Univ de Strasbourg, Professor, HDR]
Cédric Bastoul [Univ de Strasbourg, Professor, HDR]
Alain Ketterlin [Univ de Strasbourg, Associate Professor]
Vincent Loechner [Univ de Strasbourg, Associate Professor]
Nicolas Magaud [Univ de Strasbourg, Associate Professor]
Julien Narboux [Univ de Strasbourg, Associate Professor]
Éric Violard [Univ de Strasbourg, Associate Professor, HDR]
Post-Doctoral Fellows
Manuel Selva [Inria]
Julien Pagès [Univ. Strasbourg, from Sept 2016, until Aug 2017]
PhD Students
Yann Barsamian [Univ de Strasbourg]
Paul Godard [Caldera]
Salwa Kobeissi [Inria, from Sep 2017]
Harenome Ranaivoarivony-Razanajato [Univ de Strasbourg]
Mariem Saied [Univ de Strasbourg, until Aug 2017]
Daniel Salas [INSERM]
Maxime Schmitt [Univ de Strasbourg]
Technical staff
Maxime Mogé [Inria]
Intern
Stan Wilhelm [Inria, until Jun 2017]
Administrative Assistants
Véronique Constant [Inria]
Ouiza Herbi [Inria]

 Overall Objectives

 	
 Overall Objectives

 Section:
 Overall Objectives

 Overall Objectives

 The CAMUS team is focusing on developing, adapting and extending automatic parallelizing and optimizing techniques, as well as proof and certification methods, for the efficient use of current and future multicore processors.

 The team's research activities are organized into five main issues that are closely related to reach the following objectives: performance, correction and productivity. These issues are: static parallelization and optimization of programs (where all statically detected parallelisms are expressed as well as all “hypothetical” parallelisms which would be eventually taken advantage of at runtime), profiling and execution behavior modeling (where expressive representation models of the program execution behavior will be used as engines for dynamic parallelizing processes), dynamic parallelization and optimization of programs (such transformation processes running inside a virtual machine), and finally program transformations proof (where the correction of many static and dynamic program transformations has to be ensured).

 Research Program

 	Research Program	Research Directions
	Static Parallelization and Optimization
	Profiling and Execution Behavior Modeling
	Dynamic Parallelization and Optimization, Virtual Machine
	Proof of Program Transformations for Multicores

 Section:
 Research Program

 Research Directions

 The various objectives we are expecting to reach are directly related to the search of adequacy between the sofware and the new multicore processors evolution. They also correspond to the main research directions suggested by Hall, Padua and Pingali in [32]. Performance, correction and productivity must be the users' perceived effects. They will be the consequences of research works dealing with the following issues:

 	
 Issue 1: Static Parallelization and Optimization

 	
 Issue 2: Profiling and Execution Behavior Modeling

 	
 Issue 3: Dynamic Program Parallelization and Optimization, Virtual Machine

 	
 Issue 4: Proof of Program Transformations for Multicores

 Efficient and correct applications development for multicore processors needs stepping in every application development phase, from the initial conception to the final run.

 Upstream, all potential parallelism of the application has to be exhibited. Here static analysis and transformation approaches (issue 1) must be processed, resulting in a multi-parallel intermediate code advising the running virtual machine about all the parallelism that can be taken advantage of. However the compiler does not have much knowledge about the execution environment. It obviously knows the instruction set, it can be aware of the number of available cores, but it does not know the effective available resources at any time during the execution (memory, number of free cores, etc.).

 That is the reason why a “virtual machine” mechanism will have to adapt the application to the resources (issue 3). Moreover the compiler will be able to take advantage only of a part of the parallelism induced by the application. Indeed some program information (variables values, accessed memory adresses, etc.) being available only at runtime, another part of the available parallelism will have to be generated on-the-fly during the execution, here also, thanks to a dynamic mechanism.

 This on-the-fly parallelism extraction will be performed using speculative behavior models (issue 2), such models allowing to generate speculative parallel code (issue 3). Between our behavior modeling objectives, we can add the behavior monitoring, or profiling, of a program version. Indeed current and future architectures complexity avoids assuming an optimal behavior regarding a given program version. A monitoring process will allow to select on-the-fly the best parallelization.

 These different parallelizing steps are schematized on figure 1.

 Figure
	1. Automatic parallelizing steps for multicore architectures

 	

 	
 [image: IMG/figure_anglais.png]

 Our project lies on the conception of a production chain for efficient execution of an application on a multicore architecture. Each link of this chain has to be formally verified in order to ensure correction as well as efficiency. More precisely, it has to be ensured that the compiler produces a correct intermediate code, and that the virtual machine actually performs the parallel execution semantically equivalent to the source code: every transformation applied to the application, either statically by the compiler or dynamically by the virtual machine, must preserve the initial semantics. They must be proved formally (issue 4).

 In the following, those different issues are detailed while forming our global and long term vision of what has to be done.

 Section:
 Research Program

 Static Parallelization and Optimization

 Participants :
	Vincent Loechner, Philippe Clauss, Éric Violard, Cédric Bastoul, Arthur Charguéraud.

 Static optimizations, from source code at compile time, benefit from two decades of research in automatic parallelization: many works address the parallelization of loop nests accessing multi-dimensional arrays, and these works are now mature enough to generate efficient parallel code [30].
Low-level optimizations, in the assembly code generated by the compiler, have also been extensively dealt for single-core and require few adaptations to support multicore architectures.
Concerning multicore specific parallelization, we propose to explore two research directions to take full advantage of these architectures: adapting parallelization to multicore architecture and expressing many potential parallelisms.

 Section:
 Research Program

 Profiling and Execution Behavior Modeling

 Participants :
	Alain Ketterlin, Philippe Clauss, Manuel Selva.

 The increasing complexity of programs and hardware architectures
makes it ever harder to characterize beforehand a given program's
run time behavior. The sophistication of current compilers and the
variety of transformations they are able to apply cannot hide their
intrinsic limitations. As new abstractions like transactional
memories appear, the dynamic behavior of a program strongly
conditions its observed performance. All these reasons explain why
empirical studies of sequential and parallel program
executions have been considered increasingly relevant. Such studies
aim at characterizing various facets of one or several program runs,
e.g., memory behavior, execution phases, etc. In some cases, such
studies characterize more the compiler than the program itself.
These works are of tremendous importance to highlight all aspects
that escape static analysis, even though their results may have a
narrow scope, due to the possible incompleteness of their input data
sets.

 Section:
 Research Program

 Dynamic Parallelization and Optimization, Virtual Machine

 Participants :
	Manuel Selva, Juan Manuel Martinez Caamaño, Luis Esteban Campostrini, Artiom Baloian, Mariem Saied, Daniel Salas, Philippe Clauss, Jens Gustedt, Vincent Loechner, Alain Ketterlin.

 This link in the programming chain has become essential with the advent of the new multicore architectures. Still being considered as secondary with mono-core architectures, dynamic analysis and optimization are now one of the keys for controling those new mechanisms complexity. From now on, performed instructions are not only dedicated to the application functionalities, but also to its control and its transformation, and so in its own interest. Behaving like a computer virus, such a process should rather be qualified as a “vitamin”. It perfectly knows the current characteristics of the execution environment and owns some qualitative information thanks to a behavior modeling process (issue 2). It appends a significant part of optimizing ability compared to a static compiler, while observing live resources availability evolution.

 Section:
 Research Program

 Proof of Program Transformations for Multicores

 Participants :
	Éric Violard, Alain Ketterlin, Julien Narboux, Nicolas Magaud, Arthur Charguéraud.

 Our main objective consists in certifying the critical modules of our
optimization tools (the compiler and the virtual machine). First we will prove
the main loop transformation algorithms which constitute the core of our system.

 The optimization process can be separated into two stages: the transformations
consisting in optimizing the sequential code and in exhibiting parallelism, and
those consisting in optimizing the parallel code itself.
The first category of optimizations can be proved within a sequential semantics.
For the other optimizations, we need to work within a concurrent semantics.
We expect the first stage of optimizations to produce data-race free code. For the
second stage of optimizations, we will first assume that the input code is
data-race free.
We will prove those transformations using Appel's concurrent separation
logic [33]. Proving transformations involving program which are not
data-race free will constitute a longer term research goal.

