
IN PARTNERSHIP WITH:
Institut polytechnique de
Grenoble

Université Joseph Fourier
(Grenoble)

Activity Report 2017

Project-Team CONVECS

Construction of verified concurrent systems

IN COLLABORATION WITH: Laboratoire d’Informatique de Grenoble (LIG)

RESEARCH CENTER
Grenoble - Rhône-Alpes

THEME
Proofs and Verification

Table of contents

1. Personnel . 1
2. Overall Objectives . 2
3. Research Program . 2

3.1. New Formal Languages and their Concurrent Implementations 2
3.2. Parallel and Distributed Verification 3
3.3. Timed, Probabilistic, and Stochastic Extensions 4
3.4. Component-Based Architectures for On-the-Fly Verification 5
3.5. Real-Life Applications and Case Studies 5

4. Application Domains .5
5. New Software and Platforms . 6

5.1. CADP Pro 6
5.2. TRAIAN 8

6. New Results . 8
6.1. New Formal Languages and their Implementations 8

6.1.1. Translation from LNT to LOTOS 9
6.1.2. NUPN 9
6.1.3. Analysis of BPMN via Translation to LNT 10
6.1.4. Translation of Term Rewrite Systems 10
6.1.5. Other Language Developments 10

6.2. Parallel and Distributed Verification 11
6.2.1. Distributed State Space Manipulation 11
6.2.2. Debugging of Concurrent Systems 11

6.3. Timed, Probabilistic, and Stochastic Extensions 11
6.3.1. Tools for Probabilistic and Stochastic Systems 11
6.3.2. On-the-fly Model Checking for Extended Regular Probabilistic Operators 12

6.4. Component-Based Architectures for On-the-Fly Verification 12
6.4.1. Compositional Verification 12
6.4.2. On-the-Fly Test Generation 13
6.4.3. Other Component Developments 13

6.5. Real-Life Applications and Case Studies 14
6.5.1. Autonomous Resilience of Distributed IoT Applications in a Fog Environment 14
6.5.2. Activity Detection in a Smart Home 14
6.5.3. Other Case Studies 15

7. Bilateral Contracts and Grants with Industry . 15
7.1.1. Orange Labs 15
7.1.2. Nokia Bell Labs 16

8. Partnerships and Cooperations . 16
8.1. Regional Initiatives 16
8.2. National Initiatives 16

8.2.1. PIA (Programme d’Investissements d’Avenir) 16
8.2.2. Competitivity Clusters 16
8.2.3. Other National Collaborations 17

8.3. European Initiatives 17
8.3.1. Collaborations in European Programs, Except FP7 & H2020 17
8.3.2. Collaborations with Major European Organizations 17

8.4. International Initiatives 18
8.4.1. Inria International Partners 18
8.4.2. Other International Collaborations 18

8.5. International Research Visitors 18

2 Activity Report INRIA 2017

8.5.1. Visits of International Scientists 18
8.5.2. Visits to International Teams 18

9. Dissemination . 19
9.1. Promoting Scientific Activities 19

9.1.1. Scientific Events Organisation 19
9.1.2. Scientific Events Selection 19

9.1.2.1. Chair of Conference Program Committees 19
9.1.2.2. Member of the Conference Program Committees 19
9.1.2.3. Reviewer 20

9.1.3. Journal 20
9.1.3.1. Member of the Editorial Boards 20
9.1.3.2. Reviewer - Reviewing Activities 20

9.1.4. Software Dissemination and Internet Visibility 20
9.1.5. Invited Talks 21
9.1.6. Research Administration 22

9.2. Teaching - Supervision - Juries 22
9.2.1. Teaching 22
9.2.2. Supervision 23
9.2.3. Juries 23

9.3. Popularization 24
10. Bibliography .24

Project-Team CONVECS

Creation of the Team: 2012 January 01, updated into Project-Team: 2014 January 01

Keywords:

Computer Science and Digital Science:
A1.1.6. - Cloud
A1.3. - Distributed Systems
A2.1.1. - Semantics of programming languages
A2.1.7. - Distributed programming
A2.4.1. - Analysis
A2.4.2. - Model-checking
A2.5. - Software engineering
A5.11.1. - Human activity analysis and recognition
A7.1.1. - Distributed algorithms
A7.1.3. - Graph algorithms
A7.2. - Logic in Computer Science
A8.9. - Performance evaluation

Other Research Topics and Application Domains:
B6.1.1. - Software engineering
B6.3.2. - Network protocols
B6.4. - Internet of things
B6.6. - Embedded systems
B8.1. - Smart building/home

1. Personnel
Research Scientists

Radu Mateescu [Team leader, Inria, Senior Researcher, HDR]
Hubert Garavel [Inria, Senior Researcher]
Frédéric Lang [Inria, Researcher]
Wendelin Serwe [Inria, Researcher]

Faculty Member
Gwen Salaün [UGA, Professor, HDR]

PhD Students
Gianluca Barbon [UGA]
Lina Marsso [Inria]
Ajay Muroor Nadumane [Inria, from Oct 2017]
Umar Ozeer [Orange Labs]

Technical staff
Lian Apostol [Inria, from Dec 2017]

Interns
Jean-Philippe Gros [Inria, from Feb 2017 until Jul 2017]
Waqas Imtiaz [Inria, from Feb 2017 until Jul 2017]
Ajay Muroor Nadumane [Inria, from Feb 2017 until Jul 2017]

https://raweb.inria.fr/rapportsactivite/RA2017/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2017/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2017

Julie Parreaux [Inria, from May 2017 until Jul 2017]
Administrative Assistant

Myriam Etienne [Inria]
Visiting Scientist

Soren Enevoldsen [Aalborg University, from Sep 2017 until Dec 2017]

2. Overall Objectives

2.1. Overview
The CONVECS project-team addresses the rigorous design of concurrent asynchronous systems using formal
methods and automated analysis. These systems comprise several activities that execute simultaneously
and autonomously (i.e., without the assumption about the existence of a global clock), synchronize, and
communicate to accomplish a common task. In computer science, asynchronous concurrency arises typically
in hardware, software, and telecommunication systems, but also in parallel and distributed programs.

Asynchronous concurrency is becoming ubiquitous, from the micro-scale of embedded systems (asynchronous
logic, networks-on-chip, GALS – Globally Asynchronous, Locally Synchronous systems, multi-core proces-
sors, etc.) to the macro-scale of grids and cloud computing. In the race for improved performance and lower
power consumption, computer manufacturers are moving towards asynchrony. This increases the complexity
of the design by introducing nondeterminism, thus requiring a rigorous methodology, based on formal methods
assisted by analysis and verification tools.

There exist several approaches to formal verification, such as theorem proving, static analysis, and model
checking, with various degrees of automation. When dealing with asynchronous systems involving complex
data types, verification methods based on state space exploration (reachability analysis, model checking,
equivalence checking, etc.) are today the most successful way to detect design errors that could not be
found otherwise. However, these verification methods have several limitations: they are not easily accepted
by industry engineers, they do not scale well while the complexity of designs is ever increasing, and they
require considerable computing power (both storage capacity and execution speed). These are the challenges
that CONVECS seeks to address.

To achieve significant impact in the design and analysis of concurrent asynchronous systems, several research
topics must be addressed simultaneously. There is a need for user-friendly, intuitive, yet formal specification
languages that will be attractive to designers and engineers. These languages should provide for both functional
aspects (as needed by formal verification) and quantitative ones (to enable performance evaluation and
architecture exploration). These languages and their associated tools should be smoothly integrated into large-
scale design flows. Finally, verification tools should be able to exploit the parallel and distributed computing
facilities that are now ubiquitous, from desktop to high-performance computers.

3. Research Program

3.1. New Formal Languages and their Concurrent Implementations
We aim at proposing and implementing new formal languages for the specification, implementation, and
verification of concurrent systems. In order to provide a complete, coherent methodological framework, two
research directions must be addressed:

Project-Team CONVECS 3

• Model-based specifications: these are operational (i.e., constructive) descriptions of systems, usually
expressed in terms of processes that execute concurrently, synchronize together and communicate.
Process calculi are typical examples of model-based specification languages. The approach we
promote is based on LOTOS NT (LNT for short), a formal specification language that incorporates
most constructs stemming from classical programming languages, which eases its acceptance by
students and industry engineers. LNT [24] is derived from the ISO standard E-LOTOS (2001), of
which it represents the first successful implementation, based on a source-level translation from
LNT to the former ISO standard LOTOS (1989). We are working both on the semantic foundations
of LNT (enhancing the language with module interfaces and timed/probabilistic/stochastic features,
compiling the m among n synchronization, etc.) and on the generation of efficient parallel and
distributed code. Once equipped with these features, LNT will enable formally verified asynchronous
concurrent designs to be implemented automatically.

• Property-based specifications: these are declarative (i.e., non-constructive) descriptions of systems,
which express what a system should do rather than how the system should do it. Temporal logics
and µ-calculi are typical examples of property-based specification languages. The natural models
underlying value-passing specification languages, such as LNT, are Labeled Transition Systems
(LTSs or simply graphs) in which the transitions between states are labeled by actions containing
data values exchanged during handshake communications. In order to reason accurately about these
LTSs, temporal logics involving data values are necessary. The approach we promote is based on
MCL (Model Checking Language) [47], which extends the modal µ-calculus with data-handling
primitives, fairness operators encoding generalized Büchi automata, and a functional-like language
for describing complex transition sequences. We are working both on the semantic foundations of
MCL (extending the language with new temporal and hybrid operators, translating these operators
into lower-level formalisms, enhancing the type system, etc.) and also on improving the MCL on-
the-fly model checking technology (devising new algorithms, enhancing ergonomy by detecting and
reporting vacuity, etc.).

We address these two directions simultaneously, yet in a coherent manner, with a particular focus on applicable
concurrent code generation and computer-aided verification.

3.2. Parallel and Distributed Verification
Exploiting large-scale high-performance computers is a promising way to augment the capabilities of formal
verification. The underlying problems are far from trivial, making the correct design, implementation, fine-
tuning, and benchmarking of parallel and distributed verification algorithms long-term and difficult activities.
Sequential verification algorithms cannot be reused as such for this task: they are inherently complex, and their
existing implementations reflect several years of optimizations and enhancements. To obtain good speedup
and scalability, it is necessary to invent new parallel and distributed algorithms rather than to attempt a
parallelization of existing sequential ones. We seek to achieve this objective by working along two directions:

• Rigorous design: Because of their high complexity, concurrent verification algorithms should them-
selves be subject to formal modeling and verification, as confirmed by recent trends in the certifi-
cation of safety-critical applications. To facilitate the development of new parallel and distributed
verification algorithms, we promote a rigorous approach based on formal methods and verification.
Such algorithms will be first specified formally in LNT, then validated using existing model checking
algorithms of the CADP toolbox. Second, parallel or distributed implementations of these algorithms
will be generated automatically from the LNT specifications, enabling them to be experimented on
large computing infrastructures, such as clusters and grids. As a side-effect, this “bootstrapping”
approach would produce new verification tools that can later be used to self-verify their own design.

• Performance optimization: In devising parallel and distributed verification algorithms, particular
care must be taken to optimize performance. These algorithms will face concurrency issues at sev-
eral levels: grids of heterogeneous clusters (architecture-independence of data, dynamic load balanc-
ing), clusters of homogeneous machines connected by a network (message-passing communication,

4 Activity Report INRIA 2017

detection of stable states), and multi-core machines (shared-memory communication, thread syn-
chronization). We will seek to exploit the results achieved in the parallel and distributed computing
field to improve performance when using thousands of machines by reducing the number of connec-
tions and the messages exchanged between the cooperating processes carrying out the verification
task. Another important issue is the generalization of existing LTS representations (explicit, implicit,
distributed) in order to make them fully interoperable, such that compilers and verification tools can
handle these models transparently.

3.3. Timed, Probabilistic, and Stochastic Extensions
Concurrent systems can be analyzed from a qualitative point of view, to check whether certain properties
of interest (e.g., safety, liveness, fairness, etc.) are satisfied. This is the role of functional verification, which
produces Boolean (yes/no) verdicts. However, it is often useful to analyze such systems from a quantitative
point of view, to answer non-functional questions regarding performance over the long run, response time,
throughput, latency, failure probability, etc. Such questions, which call for numerical (rather than binary)
answers, are essential when studying the performance and dependability (e.g., availability, reliability, etc.) of
complex systems.

