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2. Overall Objectives

2.1. Overall Objectives
DataShape is a research project in Topological Data Analysis (TDA), a recent field whose aim is to uncover,
understand and exploit the topological and geometric structure underlying complex and possibly high di-
mensional data. The DATASHAPE project gathers a unique variety of expertise that allows it to embrace the
mathematical, statistical, algorithmic and applied aspects of the field in a common framework ranging from
fundamental theoretical studies to experimental research and software development.

The expected output of DATASHAPE is two-fold. First, we intend to set-up and develop the mathematical,
statistical and algorithmic foundations of Topological and Geometric Data Analysis. Second, we intend to
develop the Gudhi platform in order to provide an efficient state-of-the-art toolbox for the understanding of
the topology and geometry of data.
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3. Research Program

3.1. Algorithmic aspects of topological and geometric data analysis
TDA requires to construct and manipulate appropriate representations of complex and high dimensional
shapes. A major difficulty comes from the fact that the complexity of data structures and algorithms used
to approximate shapes rapidly grows as the dimensionality increases, which makes them intractable in high
dimensions. We focus our research on simplicial complexes which offer a convenient representation of general
shapes and generalize graphs and triangulations. Our work includes the study of simplicial complexes with
good approximation properties and the design of compact data structures to represent them.

In low dimensions, effective shape reconstruction techniques exist that can provide precise geometric approx-
imations very efficiently and under reasonable sampling conditions. Extending those techniques to higher
dimensions as is required in the context of TDA is problematic since almost all methods in low dimensions
rely on the computation of a subdivision of the ambient space. A direct extension of those methods would
immediately lead to algorithms whose complexities depend exponentially on the ambient dimension, which
is prohibitive in most applications. A first direction to by-pass the curse of dimensionality is to develop al-
gorithms whose complexities depend on the intrinsic dimension of the data (which most of the time is small
although unknown) rather than on the dimension of the ambient space. Another direction is to resort to cruder
approximations that only captures the homotopy type or the homology of the sampled shape. The recent the-
ory of persistent homology provides a powerful and robust tool to study the homology of sampled spaces in a
stable way.

3.2. Statistical aspects of topological and geometric data analysis
The wide variety of larger and larger available data - often corrupted by noise and outliers - requires to consider
the statistical properties of their topological and geometric features and to propose new relevant statistical
models for their study.

There exist various statistical and machine learning methods intending to uncover the geometric structure
of data. Beyond manifold learning and dimensionality reduction approaches that generally do not allow to
assert the relevance of the inferred topological and geometric features and are not well-suited for the analysis
of complex topological structures, set estimation methods intend to estimate, from random samples, a set
around which the data is concentrated. In these methods, that include support and manifold estimation,
principal curves/manifolds and their various generalizations to name a few, the estimation problems are usually
considered under losses, such as Hausdorff distance or symmetric difference, that are not sensitive to the
topology of the estimated sets, preventing these tools to directly infer topological or geometric information.

Regarding purely topological features, the statistical estimation of homology or homotopy type of compact
subsets of Euclidean spaces, has only been considered recently, most of the time under the quite restrictive
assumption that the data are randomly sampled from smooth manifolds.

In a more general setting, with the emergence of new geometric inference tools based on the study of distance
functions and algebraic topology tools such as persistent homology, computational topology has recently seen
an important development offering a new set of methods to infer relevant topological and geometric features
of data sampled in general metric spaces. The use of these tools remains widely heuristic and until recently
there were only a few preliminary results establishing connections between geometric inference, persistent
homology and statistics. However, this direction has attracted a lot of attention over the last three years. In
particular, stability properties and new representations of persistent homology information have led to very
promising results to which the DATASHAPE members have significantly contributed. These preliminary results
open many perspectives and research directions that need to be explored.

Our goal is to build on our first statistical results in TDA to develop the mathematical foundations of Statistical
Topological and Geometric Data Analysis. Combined with the other objectives, our ultimate goal is to provide
a well-founded and effective statistical toolbox for the understanding of topology and geometry of data.
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3.3. Topological approach for multimodal data processing
Due to their geometric nature, multimodal data (images, video, 3D shapes, etc.) are of particular interest for
the techniques we develop. Our goal is to establish a rigorous framework in which data having different
representations can all be processed, mapped and exploited jointly. This requires adapting our tools and
sometimes developing entirely new or specialized approaches.

The choice of multimedia data is motivated primarily by the fact that the amount of such data is steadily
growing (with e.g. video streaming accounting for nearly two thirds of peak North-American Internet traffic,
and almost half a billion images being posted on social networks each day), while at the same time it poses
significant challenges in designing informative notions of (dis)-similarity as standard metrics (e.g. Euclidean
distances between points) are not relevant.

3.4. Experimental research and software development
We develop a high quality open source software platform called GUDHI which is becoming a reference in
geometric and topological data analysis in high dimensions. The goal is not to provide code tailored to the
numerous potential applications but rather to provide the central data structures and algorithms that underly
applications in geometric and topological data analysis.

The development of the GUDHI platform also serves to benchmark and optimize new algorithmic solutions
resulting from our theoretical work. Such development necessitates a whole line of research on software
architecture and interface design, heuristics and fine-tuning optimization, robustness and arithmetic issues,
and visualization. We aim at providing a full programming environment following the same recipes that made
up the success story of the CGAL library, the reference library in computational geometry.