 Application Domains

 	
 Application Domains

 Section:
 Application Domains

 Application Domains

 Performance being our main objective, our developments' target applications are characterized by intensive computation phases. Such applications are numerous in the domains of scientific computations, optimization, data mining and multimedia.

 Applications involving intensive computations are necessarily high energy consumers. However this consumption can be significantly reduced thanks to optimization and parallelization. Although this issue is not our primary objective, we can expect some positive effects for the following reasons:

 	
 Program parallelization tries to distribute the workload equally among the cores. Thus an equivalent performance, or even a better performance, to a sequential higher frequency execution on one single core, can be obtained.

 	
 Memory and memory accesses are high energy consumers. Lowering the memory consumption, lowering the number of memory accesses and maximizing the number of accesses in the low levels of the memory hierarchy (registers, cache memories) have a positive consequence on execution speed, but also on energy consumption.

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 Awards

 A team composed of four CAMUS members (Cédric Bastoul, Vincent Loechner, Harenome Ranaivoarivony-Razanajato and Maxime Schmitt) participated to the Google Hash Code contest. They were ranked 9 during the qualification round, over more than 26000 participants from Europe, Middle-East and Africa, and qualified for the final. They were 34th at the final hosted in the Google Paris office.

 New Software and Platforms

 	New Software and Platforms	APOLLO
	Clan
	Clay
	CLooG
	IBB
	OpenScop
	PolyLib
	ORWL
	P99
	stdatomic
	musl
	Modular C
	arbogast
	CFML
	TLC

 Section:
 New Software and Platforms

 APOLLO

 Automatic speculative POLyhedral Loop Optimizer

 Keyword: Automatic parallelization

 Functional Description: APOLLO is dedicated to automatic, dynamic and speculative parallelization of loop nests that cannot be handled efficiently at compile-time. It is composed of a static part consisting of specific passes in the LLVM compiler suite, plus a modified Clang frontend, and a dynamic part consisting of a runtime system. It can apply on-the-fly any kind of polyhedral transformations, including tiling, and can handle nonlinear loops, as while-loops referencing memory through pointers and indirections.

 	
 Participants: Aravind Sukumaran-Rajam, Juan Manuel Martinez Caamaño, Manuel Selva and Philippe Clauss

 	
 Contact: Philippe Clauss

 	
 URL: http://apollo.gforge.inria.fr

 Section:
 New Software and Platforms

 Clan

 A Polyhedral Representation Extraction Tool for C-Based High Level Languages

 Keyword: Polyhedral compilation

 Functional Description: Clan is a free software and library which translates some particular parts of high level programs written in C, C++ or Java into a polyhedral representation called OpenScop. This representation may be manipulated by other tools to, e.g., achieve complex analyses or program restructurations (for optimization, parallelization or any other kind of manipulation). It has been created to avoid tedious and error-prone input file writing for polyhedral tools (such as CLooG, LeTSeE, Candl etc.). Using Clan, the user has to deal with source codes based on C grammar only (as C, C++ or Java). Clan is notably the frontend of the two major high-level compilers Pluto and PoCC.

 	
 Participants: Cédric Bastoul and Imèn Fassi

 	
 Contact: Cédric Bastoul

 	
 URL: http://icps.u-strasbg.fr/people/bastoul/public_html/development/clan/

 Section:
 New Software and Platforms

 Clay

 Chunky Loop Alteration wizardrY

 Functional Description: Clay is a free software and library devoted to semi-automatic optimization using the polyhedral model. It can input a high-level program or its polyhedral representation and transform it according to a transformation script. Classic loop transformations primitives are provided. Clay is able to check for the legality of the complete sequence of transformation and to suggest corrections to the user if the original semantics is not preserved.

 	
 Participant: Cédric Bastoul

 	
 Contact: Cédric Bastoul

 	
 URL: http://icps.u-strasbg.fr/people/bastoul/public_html/development/clay/

 Section:
 New Software and Platforms

 CLooG

 Code Generator in the Polyhedral Model

 Functional Description: CLooG is a free software and library to generate code (or an abstract syntax tree of a code) for scanning Z-polyhedra. That is, it finds a code (e.g. in C, FORTRAN...) that reaches each integral point of one or more parameterized polyhedra. CLooG has been originally written to solve the code generation problem for optimizing compilers based on the polyhedral model. Nevertheless it is used now in various area e.g. to build control automata for high-level synthesis or to find the best polynomial approximation of a function. CLooG may help in any situation where scanning polyhedra matters. While the user has full control on generated code quality, CLooG is designed to avoid control overhead and to produce a very effective code. CLooG is widely used (including by GCC and LLVM compilers), disseminated (it is installed by default by the main Linux distributions) and considered as the state of the art in polyhedral code generation.

 Release Functional Description: It mostly solves building and offers a better OpenScop support.

 	
 Participant: Cédric Bastoul

 	
 Contact: Cédric Bastoul

 	
 URL: http://www.cloog.org

 Section:
 New Software and Platforms

 IBB

 Iterate-But-Better

 Functional Description: IBB is a source-to-source xfor compiler which automatically translates any C source code containing xfor-loops into an equivalent source code where xfor-loops have been transformed into equivalent for-loops.

 Release Functional Description: The IBB compiler has been improved in some aspects in 2014: loop bounds can now be min and max functions, IBB uses the OpenScop format to encode statements and iteration domains.

 	
 Participants: Cédric Bastoul, Imèn Fassi and Philippe Clauss

 	
 Contact: Philippe Clauss

 	
 URL: http://xfor.gforge.inria.fr

 Section:
 New Software and Platforms

 OpenScop

 A Specification and a Library for Data Exchange in Polyhedral Compilation Tools

 Functional Description: OpenScop is an open specification that defines a file format and a set of data structures to represent a static control part (SCoP for short), i.e., a program part that can be represented in the polyhedral model. The goal of OpenScop is to provide a common interface to the different polyhedral compilation tools in order to simplify their interaction. To help the tool developers to adopt this specification, OpenScop comes with an example library (under 3-clause BSD license) that provides an implementation of the most important functionalities necessary to work with OpenScop.

 	
 Participant: Cédric Bastoul

 	
 Contact: Cédric Bastoul

 	
 URL: http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/

 Section:
 New Software and Platforms

 PolyLib

 The Polyhedral Library

 Keywords: Rational polyhedra - Library - Polyhedral compilation

 Scientific Description: A C library used in polyhedral compilation, as a basic tool used to analyze, transform, optimize polyhedral loop nests.
Has been shipped in the polyhedral tools Cloog and Pluto.

 Functional Description: PolyLib is a C library of polyhedral functions, that can manipulate unions of rational polyhedra of any dimension. It was the first to provide an implementation of the computation of parametric vertices of a parametric polyhedron, and the computation of an Ehrhart polynomial (expressing the number of integer points contained in a parametric polytope) based on an interpolation method. Vincent Loechner is the maintainer of this software.

 	
 Participant: Vincent Loechner

 	
 Contact: Vincent Loechner

 	
 URL: http://icps.u-strasbg.fr/PolyLib/

 Section:
 New Software and Platforms

 ORWL

 Ordered Read-Write Lock

 Keywords: Task scheduling - Deadlock detection

 Functional Description: ORWL is a reference implementation of the Ordered Read-Write Lock tools. The macro definitions and tools for programming in C99 that have been implemented for ORWL have been separated out into a toolbox called P99.

 	
 Participants: Jens Gustedt, Mariem Saied and Stéphane Vialle

 	
 Contact: Jens Gustedt

 	
 Publications: Iterative Computations with Ordered Read-Write Locks -
Automatic, Abstracted and Portable Topology-Aware Thread Placement -
Resource-Centered Distributed Processing of Large Histopathology Images -
Automatic Code Generation for Iterative Multi-dimensional Stencil Computations

 Section:
 New Software and Platforms

 P99

 Keyword: Macro programming

 Functional Description: P99 is a suite of macro and function definitions that ease the programming in modern C, minimum C99. By using tools from C99 and C11 we implement default arguments for functions, scope bound resource management, transparent allocation and initialization.