Traditionally, qualitative and quantitative analyzes are performed separately, using different modeling lan-
guages and different software tools, often by distinct persons. Unifying these separate processes to form a
seamless design flow with common modeling languages and analysis tools is therefore desirable, for both sci-
entific and economic reasons. Technically, the existing modeling languages for concurrent systems need to be
enriched with new features for describing quantitative aspects, such as probabilities, weights, and time. Such
extensions have been well-studied and, for each of these directions, there exist various kinds of automata,
e.g., discrete-time Markov chains for probabilities, weighted automata for weights, timed automata for hard
real-time, continuous-time Markov chains for soft real-time with exponential distributions, etc. Nowadays, the
next scientific challenge is to combine these individual extensions altogether to provide even more expressive
models suitable for advanced applications.

Many such combinations have been proposed in the literature, and there is a large amount of models adding
probabilities, weights, and/or time. However, an unfortunate consequence of this diversity is the confuse
landscape of software tools supporting such models. Dozens of tools have been developed to implement
theoretical ideas about probabilities, weights, and time in concurrent systems. Unfortunately, these tools do
not interoperate smoothly, due both to incompatibilities in the underlying semantic models and to the lack of
common exchange formats.

To address these issues, CONVECS follows two research directions:

• Unifying the semantic models. Firstly, we will perform a systematic survey of the existing semantic
models in order to distinguish between their essential and non-essential characteristics, the goal
being to propose a unified semantic model that is compatible with process calculi techniques for
specifying and verifying concurrent systems. There are already proposals for unification either
theoretical (e.g., Markov automata) or practical (e.g., PRISM and MODEST modeling languages),
but these languages focus on quantitative aspects and do not provide high-level control structures
and data handling features (as LNT does, for instance). Work is therefore needed to unify process
calculi and quantitative models, still retaining the benefits of both worlds.

• Increasing the interoperability of analysis tools. Secondly, we will seek to enhance the interoperabil-
ity of existing tools for timed, probabilistic, and stochastic systems. Based on scientific exchanges
with developers of advanced tools for quantitative analysis, we plan to evolve the CADP toolbox as
follows: extending its perimeter of functional verification with quantitative aspects; enabling deeper
connections with external analysis components for probabilistic, stochastic, and timed models; and
introducing architectural principles for the design and integration of future tools, our long-term goal
being the construction of a European collaborative platform encompassing both functional and non-
functional analyzes.

Project-Team CONVECS 5

3.4. Component-Based Architectures for On-the-Fly Verification
On-the-fly verification fights against state explosion by enabling an incremental, demand-driven exploration
of LTSs, thus avoiding their entire construction prior to verification. In this approach, LTS models are
handled implicitly by means of their post function, which computes the transitions going out of given states
and thus serves as a basis for any forward exploration algorithm. On-the-fly verification tools are complex
software artifacts, which must be designed as modularly as possible to enhance their robustness, reduce their
development effort, and facilitate their evolution. To achieve such a modular framework, we undertake research
in several directions:

• New interfaces for on-the-fly LTS manipulation. The current application programming interface
(API) for on-the-fly graph manipulation, named OPEN/CAESAR [31], provides an “opaque” repre-
sentation of states and actions (transitions labels): states are represented as memory areas of fixed
size and actions are character strings. Although appropriate to the pure process algebraic setting, this
representation must be generalized to provide additional information supporting an efficient con-
struction of advanced verification features, such as: handling of the types, functions, data values, and
parallel structure of the source program under verification, independence of transitions in the LTS,
quantitative (timed/probabilistic/stochastic) information, etc.

• Compositional framework for on-the-fly LTS analysis. On-the-fly model checkers and equivalence
checkers usually perform several operations on graph models (LTSs, Boolean graphs, etc.), such
as exploration, parallel composition, partial order reduction, encoding of model checking and
equivalence checking in terms of Boolean equation systems, resolution and diagnostic generation
for Boolean equation systems, etc. To facilitate the design, implementation, and usage of these
functionalities, it is necessary to encapsulate them in software components that could be freely
combined and replaced. Such components would act as graph transformers, that would execute (on
a sequential machine) in a way similar to coroutines and to the composition of lazy functions in
functional programming languages. Besides its obvious benefits in modularity, such a component-
based architecture will also make it possible to take advantage of multi-core processors.

• New generic components for on-the-fly verification. The quest for new on-the-fly components for
LTS analysis must be pursued, with the goal of obtaining a rich catalog of interoperable components
serving as building blocks for new analysis features. A long-term goal of this approach is to provide
an increasingly large catalog of interoperable components covering all verification and analysis
functionalities that appear to be useful in practice. It is worth noticing that some components can
be very complex pieces of software (e.g., the encapsulation of an on-the-fly model checker for a
rich temporal logic). Ideally, it should be possible to build a novel verification or analysis tool by
assembling on-the-fly graph manipulation components taken from the catalog. This would provide
a flexible means of building new verification and analysis tools by reusing generic, interoperable
model manipulation components.

3.5. Real-Life Applications and Case Studies
We believe that theoretical studies and tool developments must be confronted with significant case studies to
assess their applicability and to identify new research directions. Therefore, we seek to apply our languages,
models, and tools for specifying and verifying formally real-life applications, often in the context of industrial
collaborations.

4. Application Domains

4.1. Application Domains
The theoretical framework we use (automata, process algebras, bisimulations, temporal logics, etc.) and the
software tools we develop are general enough to fit the needs of many application domains. They are applicable

6 Activity Report INRIA 2017

to virtually any system or protocol that consists of distributed agents communicating by asynchronous
messages. The list of recent case studies performed with the CADP toolbox (see in particular § 6.5) illustrates
the diversity of applications:

• Bioinformatics: genetic regulatory networks, nutritional stress response, metabolic pathways,

• Component-based systems: Web services, peer-to-peer networks,

• Databases: transaction protocols, distributed knowledge bases, stock management,

• Distributed systems: virtual shared memory, dynamic reconfiguration algorithms, fault tolerance
algorithms, cloud computing,

• Embedded systems: air traffic control, avionic systems, medical devices,

• Hardware architectures: multiprocessor architectures, systems on chip, cache coherency protocols,
hardware/software codesign,

• Human-machine interaction: graphical interfaces, biomedical data visualization, plasticity,

• Security protocols: authentication, electronic transactions, cryptographic key distribution,

• Telecommunications: high-speed networks, network management, mobile telephony, feature inter-
action detection.

5. New Software and Platforms

5.1. CADP Pro
Construction and Analysis of Distributed Processes
KEYWORDS: Formal methods - Verification
FUNCTIONAL DESCRIPTION: CADP (Construction and Analysis of Distributed Processes – formerly known
as CAESAR/ALDEBARAN Development Package) [4] is a toolbox for protocols and distributed systems
engineering.

In this toolbox, we develop and maintain the following tools:

• CAESAR.ADT [30] is a compiler that translates LOTOS abstract data types into C types and
C functions. The translation involves pattern-matching compiling techniques and automatic recog-
nition of usual types (integers, enumerations, tuples, etc.), which are implemented optimally.

• CAESAR [36], [35] is a compiler that translates LOTOS processes into either C code (for rapid
prototyping and testing purposes) or finite graphs (for verification purposes). The translation is done
using several intermediate steps, among which the construction of a Petri net extended with typed
variables, data handling features, and atomic transitions.

• OPEN/CAESAR [31] is a generic software environment for developing tools that explore graphs on
the fly (for instance, simulation, verification, and test generation tools). Such tools can be developed
independently of any particular high level language. In this respect, OPEN/CAESAR plays a central
role in CADP by connecting language-oriented tools with model-oriented tools. OPEN/CAESAR
consists of a set of 16 code libraries with their programming interfaces, such as:

– CAESAR GRAPH, which provides the programming interface for graph exploration,

– CAESAR HASH, which contains several hash functions,

– CAESAR SOLVE, which resolves Boolean equation systems on the fly,

– CAESAR STACK, which implements stacks for depth-first search exploration, and

– CAESAR TABLE, which handles tables of states, transitions, labels, etc.

Project-Team CONVECS 7

A number of on-the-fly analysis tools have been developed within the OPEN/CAESAR environment,
among which:

– BISIMULATOR, which checks bisimulation equivalences and preorders,

– CUNCTATOR, which performs steady-state simulation of continuous-time Markov
chains,

– DETERMINATOR, which eliminates stochastic nondeterminism in normal, probabilistic,
or stochastic systems,

– DISTRIBUTOR, which generates the graph of reachable states using several machines,

– EVALUATOR, which evaluates MCL formulas,

– EXECUTOR, which performs random execution,

– EXHIBITOR, which searches for execution sequences matching a given regular expres-
sion,

– GENERATOR, which constructs the graph of reachable states,

– PROJECTOR, which computes abstractions of communicating systems,

– REDUCTOR, which constructs and minimizes the graph of reachable states modulo
various equivalence relations,

– SIMULATOR, XSIMULATOR, and OCIS, which enable interactive simulation, and

– TERMINATOR, which searches for deadlock states.

• BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using
efficient compression techniques) and a software environment for handling this format. BCG also
plays a key role in CADP as many tools rely on this format for their inputs/outputs. The BCG
environment consists of various libraries with their programming interfaces, and of several tools,
such as:

– BCG CMP, which compares two graphs,

– BCG DRAW, which builds a two-dimensional view of a graph,

– BCG EDIT, which allows the graph layout produced by BCG DRAW to be modified
interactively,

– BCG GRAPH, which generates various forms of practically useful graphs,

– BCG INFO, which displays various statistical information about a graph,

– BCG IO, which performs conversions between BCG and many other graph formats,

– BCG LABELS, which hides and/or renames (using regular expressions) the transition
labels of a graph,

– BCG MIN, which minimizes a graph modulo strong or branching equivalences (and can
also deal with probabilistic and stochastic systems),

– BCG STEADY, which performs steady-state numerical analysis of (extended) continuous-
time Markov chains,

– BCG TRANSIENT, which performs transient numerical analysis of (extended)
continuous-time Markov chains, and

– XTL (eXecutable Temporal Language), which is a high level, functional language for
programming exploration algorithms on BCG graphs. XTL provides primitives to handle
states, transitions, labels, successor and predecessor functions, etc.

8 Activity Report INRIA 2017

For instance, one can define recursive functions on sets of states, which allow evaluation
and diagnostic generation fixed point algorithms for usual temporal logics (such as HML
[40], CTL [26], ACTL [28], etc.) to be defined in XTL.

• PBG (Partitioned BCG Graph) is a file format implementing the theoretical concept of Partitioned
LTS [34] and providing a unified access to a graph partitioned in fragments distributed over a set
of remote machines, possibly located in different countries. The PBG format is supported by several
tools, such as:

– PBG CP, PBG MV, and PBG RM, which facilitate standard operations (copying, mov-
ing, and removing) on PBG files, maintaining consistency during these operations,

– PBG MERGE (formerly known as BCG MERGE), which transforms a distributed graph
into a monolithic one represented in BCG format,

– PBG INFO, which displays various statistical information about a distributed graph.
• The connection between explicit models (such as BCG graphs) and implicit models (explored on the

fly) is ensured by OPEN/CAESAR-compliant compilers, e.g.:
– BCG OPEN, for models represented as BCG graphs,
– CAESAR.OPEN, for models expressed as LOTOS descriptions,
– EXP.OPEN, for models expressed as communicating automata,
– FSP.OPEN, for models expressed as FSP [46] descriptions,
– LNT.OPEN, for models expressed as LNT descriptions, and
– SEQ.OPEN, for models represented as sets of execution traces.

The CADP toolbox also includes TGV (Test Generation based on Verification), which has been developed by
the VERIMAG laboratory (Grenoble) and the VERTECS project-team at Inria Rennes – Bretagne-Atlantique.

The CADP tools are well-integrated and can be accessed easily using either the EUCALYPTUS graphical
interface or the SVL [32] scripting language. Both EUCALYPTUS and SVL provide users with an easy and
uniform access to the CADP tools by performing file format conversions automatically whenever needed and
by supplying appropriate command-line options as the tools are invoked.