Some of the algorithms implemented on the platform will also be interfaced to other software platform, such
as the R software 1 for statistical computing, and languages such as Python in order to make them usable in
combination with other data analysis and machine learning tools. A first attempt in this direction has been
done with the creation of an R package called TDA in collaboration with the group of Larry Wasserman at
Carnegie Mellon University (Inria Associated team CATS) that already includes some functionalities of the
GUDHI library and implements some joint results between our team and the CMU team. A similar interface
with the Python language is also considered a priority. To go even further towards helping users, we will
provide utilities that perform the most common tasks without requiring any programming at all.

4. Application Domains
4.1. Main application domains

Our work is mostly of a fundamental mathematical and algorithmic nature but fin ds applications in a variety
of application in data analysis, more precisely in Topological Data Analysis (TDA). Although TDA is a quite
recent field, it al ready founds applications in material science, biology, sensor networks, 3D shap es analysis
and processing, to name a few.

More specifically, DATASHAPEhas recently started to work on the analysis of t rajectories obtained from
inertial sensors (starting PhD thesis of Bertrand Bea ufils) and is exploring some possible new applications in
material science.

5. Highlights of the Year
5.1. Highlights of the Year
5.1.1. Chairs

Jean-Daniel Boissonnat was elected a professor at the Collège de France, on the Chair Informatics and
Computational Sciences for the academic year 2016-2017.

1https://www.r-project.org/

https://www.r-project.org/
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6. New Software and Platforms

6.1. GUDHI
Geometric Understanding in Higher Dimensions
KEYWORDS: Computational geometry - Topology
SCIENTIFIC DESCRIPTION: The current release of the GUDHI library includes: – Data structures to represent,
construct and manipulate simplicial and cubical complexes. – Algorithms to compute simplicial complexes
from point cloud data. – Algorithms to compute persistent homology and multi-field persistent homology. –
Simplification methods via implicit representations.
FUNCTIONAL DESCRIPTION: The GUDHI open source library will provide the central data structures and
algorithms that underly applications in geometry understanding in higher dimensions. It is intended to both
help the development of new algorithmic solutions inside and outside the project, and to facilitate the transfer
of results in applied fields.

RELEASE FUNCTIONAL DESCRIPTION: Major new features in 2017: - python interface - bottleneck distance
- tangential complex - relaxed witness complex

• Participants: Clément Maria, François Godi, David Salinas, Jean-Daniel Boissonnat, Marc Glisse,
Mariette Yvinec, Pawel Dlotko, Siargey Kachanovich and Vincent Rouvreau

• Contact: Jean-Daniel Boissonnat

• URL: http://gudhi.gforge.inria.fr/

6.2. dD Triangulations
CGAL module: Triangulations in any dimension
KEYWORDS: 3D modeling - Triangulation - Delaunay triangulation - Voronoi diagram - Regular triangulation
FUNCTIONAL DESCRIPTION: This package of CGAL (Computational Geometry Algorithms Library
http://www.cgal.org) allows to compute triangulations, Delaunay triangulations and regular triangulations in
any dimension. Those triangulations are built incrementally and can be modified by insertion or removal of
vertices.

RELEASE FUNCTIONAL DESCRIPTION: Version 4.11 adds the regular triangulations to the package.

• Participants: Clément Jamin, Olivier Devillers and Samuel Hornus

• Contact: Samuel Hornus

• URL: http://www.cgal.org

7. New Results

7.1. Algorithmic aspects of topological and geometric data analysis
7.1.1. Variance Minimizing Transport Plans for Inter-surface Mapping

Participant: David Cohen-Steiner.

In collaboration with Manish Mandad, Leik Kobbelt (RWTH Aachen), Pierre Alliez (Inria), and Mathieu
Desbrun (Caltech).

http://gudhi.gforge.inria.fr/
http://www.cgal.org
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We introduce an effcient computational method for generating dense and low distortion maps between two
arbitrary surfaces of same genus. Instead of relying on semantic correspondences or surface parameterization,
we directly optimize a variance-minimizing transport plan between two input surfaces that defines an as-
conformal-as-possible inter-surface map satisfying a user-prescribed bound on area distortion. The transport
plan is computed via two alternating convex optimizations, and is shown to minimize a generalized Dirichlet
energy of both the map and its inverse. Computational efficiency is achieved through a coarse-tone approach
in diffusion geometry, with Sinkhorn iterations modified to enforce bounded area distortion. The resulting
inter-surface mapping algorithm applies to arbitrary shapes robustly, with little to no user interaction.

7.1.2. Approximating the spectrum of a graph
Participant: David Cohen-Steiner.

In collaboration with Weihao Kong, Gregory Valiant (Stanford), and Christian Sohler (TU Dortmund).