 	
 Participants: Jens Gustedt, Mariem Saied and Stéphane Vialle

 	
 Contact: Jens Gustedt

 	
 URL: https://gforge.inria.fr/projects/p99/

 Section:
 New Software and Platforms

 stdatomic

 standard atomic library

 Keyword: Atomic access

 Scientific Description: We present a new algorithm and implementation of a lock primitive that is based on Linux' native lock interface, the futex system call. It allows us to assemble compiler support for atomic data structures that can not be handled through specific hardware instructions. Such a tool is needed for C11's atomics interface because here an _Atomic qualification can be attached to almost any data type. Our lock data structure for that purpose meets very specific criteria concerning its field of operation and its performance. By that we are able to outperform gcc's libatomic library by around 60%.

 Functional Description: This implementation builds entirely on the two gcc ABIs for atomics. It doesn't even attempt to go down to assembly level by itself.
We provide all function interfaces that the two gcc ABIs and the C standard need.
For compilers that don't offer the direct language support for atomics this provides a syntactically reduced but fully functional approach to atomic operations.

 	
 Author: Jens Gustedt

 	
 Contact: Jens Gustedt

 	
 Publications: Futex based locks for C11's generic atomics -
Futex based locks for C11's generic atomics (extended abstract)

 	
 URL: http://stdatomic.gforge.inria.fr/

 Section:
 New Software and Platforms

 musl

 Keywords: Standards - Library

 Scientific Description: musl provides consistent quality and implementation behavior from tiny embedded systems to full-fledged servers. Minimal machine-specific code means less chance of breakage on minority architectures and better success with “write once run everywhere” C development.

 musl's efficiency is unparalleled in Linux libc implementations. Designed from the ground up for static linking, musl carefully avoids pulling in large amounts of code or data that the application will not use. Dynamic linking is also efficient, by integrating the entire standard library implementation, including threads, math, and even the dynamic linker itself into a single shared object, most of the startup time and memory overhead of dynamic linking have been eliminated.

 Functional Description: We participate in the development of musl, a re-implementation of the C library as it is described by the C and POSIX standards. It is lightweight, fast, simple, free, and strives to be correct in the sense of standards-conformance and safety. Musl is production quality code that is mainly used in the area of embedded device. It gains more market share also in other area, e.g. there are now Linux distributions that are based on musl instead of Gnu LibC.

 	
 Participant: Jens Gustedt

 	
 Contact: Jens Gustedt

 	
 URL: http://www.musl-libc.org/

 Section:
 New Software and Platforms

 Modular C

 Keywords: Programming language - Modularity

 Functional Description: The change to the C language is minimal since we only add one feature,
composed identifiers, to the core language. Our modules can import
other modules as long as the import relation remains acyclic and a
module can refer to its own identifiers and those of the imported
modules through freely chosen abbreviations. Other than traditional C
include, our import directive ensures complete encapsulation between
modules. The abbreviation scheme allows to seamlessly replace an
imported module by another one with equivalent interface. In addition
to the export of symbols, we provide parameterized code injection
through the import of “snippets”. This implements a mechanism that
allows for code reuse, similar to X macros or templates. Additional
features of our proposal are a simple dynamic module initialization
scheme, a structured approach to the C library and a migration path
for existing software projects.

 	
 Author: Jens Gustedt

 	
 Contact: Jens Gustedt

 	
 Publications: Modular C -
Arbogast: Higher order AD for special functions with Modular C -
Futex based locks for C11's generic atomics

 	
 URL: http://cmod.gforge.inria.fr/

 Section:
 New Software and Platforms

 arbogast

 Keyword: Automatic differentiation

 Scientific Description: This high-level toolbox for the calculus with Taylor polynomials is named after L.F.A. Arbogast (1759-1803), a French mathematician from Strasbourg (Alsace), for his pioneering work in derivation calculus.
Its modular structure ensures unmatched efficiency for computing higher order Taylor polynomials. In particular it permits compilers to apply sophisticated vector parallelization to the derivation of nearly unmodified application code.

 Functional Description: Arbogast is based on a well-defined extension of the C programming language, Modular C, and
places itself between tools that proceed by operator overloading on one side and by rewriting, on
the other. The approach is best described as contextualization of C code because it permits the
programmer to place his code in different contexts – usual math or AD – to reinterpret it as a
usual C function or as a differential operator. Because of the type generic features of modern C,
all specializations can be delegated to the compiler.

 	
 Author: Jens Gustedt

 	
 Contact: Jens Gustedt

 	
 Publications: Arbogast: Higher order AD for special functions with Modular C -
Arbogast – Origine d'un outil de dérivation automatique

 	
 URL: https://gforge.inria.fr/projects/arbo

 Section:
 New Software and Platforms

 CFML

 Interactive program verification using characteristic formulae

 Keywords: Coq - Software Verification - Deductive program verification - Separation Logic

 Functional Description: The CFML tool supports the verification of OCaml programs through interactive Coq proofs. CFML proofs establish the full functional correctness of the code with respect to a specification. They may also be used to formally establish bounds on the asymptotic complexity of the code. The tool is made of two parts: on the one hand, a characteristic formula generator implemented as an OCaml program that parses OCaml code and produces Coq formulae, and, on the other hand, a Coq library that provides notation and tactics for manipulating characteristic formulae interactively in Coq.

 	
 Participants: Arthur Charguéraud, Armaël Guéneau and François Pottier

 	
 Contact: Arthur Charguéraud

 	
 URL: http://www.chargueraud.org/softs/cfml/

 Section:
 New Software and Platforms

 TLC

 TLC Coq library

 Keywords: Coq - Library

 Functional Description: TLC is a general purpose Coq library that provides an alternative to Coq's standard library. TLC takes as axiom extensionality, classical logic and indefinite description (Hilbert's epsilon). These axioms allow for significantly simpler formal definitions in many cases. TLC takes advantage of the type class mechanism. In particular, this allows for common operators and lemma names for all container data structures and all order relations. TLC includes the optimal fixed point combinator, which can be used for building arbitrarily-complex recursive and co-recursive definitions. Last, TLC provides a collection of tactics that enhance the default tactics provided by Coq. These tactics help constructing more concise and more robust proof scripts.

 	
 Contact: Arthur Charguéraud

 	
 URL: http://www.chargueraud.org/softs/tlc/

 New Results

 	New Results	Automatic (Un-)Collapsing of Non-Rectangular Loops
	Code-Bones for Fast and Flexible Runtime Code Generation
	Formal Proofs about
Explicitly Parallel Programs with Clocks
	High-Performance Particle-in-Cell Simulations
	Granularity Control for Parallel Programs
	Program verification and formal languages
	Combining Locking and Data Management Interfaces
	Automatic Generation of Adaptive Simulation Codes
	Parallel Polyhedral Regions
	Optimization of Sparse Triangular and Banded Matrix Codes

 Section:
 New Results

 Automatic (Un-)Collapsing of Non-Rectangular Loops

 Participants :
	Philippe Clauss, Ervin Altıntaş, Matthieu Kuhn.

 Loop collapsing is a well-known loop transformation which combines some loops that are perfectly nested into one single loop. It allows to take advantage of the whole amount of parallelism exhibited by the collapsed loops, and provides a perfect load balancing of iterations among the parallel threads.

 However, in the current implementations of this loop optimization, as the ones of the OpenMP language, automatic loop collapsing is limited to loops with constant loop bounds that define rectangular iteration spaces, although load imbalance is a particularly crucial issue with non-rectangular loops. The OpenMP language addresses load balance mostly through dynamic runtime scheduling of the parallel threads. Nevertheless, this runtime schedule introduces some unavoidable execution-time overhead, while preventing to exploit the entire parallelism of all the parallel loops.

 We propose a technique to automatically collapse any perfectly nested loops defining non-rectangular iteration spaces, whose bounds are linear functions of the loop iterators. Such spaces may be triangular, tetrahedral, trapezoidal, rhomboidal or parallelepiped. Our solution is based on original mathematical results addressing the inversion of a multi-variate polynomial that defines a ranking of the integer points contained in a convex polyhedron.

 We show on a set of non-rectangular loop nests that our technique allows to generate parallel OpenMP codes that outperform the original parallel loop nests, parallelized either by using options “static” or “dynamic” of the OpenMP-schedule clause. A conference paper presenting these results, co-authored by Philippe Clauss, Ervin Altıntaş (Master student) and Matthieu Kuhn (Inria Bordeaux Sud-Ouest, team HIEPACS), has been published at the International Parallel and Distributed Processing Symposium (IPDPS) [15].