• Participants: Frédéric Lang, Hubert Garavel, Radu Mateescu and Wendelin Serwe
• Contact: Hubert Garavel
• URL: http://cadp.inria.fr/

5.2. TRAIAN
KEYWORDS: Compilation - LOTOS NT
FUNCTIONAL DESCRIPTION: TRAIAN is a compiler for translating LOTOS NT descriptions into C pro-
grams, which will be used for simulation, rapid prototyping, verification, and testing.

The current version of TRAIAN, which handles LOTOS NT types and functions only, has useful applications
in compiler construction [33], being used in all recent compilers developed by CONVECS.

• Participants: Frédéric Lang, Hubert Garavel and Wendelin Serwe
• Contact: Hubert Garavel
• URL: http://convecs.inria.fr/software/traian/

6. New Results
6.1. New Formal Languages and their Implementations

LNT is a next generation formal description language for asynchronous concurrent systems, which attempts
to combine the best features of imperative programming languages and value-passing process algebras. LNT
is increasingly used by CONVECS for industrial case studies and applications (see § 6.5) and serves also in
university courses on concurrency, in particular at ENSIMAG (Grenoble) and at Saarland University.

http://cadp.inria.fr/
http://convecs.inria.fr/software/traian/

Project-Team CONVECS 9

6.1.1. Translation from LNT to LOTOS
Participants: Hubert Garavel, Frédéric Lang, Wendelin Serwe.

The move towards “safer” LNT exceptions initiated in 2016 has been completed in 2017: the two concepts
of gates and exceptions have been unified in both LNT processes and LNT functions. The static semantics of
LNT no longer requires that variables and exceptions share the same name space.

LNT now permits simple loops (of the form “loop ... end loop”, without loop label nor “while” condition) in
LNT functions, as well as in LNT processes.

The pragma names “comparedby”, “external”, “implementedby”, “iteratedby”, “printedby”, and “represent-
edby” are no longer reserved LNT keywords, meaning that it is now permitted to declare LNT identifiers
having these names. Two new type pragmas “!card” and “!bits” have been added to specify the maximum
number of values and the number of bits to be used when storing the values of a given type in “hash-consing”
tables.

The LPP preprocessor and the LNT2LOTOS translator, which implement the LNT language, have been
enhanced in many ways. In addition to 9 bug fixes, the following enhancements have been made:

• LPP now implements LNT character strings more concisely.
• LPP automatically adds the “.lnt” extension to input and output files if this extension is missing.
• The algorithm that computes which LNT gates are used in each function or process has been made

more precise, and LNT2LOTOS now warns about gates that are declared but never used.
• LNT2LOTOS performs stricter compile-time checks that produce dedicated error messages, rather

than generating invalid LOTOS code that was subsequently rejected by CAESAR and/or CAE-
SAR.ADT. Also, several error messages displayed by LNT2LOTOS during its static-analysis phases
have been enhanced.

• The translation from LNT functions to LOTOS operations has been significantly improved by elim-
inating unreachable or redundant LOTOS equations, removing unused auxiliary LOTOS operations,
simplifying the premises of certain LOTOS equations, factorizing identical assignments in “if-then-
else” instructions, and optimizing long sequences of assignments intertwined with assertions. Thus,
LNT2LOTOS is now faster, uses less memory, generates more compact LOTOS code, and can com-
pile larger LNT specifications that could not be handled before.

The LNT2LOTOS Reference Manual, which contains the definition of the LNT language, has been revised,
enriched, and simplified in many ways. A paper presenting the historical background and motivation behind
the definition of LNT was published in an international conference [18].

6.1.2. NUPN
Participant: Hubert Garavel.

Nested-Unit Petri Nets (NUPNs) is an upward-compatible extension of P/T nets, which are enriched with
structural information on their concurrent structure. Such additional information can easily be produced when
NUPNs are generated from higher-level specifications (e.g., process calculi); quite often, such information
allows logarithmic reductions in the number of bits required to represent states, thus enabling verification tools
to perform better. The principles of NUPNs are exposed in [29] and its PNML representation is described here
1.

In 2017, we studied an abstraction called place fusion, which takes advantage of the compositional, hierar-
chical structure of NUPNs. We formulated key theorems stating which properties are preserved or not under
this abstraction. On the practical side, our collection of NUPN models grew to more than 8 000 benchmarks.
Statistical studies were done on this collection to estimate the compression factor permitted by the NUPN
model. A journal article providing an overview of NUPNs was written.

The NUPN model has been adopted by the Model Checking Contest and implemented in ten different tools
developed in four countries. In 2017, the NUPN model was also adopted for the parallel problems of the
RERS’2017 (Rigorous Examination of Reactive Systems) challenge 2.

1http://mcc.lip6.fr/nupn.php

http://mcc.lip6.fr/nupn.php

10 Activity Report INRIA 2017

6.1.3. Analysis of BPMN via Translation to LNT
Participants: Ajay Muroor Nadumane, Gwen Salaün.

Business process modeling is an important concern in companies and organizations. Formal analysis tech-
niques are crucial to detect semantic issues in the corresponding models, or to help with their refactoring and
evolution. However, business process development frameworks often fall short when it comes to go beyond
simulation or syntactic checking of the models. To ensure a more robust development of business processes,
we developed the VBPMN verification framework. It features several techniques for the automatic analysis of
business processes modeled using BPMN, the de facto standard for business process modeling.

The business processes, described using a Web application compliant with BPMN 2.0, are transformed into
an intermediate format called PIF (Process Intermediate Format). Then, from the PIF descriptions, models in
LNT and model-specific verification scripts in SVL are generated. In the end, CADP is used to check either
for functional properties of a given business process, or for the correctness of the evolution of a business
process into another one. This latter kind of verification supported by VBPMN is particularly helpful in order
to improve a process w.r.t. certain optimization criteria. A paper presenting these results was published in an
international conference [16].

6.1.4. Translation of Term Rewrite Systems
Participants: Hubert Garavel, Lina Marsso.

We pursued the development undertaken in 2015 of a software platform for systematically comparing the per-
formance of rewrite engines and pattern-matching implementations in algebraic specification and functional
programming languages. Our platform reuses the benchmarks of the three Rewrite Engine Competitions (2006,
2009, and 2010). Such benchmarks are term-rewrite systems expressed in a simple formalism named REC, for
which we developed automated translators that convert REC benchmarks into many languages, among which
AProVE, Clean, Haskell, LNT, LOTOS, Maude, mCRL, MLTON, OCAML, Opal, Rascal, Scala, SML-NJ,
Stratego/XT, and Tom.

In 2017, we revised and enhanced the largest REC benchmark, the MAA (Message Authenticator Algorithm),
a Message Authentication Code used for financial transactions (ISO 8731-2) between 1987 and 2002. This
model (13 sorts, 18 constructors, 644 non-constructors, and 684 rewrite rules) was proven to be confluent, and
terminating. Implementations in thirteen different languages have been automatically derived from this model
and used to validate 200 official test vectors for the MAA. These results led to a publication in an international
conference [14].

We also corrected and/or enhanced several of the existing REC translators (e.g., Clean) and added support of
CafeOBJ and compiled OCAML. A scientific paper on this study has been prepared.

6.1.5. Other Language Developments
Participants: Hubert Garavel, Frédéric Lang, Radu Mateescu, Wendelin Serwe.

The ability to compile and verify formal specifications with complex, user-defined operations and data
structures is a key feature of the CADP toolbox since its very origins.

In 2017, we brought various enhancements to several compilers handling formal specification languages
(LOTOS, MCL, XTL, and GRL):

• A buffer overflow and two out-of-bound array accesses have been corrected in both CAESAR and
CAESAR.ADT. Two memory allocation bugs have also been corrected in CAESAR.ADT. The latter
tool now generates C code that gives better diagnostic when the evaluation of a constant fails at run
time (e.g., when it triggers an exception signal, or exhausts the stack or heap memory).

• In addition to two bug fixes, the warning and error messages displayed by MCL_EXPAND
and XTL_EXPAND have been made more precise and stringent. The XTL libraries “walk” and
“walk_nice” have been modified not to trigger the extra warnings recently introduced.

2http://www.rers-challenge.org

http://www.rers-challenge.org

Project-Team CONVECS 11

• The GRL2LNT translator takes as input a formal description in GRL of a GALS system and
generates an equivalent LNT specification. A new version 1.1 of GRL2LNT has been released,
which corrects a bug concerning the LNT code generated by the “-merge” option.

H. Garavel pursued the study of the most suitable axiomatization of signed integers undertaken in 2016. He
reviewed a tenth of such Peano-like axiom systems, which he classified and evaluated according to complexity
and efficiency criteria. These results have been published in an international conference [13].

6.2. Parallel and Distributed Verification
6.2.1. Distributed State Space Manipulation

Participants: Hubert Garavel, Wendelin Serwe.

For distributed verification, CADP provides the PBG format, which implements the theoretical concept of
Partitioned LTS [34] and provides a unified access to an LTS distributed over a set of remote machines.

In 2017, many changes have been done to simplify the code of the CAESAR_NETWORK_1 communication
library, which is the backbone of the distributed verification tools of CADP, as well as the code of other tools
such as BCG_MIN, but most of these changes are not directly observable by end users. In addition to two
bug fixes in CAESAR_NETWORK_1 and two other bug fixes in the BES_SOLVE tool, the error messages
displayed by the various tools and the statistical information produced by the “-stat” option of BES_SOLVE
have been made more concise and more informative.

6.2.2. Debugging of Concurrent Systems
Participants: Gianluca Barbon, Gwen Salaün.

Model checking is an established technique for automatically verifying that a model satisfies a given temporal
property. When the model violates the property, the model checker returns a counterexample, which is a
sequence of actions leading to a state where the property is not satisfied. Understanding this counterexample
for debugging the specification is a complicated task for several reasons: (i) the counterexample can contain
hundreds of actions, (ii) the debugging task is mostly achieved manually, and (iii) the counterexample does
not explicitly highlight the source of the bug that is hidden in the model.

We proposed an approach that improves the usability of model checking by simplifying the comprehension of
counterexamples. Our solution aims at keeping only actions in counterexamples that are relevant for debugging
purposes. To do so, we first extract in the model all the counterexamples. Second, we define an analysis
algorithm that identifies actions that make the model skip from incorrect to correct behaviours, making these
actions relevant from a debugging perspective. Our approach is fully automated by a tool we implemented and
applied on real-world case studies from various application areas for evaluation purposes. This work led to a
publication in an international conference [11].

In 2017, we focused on extending our approach following three directions: (a) we introduced new notions
to identify new types of relevant actions; (b) we developed a set of heuristics to extract these actions from
counterexamples; (c) we proposed an alternative approach to focus on a broader range of properties (i.e.,
liveness properties). These new extensions have been integrated into our tool. A paper was submitted to an
international journal.

6.3. Timed, Probabilistic, and Stochastic Extensions
6.3.1. Tools for Probabilistic and Stochastic Systems

Participants: Hubert Garavel, Jean-Philippe Gros, Frédéric Lang, Julie Parreaux, Wendelin Serwe.

Formal models and tools dealing with quantititative aspects (such as time, probabilities, and other continuous
physical quantities) have become unavoidable for a proper study and computer-aided verification of functional
and non-functional properties of cyberphysical systems. The wealth of such formal models is sometimes
referred to as a quantitative “zoo” [39].

12 Activity Report INRIA 2017

The CADP toolbox already implements some of these probabilistic/stochastic models, namely DTMCs and
CTMCs (Discrete-Time and Continuous-Time Markov Chains), and IMCs (Interactive Markov Chains) [41].
Our long-term goal is to increase the capability and flexibility of the CADP tools, so as to support other
quantitative models more easily.

In 2017, we undertook a systematic review of the existing theoretical models and built a comprehensive list of
more than 70 software tools implementing these models [37]. The results of this study have been made widely
available as a Web catalog 3.

In parallel, we also undertook a systematic review [50] of the benchmarks made available for these tools.
We downloaded more than 21 000 files from the web and developed triage scripts to analyze these files and
classify them automatically, separating various kinds of automata-based models (e.g., Markov chains, Markov
automata, hybrid automata, etc.) from temporal-logic formulas. One finding of this “big data” study is the
present lack of diversity, as four tools (PRISM, MRMC, STORM, and SiSAT) provide nearly 60% of the
models.