The spectrum of a network or graph G = (V,E) with adjacency matrix A consists of the eigenvalues of
the normalized Laplacian L = I−D−1/2AD−1/2. This set of eigenvalues encapsulates many aspects of the
structure of the graph, including the extent to which the graph posses community structures at multiple scales.
We study the problem of approximating the spectrum λ = (λ1, . . ., λ|V |), 0≤λ1,≤. . .,≤λ|V |≤2 of G in the
regime where the graph is too large to explicitly calculate the spectrum. We present a sublinear time algorithm
that, given the ability to query a random node in the graph and select a random neighbor of a given node,
computes a succinct representation of an approximation λ̃ such that ‖λ̃−λ‖1 ≤ ε|V |. Our algorithm has query
complexity and running time exp(O(1/ε)) , independent of the size of the graph, |V |. We demonstrate the
practical viability of our algorithm on 15 different real-world graphs from the Stanford Large Network Dataset
Collection, including social networks, academic collaboration graphs, and road networks. For the smallest of
these graphs, we are able to validate the accuracy of our algorithm by explicitly calculating the true spectrum;
for the larger graphs, such a calculation is computationally prohibitive. In addition we study the implications
of our algorithm to property testing in the bounded degree graph model.

7.1.3. Anisotropic triangulations via discrete Riemannian Voronoi diagrams
Participants: Jean-Daniel Boissonnat, Mathijs Wintraecken.

In collaboration with mael Rouxel-Labbé (GeometryFactory).

The construction of anisotropic triangulations is desirable for various applications, such as the numerical
solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously
difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure
that approximates the Riemannian Voronoi diagram. This structure has been implemented and was shown to
lead to good triangulations in R2 and on surfaces embedded in R3 as detailed in our experimental companion
paper.

In [23], [32], [34], we study theoretical aspects of our structure. Given a finite set of points P in a domain
Ω equipped with a Riemannian metric, we compare the discrete Riemannian Voronoi diagram of P to its
Riemannian Voronoi diagram. Both diagrams have dual structures called the discrete Riemannian Delaunay
and the Riemannian Delaunay complex. We provide conditions that guarantee that these dual structures
are identical. It then follows from previous results that the discrete Riemannian Delaunay complex can be
embedded in Ω under sufficient conditions, leading to an anisotropic triangulation with curved simplices.
Furthermore, we show that, under similar conditions, the simplices of this triangulation can be straightened.

7.1.4. Only distances are required to reconstruct submanifolds
Participants: Jean-Daniel Boissonnat, Ramsay Dyer, Steve Oudot.

In collaboration with Arijit Ghosh (Indian Statistical Institute).
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In [14], we give the first algorithm that outputs a faithful reconstruction of a submanifold of Euclidean space
without maintaining or even constructing complicated data structures such as Voronoi diagrams or Delaunay
complexes. Our algorithm uses the witness complex and relies on the stability of power protection, a notion
introduced in this paper. The complexity of the algorithm depends exponentially on the intrinsic dimension of
the manifold, rather than the dimension of ambient space, and linearly on the dimension of the ambient space.
Another interesting feature of this work is that no explicit coordinates of the points in the point sample is
needed. The algorithm only needs the distance matrix as input, i.e., only distance between points in the point
sample as input.

7.1.5. An obstruction to Delaunay triangulations in Riemannian manifolds
Participants: Jean-Daniel Boissonnat, Ramsay Dyer.

In collaboration with Arijit Ghosh (Indian Statistical Institute) and Nikolay Martynchuk (University of
Groningen).

Delaunay has shown that the Delaunay complex of a finite set of points P of Euclidean space Rm triangulates
the convex hull of P , provided that P satisfies a mild genericity property. Voronoi diagrams and Delaunay
complexes can be defined for arbitrary Riemannian manifolds. However, Delaunay’s genericity assumption
no longer guarantees that the Delaunay complex will yield a triangulation; stronger assumptions on P are
required. A natural one is to assume that P is sufficiently dense. Although results in this direction have been
claimed, we show that sample density alone is insufficient to ensure that the Delaunay complex triangulates a
manifold of dimension greater than 2 [13].

7.1.6. Local criteria for triangulation of manifolds
Participants: Jean-Daniel Boissonnat, Ramsay Dyer, Mathijs Wintraecken.

In collaboration with Arijit Ghosh (Indian Statistical Institute).

We present criteria for establishing a triangulation of a manifold [40]. Given a manifold M , a simplicial
complex A, and a map H from the underlying space of A to M , our criteria are presented in local coordinate
charts for M , and ensure that H is a homeomorphism. These criteria do not require a differentiable structure,
or even an explicit metric on M . No Delaunay property of A is assumed. The result provides a triangulation
guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because
the criteria are easily checked algorithmically, they are expected to be of general use.

7.1.7. Triangulating stratified manifolds I: a reach comparison theorem
Participants: Jean-Daniel Boissonnat, Mathijs Wintraecken.

In [42], we define the reach for submanifolds of Riemannian manifolds, in a way that is similar to the Euclidean
case. Given a d-dimensional submanifold S of a smooth Riemannian manifold M and a point p ∈M that is
not too far from S we want to give bounds on local feature size of exp−1p (S). Here exp−1p is the inverse
exponential map, a canonical map from the manifold to the tangent space. Bounds on the local feature size of
exp−1p (S) can be reduced to giving bounds on the reach of exp−1p (B), where B is a geodesic ball, centred
at c with radius equal to the reach of S. Equivalently we can give bounds on the reach of exp−1p ◦ expc (Bc),
where now Bc is a ball in the tangent space TcM, with the same radius. To establish bounds on the reach of
exp−1p ◦ expc (Bc) we use bounds on the metric and on its derivative in Riemann normal coordinates.

This result is a first step towards answering the important question of how to triangulate stratified manifolds.