 We are currently developing a technique to also provide good load balancing when parallelizing non-rectangular loops carrying dependences. This new technique has been called loop uncollapsing. The idea is to split the outermost parallel loop into two nested loops, such that the new outermost loop, when parallelized, results in well-balanced parallel threads.

 Section:
 New Results

 Code-Bones for Fast and Flexible Runtime Code Generation

 Participants :
	Juan Manuel Martinez Caamaño, Manuel Selva, Philippe Clauss.

 We have developed a new runtime code generation technique for speculative loop optimization
and parallelization. The main benefit of this technique, compared to previous approaches, is to enable advanced optimizing loop transformations at runtime with an acceptable time overhead. The loop transformations that may be applied are those handled by the polyhedral model.
The proposed code generation strategy is based on the generation of code-bones at
compile-time, which are parametrized code snippets either dedicated to
speculation management or to computations of the original target program.
These code bones are then instantiated and assembled at runtime to
constitute the speculatively-optimized code, as soon as an optimizing
polyhedral transformation has been determined. Their granularity
threshold is sufficient to apply any polyhedral transformation, while
still enabling fast runtime code generation. This approach has been
implemented in the speculative loop parallelizing framework Apollo, and has been more recently extended to also support loops exhibiting a non-linear behavior thanks to a modeling using “tubes”. The whole approach has been published in Concurrency and Computation: Practice and Experience [11].

 Section:
 New Results

 Formal Proofs about
Explicitly Parallel Programs with Clocks

 Participants :
	Alain Ketterlin, Éric Violard, Tomofumi Yuki, Paul Feautrier.

 We have continued this year our work on formalizing the
happens-before relation in explicitly parallel programs of the
X10 family. Our goal is to define, for certain classes of programs, a
relation between instances of elementary instructions that guarantees
that one instance necessarily executes before another. Our toy
language includes static-control counted loops and conditionals, as
well as the usual finish and async parallel
constructs. Moreover, parallel activities can synchronize though the
use of clocks, which are barriers with dynamic membership.
Clocks partition the execution into phases, and profoundly modify the
happens-before relation.

 This year's work has focused on correctly accounting for the
possibility to define specific activities that execute irrespective of
the discipline of the clock in scope, so-called detached
activities. The presence of such activities modifies the notion of
phase number, because they let their instructions execute across a
range of clock-phases. Our generic notion of phase ranking had
to be modified. Similarly, the natural semantics we defined had to be
slightly modified to correctly represent the parallel execution of
both clocked and detached activities. In practice, almost every lemma
of the Coq proof has changed, and new definitions were introduced. The
new definition of happens-before preserves all desirable properties:
it is correct and complete, and is a strict partial order. There is
one unpleasant aspect of detached activities that had a strong impact
on happens-before: the possibility of deadlocks. A significant part of
new definitions and lemmas are devoted to explicit the conditions
under which programs terminate. A useful outcome of this part of the
mechanization is a static, compile-time deadlock detection criterion.

 Most of this work has been described in a paper currently under
submission (this paper will be on HAL as soon as anonymity constraints
permit). However, the diversity of themes covered in this research
(compilation of static-control programs, especially those that fit the
polyhedral model, but also semantic modeling of explicitly parallel
programs, and formal proofs) make us contemplate the redaction of a
much longer paper, which we plan to start at the beginning of next
year. At the same time, this work (especially the part about
deadlocks) led us to start designing an happens-before relation for a
language where multiple clocks can share (part of) their scopes. We
hope to be able to advance the formalization of this new family of
languages in the near future.

 Section:
 New Results

 High-Performance Particle-in-Cell Simulations

 Participants :
	Arthur Charguéraud, Yann Barsamian, Alain Ketterlin.

 Yann Barsamian's PhD thesis focuses on the development of efficient
programs for Particle-in-Cell (PIC) simulations, with application
to plasma physics. Typically, a simulation involves a cluster of
machines, each machine hosting several cores, and each core being
able to execute vectorized instructions (SIMD). The challenge is
to efficiently exploit these three levels of parallelism.
Regarding the processing on one given multicore machine, existing
algorithms either suffer from suboptimal execution time, due to
sorting operations or use of atomic instructions, or suffer from
suboptimal space usage. We have developed a novel parallel algorithm
for PIC simulations on multicore hardware that features
asymptotically-optimal memory consumption, and that does not
perform unnecessary accesses to the main memory.
The algorithm relies on the use of chunk bags, i.e., linked lists
of fixed-capacity arrays, for storing particles and
allowing to process them efficiently using SIMD instructions.
Practical results show excellent scalability on the classical Landau
damping and two-stream instability test cases.
A paper was published at PPAM [12].

 Section:
 New Results

 Granularity Control for Parallel Programs

 Participant :
	Arthur Charguéraud.

 Arthur Charguéraud contributes to the ERC DeepSea project,
which is hosted at Inria Paris (team Gallium).
With his co-authors, he focused this year on the development of
techniques for controlling granularity in parallel programs.
Granularity control is an essential problem because creating
too many tasks may induce overwhelming overheads, while creating
too few tasks may harm the ability to process tasks in parallel.
Granularity control turns out to be especially challenging for
nested parallel programs, i.e., programs in which parallel constructs
such as fork-join or parallel-loops can be nested arbitrarily.
This year, the DeepSea team investigated two different approaches.

 The first one is based on the use of asymptotic complexity functions
provided by the programmer, combined with runtime measurements
to estimate the constant factors that apply.
Combining these two sources of information allows to predict
with reasonable accuracy the execution time of tasks. Such
predictions may be used to guide the generation of tasks, by
sequentializing computations of sufficiently-small size.
An analysis is developed, establishing that task creation overheads
are indeed bounded to a small fraction of the total runtime.
These results extend prior work by the same authors
[29], extending them with a carefully-designed
algorithm for ensuring convergence of the estimation of the
constant factors deduced from the measures, even in the face of
noise and cache effects, which are taken into account in the analysis.
The approach is demonstrated on a range of benchmarks taken from
the state-of-the-art PBBS benchmark suite.
These results were submitted to an international conference.

 The second approach is based on an instrumentation of the
runtime system. The idea is to process parallel function calls
just like normal function calls, by pushing a frame on the
stack, and only subsequently promoting these frames as threads
that might get scheduled on other cores. The promotion of
frames takes place at regular time interval, hence the name
heartbeat scheduling given to the approach.
Unlike in prior approaches such as lazy scheduling,
in which promotion is guided by the work load of the system,
hearbeat scheduling can be proved to induce only small
scheduling overheads, and to not reduce asymptotically the amount
of parallelism inherent to the parallel program.
The theory behind the approach is formalized in Coq. It is also
implemented through instrumented C++ programs, and evaluated on
PBBS benchmarks.
A paper describing this approach was submitted
to an international conference.

 Section:
 New Results

 Program verification and formal languages

 Participant :
	Arthur Charguéraud.

 	
 A. Charguéraud and François Pottier (Inria Paris) extended their
formalization of the correctness and asymptotic complexity of the
classic Union Find data structure, which features the bound expressed
in terms of the inverse Ackermann function.
The proof, conducted using CFML extended with time credits, was refined
using a slightly more complex potential function, allowing to derive
a simpler and richer interface for the data structure.
This work appeared in the Journal of Automated Reasoning (JAR) [9].

 	
 A. Charguéraud and F. Pottier have developed
an extension of Separation Logic with temporary read-only
permissions. This mechanism allows to temporarily convert any
assertion (or “permission”) to a read-only form. Unlike with
fractional permissions, no accounting is required: the proposed
read-only permissions can be freely duplicated and discarded.
Where mutable data structures are temporarily accessed only for
reading, the proposed read-only permissions enable more concise
specifications and proofs. All the metatheory is verified in
Coq. An article was presented at ESOP [14].

 	
 Armaël Guéneau, PhD student advised by
A. Charguéraud and F. Pottier, has developed
a Coq library formalizing the asymptotic notation (big-O),
and has developed an extension of the CFML verification tool
to allow specifying the asymptotic complexity of higher-order,
imperative programs. This new feature has been tested on
several classic examples of complexity analyses, including:
nested loops in O(n3) and O(nm),
selection sort in O(n2),
recursive functions in O(n) and O(2n),
binary search in O(logn),
and Union-Find in O(α(n)).
A paper was submitted paper to an international conference.