To address this issue, we started investigating the probabilistic and stochastic models of complex industrial
systems produced by former PhD students of the VASY and CONVECS teams. We analyzed these models
(written in BCG, EXP, LOTOS, LNT, SVL, and/or Makefiles) to separate functional aspects from performance
ones, leading to a collection of DTMCs, CTMCs, IMCs, and IPCs (Interactive Probabilistic Chains). We
updated these models to ensure compatibility with the latest versions of CADP and C compilers, and we
started enhancing EXP.OPEN with new features that simplify the parallel composition of IPCs (see § 6.4.1).

6.3.2. On-the-fly Model Checking for Extended Regular Probabilistic Operators
Participant: Radu Mateescu.

Specifying and verifying quantitative properties of concurrent systems requires expressive and user-friendly
property languages combining temporal, data-handling, and quantitative aspects. In collaboration with José
Ignacio Requeno (Univ. Zaragoza, Spain), we undertook the quantitative analysis of concurrent systems
modeled as PTSs (Probabilistic Transition Systems), whose actions contain data values and probabilities. We
proposed a new regular probabilistic operator that extends naturally the Until operators of PCTL (Probabilistic
Computation Tree Logic) [38], by specifying the probability measure of a path characterized by a generalized
regular formula involving arbitrary computations on data values. We integrated the regular probabilistic
operator into MCL, we devised an associated on-the-fly model checking method based on a combined local
resolution of linear and Boolean equation systems, and we implemented the method in a prototype extension
of the EVALUATOR model checker.

In 2017, we continued experimenting the extended model checker on further examples of protocols (Bounded
Retransmission Protocol, randomized philosophers, self-stabilization) and observed that it exhibits a perfor-
mance comparable with the explicit-state algorithms of the PRISM model checker 4. A paper was submitted
to an international journal.

6.4. Component-Based Architectures for On-the-Fly Verification
6.4.1. Compositional Verification

Participants: Hubert Garavel, Frédéric Lang.

The CADP toolbox contains various tools dedicated to compositional verification, among which EXP.OPEN,
BCG_MIN, BCG_CMP, and SVL play a central role. EXP.OPEN explores on the fly the graph corresponding
to a network of communicating automata (represented as a set of BCG files). BCG_MIN and BCG_CMP
respectively minimize and compare behavior graphs modulo strong or branching bisimulation and their
stochastic extensions. SVL (Script Verification Language) is both a high-level language for expressing
complex verification scenarios and a compiler dedicated to this language.

3http://cadp.inria.fr/resources/zoo
4http://www.prismmodelchecker.org/

http://cadp.inria.fr/resources/zoo
http://www.prismmodelchecker.org/

Project-Team CONVECS 13

In 2017, two bugs have been solved in SVL and one bug has been solved in EXP.OPEN. Several improvements
have been brought to both tools. In particular:

• EXP.OPEN now has two new options “-prob” and “-rate” for handling probabilistic and stochastic
transitions, respectively; without these options, probabilistic and stochastic transitions are considered
as ordinary transitions (this enables EXP.OPEN to be used for implementing alternative semantics,
such as Interactive Probabilistic Chains [27] where probabilistic transitions are synchronized using
a global clock). Consequently, the former “-ratebranching” option has been replaced by “-
rate -branching”.

Also, error messages about synchronization vectors have been made more precise and EXP.OPEN
performs tighter checks about labels containing only blanks and unexpected synchronization of
probabilistic or stochastic transitions. Two bugs have been fixed in EXP.OPEN and style files have
been added to bring support for the EXP format by mainstream text editors.

• A new option “-v” has been added to set SVL variables from the command line (similar to “awk”
or “make”). Debugging SVL scripts has been made easier: the “-debug” option of SVL now stops
the execution as soon as a shell command (e.g., a CADP tool or a Unix command) terminates with a
non-zero exit status, so that problems are detected as soon as they occur.

Also, SVL now performs tighter semantic checks, making sure that all partial-order reduction options
passed to EXP.OPEN (namely, options explicitly set by the user and options automatically computed
by SVL from the context of the EXP composition expression) are not contradictory.

6.4.2. On-the-Fly Test Generation
Participants: Hubert Garavel, Lina Marsso, Radu Mateescu, Wendelin Serwe.

The CADP toolbox provides support for conformance test case generation by means of the TGV tool. Given
a formal specification of a system and a test purpose described as an input-output LTS (IOLTS), TGV
automatically generates test cases, which assess using black box testing techniques the conformance of a
system under test w.r.t. the formal specification. A test purpose describes the goal states to be reached by the
test and enables one to indicate parts of the specification that should be ignored during the testing process.
TGV does not generate test cases completely on the fly (i.e., online), because it first generates the complete
test graph (CTG) and then traverses it backwards to produce controllable test cases.

In 2017, we carried out the following activities:
• We developed the prototype tool TESTOR to extract test cases completely on the fly. Compared

to TGV, the new tool TESTOR presents several advantages: (i) it has a more modular architecture,
based on generic graph transformation components taken from the OPEN/CAESAR libraries (τ -
compression, τ -confluence, τ -closure, determinization, resolution of Boolean equation systems);
(ii) it is capable of extracting a test case completely on the fly, by exploiting the diagnostic
generation features of the Boolean equation system resolution algorithms; (iii) it enables a more
flexible expression of test purposes, taking advantage of the multiway rendezvous, a primitive to
express communication and synchronization among a set of distributed processes [15]. We evaluated
TESTOR on three published case studies and more than 10 000 examples taken from the non-
regression test suites of CADP. A paper describing this work was accepted for publication in an
international conference.

• We also revised TGV, which is now by default much less verbose and only displays the most
important information, but the former behaviour can still be retained using option “-verbose”.
A new option “-monitor” allows to follow in real time how the test case generation progresses.
Many warning and error messages have been enhanced, various bugs (especially buffer overflows)
have been fixed, and memory allocation results are now strictly controlled.

6.4.3. Other Component Developments
Participants: Lian Apostol, Soren Enevoldsen, Hubert Garavel, Frédéric Lang, Radu Mateescu, Wendelin
Serwe.

14 Activity Report INRIA 2017

The CAESAR_STANDARD library was enriched with the new CAESAR_TYPE_FORMAT type
and its associated primitives, and with two new functions CAESAR_SET_SIGNALS() and CAE-
SAR_RESET_SIGNALS() for handling POSIX signals (including SIGSEGV, i.e., segmentation violation).
The CAESAR_GRAPH interface, which remained stable for two decades, has been modified: its two
functions CAESAR_FORMAT_STATE() and CAESAR_FORMAT_LABEL() became more powerful, while
its two functions CAESAR_MAX_FORMAT_STATE() and CAESAR_MAX_FORMAT_LABEL() have
been removed from the interface. The same changes apply as well to all the other similar functions of the
OPEN/CAESAR libraries. All the OPEN/CAESAR compilers, application tools, and demo examples have
been modified to reflect these changes.

Sustained effort has been made to ensure that CADP works properly on mainstream computing platforms. In
particular, the RFL and TST scripts and the documentation have been continuously updated. Changes were
brought to CADP to cope with recent C compilers (such as GCC 6 and Clang) and to work around problems
with the “indent” command available on Solaris and macOS/Xcode. On Linux, CADP was ported to the latest
versions of Centos, Debian 9, and Ubuntu 17.04. The support for the various desktop environments (Gnome,
KDE, Mate, etc.) available in Linux distributions has improved. On macOS, support of obsolete versions (from
Mac OS X 10.6 “Snow Leopard” to OS X 10.9 “Mavericks” included) was withdrawn and support of macOS
10.13 “High Sierra” was added. Preliminary steps have been made to prepare a 64-bit version of CADP on
macOS. On Windows, support of obsolete versions (Windows XP and Vista) was dropped. CADP was also
adapted to follow the changes in the Cygwin software regarding pipe management. Many changes were made
to CADP so as to support the case where Cygwin is not installed in “C:/” but in a different folder. Finally,
preliminary steps have been made towards a 64-bit version of CADP for Windows.

In collaboration with Soren Enevoldsen (Aalborg University, Denmark), we studied the applicability of
CADP tools for analyzing concurrent systems described using weighted CCS (WCCS) [43], an extension
of CCS with an action prefix operator carrying a weight represented as a natural number. We developed a
prototype OPEN/CAESAR-compliant compiler for WCCS, which enables to produce, in conjunction with
the GENERATOR tool of CADP, the corresponding LTS model in which transitions are labeled with actions
and weights. For specifying temporal properties of WCCS systems, we developed a prototype MCL library
defining the operators of weighted CTL (WCTL) [43] using MCL fixed point operators parameterized by
natural numbers. This library, used in conjunction with the EVALUATOR tool, provides an on-the-fly model
checker for WCTL equipped with diagnostic capabilities (counterexamples and witnesses).

6.5. Real-Life Applications and Case Studies
6.5.1. Autonomous Resilience of Distributed IoT Applications in a Fog Environment

Participants: Umar Ozeer, Gwen Salaün.

The first year of the PhD thesis started with a state of the art on the resilience mechanisms, broadly in
distributed systems and then more specifically in distributed IoT (Internet of Things) applications. This
resulted, firstly in defining the scope of the thesis and, secondly, in identifying the steps to manage failures,
namely state saving, failure detection, fault isolation, and repairing in a consistent state.

A study of the mechanisms for saving the execution state of processes in distributed systems was done. This
enabled us to identify the specificities of our environment and to adapt existing snapshot and message logging
mechanisms to fit the context of state saving and manipulation in distributed IoT applications in view of
repairing failures and re-establishing consistency. We devised a first failure management protocol, which
is being tested on an instance of an IoT application test bed at Orange Labs. Next steps include formally
verifying the failure management protocol, as well as carrying out further tests on larger scaled applications
for the purpose of performance evaluation.

6.5.2. Activity Detection in a Smart Home
Participants: Waqas Imtiaz, Frédéric Lang, Radu Mateescu, Wendelin Serwe.

Project-Team CONVECS 15

Ambient intelligence is an active research field, whose aim is to design and analyze smart environments that
are capable of automated interaction with users and the physical world, through sensors, actuators, displays,
and computational elements, embedded in everyday objects, and connected through a network. In the Grenoble
area, the Equipex Amiqual4Home 5 provides among others access to a Smart Home, which is a fully functional
two-stage 90 meters square flat with 4 rooms including an open to kitchen living room, a bedroom, a bathroom
and a small office. All the rooms are equipped with cameras, microphones, sensors and actuators to remote
control various appliances like rollershutter, lights or multimedia devices. The software architecture of the
Smart Home is based on the open source home automation software OpenHAB 6. It allows a complete control
of the flat devices with a single system, despite the various protocols used. Using the rule engine, it also enables
the definition of rules expressing how the Smart Home should react to physical (human action, sensors, etc.)
or external (weather prediction service, calendar, etc.) events. A difficult question is how to make sure that
smart environments are programmed correctly, and will not lead to unexpected or even harmful behaviour.

Smart environments are concurrent and asynchronous by nature. To address the question above, we started,
in collaboration with Nicolas Bonnefond (PERVASIVE INTERACTION team and Amiqual4Home), to study
how existing tools for the formal design and verification of concurrent asynchronous systems present in the
CADP toolbox can be used to verify a smart environment. Firstly, we proposed a translation from OpenHAB
rules into a formal LNT model on which properties can be verified [42]. Secondly, in collaboration with Paula
Lago and Claudia Roncancio (SIGMA team of LIG), we exploited the dataset ContextAct@A4H of daily
living activities collected and annotated within Amiqual4Home for the purpose of activity recognition. Each
activity was described as an MCL temporal logic formula that is checked repeatedly on the log of sensor
measurements until all occurrences of the activity have been found. This approach has the ability to recognize
the start and end points of activities (thus not requiring to segment sensor data) and also expresses the temporal
order of events, thus palliating a limitation of existing ontology based activity recognition techniques. This led
to a publication in an international conference [17].