7.1.8. The reach, metric distortion, geodesic convexity and the variation of tangent spaces
Participants: Jean-Daniel Boissonnat, Mathijs Wintraecken.

In collaboration with André Lieutier (Dassault Système).
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In [41], we discuss three results. The first two concern general sets of positive reach: We first characterize the
reach by means of a bound on the metric distortion between the distance in the ambient Euclidean space and
the set of positive reach. Secondly, we prove that the intersection of a ball with radius less than the reach with
the set is geodesically convex, meaning that the shortest path between any two points in the intersection lies
itself in the intersection. For our third result we focus on manifolds with positive reach and give a bound on
the angle between tangent spaces at two different points in terms of the distance between the points and the
reach.

7.1.9. Delaunay triangulation of a random sample of a good sample has linear size
Participants: Jean-Daniel Boissonnat, Kunal Dutta, Marc Glisse.

In collaboration with Olivier Devillers (Inria Nancy Grand Est).

The randomized incremental construction (RIC) for building geometric data structures has been analyzed
extensively, from the point of view of worst-case distributions. In many practical situations however, we
have to face nicer distributions. A natural question that arises is: do the usual RIC algorithms automatically
adapt when the point samples are nicely distributed. We answer positively to this question for the case of the
Delaunay triangulation of ε-nets.

ε-nets are a class of nice distributions in which the point set is such that any ball of radius ε contains at least
one point of the net and two points of the net are distance at least ε apart. The Delaunay triangulations of
ε-nets are proved to have linear size; unfortunately this is not enough to ensure a good time complexity of
the randomized incremental construction of the Delaunay triangulation. In [33], [38], we prove that a uniform
random sample of a given size that is taken from an ε-net has a linear sized Delaunay triangulation in any
dimension. This result allows us to prove that the randomized incremental construction needs an expected
linear size and an expected O(n log n) time.

Further, we also prove similar results in the case of non-Euclidean metrics, when the point distribution satisfies
a certain bounded expansion property; such metrics can occur, for example, when the points are distributed on
a low-dimensional manifold in a high-dimensional ambient space.

7.1.10. Kernelization of the Subset General Position problem in Geometry
Participants: Jean-Daniel Boissonnat, Kunal Dutta.

In collaboration with Arijit Ghosh (Indian Statistical Institute) and Sudeshna Kolay (Eindhoven University of
Technology).

In [21], we consider variants of the GEOMETRIC SUBSET GENERAL POSITION problem. In defining this
problem, a geometric subsystem is specified, like a subsystem of lines, hyperplanes or spheres. The input of
the problem is a set of n points in Rd and a positive integer k. The objective is to find a subset of at least k
input points such that this subset is in general position with respect to the specified subsystem. For example,
a set of points is in general position with respect to a subsystem of hyperplanes in Rd if no d+ 1 points lie
on the same hyperplane. In this paper, we study the HYPERPLANE SUBSET GENERAL POSITION problem
under two parameterizations. When parameterized by k then we exhibit a polynomial kernelization for the
problem. When parameterized by h = n− k, or the dual parameter, then we exhibit polynomial kernels which
are also tight, under standard complexity theoretic assumptions. We can also conclude similar kernelization
results for D-POLYNOMIAL SUBSET GENERAL POSITION, where a vector space of polynomials of degree
at most d are specified as the underlying subsystem such that the size of the basis for this vector space is
b. The objective is to find a set of at least k input points, or in the dual delete at most h = n− k points,
such that no b+ 1 points lie on the same polynomial. Notice that this is a generalization of many well-studied
geometric variants of the SET COVER problem, such as CIRCLE SUBSET GENERAL POSITION. We also study
the general projective variants of these problems. These problems are also related to other geometric problems
like SUBSET DELAUNAY TRIANGULATION problem.

7.1.11. Tight Kernels for Covering and Hitting: Point Hyperplane Cover and Polynomial Point
Hitting Set
Participants: Jean-Daniel Boissonnat, Kunal Dutta.
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In collaboration with Arijit Ghosh (Indian Statistical Institute) and Sudeshna Kolay (Eindhoven University of
Technology).

The POINT HYPERPLANE COVER problem in Rd takes as input a set of n points in Rd and a positive integer
k. The objective is to cover all the given points with a set of at most k hyperplanes. The D-POLYNOMIAL
POINTS HITTING SET (D-POLYNOMIAL POINTS HS) problem in Rd takes as input a family F of D-degree
polynomials from a vector space R in Rd, and determines whether there is a set of at most k points in Rd that
hit all the polynomials in F. In [22], we exhibit tight kernels where k is the parameter for these problems.

7.1.12. Shallow packings, semialgebraic set systems, Macbeath regions, and polynomial
partitioning
Participant: Kunal Dutta.

In collaboration with Arijit Ghosh (Indian Statistical Institute) and Bruno Jartoux (Université Paris-Est,
Laboratoire d’Informatique Gaspard-Monge, ESIEE Paris, France) and Nabil H. Mustafa (Université Paris-
Est, Laboratoire d’Informatique Gaspard-Monge, ESIEE Paris, France).