 	
 A. Charguéraud has made progress towards CFML 2.0, a reimplementation
of CFML entirely inside Coq. In contrast, the initial version of CFML, developed
in A. Charguéraud's PhD thesis, is based on an external tool that
parses OCaml source code and produces Coq axioms describing their semantics.
The new version will remove the need for axioms, thereby further
reducing the trusted code base. Furthermore, CFML 2.0 provides a more general
memory model, designed to also accomodate formal reasoning about C-style
programs, in future work.
In passing, A. Charguéraud performed a complete cleanup of the TLC Coq
library, which is used extensively by CFML,
leading to the beta release of TLC 2.0.

 	
 A. Charguéraud, together with Alan Schmitt (Inria Rennes) and
Thomas Wood (Imperial College), developed an interactive debugger
for JavaScript. The interface, accessible as a webpage in a browser,
allows to execute a given JavaScript program, following step by step
the formal specification of JavaScript developed in prior work
on JsCert [31]. Concretely, the
tool acts as a double-debugger: one can visualize both the state of
the interpreted program and the state of the interpreter program.
This tool is intended for the JavaScript committee, VM developers,
and other experts in JavaScript semantics.
A paper describing the tool has been submitted, and the tool has
been presented to the JavaScript standardization committee (ECMA)
in November 2017.

 Section:
 New Results

 Combining Locking and Data Management Interfaces

 Participants :
	Jens Gustedt, Mariem Saied, Daniel Salas.

 Handling data consistency in parallel and distributed settings is a challenging
task, in particular if we want to allow for an easy to handle asynchronism
between tasks. Our publication [1] shows
how to produce deadlock-free iterative programs that implement strong
overlapping between communication, IO and computation.

 An implementation (ORWL) of our ideas of combining control and data
management in C has been undertaken, see Section 6.8. In previous
work it has demonstrated its efficiency for a large variety of
platforms.

 This year, wee have been able to use the knowledge of the
communication structure of ORWL programs to map tasks to cores and
thereby achieve interesting performance gains on multicore
architectures, see [16]. We propose a
topology-aware placement module that is based on the Hardware Locality
framework, HWLOC, and that takes the characteristics of the
application, of the runtime and of the architecture into account. The
aim is double. On one hand we increase the abstraction and the
portability of the framework, and on the other hand we enhance the
performance of the model’s runtime.

 Within the framework of the thesis of Daniel Salas we have
successfully applied ORWL to process large histopathology images. We
are now able to treat such images distributed on several machines or
shared in an accelerator (Xeon Phi) transparently for the user.

 Section:
 New Results

 Automatic Generation of Adaptive Simulation Codes

 Participants :
	Cédric Bastoul, Maxime Schmitt.

 Compiler automatic optimization and parallelization techniques are well suited for some classes of simulation or signal processing applications, however they usually don't take into account neither domain-specific knowledge nor the possibility to change or to remove some computations to achieve “good enough” results. Quite differently, production simulation and signal processing codes have adaptive capabilities: they are designed to compute precise results only where it matters if the complete problem is not tractable or if the computation time must be short. In this research, we design a new way to provide adaptive capabilities to compute-intensive codes automatically, inspired by Adaptive Mesh Refinement a classical numerical analysis technique to achieve precise computation only in pertinent areas. It relies on domain-specific knowledge provided through special pragmas by the programmer in the input code and on polyhedral compilation techniques, to continuously regenerate at runtime a code that performs heavy computations only where it matters at every moment. A case study on a fluid simulation application shows that our strategy enables dramatic computation savings in the optimized portion of the application while maintaining good precision, with a minimal effort from the programmer.

 This research direction started in 2015 and complements our other efforts on dynamic optimization. In 2016, we started a collaboration on this topic with Inria Nancy - Grand Est team TONUS, specialized on applied mathematics (contact: Philippe Helluy), to bring models and techniques from this field to compilers. This collaboration received the support from the excellence laboratory (LabEx) IRMIA through the funding of the thesis of Maxime Schmitt on this topic. Two papers on this new research direction has been accepted this year on this topic (IMPACT 2017 workshop, HiPC 2017 conference [20]).

 Section:
 New Results

 Parallel Polyhedral Regions

 Participants :
	Cédric Bastoul, Vincent Loechner, Harenome Ranaivoarivony-Razanajato.

 Nowadays best performing automatic parallelizers and data locality optimizers
for static control programs rely on the polyhedral model. State-of-the-art
polyhedral compilers generate only one type of parallelism when targeting
multicore shared memory architectures: parallel loops via the OpenMP omp
parallel for directive.

 We propose to explore how a polyhedral compiler could exploit
parallel region constructs. Instead of initializing a new set of threads each
time the code enters a parallel loop and synchronizing them when exiting it,
the threads are initialized once for all at the entrance of the region of
interest, and synchronized only when it is necessary.

 Technically, the whole region containing parallel loops is embedded in
an omp parallel construct.
Inside the parallel region, the single construct is used when some code
needs to be executed sequentially; the for construct is used to distribute
loop iterations between threads.
Thanks to the power of the polyhedral dependence analysis, we compute when it is
valid to add the optional nowait clause, to omit the implicit barrier at
the end of a worksharing construct and thus to reduce even more control overhead.

 This work was published and presented at the HiPC 2017 conference [19].

 Section:
 New Results

 Optimization of Sparse Triangular and Banded Matrix Codes

 Participants :
	Vincent Loechner, Rachid Seghir, Toufik Baroudi.

 This work is a collaboration between Vincent Loechner and Rachid Seghir from University of Batna (Algeria). Toufik Baroudi is a second year PhD student under his supervision. Rachid Seghir was visiting the CAMUS team from March 25th to April 8th, 2017.

 In this work, we enabled static polyhedral optimization techniques to handle sparse matrix storage formats. When handling sparse triangular and banded matrices in their packed formats, such as in the LAPACK library band storage, loop nests bounds and array references of the resulting codes are not affine functions. We proposed to use a new 2d-packed layout and simple affine transformations to enable polyhedral optimization of sparse triangular and banded matrix operations. The effectiveness of our proposal was shown through an experimental study over a large set of linear algebra benchmarks.

 These results were published in ACM TACO [8], and will be presented at the HiPEAC conference in January 2018.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	NANO 2017/PSAIC
	Caldera

 Section:
 Bilateral Contracts and Grants with Industry

 NANO 2017/PSAIC

 The CAMUS team is taking part of the NANO 2017 national research program and its sub-project PSAIC
(Performance and Size Auto-tuning thru Iterative Compilation) with the company STMicroelectronics, which started in
January 2015. Since the release of our automatic speculative parallelization framework Apollo, we have been working on an extension making Apollo usable as a advanced program profiling tool. We are currently working in extending Apollo to the memoization of the memory behavior for loops that are invoked several times.

 Section:
 Bilateral Contracts and Grants with Industry

 Caldera

 Vincent Loechner and Cédric Bastoul are involved in a collaboration with the French company Caldera (http://www.caldera.com), specialized in software development for wide image processing. The goal of this collaboration is the development of parallel and scalable image processing pipeline for industrial printing. The project started in September 2016 and involves a contract established between the ICube laboratory and the Caldera company. This contract includes the funding of the industrial thesis (CIFRE) of Paul Godard (started in September 2016) on the topic of the collaboration, under the supervision of Vincent Loechner and Cédric Bastoul.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific Events Selection

 Member of the Conference Program Committees

 Philippe Clauss and Cédric Bastoul have been part of the program committee of IMPACT 2017 and 2018 (International Workshop on Polyhedral Compilation Techniques), held in conjunction with the international conference HiPEAC.

 Cédric Bastoul has been part of the program committee of the international conference on Compiler Construction 2017 and 2018 (CC'2017 and CC'2018).

 Cédric Bastoul and Vincent Loechner have been part of the program committee of the HIP3ES workshop 2017 and 2018 (International Workshop on High Performance Energy Efficient Embedded Systems), co-organized by Cédric Bastoul in conjunction with the international conference HiPEAC.

 Arthur Charguéraud has been part of the program committee for the Conference on Verified Software: Theories, Tools, and Experiments (VSTTE 2017).

 Reviewer

 Philippe Clauss has been reviewer for the following conferences and workshops: IMPACT 2017 and 2018 (International Workshop on Polyhedral Compilation Techniques), CC 2017 (International Conference on Compiler Construction).