6.5.3. Other Case Studies
Participants: Hubert Garavel, Frédéric Lang, Lina Marsso, Wendelin Serwe.

The demo examples of CADP, which have been progressively accumulated since the origins of the toolbox,
are a showcase for the multiple capabilities of CADP, as well as a test bed to assess the new features
of the toolbox. In 2017, the effort to maintain and enhance these demos has been pursued. The demo 05
(Airplane-ground communication protocol) has been modified to use the new syntax of exceptions in the LNT
language. The LOTOS and LNT specifications of demo 12 (Message Authenticator Algorithm) have been
entirely revised, based upon the fine knowledge acquired by modelling this cryptographic function as a term
rewrite system [14]. The LNT specification has also been extended to incorporate the test vectors given in the
International Standards ISO 8730 and 8731-2. The resulting specification, which was initially too large to be
compiled, is now successfully handled after the enhancements brought to the LNT2LOTOS translator. Demo
19 (Production Cell) has been simplified and is now fully documented in a publication [15].

In the framework of the SECURIOT-2 project (see § 8.2.2.1), a Memory Protection Unit has been formally
specified in LNT and verified at Tiempo using CADP. A paper has been submitted to an international
conference.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Grants with Industry
7.1.1. Orange Labs

Participants: Umar Ozeer, Gwen Salaün.

5http://amiqual4home.inria.fr
6http://www.openhab.org

http://amiqual4home.inria.fr
http://www.openhab.org

16 Activity Report INRIA 2017

Umar Ozeer is supported by a PhD grant (from November 2016 to November 2019) from Orange Labs
(Grenoble) on detecting and repairing failures of data-centric applications distributed in the cloud and the IoT
(see § 6.5.1), under the supervision of Xavier Etchevers (Orange Labs), Gwen Salaün (CONVECS), François
Gaël Ottogalli (Orange Labs), and Jean-Marc Vincent (POLARIS project-team).

7.1.2. Nokia Bell Labs
Participants: Radu Mateescu, Ajay Muroor Nadumane, Gwen Salaün.

Ajay Muroor Nadumane is supported by a PhD grant (from October 2017 to October 2020) from Nokia Bell
Labs (Nozay) on IoT service composition supported by formal methods, under the supervision of Gwen Salaün
(CONVECS), Radu Mateescu (CONVECS), Ludovic Noirie, and Michel Le Pallec (Nokia Bell Labs).

8. Partnerships and Cooperations

8.1. Regional Initiatives
8.1.1. ARC6 Programme

Participants: Lina Marsso, Radu Mateescu [correspondent], Wendelin Serwe.

ARC6 is an academic research community funded by the Auvergne Rhône-Alpes region, whose objective is to
foster the scientific collaborations between different academic institutions of the region working in the domain
of information and communication technologies. ARC6 organizes various scientific animations (conferences,
working groups, summer schools, etc.) and issues a yearly call for PhD and post-doctorate research project
proposals.

Lina Marsso is supported by an ARC6 grant (from October 2016 to October 2019) on formal methods for
testing networks of programmable logic controllers, under the supervision of Radu Mateescu and Wendelin
Serwe (CONVECS), Ioannis Parissis and Christophe Deleuze (LCIS, Valence).

8.2. National Initiatives
8.2.1. PIA (Programme d’Investissements d’Avenir)
8.2.1.1. CAPHCA

Participants: Frédéric Lang, Radu Mateescu [correspondent], Wendelin Serwe.

CAPHCA (Critical Applications on Predictable High-Performance Computing Architectures) is a project
funded by the PIA. The project, led by IRT Saint-Exupéry (Toulouse), involves a dozen of industrial partners
(among which Airbus, CS Systèmes d’Information, Synopsis, and Thalès Avionics), the University Paul
Sabatier (Toulouse), and Inria Grenoble – Rhône-Alpes (CONVECS and SPADES project-teams). CAPHCA
addresses the dual problem of achieving performance and determinism when using new, high performance,
multicore System-on-Chip (SoC) platforms for the deployment of real-time, safety-critical applications. The
methodology adopted by CAPHCA consists in building a pragmatic combination of methods, tools, design
constraints and patterns deployable at a short-term horizon in the industrial domains targeted in the project.

CAPHCA started in December 2017 for four years. The main contributions of CONVECS to CAPHCA are
the detection of concurrency errors in parallel applications by means of formal methods and verification
techniques.

8.2.2. Competitivity Clusters
8.2.2.1. SECURIOT-2

Participants: Lian Apostol, Hubert Garavel [correspondent], Radu Mateescu, Wendelin Serwe.

Project-Team CONVECS 17

SECURIOT-2 is a project funded by the FUI (Fonds Unique Interministériel) within the Pôle de Compétitivité
Minalogic. The project, led by Tiempo Secure (Grenoble), involves the SMEs (Small and Medium Enterprises)
Alpwise, Archos, Sensing Labs, and Trusted Objects, the Institut Fourier and the VERIMAG laboratories of
Université Grenoble Alpes, and CONVECS. SECURIOT-2 aims at developing a secure micro-controller unit
(SMCU) that will bring to the IoT a high level of security, based on the techniques used for smart cards or
electronic passports. The SMCU will also include an original power management scheme adequate with the
low power consumption constraints of the IoT.

SECURIOT-2 started in September 2017 for three years. The main contributions of CONVECS to SECURIOT-
2 are the formal modeling and verification of the asynchronous hardware implementing the secure elements
developed by the project partners.

8.2.3. Other National Collaborations
We had sustained scientific relations with the following researchers:

• Pierre Boullier (Inria, team ALPAGE),
• Anne-Lise Courbis (Ecole des Mines, Alès, France),
• Christophe Deleuze and Ioannis Parissis (LCIS, Valence),
• Xavier Etchevers (Orange Labs, Meylan),
• Laurent Georget (Centrale/Supelec, Rennes, France),
• Claude Girault (LIP6, Paris),
• Fabrice Kordon and Lom Messan Hillah (LIP6, Paris),
• Xavier Leroy (Inria, team GALLIUM),
• Pascal Poizat (LIP6, Paris).

8.3. European Initiatives
8.3.1. Collaborations in European Programs, Except FP7 & H2020

Program: PHC Amadeus
Project acronym: RIDINGS
Project title: Rigourous Development of GALS Systems
Duration: January 2017 – December 2018
Coordinator: Inria Grenoble – Rhône-Alpes / CONVECS
Other partners: TU Graz, Institute of Software Technology (Austria)
Abstract: GALS systems, composed of synchronous components (driven by local clocks) that
communicate through a network, are increasingly spreading with the development of the IoT. GALS
systems are intrinsically complex due to the interplay of synchronous and asynchronous aspects,
which make their development and debugging difficult. Therefore, it is necessary to adopt rigorous
design methodologies, based on formal methods assisted by efficient validation tools. The RIDINGS
project aims at enhancing the design flow of a GALS system by integrating the automatic generation
of conformance tests from the formal model and the temporal properties used for verifying the
system. This yields a double benefit for the designer: (i) it makes possible to check that a physical
implementation conforms to the verified model; (ii) the development cost of the model and properties
is distributed on the verification and testing phases of the design process, therefore increasing the
return on investment.

8.3.2. Collaborations with Major European Organizations
The CONVECS project-team is member of the FMICS (Formal Methods for Industrial Critical Systems)
working group of ERCIM 7. H. Garavel and R. Mateescu are members of the FMICS board, H. Garavel being
in charge of dissemination actions.

7http://fmics.inria.fr

http://fmics.inria.fr

18 Activity Report INRIA 2017

8.4. International Initiatives
H. Garavel is a member of IFIP (International Federation for Information Processing) Technical Committee 1
(Foundations of Computer Science) Working Group 1.8 on Concurrency Theory chaired successively by Luca
Aceto and Jos Baeten.

8.4.1. Inria International Partners
8.4.1.1. Informal International Partners

Saarland University (Germany): we collaborate on a regular basis with the DEPEND (Dependable Systems and
Software) research group headed by Holger Hermanns, who received an ERC Advanced Grant (“POWVER”)
in 2016.

8.4.2. Other International Collaborations
In 2017, we had scientific relations with several universities and institutes abroad, including:

• University of Málaga, Spain (Francisco Duran),

• University of Boumerdes, Algeria (Sarah Chabane),

• Saarland University, Germany (Alexander Graf-Brill),

• ISTI/CNR, Pisa, Italy (Franco Mazzanti),

• FBK, Torino, Italy (Gianni Zampedri),

• RWTH Aachen, Germany (Christian Dehnert),

• University of Twente, The Netherlands (Enno Ruijters),

• University of York, UK (Jan Staunton),

• University Rio Grande do Norte, Brazil (Wellison Raul Mariz Santos),

• University of Cali, Colombia (Camilo Rocha),

• Utah State University, USA (Nazmus Sakib and Zhen Zhang).

8.5. International Research Visitors
8.5.1. Visits of International Scientists

• Mahsa Shirmohammadi (University of Oxford, UK) visited us on February 23–24, 2017. She gave a
talk on February 24, entitled “Minimal Probabilistic Automata have to make Irrational Choices”.

• Josip Bozic, Birgit Hofer, Hermann Felbinger, and Franz Wotawa (TU Graz, Austria) visited us from
May 15 to May 19, 2017, and attended the 1st RIDINGS Workshop held on May 17, 2017 at Inria
Grenoble – Rhône-Alpes. J. Bozic gave a talk entitled “Security Testing Based on Attack Patterns
and Planning”. B. Hofer gave a talk entitled “Fault Localization in Software and Spreadsheets”.
H. Felbinger gave a talk entitled “Test-Suite Reduction Does Not Necessarily Require Executing
The Program Under Test”. F. Wotawa gave a talk entitled “Research Activities at the Institute for
Software Technology / TU Graz”.

• Soren Enevoldsen (Aalborg University, Denmark) visited us from September 27 to December 27,
2017. He gave a talk entitled “Parallel Model Checking and Quantitative Models” on October 24,
2017.

8.5.2. Visits to International Teams
• H. Garavel is an invited professor at Saarland University (Germany) as a holder of the Gay-Lussac

Humboldt Prize.

• G. Salaün visited the University of Málaga (Spain) from May 31 to June 14, 2017.

• L. Marsso and W. Serwe visited TU Graz (Austria) from November 13 to November 17, 2017 in the
framework of the PHC RIDINGS project.

Project-Team CONVECS 19

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific Events Organisation
9.1.1.1. Member of the Organizing Committees

• H. Garavel is a member of the model board 8 of MCC (Model Checking Contest). In 2017, he helped
preparing new models (especially those in the NUPN format) and verified, using the CÆSAR.BDD
tool of CADP, the forms describing all benchmark models submitted by the contest participants; this
revealed a number of inconsistencies. The results of MCC’2017 have been published online [45] and
a journal paper is in preparation.

• Together with Peter Höfner (Data61, CSIRO, Sydney, Australia), H. Garavel set up a model
repository (hosted on the Gforge of Inria) to collect and archive formal models of real systems;
this infrastructure is used by the series of MARS workshops 9. This repository currently contains 17
models, two of which (a Message Authenticator Algorithm and a Production Cell) were deposited
in 2017 by CONVECS.

• G. Salaün is member of the steering committee of the SEFM (International Conference on Software
Engineering and Formal Methods) conference series since 2014.

• G. Salaün is member of the steering committee of the FOCLASA (International Workshop on
Foundations of Coordination Languages and Self-Adaptative Systems) workshop series since 2011.

9.1.2. Scientific Events Selection
9.1.2.1. Chair of Conference Program Committees

• G. Barbon was publicity chair of FOCLASA’2017 (15th International Workshop on Foundations of
Coordination Languages and Self-Adaptative Systems) co-located with SEFM’2017 (15th Interna-
tional Conference on Software Engineering and Formal Methods), Trento, Italy, September 5, 2017.

• F. Lang was co-chair of the Formal Methods track of ETR’2017 (9ème Ecole d’été Temps-Réel),
Paris, France, August 28 - September 1, 2017.

• R. Mateescu was tutorial chair of QRS’2017 (IEEE International Conference on Software Quality,
Reliability, and Security), Prague, Czech Republic, July 25–29, 2017.

• G. Salaün was co-chair of FOCLASA’2017.