The packing lemma of Haussler states that given a set system (X,R) with bounded VC dimension, if every pair
of sets in R have large symmetric difference, then R cannot contain too many sets. Recently it was generalized
to the shallow packing lemma, applying to set systems as a function of their shallow-cell complexity. In [29]
we present several new results and applications related to packings:

1. an optimal lower bound for shallow packings,

2. improved bounds on Mnets, providing a combinatorial analogue to Macbeath regions in convex
geometry,

3. we observe that Mnets provide a general, more powerful framework from which the state-of-the-art
unweighted ε-net results follow immediately, and

4. simplifying and generalizing one of the main technical tools in Fox et al. (J. of the EMS, to appear).

7.1.13. A Simple Proof of Optimal Epsilon Nets
Participant: Kunal Dutta.

In collaboration with Nabil H. Mustafa (Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge,
ESIEE Paris, France, and Arijit Ghosh (Indian Statistical Institute) ).

Showing the existence of ε-nets of small size has been the subject of investigation for almost 30 years, starting
from the initial breakthrough of Haussler and Welzl (1987). Following a long line of successive improvements,
recent results have settled the question of the size of the smallest ε-nets for set systems as a function of their
so-called shallow-cell complexity.

In [20] we give a short proof of this theorem in the space of a few elementary paragraphs, showing that it
follows by combining the ε-net bound of Haussler and Welzl (1987) with a variant of Haussler’s packing
lemma (1991).

This implies all known cases of results on unweighted ε-nets studied for the past 30 years, starting from the
result of Matoušek, Seidel and Welzl (1990) to that of Clarkson and Varadajan (2007) to that of Varadarajan
(2010) and Chan, Grant, Könemann and Sharpe (2012) for the unweighted case, as well as the technical and
intricate paper of Aronov, Ezra and Sharir (2010).

7.1.14. On Subgraphs of Bounded Degeneracy in Hypergraphs
Participant: Kunal Dutta.

In collaboration with Arijit Ghosh (Indian Statistical Institute) ).
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A k-uniform hypergraph is d-degenerate if every induced subgraph has a vertex of degree at most d. In [48],
given a k-uniform hypergraph H = (V (H), E(H)), we show there exists an induced subgraph of size at least

∑
v∈V (H)

min

{
1, ck

(
d+ 1

dH(v) + 1

)1/(k−1)
}
,

where ck = 2−(1+ 1
k−1 ) (1− 1

k

)
and dH(v) denotes the degree of vertex v in the hypergraphH . This connects,

extends, and generalizes results of Alon-Kahn-Seymour (1987), on d-degenerate sets of graphs, Dutta-
Mubayi-Subramanian (2012) on d-degenerate sets of linear hypergraphs, and Srinivasan-Shachnai (2004)
on independent sets in hypergraphs to d-degenerate subgraphs of hypergraphs. Our technique also gives
optimal lower bounds for a more generalized definition of degeneracy introduced by Zaker (2013). We
further give a simple non-probabilistic proof of the Dutta-Mubayi-Subramanian bound for linear k-uniform
hypergraphs, which extends the Alon-Kahn-Seymour proof technique to hypergraphs. Finally we provide
several applications in discrete geometry, extending results of Payne-Wood (2013) and Cardinal-Tóth-Wood
(2016). We also address some natural algorithmic questions. The proof of our main theorem combines the
random permutation technique of Bopanna-Caro-Wei and Beame and Luby, together with a new local density
argument which may be of independent interest.

7.2. Statistical aspects of topological and geometric data analysis
7.2.1. The DTM-signature for a geometric comparison of metric-measure spaces from samples

Participant: Claire Brécheteau.

In [43], we introduce the notion of DTM-signature, a measure on R+ that can be associated to any metric-
measure space. This signature is based on the distance to a measure (DTM) introduced by Chazal, Cohen-
Steiner and Mérigot. It leads to a pseudo-metric between metric-measure spaces, upper-bounded by the
Gromov-Wasserstein distance. Under some geometric assumptions, we derive lower bounds for this pseudo-
metric. Given two N-samples, we also build an asymptotic statistical test based on the DTM-signature, to reject
the hypothesis of equality of the two underlying metric measure spaces, up to a measure-preserving isometry.
We give strong theoretical justifications for this test and propose an algorithm for its implementation.

7.2.2. Estimating the Reach of a Manifold
Participants: Eddie Aamari, Frédéric Chazal, Bertrand Michel.

In collaboration with J. Kim, A. Rinaldo, L. Wasserman (Carnegie Mellon University)

Various problems of computational geometry and manifold learning encode geometric regularity through the
so-called reach, a generalized convexity parameter. The reach τM of a submanifold M ⊂ RD is the maximal
offset radius on which the projection onto M is well defined. The quantity τM renders a certain minimal scale
of M , giving bounds on both maximum curvature and possible bottleneck structures. In [35], we study the
geometry of the reach through an approximation perspective. We derive new geometric results on the reach
for submanifolds without boundary. An estimator τ̂ of τM is proposed in a framework where tangent spaces
are known, and bounds assessing its efficiency are derived. In the case of i.i.d. random point cloud Xn, τ̂(Xn)
is showed to achieve uniform expected loss bounds over a C3-like model. Minimax upper and lower bounds
are derived, and we conclude with the extension to a model with unknown tangent spaces.

7.2.3. Robust Topological Inference: Distance To a Measure and Kernel Distance
Participants: Frédéric Chazal, Bertrand Michel.