 Cédric Bastoul has been reviewer for the following international conferences and workshops: CC 2017 and 2018 (International Conference on Compiler Construction), PARMA 2017 (International Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures), IMPACT 2017 and 2018 (International Workshop on Polyhedral Compilation Techniques), HIP3ES 2017 and 2018 (International Workshop on High Performance Energy Efficient Embedded Systems).

 Journal

 Member of the Editorial Boards

 Since October 2001, J. Gustedt is Editor-in-Chief of the journal
Discrete Mathematics and Theoretical Computer Science
(DMTCS).

 Reviewer - Reviewing Activities

 Philippe Clauss has been reviewer for the following journals: Journal of Computer and System Sciences, Journal of Software: Practice and Experience, IEEE Transactions on Computers.

 Cédric Bastoul has been reviewer for the following journals: Journal of Parallel, Emergent and Distributed Systems, and IEEE Transactions on Computers.

 Arthur Charguéraud has been reviewer for JAR (Journal of Automated Reasoning), DMTCS (journal of Discrete Mathematics and Theoretical Computer Science), and JFP (Journal of Functional Programming).

 Vincent Loechner has been reviewer for: JAR (Journal of Automated Reasoning, Springer), STTT (Int. J. on Software Tools for Technology Transfer, Springer), ComCom (Computer Communications, Elsevier).

 Invited Talks

 Philippe Clauss has been invited to give a talk at a seminar dedicated to Jean-Luc Gaudiot, organized by the French Computer Science Engineering school ENSIEE, Paris, September the 21st 2017. The topic of his talk was: Le modèle polyédrique au delà de la compilation statique, des fonctions affines et des boucles.

 Arthur Charguéraud has been invited to give a talk at ENS Rennes, on November 21st, 2017, to present the CFML interactive program verification tool.

 Scientific Expertise

 Cédric Bastoul as been an expert for the French research ministry and the French finance ministry for the research tax credit programme.

 Standardization

 Since Nov. 2014, Jens Gustedt is a member of the ISO working group
SC22-WG14 for the standardization of the C programming language
and serves as co-editor of the standards document. He participates
actively in the defect
report
processing, the planning of future versions of the standard, and
publishes an ongoing document to track inconsistencies and
improvements of the C threads interface.

 In 2017, he was the one of the main forces behind the elaboration
of C17, the new version of the C standard that is expected to go
into ballot in the member states end of 2017.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Licence : Philippe Clauss, Architecture des ordinateurs, 45h, Université de Strasbourg, France

 	
 Licence : Philippe Clauss, Systèmes d'exploitation, 40h, Université de Strasbourg, France

 	
 Master : Philippe Clauss, Compilation, 78h, Université de Strasbourg, France

 	
 Master : Philippe Clauss, Système et programmation temps-réel, 25h, Université de Strasbourg, France

 	
 Master : Philippe Clauss, Compilation avancée, 30h, Université de Strasbourg, France

 	
 2nd year engineering school: Jens Gustedt, programmation avancée, 20h, ENSIIE Strasbourg, France

 	
 Licence : Jens Gustedt, systèmes concurrents, 20h, Université de Strasbourg, France

 	
 Master : Jens Gustedt, parallélisme, 14h, M1, Université de Strasbourg, France

 	
 IUT d'Informatique : Alain Ketterlin, Architecture et
programmation des mécanismes de base d’un système
informatique, 68h, Université de Strasbourg, France

 	
 Licence : Alain Ketterlin, Algorithmique et programmation
L1, 82h, Université de Strasbourg, France

 	
 Master (Informatique) : Alain Ketterlin, Ingénierie de la
preuve en Coq, 18h, Université de Strasbourg, France

 	
 Master (Calcul Scientifique et Mathématiques de
l'Information) : Alain Ketterlin, Compilation et
optimisation, 26h, Université de Strasbourg, France

 	
 Licence : Cédric Bastoul, Computer architecture, 68h, L1 (IUT), Université de Strasbourg, France

 	
 Licence : Cédric Bastoul, Concurrent Systems, 20h, L3, Université de Strasbourg, France

 	
 Master : Cédric Bastoul, Compiler Design, 48h, M1, Université de Strasbourg, France

 	
 Master : Cédric Bastoul, Parallelism, 19h, M1, Université de Strasbourg, France

 	
 Master : Cédric Bastoul, Introduction to Research, 11h, L2+M1, Université de Strasbourg, France

 	
 Licence : Eric Violard,
Programmation Fonctionnelle (licence informatique), 64h eq. TD, L2,
Université de Strasbourg, France

 	
 Licence : Eric Violard,
Architecture des Ordinateurs (licence informatique), 54h eq. TD, L2,
Université de Strasbourg, France

 	
 Licence : Eric Violard,
Logique et Programmation Logique (licence informatique), 34h eq. TD, L2,
Université de Strasbourg, France

 	
 Licence : Eric Violard,
Algorithmique et Structure de Données (licence mathématique), 39h eq. TD, L3,
Université de Strasbourg, France

 	
 Licence : Eric Violard,
Modèles de Calcul (licence informatique), 29h eq. TD, L1,
Université de Strasbourg, France

 	
 Licence : Eric Violard,
Systèmes Concurrents (licence informatique), 7h eq. TD, L3,
Université de Strasbourg, France

 	
 Master : Arthur Charguéraud,
Proof of Programs (MPRI), 12h, M2,
Université Paris Diderot, France

 	
 Licence : Vincent Loechner, responsable pédagogique de la licence professionnelle SIL spécialité ARS (Administration de Réseaux et Services), 24h, L3, université de Strasbourg, France

 	
 Licence : Vincent Loechner, systèmes d'exploitation, 13h, L2, université de Strasbourg, France

 	
 Licence : Vincent Loechner, administration système et internet, 54h, L3, université de Strasbourg, France

 	
 Master : Vincent Loechner, calcul parallèle, 32h, M1, université de Strasbourg, France

 	
 Master : Vincent Loechner, OS embarqués, 34h, M2, université de Strasbourg, France

 	
 Master : Vincent Loechner, calcul parallèle, 30h, 3ième année école d'ingénieur (TPS), université de Strasbourg, France

 Supervision

 	
 PhD: Nabil Hallou, Dynamic binary optimizations, University of Rennes, December the 18th 2017, Erven Rohou (PACAP
team) and Philippe Clauss

 	
 PhD in progress: Salwa Kobeissi, Dynamic parallelization of recursive functions by transformation into loops, September 2017, Philippe Clauss

 	
 PhD in progress: Mariem Saied, Ordered Read-Write
Locks for Multicores and Accelerators, since Nov 2013, Jens
Gustedt & Gilles Muller.

 	
 PhD in progress: Daniel Salas, Integration of the ORWL
model into parallel applications for medical research, since Mar 2015, Jens
Gustedt & Isabelle Perseil.

 	
 PhD in progress: Yann Barsamian, Optimization and parallelization of particle and semi-Lagrangian methods for multi species plasma simulations, since Oct 2014, Eric Violard.

 	
 PhD in progress: Armaël Géneau, Formal verification of complexity analyses, since Sept 2016, co-advised by Arthur Charguéraud and François Pottier,
from team Gallium (Inria Paris), where Armaël is located.

 	
 PhD in progress: Harenome Ranaivoarivony-Razanajato, Hierarchical Parallelization and Optimization, Oct. 2016, Cédric Bastoul and Vincent Loechner

 	
 PhD in progress: Maxime Schmitt, Automatic Generation of Adaptive Codes, September 2016, Cédric Bastoul and Philippe Helluy

 	
 PhD in progress : Paul Godard, Parallelization and Scalability of a Graphical Pipeline for Professionnal Inkjet Printing, Jun. 2016, Cédric Bastoul and Vincent Loechner

 Juries

 Philippe Clauss participated to the following PhD committees in 2017:

 Table
	1.

 	
 Date

 	
 Candidate

 	
 Place

 	
 Role

 	Dec. 11
 	Alexandre
Maréchal
 	Université de Grenoble
 	Examiner

 	Dec. 18
 	Nabil Hallou
 	Université de Rennes
 	Co-advisor

 	Dec. 21
 	Jordy Ruiz
 	Université de Toulouse
 	Reviewer

 Vincent Loechner participated as examiner to the PhD committee of Maroua Maalej, defended on Sept. 26th 2017 at Université Claude Bernard (Lyon 1).