9.1.2.2. Member of the Conference Program Committees
• H. Garavel was program committee member of the 7th FMF (Forum Methodes Formelles), Toulouse-

Grenoble-Saclay-Rennes, France, January 31, 2017.
• H. Garavel was program committee member of MARS’2017 (2nd Workshop on Models for Formal

Analysis of Real Systems), Uppsala, Sweden, April 29, 2017.
• H. Garavel and G. Salaün were program committee members of SEFM’2017 (15th International

Conference on Software Engineering and Formal Methods), Trento, Italy, September 6–10, 2017.
• H. Garavel was program committee member of the 8th FMF (Forum Methodes Formelles), Toulouse-

Grenoble-Saclay-Rennes, France, October 10, 2017.
• F. Lang was program committee member of GaM’2017 (3rd Workshop on Graphs as Models),

Uppsala, Sweden, April 22–23, 2017.
• R. Mateescu was program committee member of FMICS-AVoCS’2017 (International Workshop on

Formal Methods for Industrial Critical Systems and Automated Verification of Critical Systems),
Torino, Italy, September 18–20, 2017.

8http://mcc.lip6.fr/models.php
9http://www.mars-workshop.org/

http://mcc.lip6.fr/models.php
http://www.mars-workshop.org/

20 Activity Report INRIA 2017

• G. Salaün was program committee member of PDP-4PAD’2017 (25th Euromicro International
Conference on Parallel, Distributed and Network-based Processing - Formal Approaches to Parallel
and Distributed Systems), St. Petersburg, Russia, March 6–8, 2017.

• G. Salaün was program committee member of SAC-SOAP’2017 (the Service-Oriented Architectures
and Programming track) of SAC’2017 (32nd ACM Symposium on Applied Computing), Marrakesh,
Morocco, April 3–7, 2017.

• G. Salaün was program committee member of SAC-SVT’2017 (the Software Verification and Testing
track) of SAC’2017, Marrakesh, Morocco, April 3–7, 2017.

• G. Salaün and W. Serwe were program committee members of FSEN’2017 (7th IPM International
Conference on Fundamentals of Software Engineering), Tehran, Iran, April 26–28, 2017.

• G. Salaün was program committee member of the poster track of ICSE’2017 (39th International
Conference on Software Engineering), Buenos Aires, Argentina, May 20–28, 2017.

• G. Salaün was program committee member of COORDINATION’2017 (19th International Confer-
ence on Coordination Models and Languages), Neuchâtel, Switzerland, June 19–22, 2017.

• G. Salaün was program committee member of COMPSAC’2017 (IEEE International Conference on
Computers, Software, and Applications), Torino, Italy, July 4–8, 2017.

• G. Salaün was program committee member of VBSP’2017 (1st International Workshop on Verifica-
tion of Business and Software Processes), Paris, France, July 5, 2017.

• G. Salaün was program committee member of FACS’2017 (14th International Conference on Formal
Aspects of Component Software), Braga, Portugal, October 10–13, 2017.

• G. Salaün was program committee member of Microservices’2017, Odense, Denmark, October
25–26, 2017.

9.1.2.3. Reviewer
• G. Barbon was a reviewer for COMPSAC’2017, SEFM’2017, and SAC-SVT’2018 (33nd ACM

Symposium on Applied Computing - Software Verification and Testing Track), Pau, France, April
9–13, 2018.

• F. Lang was a reviewer for SEFM’2017 and FMICS-AVoCS’2017.
• L. Marsso was a reviewer for MARS’2017, COMPSAC’2017, SEFM’2017, and FMICS-

AVoCS’2017.
• U. Ozeer was a reviewer for SEFM’2017.
• G. Salaün was a reviewer for MARS’2017.
• W. Serwe was a reviewer for MARS’2017, SEFM’2017, and ICTSS’2017 (19th International

Conference on Testing Software and Systems), Paris, France, August 28–29, 2017.

9.1.3. Journal
9.1.3.1. Member of the Editorial Boards

• H. Garavel is an editorial board member of STTT (Springer International Journal on Software Tools
for Technology Transfer).

9.1.3.2. Reviewer - Reviewing Activities
• F. Lang was a reviewer for STTT.
• R. Mateescu was a reviewer for STTT.
• W. Serwe was a reviewer for STTT, SPE (Journal on Software: Practice and Experience), and

IJPEDS (International Journal on Power Electronics and Drive Systems).
• G. Salaün was a reviewer for JSC (Journal of Symbolic Computation), IEEE TSE (Transactions of

Software Engineering), and SCP (Science of Computer Programming).

9.1.4. Software Dissemination and Internet Visibility
The CONVECS project-team distributes several software tools, among which the CADP toolbox.

Project-Team CONVECS 21

In 2017, the main facts are the following:

• We prepared and distributed twelve successive versions (2017-a to 2017-l) of CADP.

• We were requested to grant CADP licenses for 315 different computers in the world.

The CONVECS Web site 10 was updated with scientific contents, announcements, publications, etc.

H. Garavel started a major rewrite of CorTeX, a build system and a collection of tools for documents prepared
using LaTeX.

By the end of December 2017, the CADP forum 11, opened in 2007 for discussions regarding the CADP
toolbox, had over 414 registered users and over 1796 messages had been exchanged.

Also, for the 2017 edition of the Model Checking Contest, three families of models generated using CADP
(totalling 64 Nested-Unit Petri Nets) were provided.

Other research teams took advantage of the software components provided by CADP (e.g., the BCG and
OPEN/CAESAR environments) to build their own research software. We can mention the following develop-
ments:

• The COSTO tool for analyzing Kmelia components and services [48], [21]

• The VERCORS Platform for Model Checking Distributed Components [20]

• A Model-Driven and Multi-Agent Approach for Web Services Composition [19]

• Formal Analysis of Security Guidelines for Program Certification [57], [56], [58]

• A Product-Line for Families of Program Translators [22]

• The GROOVE Tool for Verification Based on Graph Rewriting [44]

• The FTRES Tool for Rare Event Simulation in Dynamic Fault Trees [52]

• The MIstRAL Tool for Middleware Reconfiguration Based on Formal Methods [51]

• The ALVIS Modelling Language for Embedded Systems [54]

• Adaptive Service Composition based on Runtime Verification of Formal Properties [23]

Other teams also used the CADP toolbox for various case studies:

• Assisting Refinement and Formal Verification in the Design of Embedded Systems [49]

• A Formal Model for Plastic Human Computer Interfaces [25]

• Verifying Concurrent Stacks by Divergence-Sensitive Bisimulation [55]

• Compositional Model Checking of Liveness Properties [59]

• Verification of Visibility-Based Properties on Multiple Moving Robots [53]

9.1.5. Invited Talks
• G. Barbon gave a talk entitled “Debugging of Concurrent Systems using Counterexample Analysis”

on March 2nd, 2017 at the 2nd year PhD student day of the LIG.

• G. Barbon gave a talk entitled “Debugging of Concurrent Systems using Counterexample Analysis”
on December 13, 2017 at the Journée scientifique du pôle MSTIC.

• H. Garavel gave two talks entitled “Ten Different Ways on Defining Signed Integers Formally” and
“Benchmarking Implementations of Conditional Term Rewrite Systems” on February 28, 2017 at the
Formal Methods seminar of Inria Grenoble – Rhône-Alpes.

• H. Garavel gave a talk entitled “Nested-Units Petri Nets” during OPCT’2017 (Open Problems in
Concurrency Theory), a research seminar co-sponsored by the IFIP Working Group 1.8, that took
place in the Institute of Science and Technology Austria (IST Austria), Vienna, on June 26–29, 2017.

10http://convecs.inria.fr
11http://cadp.inria.fr/forum.html

http://convecs.inria.fr
http://cadp.inria.fr/forum.html

22 Activity Report INRIA 2017

• H. Garavel gave a talk entitled “From LOTOS to LNT” during the ModelEd, TestEd, TrustEd
Symposium in honour of the 60th birthday of Ed Brinksma held at the University of Twente, The
Netherlands, on October 18, 2017.

• The members of CONVECS attended the 1st RIDINGS Workshop, held at Inria Grenoble – Rhône-
Alpes on May 17, 2017. F. Lang gave a talk entitled “The LNT language and the LNT2LOTOS
compiler”. H. Garavel gave a talk entitled “The Unheralded Value of the Multiway Rendezvous:
Illustration with the Production Cell Benchmark”. L. Marsso gave a talk entitled “A Large Term
Rewrite System Modelling a Pioneering Cryptographic Algorithm”. G. Barbon gave a talk entitled
“Debugging of Concurrent Systems using Counterexample Analysis”.

• L. Marsso gave a talk entitled “Formal Methods for Testing Networks of Controllers” on May 29,
2017 at the 1st year PhD student day of the LIG.

• L. Marsso gave a talk entitled “Formal Methods for Testing Networks of Controllers” at the Scientific
day of the ARC6 held at Université Grenoble Alpes, on November 23, 2017.

• L. Marsso and W. Serwe attended the 2nd RIDINGS Workshop held at Technical University Graz,
Austria, on November 15, 2017. L. Marsso gave a talk entitled “Testor: A Modular Tool for On-the-
Fly Conformance Test Case Generation”. W. Serwe gave a talk entitled “Using a Formal Model to
Improve Verification of a Cache-Coherent System on Chip”.

• U. Ozeer gave a talk entitled “Autonomous Resilience of Applications in a Largely Distributed Cloud
Environment” on May 29, 2017 at the 1st year PhD student day of the LIG.

• U. Ozeer gave a talk entitled “Autonomous Resilience of Distributed IoT Applications in a Fog
Environment” at the IO Labs seminar held at Inria Paris on October 19–20, 2017.

• G. Salaün gave a talk entitled “Checking Business Process Evolution” on June 6, 2017 at the
University of Málaga, Spain.

9.1.6. Research Administration
• H. Garavel was appointed to the Executive Commission in charge of International Relations at

COMUE Université Grenoble Alpes.

• F. Lang is chair of the “Commission du développement technologique”, which is in charge of
selecting R&D projects for Inria Grenoble – Rhône-Alpes.

• R. Mateescu is the scientific correspondent of the European and International Partnerships for Inria
Grenoble – Rhône-Alpes.

• R. Mateescu is a member of the “Comité d’orientation scientifique” for Inria Grenoble – Rhône-
Alpes.

• R. Mateescu is a member of the “Bureau” of the LIG laboratory.

• G. Salaün is a member of the Scientific Committee of the PCS action of the PERSYVAL Labex.

• W. Serwe is (together with Laurent Lefèvre from the AVALON Inria project-team) correspondent in
charge of the 2017 Inria activity reports at Inria Grenoble – Rhône-Alpes.

• W. Serwe is a member of the “Comité de Centre” at Inria Grenoble – Rhone-Alpes.

• W. Serwe is “chargé de mission” for the scientific axis Formal Methods, Models, and Languages of
the LIG laboratory.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

CONVECS is a host team for the computer science master entitled “Mathématiques, Informatique, spécialité :
Systèmes et Logiciels”, common to Grenoble INP and Université Grenoble Alpes (UGA).

Project-Team CONVECS 23

In 2017, we carried out the following teaching activities:

G. Barbon gave a tutorial course on “Language Theory” (18 hours “équivalent TD” on formal
languages, automata, regular expressions, and grammars) to second year students of ENSIMAG.

H. Garavel, together with Laurence Pierre (TIMA, Grenoble), created a new curriculum HECS 12

(“High-confidence Embedded and Cyberphysical Systems”) for 2nd-year MOSIG (Master of Science
in Informatics at Grenoble) students. This curriculum opened for the first time in September 2016.

F. Lang, R. Mateescu, G. Salaün, and W. Serwe gave lectures on models for concurrency, temporal
logics, equivalences, formal languages and verification (36 hours “équivalent TD”) as part of the
MOSIG/MACS-2 course (“Modeling and Analysis of Concurrent Systems”) led by G. Salaün.

G. Barbon and W. Serwe supervised each a group of six teams in the context of the “projet Génie
Logiciel” (55 hours “équivalent TD”, consisting in 16 hours of lectures, plus supervision and
evaluation), ENSIMAG, January 2017.

F. Lang gave a lecture on “Modélisation et Vérification des Systèmes Concurrents et Temps-Réel”
(27 hours “équivalent TD”) to third year students of ENSIMAG.