In collaboration with B. Fasy, F. Lecci, A. Rinaldo, L. Wasserman.
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Let P be a distribution with support S. The salient features of S can be quantified with persistent homology,
which summarizes topological features of the sublevel sets of the distance function (the distance of any point
x to S). Given a sample from P we can infer the persistent homology using an empirical version of the
distance function. However, the empirical distance function is highly non-robust to noise and outliers. Even one
outlier is deadly. The distance-to-a-measure (DTM) and the kernel distance are smooth functions that provide
useful topological information but are robust to noise and outliers. In [17], we derive limiting distributions and
confidence sets, and we propose a method for choosing tuning parameters.

7.2.4. Statistical analysis and parameter selection for Mapper
Participants: Steve Oudot, Bertrand Michel, Mathieu Carrière.

In [44] we study the question of the statistical convergence of the 1-dimensional Mapper to its continuous
analogue, the Reeb graph. We show that the Mapper is an optimal estimator of the Reeb graph, which gives, as
a byproduct, a method to automatically tune its parameters and compute confidence regions on its topological
features, such as its loops and flares. This allows to circumvent the issue of testing a large grid of parameters
and keeping the most stable ones in the brute-force setting, which is widely used in visualization, clustering
and feature selection with the Mapper.

7.2.5. Sliced Wasserstein Kernel for Persistence Diagrams
Participants: Steve Oudot, Mathieu Carrière.

In collaboration with M. Cuturi (ENSAE)

Persistence diagrams (PDs) play a key role in topological data analysis (TDA), in which they are routinely
used to describe succinctly complex topological properties of complicated shapes. PDs enjoy strong stability
properties and have proven their utility in various learning contexts. They do not, however, live in a space
naturally endowed with a Hilbert structure and are usually compared with specific distances, such as the
bottleneck distance. To incorporate PDs in a learning pipeline, several kernels have been proposed for PDs
with a strong emphasis on the stability of the RKHS distance w.r.t. perturbations of the PDs. In [27], we use
the Sliced Wasserstein approximation of the Wasserstein distance to define a new kernel for PDs, which is
not only provably stable but also provably discriminative w.r.t. the Wasserstein distance W1∞ between PDs.
We also demonstrate its practicality, by developing an approximation technique to reduce kernel computation
time, and show that our proposal compares favorably to existing kernels for PDs on several benchmarks.

7.2.6. An introduction to Topological Data Analysis: fundamental and practical aspects for
data scientists
Participants: Frédéric Chazal, Bertrand Michel.

Topological Data Analysis (TDA) is a recent and fast growing field providing a set of new topological and
geometric tools to infer relevant features for possibly complex data. In [45], we propose a brief introduction,
through a few selected recent and state-of-the-art topics, to basic fundamental and practical aspects of TDA
for non experts.

7.3. Topological approach for multimodal data processing
7.3.1. On the Stability of Functional Maps and Shape Difference Operators

Participants: Frédéric Chazal, Ruqi Huang, Maks Ovsjanikov.

In this paper, we provide stability guarantees for two frameworks that are based on the notion of functional
maps. We consider two types of perturbations in our analysis: one is on the input shapes and the other
is on the change in scale. In theory, we formulate and justify the robustness that has been observed in
practical implementations of those frameworks. Inspired by our theoretical results, we propose a pipeline for
constructing shape difference operators on point clouds and show numerically that the results are robust and
informative. In particular, we show that both the shape difference operators and the derived areas of highest
distortion are stable with respect to changes in shape representation and change of scale. Remarkably, this is
in contrast with the well-known instability of the eigenfunctions of the Laplace-Beltrami operator computed
on point clouds compared to those obtained on triangle meshes.
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7.3.2. Local Equivalence and Intrinsic Metrics Between Reeb Graphs
Participants: Steve Oudot, Mathieu Carrière.

As graphical summaries for topological spaces and maps, Reeb graphs are common objects in the computer
graphics or topological data analysis literature. Defining good metrics between these objects has become an
important question for applications, where it matters to quantify the extent by which two given Reeb graphs
differ. Recent contributions emphasize this aspect, proposing novel distances such as functional distortion or
interleaving that are provably more discriminative than the so-called bottleneck distance, being true metrics
whereas the latter is only a pseudo-metric. Their main drawback compared to the bottleneck distance is to
be comparatively hard (if at all possible) to evaluate. In [28] we take the opposite view on the problem and
show that the bottleneck distance is in fact good enough locally, in the sense that it is able to discriminate a
Reeb graph from any other Reeb graph in a small enough neighborhood, as efficiently as the other metrics do.
This suggests considering the intrinsic metrics induced by these distances, which turn out to be all globally
equivalent. This novel viewpoint on the study of Reeb graphs has a potential impact on applications, where
one may not only be interested in discriminating between data but also in interpolating between them.

7.3.3. Structure and Stability of the One-Dimensional Mapper
Participants: Steve Oudot, Mathieu Carrière.

Given a continuous function f : X− > R and a cover I of its image by intervals, the Mapper is the nerve
of a refinement of the pullback cover f−1(I). Despite its success in applications, little is known about the
structure and stability of this construction from a theoretical point of view. As a pixelized version of the
Reeb graph of f, it is expected to capture a subset of its features (branches, holes), depending on how the
interval cover is positioned with respect to the critical values of the function. Its stability should also depend
on this positioning. In [16] we propose a theoretical framework relating the structure of the Mapper to that of
the Reeb graph, making it possible to predict which features will be present and which will be absent in the
Mapper given the function and the cover, and for each feature, to quantify its degree of (in-)stability. Using this
framework, we can derive guarantees on the structure of the Mapper, on its stability, and on its convergence to
the Reeb graph as the granularity of the cover I goes to zero.