 Section:
 Dissemination

 Popularization

 	
 A. Charguéraud
is one of the three organizers of the Concours Castor informatique
http://castor-informatique.fr/.
The purpose of the
Concours Castor in to introduce pupils (from CM1 to
Terminale) to computer sciences. More than 500,000
teenagers played with the interactive exercises in November 2017.

 	
 Jens Gustedt is blogging about efficient programming, in
particular about the C programming
language. He also is an active
member of the stackoverflow
community a
technical Q&A site for programming and related subjects.

 	
 Cédric Bastoul prepared activities and participated to Fête de la Science at University of Strasbourg in October 2017.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	P.-N. Clauss, J. Gustedt.
Iterative Computations with Ordered Read-Write Locks, in: Journal of Parallel and Distributed Computing, 2010, vol. 70, no 5, pp. 496–504. [
DOI : 10.1016/j.jpdc.2009.09.002]
https://hal.inria.fr/inria-00330024

 	[2]

 	J. Gustedt.
Futex based locks for C11's generic atomics, Inria Nancy, December 2015, no RR-8818.
https://hal.inria.fr/hal-01236734

 	[3]

 	A. Jimborean, P. Clauss, J.-F. Dollinger, V. Loechner, M. Juan Manuel.
Dynamic and Speculative Polyhedral Parallelization Using Compiler-Generated Skeletons, in: International Journal of Parallel Programming, August 2014, vol. 42, no 4, pp. 529-545.
https://hal.inria.fr/hal-01003744

 	[4]

 	A. Ketterlin, P. Clauss.
Prediction and trace compression of data access addresses through nested loop recognition, in: 6th annual IEEE/ACM international symposium on Code generation and optimization, Boston, USA, ACM, April 2008, pp. 94-103.
http://dx.doi.org/10.1145/1356058.1356071

 	[5]

 	A. Ketterlin, P. Clauss.
Profiling Data-Dependence to Assist Parallelization: Framework, Scope, and Optimization, in: MICRO-45 – Proceedings of the 2012 IEEE/ACM 45th International Symposium on Microarchitecture, Vancouver, Canada, December 2012.

 	[6]

 	B. Pradelle, A. Ketterlin, P. Clauss.
Polyhedral parallelization of binary code, in: ACM Transactions on Architecture and Code Optimization, January 2012, vol. 8, no 4, pp. 39:1–39:21. [
DOI : 10.1145/2086696.2086718]
http://hal.inria.fr/hal-00664370

 	[7]

 	R. Seghir, V. Loechner, B. Meister.
Integer Affine Transformations of Parametric Z-polytopes and Applications to Loop Nest Optimization, in: ACM Transactions on Architecture and Code Optimization, June 2012, vol. 9, no 2, pp. 8.1-8.27. [
DOI : 10.1145/2207222.2207224]
http://hal.inria.fr/inria-00582388

 Publications of the year

 Articles in International Peer-Reviewed Journals

 	[8]

 	T. Baroudi, R. Seghir, V. Loechner.
Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts, in: ACM Transactions on Architecture and Code Optimization (TACO) , December 2017.
https://hal.inria.fr/hal-01633724

 	[9]

 	A. Charguéraud, F. Pottier.
Verifying the Correctness and Amortized Complexity of a Union-Find Implementation in Separation Logic with Time Credits, in: Journal of Automated Reasoning, September 2017. [
DOI : 10.1007/s10817-017-9431-7]
https://hal.inria.fr/hal-01652785

 	[10]

 	N. Hallou, E. Rohou, P. Clauss.
Runtime Vectorization Transformations of Binary Code, in: International Journal of Parallel Programming, June 2017, vol. 8, no 6, pp. 1536 - 1565. [
DOI : 10.1007/s10766-016-0480-z]
https://hal.inria.fr/hal-01593216

 	[11]

 	J. M. Martinez Caamaño, M. Selva, P. Clauss, A. Baloian, W. Wolff.
Full runtime polyhedral optimizing loop transformations with the generation, instantiation, and scheduling of code-bones, in: Concurrency and Computation: Practice and Experience, June 2017, vol. 29, no 15. [
DOI : 10.1002/cpe.4192]
https://hal.inria.fr/hal-01581093

 International Conferences with Proceedings

 	[12]

 	Y. A. Barsamian, A. Charguéraud, A. Ketterlin.
A Space and Bandwidth Efficient Multicore Algorithm for the Particle-in-Cell Method, in: PPAM 2017 - 12th International Conference on Parallel Processing and Applied Mathematics, Lublin, Poland, September 2017, pp. 1-12.
https://hal.inria.fr/hal-01649172

 	[13]

 	Y. A. Barsamian, S. A. Hirstoaga, E. Violard.
Efficient Data Structures for a Hybrid Parallel and Vectorized Particle-in-Cell Code, in: IPDPSW 2017 - IEEE International Parallel and Distributed Processing Symposium Workshops, Lake Buena Vista, FL, United States, May 2017, pp. 1168-1177. [
DOI : 10.1109/IPDPSW.2017.74]
https://hal.inria.fr/hal-01504645

 	[14]

 	A. Charguéraud, F. Pottier.
Temporary Read-Only Permissions for Separation Logic, in: Proceedings of the 26th European Symposium on Programming (ESOP 2017), Uppsala, Sweden, April 2017.
https://hal.inria.fr/hal-01408657

 	[15]

 	P. Clauss, E. Altıntas, M. Kuhn.
Automatic Collapsing of Non-Rectangular Loops, in: Parallel and Distributed Processing Symposium (IPDPS), 2017, Orlando, United States, I. International (editor), May 2017, pp. 778 - 787. [
DOI : 10.1109/IPDPS.2017.34]
https://hal.inria.fr/hal-01581081

 	[16]

 	J. Gustedt, E. Jeannot, F. Mansouri.
Automatic, Abstracted and Portable Topology-Aware Thread Placement, in: IEEE Cluster, Hawaï, United States, Cluster Computing (CLUSTER), 2017 IEEE International Conference on, September 2017, pp. 389 - 399. [
DOI : 10.1109/CLUSTER.2017.71]
https://hal.archives-ouvertes.fr/hal-01621936

 	[17]

 	N. Magaud.
Transferring Arithmetic Decision Procedures (on Z) to Alternative Representations, in: CoqPL 2017: The Third International Workshop on Coq for Programming Languages, Paris, France, January 2017.
https://hal.inria.fr/hal-01518660

 	[18]

 	L. Morel, M. Selva, K. Marquet, C. Saysset, T. Risset.
CalMAR -a Multi-Application Dataflow Runtime, in: Thirteenth ACM International Conference on Embedded Software 2017, EMSOFT'17, Seoul, South Korea, October 2017. [
DOI : 10.1145/3125503.3125562]
https://hal.inria.fr/hal-01631691

 	[19]

 	H. Razanajato, C. Bastoul, V. Loechner.
Lifting Barriers Using Parallel Polyhedral Regions, in: HiPC 2017 - 24th International Conference on High Performance Computing, Data, and Analytics, Jaipur, India, IEEE, December 2017.
https://hal.inria.fr/hal-01633839

 	[20]

 	M. Schmitt, P. Helluy, C. Bastoul.
Adaptive Code Refinement: A Compiler Technique and Extensions to Generate Self-Tuning Applications, in: HiPC 2017 - 24th International Conference on High Performance Computing, Data, and Analytics, Jaipur, India, December 2017.
https://hal.inria.fr/hal-01655459

 Conferences without Proceedings

 	[21]

 	J. M. Martinez Caamaño, A. Sukumaran-Rajam, A. Baloian, M. Selva, P. Clauss.
APOLLO: Automatic speculative POLyhedral Loop Optimizer, in: IMPACT 2017 - 7th International Workshop on Polyhedral Compilation Techniques, Stockholm, Sweden, January 2017, 8 p.
https://hal.inria.fr/hal-01533692

 	[22]

 	H. Razanajato, V. Loechner, C. Bastoul.
Splitting Polyhedra to Generate More Efficient Code: Efficient Code Generation in the Polyhedral Model is Harder Than We Thought, in: IMPACT 2017, 7th International Workshop on Polyhedral Compilation Techniques, Stockholm, Sweden, January 2017.
https://hal.inria.fr/hal-01505764