F. Lang gave a course on “Formal Software Development Methods” (7.5 hours “équivalent TD”) in
the framework of the “Software Engineering” lecture given to first year students of the MOSIG.

L. Marsso gave a course on “Algorithms and Web Programming” (44 hours “équivalent TD”) at the
department MMI of IUT1 (UGA).

G. Salaün taught about 200 hours of classes (algorithmics, Web development, object-oriented
programming, iOS programming) at the department MMI of IUT1 (UGA). He is also headmaster of
the “Services Mobiles et Interface Nomade” (SMIN) professional licence (3rd year of university) at
IUT1/UGA.

9.2.2. Supervision
PhD in progress: G. Barbon, “Debugging Concurrent Programs using Model Checking and Mining
Techniques”, Université Grenoble Alpes, since October 2015, G. Salaün and V. Leroy

PhD in progress: L. Marsso, “Formal Methods for Testing Networks of Controllers”, Université
Grenoble Alpes, since October 2016, R. Mateescu, W. Serwe, I. Parissis, and Ch. Deleuze

PhD in progress: A. Muroor Nadumane, “Softwarization of Everything: IoT Service Composition”,
Université Grenoble Alpes, since October 2017, G. Salaün, R. Mateescu, L. Noirie, and M. Le Pallec

PhD in progress: U. Ozeer, “Autonomous Resilience of Applications in a Largely Distributed Cloud
Environment”, Université Grenoble Alpes, since November 2016, X. Etchevers, G. Salaün, F.-
G. Ottogalli, and J.-M. Vincent

9.2.3. Juries
• R. Mateescu was reviewer of Alexandre Duret-Lutz’s Habilitation thesis, entitled “Contributions to

LTL and Omega-Automata for Model Checking”, defended at EPITA (Paris, France) on February 10,
2017.

• R. Mateescu was reviewer of Zhengkui Zhang’s PhD thesis, entitled “Time and Cost Optimization
of Cyber-Physical Systems by Distributed Reachability Analysis”, defended at the University of
Aalborg (Denmark) on March 28, 2017.

• R. Mateescu was reviewer of Simon Busard’s PhD thesis, entitled “Symbolic Model Checking of
Multi-Modal Logics: Uniform Strategies and Rich Explanations”, defended at Université Catholique
de Louvain (Belgium) on May 10, 2017.

• G. Salaün was reviewer of Imen Boudhiba’s PhD thesis, entitled “A Model-Based Testing framework
for IOSTS enriched with function calls”, defended at Centrale-Supélec (Paris, France) on March 2,
2017.

12http://hecs.imag.fr

http://hecs.imag.fr

24 Activity Report INRIA 2017

• G. Salaün was PhD committee president of Hosein Nazarpour’s PhD thesis, entitled “Monitoring
Multi-threaded and Distributed (Component-Based) Systems”, defended at Université Grenoble
Alpes on June 26, 2017.

• G. Salaün was PhD committee president of Jean-François Weber’s PhD thesis, entitled “Guiding and
Controlling the Reconfigurations of Component-based Systems”, defended at Université de Franche-
Comté (Besançon, France) on October 5, 2017.

9.3. Popularization
H. Garavel participates to the program committee and organization committee of FMF (Formal Methods
Forum) 13, a series of industrial conferences on formal methods set up by the competitivity clusters Aerospace
Valley and Minalogic, with the support of Inria and many other partners. The 7th FMF conference, devoted to
formal methods and cybersecurity, was held on January 31, 2017. The 8th FMF conference, devoted to formal
methods and autonomous vehicles, was held on October 10, 2017. Both events gathered a large audience.

L. Marsso, R. Mateescu, and Olivier Clozeau (Innovista Sensors) participated to the “Forum 5i” held on June
1st, 2017 at Grenoble (World Trade Center), where they held a stand dedicated to the results of the Bluesky
project 14.

R. Mateescu gave a lecture entitled “Validation d’applications embarquées par des jumeaux numériques
formels” at the Journée thématique Minalogic sur la modélisation des systèmes cyber-physiques held in
Grenoble on November 16, 2017.

10. Bibliography
Major publications by the team in recent years

[1] X. ETCHEVERS, G. SALAÜN, F. BOYER, T. COUPAYE, N. DE PALMA. Reliable Self-deployment of
Distributed Cloud Applications, in "Software: Practice and Experience", 2017, vol. 47, no 1, pp. 3-20
[DOI : 10.1002/SPE.2400], https://hal.inria.fr/hal-01290465

[2] H. EVRARD, F. LANG. Automatic Distributed Code Generation from Formal Models of Asynchronous Pro-
cesses Interacting by Multiway Rendezvous, in "Journal of Logical and Algebraic Methods in Programming",
March 2017, vol. 88, 33 p. [DOI : 10.1016/J.JLAMP.2016.09.002], https://hal.inria.fr/hal-01412911

[3] H. GARAVEL, F. LANG, R. MATEESCU. Compositional Verification of Asynchronous Concurrent Systems
using CADP, in "Acta Informatica", June 2015, vol. 52, no 4, 56 p. [DOI : 10.1007/S00236-015-0226-1],
https://hal.inria.fr/hal-01247507

[4] H. GARAVEL, F. LANG, R. MATEESCU, W. SERWE. CADP 2011: A Toolbox for the Construction and Analysis
of Distributed Processes, in "International Journal on Software Tools for Technology Transfer", 2013, vol. 15,
no 2, pp. 89-107 [DOI : 10.1007/S10009-012-0244-Z], http://hal.inria.fr/hal-00715056

[5] H. GARAVEL, F. LANG, W. SERWE. From LOTOS to LNT, in "ModelEd, TestEd, TrustEd - Essays Dedicated to
Ed Brinksma on the Occasion of His 60th Birthday", J.-P. KATOEN, R. LANGERAK, A. RENSINK (editors),
Lecture Notes in Computer Science, Springer, October 2017, vol. 10500, pp. 3 - 26 [DOI : 10.1007/978-3-
319-68270-9_1], https://hal.inria.fr/hal-01621670

13http://projects.laas.fr/IFSE/FMF
14http://www.minalogic.com/en/project/bluesky

https://hal.inria.fr/hal-01290465
https://hal.inria.fr/hal-01412911
https://hal.inria.fr/hal-01247507
http://hal.inria.fr/hal-00715056
https://hal.inria.fr/hal-01621670
http://projects.laas.fr/IFSE/FMF
http://www.minalogic.com/en/project/bluesky

Project-Team CONVECS 25

[6] R. MATEESCU, P. POIZAT, G. SALAÜN. Adaptation of Service Protocols using Process Alge-
bra and On-the-Fly Reduction Techniques, in "IEEE Transactions on Software Engineering", 2012
[DOI : 10.1109/TSE.2011.62], http://hal.inria.fr/hal-00717252

[7] R. MATEESCU, W. SERWE. Model Checking and Performance Evaluation with CADP Illustrated on
Shared-Memory Mutual Exclusion Protocols, in "Science of Computer Programming", February 2012
[DOI : 10.1016/J.SCICO.2012.01.003], http://hal.inria.fr/hal-00671321

Publications of the year
Articles in International Peer-Reviewed Journals

[8] R. ABID, G. SALAÜN, N. DE PALMA. Asynchronous synthesis techniques for coordinating autonomic
managers in the cloud, in "Science of Computer Programming", October 2017, vol. 146, pp. 87 - 103
[DOI : 10.1016/J.SCICO.2017.05.005], https://hal.inria.fr/hal-01630717

[9] X. ETCHEVERS, G. SALAÜN, F. BOYER, T. COUPAYE, N. DE PALMA. Reliable Self-deployment of
Distributed Cloud Applications, in "Software: Practice and Experience", 2017, vol. 47, no 1, pp. 3-20
[DOI : 10.1002/SPE.2400], https://hal.inria.fr/hal-01290465

[10] H. EVRARD, F. LANG. Automatic Distributed Code Generation from Formal Models of Asynchronous Pro-
cesses Interacting by Multiway Rendezvous, in "Journal of Logical and Algebraic Methods in Programming",
March 2017, vol. 88, 33 p. [DOI : 10.1016/J.JLAMP.2016.09.002], https://hal.inria.fr/hal-01412911

International Conferences with Proceedings

[11] G. BARBON, V. LEROY, G. SALAÜN. Debugging of Concurrent Systems using Counterexample Analysis, in
"Fundamentals of Software Engineering (FSEN)", Tehran, Iran, Lecture Notes in Computer Science, Springer
Verlag, April 2017, vol. 10522, pp. 20-34, https://hal.inria.fr/hal-01533401

[12] F. DURÁN, G. SALAÜN. Verifying Timed BPMN Processes Using Maude, in "19th International Conference
on Coordination Languages and Models (COORDINATION)", Neuchâtel, Switzerland, J.-M. JACQUET, M.
MASSINK (editors), Coordination Models and Languages, Springer, June 2017, vol. LNCS-10319, pp. 219-
236, Part 5: Verification [DOI : 10.1007/978-3-319-59746-1_12], https://hal.inria.fr/hal-01538104

[13] H. GARAVEL. On the Most Suitable Axiomatization of Signed Integers, in "23rd International Workshop on
Algebraic Development Techniques (WADT’2016)", Gregynog, Wales, UK, United Kingdom, P. JAMES, M.
ROGGENBACH (editors), Springer, September 2017, vol. Lecture Notes in Computer Science, no 10644, pp.
120-134, https://hal.inria.fr/hal-01667321

[14] H. GARAVEL, L. MARSSO. A Large Term Rewrite System Modelling a Pioneering Cryptographic Algorithm,
in "2nd Workshop on Models for Formal Analysis of Real Systems", Uppsala, Sweden, April 2017, vol. 244,
pp. 129 - 183 [DOI : 10.4204/EPTCS.244.6], https://hal.inria.fr/hal-01511859

[15] H. GARAVEL, W. SERWE. The Unheralded Value of the Multiway Rendezvous: Illustration with the Produc-
tion Cell Benchmark, in "2nd Workshop on Models for Formal Analysis of Real Systems", Uppsala, Sweden,
April 2017, vol. 244, pp. 230 - 270 [DOI : 10.4204/EPTCS.244.10], https://hal.inria.fr/hal-01511847

http://hal.inria.fr/hal-00717252
http://hal.inria.fr/hal-00671321
https://hal.inria.fr/hal-01630717
https://hal.inria.fr/hal-01290465
https://hal.inria.fr/hal-01412911
https://hal.inria.fr/hal-01533401
https://hal.inria.fr/hal-01538104
https://hal.inria.fr/hal-01667321
https://hal.inria.fr/hal-01511859
https://hal.inria.fr/hal-01511847

26 Activity Report INRIA 2017

[16] A. KRISHNA, P. POIZAT, G. SALAÜN. VBPMN: Automated Verification of BPMN Processes, in "13th
International Conference on integrated Formal Methods (iFM 2017)", Turin, Italy, September 2017, https://
hal.inria.fr/hal-01591665

[17] P. LAGO, F. LANG, C. RONCANCIO, C. JIMÉNEZ-GUARÍN, R. MATEESCU, N. BONNEFOND. The Contex-
tAct@A4H real-life dataset of daily-living activities Activity recognition using model checking, in "10th Inter-
national and Interdisciplinary Conference - CONTEXT 2017", Paris, France, P. BRÉZILLON, R. TURNER, C.
PENCO (editors), Lecture Notes in Computer Science, Springer Verlag, June 2017, vol. 10257, pp. 175-188
[DOI : 10.1007/978-3-319-57837-8_14], https://hal.archives-ouvertes.fr/hal-01551418

Scientific Books (or Scientific Book chapters)

[18] H. GARAVEL, F. LANG, W. SERWE. From LOTOS to LNT, in "ModelEd, TestEd, TrustEd - Essays Dedicated
to Ed Brinksma on the Occasion of His 60th Birthday", J.-P. KATOEN, R. LANGERAK, A. RENSINK (editors),
Lecture Notes in Computer Science, Springer, October 2017, vol. 10500, pp. 3 - 26 [DOI : 10.1007/978-3-
319-68270-9_1], https://hal.inria.fr/hal-01621670