7.4. Experimental research and software development
7.4.1. Stride detection for pedestrian trajectory reconstruction: a machine learning approach

based on geometric patterns
Participants: Frédéric Chazal, Bertrand Michel, Bertrand Beaufils.

In collaboration with M. Grelet (Sysnav)

A strides detection algorithm is proposed using inertial sensors worn on the ankle. This innovative approach
based on geometric patterns can detect both normal walking strides and atypical strides such as small steps,
side steps and backward walking that existing methods struggle to detect. It is also robust in critical situations,
when for example the wearer is sitting and moving the ankle, while most algorithms in the literature would
wrongly detect strides.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
• Collaboration with Sysnav, a French SME with world leading expertise in navigation and geopo-

sitioning in extreme environments, on TDA, geometric approaches and machine learning for the
analysis of movements of pedestrians and patients equipped with inetial sensors (CIFRE PhD of
Bertrand Beaufils).

• Collaboration with Fujitsu on TDA and Machine learning (started in Dec 2017).



Project-Team DATASHAPE 13

8.2. Bilateral Grants with Industry
• DATASHAPE and Sysnav have been selected for the ANR/DGA Challenge MALIN (funding: 700

kEuros) in September 2017.

9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. ANR
9.1.1.1. ANR TOPDATA

Participants: Jean-Daniel Boissonnat, Frédéric Chazal, David Cohen-Steiner, Mariette Yvinec, Steve Oudot,
Marc Glisse.

- Acronym : TopData.

- Type : ANR blanc.

- Title : Topological Data Analysis: Statistical Methods and Inference.

- Coordinator : Frédéric Chazal (DATASHAPE).

- Duration : 4 years from October 2013 to September 2017.

- Others Partners: Département de Mathématiques (Université Paris Sud), Institut de Mathématiques (Univer-
sité de Bourgogne), LPMA (Université Paris Diderot), LSTA (Université Pierre et Marie Curie).

- Abstract: TopData aims at designing new mathematical frameworks, models and algorithmic tools to infer
and analyze the topological and geometric structure of data in different statistical settings. Its goal is to set up
the mathematical and algorithmic foundations of Statistical Topological and Geometric Data Analysis and to
provide robust and efficient tools to explore, infer and exploit the underlying geometric structure of various
data.

Our conviction, at the root of this project, is that there is a real need to combine statistical and topologi-
cal/geometric approaches in a common framework, in order to face the challenges raised by the inference and
the study of topological and geometric properties of the wide variety of larger and larger available data. We are
also convinced that these challenges need to be addressed both from the mathematical side and the algorithmic
and application sides. Our project brings together in a unique way experts in Statistics, Geometric Inference
and Computational Topology and Geometry. Our common objective is to design new theoretical frameworks
and algorithmic tools and thus to contribute to the emergence of a new field at the crossroads of these domains.
Beyond the purely scientific aspects we hope this project will help to give birth to an active interdisciplinary
community. With these goals in mind we intend to promote, disseminate and make our tools available and
useful for a broad audience, including people from other fields.

- See also: http://geometrica.saclay.inria.fr/collaborations/TopData/Home.html

9.2. European Initiatives
9.2.1. FP7 & H2020 Projects
9.2.1.1. GUDHI

Title: Algorithmic Foundations of Geometry Understanding in Higher Dimensions

Programm: FP7

Type: ERC

Duration: February 2014 - January 2019

Coordinator: Inria

http://geometrica.saclay.inria.fr/collaborations/TopData/Home.html
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Inria contact: Jean-Daniel Boissonnat.

’The central goal of this proposal is to settle the algorithmic foundations of geometry understanding
in dimensions higher than 3. We coin the term geometry understanding to encompass a collection
of tasks including the computer representation and the approximation of geometric structures, and
the inference of geometric or topological properties of sampled shapes. The need to understand
geometric structures is ubiquitous in science and has become an essential part of scientific computing
and data analysis. Geometry understanding is by no means limited to three dimensions. Many
applications in physics, biology, and engineering require a keen understanding of the geometry of
a variety of higher dimensional spaces to capture concise information from the underlying often
highly nonlinear structure of data. Our approach is complementary to manifold learning techniques
and aims at developing an effective theory for geometric and topological data analysis. To reach
these objectives, the guiding principle will be to foster a symbiotic relationship between theory
and practice, and to address fundamental research issues along three parallel advancing fronts. We
will simultaneously develop mathematical approaches providing theoretical guarantees, effective
algorithms that are amenable to theoretical analysis and rigorous experimental validation, and
perennial software development. We will undertake the development of a high-quality open source
software platform to implement the most important geometric data structures and algorithms at the
heart of geometry understanding in higher dimensions. The platform will be a unique vehicle towards
researchers from other fields and will serve as a basis for groundbreaking advances in scientific
computing and data analysis.’