 	[23]

 	M. Schmitt, C. Sabater, C. Bastoul.
Semi-Automatic Generation of Adaptive Codes, in: IMPACT 2017 - 7th International Workshop on Polyhedral Compilation Techniques, Stockholm, Sweden, January 2017, pp. 1-7.
https://hal.inria.fr/hal-01655456

 Internal Reports

 	[24]

 	I. Charpentier, J. Gustedt.
Arbogast: Higher order AD for special functions with Modular C, Inria Nancy - Grand Est (Villers-lès-Nancy, France), August 2017, no RR-8907, 20 p.
https://hal.inria.fr/hal-01307750

 Other Publications

 	[25]

 	Y. A. Barsamian, J. Bernier, S. A. Hirstoaga, M. Mehrenberger.
Verification of 2D × 2D and two-species Vlasov-Poisson solvers, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01668744

 	[26]

 	Y. A. Barsamian, S. A. Hirstoaga, E. Violard.
Efficient Data Layouts for a Three-Dimensional Electrostatic Particle-in-Cell Code, 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01664207

 	[27]

 	A. Charguéraud, J.-C. Filliâtre, M. Pereira, F. Pottier.
VOCAL – A Verified OCAml Library, September 2017, ML Family Workshop 2017.
https://hal.inria.fr/hal-01561094

 	[28]

 	A. Charguéraud, M. Rainey.
Efficient Representations for Large Dynamic Sequences in ML, September 2017, ML Family Workshop, Poster.
https://hal.inria.fr/hal-01669407

 References in notes

 	[29]

 	U. A. Acar, A. Charguéraud, M. Rainey.
Oracle-Guided Scheduling for Controlling Granularity in Implicitly Parallel Languages, in: Journal of Functional Programming, November 2016, vol. 26. [
DOI : 10.1017/S0956796816000101]
https://hal.inria.fr/hal-01409069

 	[30]

 	C. Bastoul.
Code Generation in the Polyhedral Model Is Easier Than You Think, in: PACT'13 IEEE International Conference on Parallel Architecture and Compilation Techniques, Juan-les-Pins, France, 2004, pp. 7–16.
https://hal.archives-ouvertes.fr/ccsd-00017260

 	[31]

 	M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt, G. Smith.
A Trusted Mechanised JavaScript Specification, in: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, USA, ACM Press, January 2014.
http://hal.inria.fr/hal-00910135

 	[32]

 	M. Hall, D. Padua, K. Pingali.
Compiler research: the next 50 years, in: Commun. ACM, 2009, vol. 52, no 2, pp. 60–67.
http://doi.acm.org/10.1145/1461928.1461946

 	[33]

 	A. Hobor, A. W. Appel, F. Z. Nardelli.
Oracle Semantics for Concurrent Separation Logic, in: ESOP, 2008, pp. 353-367.

 OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/IMG/figure_anglais.png
lssue T

Static compilation
and

paralleiization

Issue 2

Tntormodiate code
oxpressing
effoctivo and
hypothetical

> fssued

Virtual machine
Dynamic
Parallelization

T —

Issue 1 Static paralelzation and optimization
Issue 2 Profiing and execution behavior modeling
Issue 3 : Dynamic paralielzation and optimization
Issue 4 Proof of program transformations.

mutt-paralolisms

Multicore
machine

OEBPS/uid105.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 Inria Large Scale Initiative on Multicore

 Philippe Clauss, Jens Gustedt, Alain Ketterlin, Cédric Bastoul and Vincent Loechner are involved in the Inria Project Lab entitled “Large scale multicore virtualization for performance scaling and portability” and regrouping several French researchers in compilers, parallel computing and program optimization (https://team.inria.fr/multicore). The project started officially in January 2013. In this context and since January 2013, Philippe Clauss is co-advising with Erven Rohou of the Inria team PACAP, Nabil Hallou's PhD thesis focusing on dynamic optimization of binary code. The PhD defense was held December the 18th 2017.

 Philippe Clauss, Jens Gustedt and Maxime Mogé are involved in the ADT
Inria project ASNAP (Accélération des Simulations Numériques
pour l'Assistance Peropératoire), in collaboration with the Inria
team MIMESIS. The goal is to find opportunities in the SOFA simulation
platform for applying automatic parallelization techniques developed
by Camus. We are currently investigating two approaches. The first
uses memory behavior memoization to generate a parallel code made of
independent threads at runtime. The second uses ordered read-write
locks (ORWL) to dynamically schedule a pipeline of parallel tasks.

 ANR AJACS

 Participant :
	Arthur Charguéraud [contact] .

 The AJACS research project is funded by the programme “Société de l'information
et de la communication” of the ANR, from October 2014,
until November 2018. http://ajacs.inria.fr/

 The goal of the AJACS project is to provide strong security and privacy
guarantees on the client side for web application scripts implemented in
JavaScript, the most widely used language for the Web. The proposal is to
prove correct analyses for JavaScript programs, in particular information flow
analyses that guarantee no secret information is leaked to malicious parties.
The definition of sub-languages of JavaScript, with certified compilation
techniques targeting them, will allow deriving more precise analyses.
Another aspect of the proposal is the design and certification of
security and privacy enforcement mechanisms for web applications,
including the APIs used to program real-world applications.
Arthur Charguéraud focuses on the description of a formal semantics
for JavaScript, and the development of tools for interactively
executing programs step-by-step according to the formal semantics.

 Partners: team Celtique (Inria Rennes - Bretagne Atlantique),
team Prosecco (Inria Paris),
team Indes (Inria Sophia Antipolis - Méditerranée),
and Imperial College (London).

 ANR Vocal

 Participant :
	Arthur Charguéraud [contact] .

 The Vocal research project is funded by the programme “Société de
l'information et de la communication” of the ANR, for a period of 48
months, starting on October 1st, 2015. https://vocal.lri.fr/

 The goal of the Vocal project is to develop the first formally
verified library of efficient general-purpose data structures and
algorithms. It targets the OCaml programming language, which allows
for fairly efficient code and offers a simple programming model that
eases reasoning about programs. The library will be readily
available to implementers of safety-critical OCaml programs, such as
Coq, Astrée, or Frama-C. It will provide the essential building
blocks needed to significantly decrease the cost of developing safe
software. The project intends to combine the strengths of three
verification tools, namely Coq, Why3, and CFML. It will use Coq to
obtain a common mathematical foundation for program specifications,
as well as to verify purely functional components. It will use Why3 to
verify a broad range of imperative programs with a high degree of
proof automation. Finally, it will use CFML for formal reasoning
about effectful higher-order functions and data structures making
use of pointers and sharing.

 Partners:
team Gallium (Inria Paris),
team DCS (Verimag),
TrustInSoft,
and OCamlPro.

OEBPS/uid118.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria International Partners

 Informal International Partners

 The CAMUS team maintains regular contacts with the following entities:

 		
 Reservoir Labs, New York, NY, USA

 		
 University of Batna, Algeria

 		
 Ohio State University, Colombus, USA

 		
 Louisiana State University, Baton Rouge, USA

 		
 Colorado State University, Fort Collins, USA

 		
 Carnegie Mellon University, Pittsburgh, USA

 		
 Indian Institute of Science (IIIS) Bangalore, India

 		
 Barcelona Supercomputing Center, Barcelona, Spain

OEBPS/uid110.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 		
 Project acronym: ERC Deepsea

 		
 Project title: Parallel dynamic computations

 		
 Duration: Jun. 2013 - May 2018

 		
 Coordinator: Umut A. Acar

 		
 Other partners: Carnegie Mellon University

 		
 Abstract:

 The objective of this project is to develop abstractions, algorithms and languages
for parallelism and dynamic parallelism with applications to problems
on large data sets.
Umut A. Acar (affiliated to Carnegie Mellon University and Inria Paris - Rocquencourt)
is the principal investigator of this ERC-funded project.
The other main researchers involved are
Mike Rainey (Inria, Gallium team), who is full-time on the project,
and Arthur Charguéraud (Inria, Toccata Camus), who works
part time on this project.
Project website: http://deepsea.inria.fr/.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2017
Team Camus

Compilation pour les
Architectures
MUIti-coeurS