References in notes

[19] N. ADADI, M. BERRADA, D. CHENOUNI, B. BOUNABAT. Proposition of Web Services Composition
Approach Basing of Model-Driven Approach and Multi-Agent Systems, in "Computer Modelling and New
Technologies", February 2017, vol. 21, no 3, pp. 12–19

[20] R. AMEUR-BOULIFA, L. HENRIO, O. KULANKHINA, E. MADELAINE, A. SAVU. Behavioural Semantics
for Asynchronous Components, in "Journal of Logical and Algebraic Methods in Programming", 2017, vol.
89, pp. 1–40

[21] P. ANDRÉ, C. ATTIOGBÉ, J. MOTTU. Combining Techniques to Verify Service-based Components, in
"Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development
(MODELSWARD’2017), Porto, Portugal", L. F. PIRES, S. HAMMOUDI, B. SELIC (editors), SciTePress,
February 2017, pp. 645–656

[22] D. A. O. CAMACHO. A Product-Line for Families of Program Translators: A Grammar-Based Approach,
Université Catholique de Louvain, Belgium, August 2010

[23] G. M. M. CAMPOS, N. S. ROSA, L. F. PIRES. Adaptive Service Composition Based on Runtime Verification
of Formal Properties, in "Proceedings of the 50th Hawaii International Conference on System Sciences
(HICSS’2017), Hilton Waikoloa Village, Hawaii, USA", AIS Electronic Library (AISeL), January 2017

[24] D. CHAMPELOVIER, X. CLERC, H. GARAVEL, Y. GUERTE, C. MCKINTY, V. POWAZNY, F. LANG, W.
SERWE, G. SMEDING. Reference Manual of the LOTOS NT to LOTOS Translator (Version 5.7), November
2012, Inria/VASY, 153 pages

[25] A. CHEBIEB, Y. A. AMEUR. A Formal Model for Plastic Human Computer Interfaces, in "Frontiers of
Computer Science", March 2017

[26] E. M. CLARKE, E. A. EMERSON, A. P. SISTLA. Automatic Verification of Finite-State Concurrent Systems
using Temporal Logic Specifications, in "ACM Transactions on Programming Languages and Systems", April
1986, vol. 8, no 2, pp. 244–263

https://hal.inria.fr/hal-01591665
https://hal.inria.fr/hal-01591665
https://hal.archives-ouvertes.fr/hal-01551418
https://hal.inria.fr/hal-01621670

Project-Team CONVECS 27

[27] N. COSTE, H. HERMANNS, E. LANTREIBECQ, W. SERWE. Towards Performance Prediction of Composi-
tional Models in Industrial GALS Designs, in "Proceedings of the 21th International Conference on Computer
Aided Verification CAV’2009 (Grenoble, France)", A. BOUAJJANI, O. MALER (editors), Lecture Notes in
Computer Science, Springer Verlag, July 2009, vol. 5643, pp. 204–218, http://hal.inria.fr/inria-00381657

[28] R. DE NICOLA, F. W. VAANDRAGER. Action versus State Based Logics for Transition Systems, Lecture
Notes in Computer Science, Springer Verlag, 1990, vol. 469, pp. 407–419

[29] H. GARAVEL. Nested-Unit Petri Nets: A Structural Means to Increase Efficiency and Scalability of Verification
on Elementary Nets, in "Proceedings of the 36th International Conference on Application and Theory of Petri
Nets and Concurrency (PETRI NETS’15), Brussels, Belgium", R. R. DEVILLERS, A. VALMARI (editors),
Lecture Notes in Computer Science, Springer Verlag, June 2015, vol. 9115, pp. 179–199

[30] H. GARAVEL. Compilation of LOTOS Abstract Data Types, in "Proceedings of the 2nd International Confer-
ence on Formal Description Techniques FORTE’89 (Vancouver B.C., Canada)", S. T. VUONG (editor), North
Holland, December 1989, pp. 147–162

[31] H. GARAVEL. OPEN/CÆSAR: An Open Software Architecture for Verification, Simulation, and Testing, in
"Proceedings of the First International Conference on Tools and Algorithms for the Construction and Analysis
of Systems TACAS’98 (Lisbon, Portugal)", Berlin, B. STEFFEN (editor), Lecture Notes in Computer Science,
Springer Verlag, March 1998, vol. 1384, pp. 68–84, Full version available as Inria Research Report RR-3352

[32] H. GARAVEL, F. LANG. SVL: a Scripting Language for Compositional Verification, in "Proceedings of the
21st IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed Systems
FORTE’2001 (Cheju Island, Korea)", M. KIM, B. CHIN, S. KANG, D. LEE (editors), Kluwer Academic
Publishers, August 2001, pp. 377–392, Full version available as Inria Research Report RR-4223

[33] H. GARAVEL, F. LANG, R. MATEESCU. Compiler Construction using LOTOS NT, in "Proceedings of the 11th
International Conference on Compiler Construction CC 2002 (Grenoble, France)", N. HORSPOOL (editor),
Lecture Notes in Computer Science, Springer Verlag, April 2002, vol. 2304, pp. 9–13

[34] H. GARAVEL, R. MATEESCU, I. SMARANDACHE-STURM. Parallel State Space Construction for Model-
Checking, in "Proceedings of the 8th International SPIN Workshop on Model Checking of Software
SPIN’2001 (Toronto, Canada)", Berlin, M. B. DWYER (editor), Lecture Notes in Computer Science, Springer
Verlag, May 2001, vol. 2057, pp. 217–234, Revised version available as Inria Research Report RR-4341 (De-
cember 2001)

[35] H. GARAVEL, W. SERWE. State Space Reduction for Process Algebra Specifications, in "Theoretical
Computer Science", February 2006, vol. 351, no 2, pp. 131–145

[36] H. GARAVEL, J. SIFAKIS. Compilation and Verification of LOTOS Specifications, in "Proceedings of the
10th International Symposium on Protocol Specification, Testing and Verification (Ottawa, Canada)", L.
LOGRIPPO, R. L. PROBERT, H. URAL (editors), North Holland, June 1990, pp. 379–394

[37] J.-P. GROS. A Unifying Framework for Comparing and Implementing Probabilistic Models, Univ. Grenoble
Alpes, Grenoble, June 2017

[38] H. HANSSON, B. JONSSON. A Logic for Reasoning about Time and Reliability, in "Formal Aspects of
Computing", 1994, vol. 6, no 5, pp. 512–535

http://hal.inria.fr/inria-00381657

28 Activity Report INRIA 2017

[39] A. HARTMANNS, H. HERMANNS. In the Quantitative Automata Zoo, in "Science of Computer Programming",
2015, vol. 112, pp. 3–23

[40] M. HENNESSY, R. MILNER. Algebraic Laws for Nondeterminism and Concurrency, in "Journal of the ACM",
1985, vol. 32, pp. 137–161

[41] H. HERMANNS. Interactive Markov Chains and the Quest for Quantified Quality, Lecture Notes in Computer
Science, Springer Verlag, 2002, vol. 2428

[42] W. IMTIAZ. Formal Modeling of Smart Home Automation, Univ. Grenoble Alpes, Grenoble, September 2017

[43] J. F. JENSEN, K. G. LARSEN, J. SRBA, L. K. OESTERGAARD. Efficient Model-Checking of Weighted CTL
with Upper-Bound Constraints, in "Springer International Journal on Software Tools for Technology Transfer
(STTT)", 2016, vol. 18, no 4, pp. 409–426

[44] S. JUNGES, D. GUCK, J.-P. KATOEN, A. RENSINK, M. STOELINGA. Fault Trees on a Diet: Automated
Reduction by Graph Rewriting, in "Formal Aspects of Computing", July 2017, vol. 29, no 4, pp. 651–703

[45] F. KORDON, H. GARAVEL, L. M. HILLAH, F. HULIN-HUBARD, B. BERTHOMIEU, G. CIARDO, M.
COLANGE, S. DAL ZILIO, E. AMPARORE, T. LIEBKE, J. MEIJER, A. MINER, C. ROHR, J. SRBA, Y.
THIERRY-MIEG, J. VAN DE POL, K. WOLF. Complete Results for the 2017 Edition of the Model Checking
Contest, June 2017, http://mcc.lip6.fr/2017/results.php

[46] J. MAGEE, J. KRAMER. Concurrency: State Models and Java Programs, 2006, Wiley, April 2006

[47] R. MATEESCU, D. THIVOLLE. A Model Checking Language for Concurrent Value-Passing Systems, in "Pro-
ceedings of the 15th International Symposium on Formal Methods FM’08 (Turku, Finland)", J. CUELLAR, T.
MAIBAUM, K. SERE (editors), Lecture Notes in Computer Science, Springer Verlag, May 2008, vol. 5014,
pp. 148–164

[48] M. E.-H. MESSABIHI. Contribution à la spécification et à la vérification des logiciels à base de composants :
enrichissement du langage de données de Kmelia et vérification de contrats, Université de Nantes, France, July
2011

[49] H. MOKRANI. Assistance au raffinement et à la vérification formels dans la conception des systèmes
embarqués, TÉLÉCOM ParisTech, June 2014

[50] J. PARREAUX. Panorama des modèles et outils de vérification pour les systèmes probabilistes, University
Rennes I and ENS Rennes, July 2017, Prepared at Inria Grenoble

[51] N. ROSA. Middleware Adaptation through Process Mining, in "Proceedings of the 31st IEEE Interna-
tional Conference on Advanced Information Networking and Applications (AINA’2017), Taipei, Taiwan",
L. BAROLLI, M. TAKIZAWA, T. ENOKIDO, H. HSU, C. LIN (editors), IEEE, March 2017, pp. 244–251

[52] E. RUIJTERS, D. REIJSBERGEN, P. DE BOER, M. STOELINGA. Rare Event Simulation for Dynamic Fault
Trees, in "Proceedings of the 36th International Conference on Computer Safety, Reliability, and Security
(SAFECOMP’2017), Trento, Italy", S. TONETTA, E. SCHOITSCH, F. BITSCH (editors), Lecture Notes in
Computer Science, Springer Verlag, September 2017, vol. 10488, pp. 20–35

http://mcc.lip6.fr/2017/results.php

Project-Team CONVECS 29

[53] A. N. SHESHKALANI, R. KHOSRAVI, M. MOHAMMADI. Verification of Visibility-Based Properties on
Multiple Moving Robots, Y. GAO, S. FALLAH, Y. JIN, C. LEKAKOU (editors), Springer International
Publishing, 2017, pp. 51–65

[54] M. SZPYRKA, G. J. NALEPA, K. KLUZA. From Process Models to Concurrent Systems in Alvis Language,
in "Informatica", 2017, vol. 28, no 3, pp. 525–545

[55] X. YANG, J. KATOEN, H. LIN, H. WU. Verifying Concurrent Stacks by Divergence-Sensitive Bisimulation,
in "CoRR", June 2017, vol. abs/1701.06104

[56] Z. ZHIOUA, Y. ROUDIER, R. AMEUR-BOULIFA. Formal Specification and Verification of Security Guide-
lines, in "Proceedings of the IEEE 22nd Pacific Rim International Symposium on Dependable Computing
(PRDC’2017)", IEEE, January 2017, pp. 267–273

[57] Z. ZHIOUA, Y. ROUDIER, R. AMEUR-BOULIFA. Formal Specification of Security Guidelines for Program
Certification, in "Proceedings of the 11th International Symposium on Theoretical Aspects of Software
Engineering (TASE’2017), Nice, France", IEEE, September 2017

[58] Z. ZHIOUA, Y. ROUDIER, R. AMEUR-BOULIFA, T. KECHICHE, S. SHORT. Tracking Dependent Information
Flows, in "Proceedings of the 3rd International Conference on Information Systems Security and Privacy
(ICISSP’2017), Porto, Portugal", P. MORI, S. FURNELL, O. CAMP (editors), SciTePress, February 2017, pp.
179–189

[59] S. DE PUTTER, A. WIJS. Compositional Model Checking Is Lively, in "Proceedings of the 14th International
Conference on Formal Aspects of Component Software (FACS’17), Braga, Portugal", J. PROENÇA, M.
LUMPE (editors), Lecture Notes in Computer Science, Springer Verlag, October 2017, vol. 10487, pp. 117–136