9.3. International Initiatives
9.3.1. Inria Associate Teams Not Involved in an Inria International Labs
9.3.1.1. CATS

Title: Computations And Topological Statistics

International Partner (Institution - Laboratory - Researcher):

Carnegie Mellon University (United States) - Department of Statistics - Larry Wasserman

Start year: 2015

See also: http://geometrica.saclay.inria.fr/collaborations/CATS/CATS.html

Topological Data Analysis (TDA) is an emergent field attracting interest from various communities,
that has recently known academic and industrial successes. Its aim is to identify and infer geometric
and topological features of data to develop new methods and tools for data exploration and data
analysis. TDA results mostly rely on deterministic assumptions which are not satisfactory from
a statistical viewpoint and which lead to a heuristic use of TDA tools in practice. Bringing
together the strong expertise of two groups in Statistics (L. Wasserman’s group at CMU) and
Computational Topology and Geometry (Inria Geometrica), the main objective of CATS is to set-
up the mathematical foundations of Statistical TDA, to design new TDA methods and to develop
efficient and easy-to-use software tools for TDA.

9.4. International Research Visitors
9.4.1. Visits of International Scientists

Ramsay Dyer, Mathematical Sciences Publishers, Canada (June and November 2017)

Arijit Ghosh, Indian Statistical Institute, Kolkata (June and november 2017)

Kim Jisu, CMU, Pittsburgh, USA (November 2017).

Wolfgang Polonik, UC Davis, USA (June 2017).

Konstantin Mischaikow, Rutgers University, USA, (November 2017).

http://geometrica.saclay.inria.fr/collaborations/CATS/CATS.html
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Magnus Botnan, TU Munich, Germany (March 2017).
Sara Kalisnik, MPI, Germany (November 2017).

9.4.1.1. Internships

Divyansh Pareek, IIT Bombay (May-July 2017)

9.4.2. Visits to International Teams
9.4.2.1. Research Stays Abroad

Vincent Divol, UC Davis (April-June 2017)

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. Member of the Organizing Committees

• Frédéric Chazal co-organized, with M. Meila 5Univ. of Washington) the NIPS 2017 workshop
“Synergies in Geometric Data Analysis”, December 2017.

• Frédéric Chazal co-organized the workshop “Functoriality in Geometric Data”, Schloss Dagstuhl,
Germany, January 2017

10.1.2. Journal
10.1.2.1. Member of the Editorial Boards

Jean-Daniel Boissonnat is a member of the Editorial Board of Journal of the ACM, Discrete and
Computational Geometry, International Journal on Computational Geometry and Applications.
Frédéric Chazal is a member of the Editorial Board of SIAM Journal on Imaging Sciences, Discrete
and Computational Geometry (Springer), Graphical Models (Elsevier), and Journal of Applied and
Computational Topology (Springer).
Steve Oudot is a member of the Editorial Board of Journal of Computational Geometry.

10.1.3. Invited Talks
Jean-Daniel Boissonnat has been invited and gave a talk at NYU-AD on November 19, 2017.
Frédéric Chazal, Foundations of Computational Mathematics (FoCM’17), Computational Topology
and Geometry workshop, Barcelona, Spain, July 2017.
Frédéric Chazal, Applied Topology in Bedlewo 2017 Conference, Bedlewo, Poland, June 2017.
Frédéric Chazal, UC Davis Statistical Sciences Symposium, Davis, USA, May 2017.
Frédéric Chazal, Applied and Computational Algebraic Topology, Hausdorff Institute,
Bonn,Germany, April 2017.
Frédéric Chazal, The First International Conference on the Mathematics of Data Science, Hong
Kong Baptist University, Hong Kong, March 2017.
Frédéric Chazal, CNA/Ki-Net Workshop: Dynamics and Geometry from High Dimensional Data,
Carnegie Mellon University, March 2017.
Frédéric Chazal, Colloquium, collaborative research center Discretization in Geometry and Dynam-
ics, Munich, February 7, 2017.
Frédéric Chazal, Statistics/Learning at Paris-Saclay, workshop at IHES, January 19, 2017.
Mathijs Wintraecken gave an invited talk at the SoCG workshop on Algorithms for the Medial Axis
in Brisbane, June 2017.
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Steve Oudot, BIRS workshop on Topological Data Analysis: developping abstract foundations,
Banff, Canada, August 2017.

Steve Oudot, Mini-Symposium on Computational Topology, Brisbane, Australia, July 2017.

Steve Oudot, Dagstuhl seminar on Topology, computation and data analysis, Dagstuhl, Germany,
July 2017.

Steve Oudot, Applied Topology Seminar, Brown University, USA, April 2017.

Steve Oudot, TRIPODS wokshop on Geometry and topology for data, ICERM, USA, December
2017.

Steve Oudot, workshop on Mathematical signal processing and data analysis, Bremen University,
Germany, September 2017.

Steve Oudot, Conférence de rentrée Maths-Info, ENS Cachan, September 2017.

10.1.4. Leadership within the Scientific Community
Steve Oudot is co-organizing the monthly seminar on combinatorial and computational geometry at
Institut Henri Poincaré.

Steve Oudot is co-head of the GT Géométrie Algorithmique since September 2017.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Collège de France : Jean-Daniel Boissonnat, Géométrie algorithmique: données, modèles, pro-
grammes, avril-juin 2017.

Master: Frédéric Chazal, Analyse Topologique des Données, 30h eq-TD, Université Paris-Sud,
France.

Master: Jean-Daniel Boissonnat and Marc Glisse, Computational Geometry Learning, 36h eq-TD,
M2, MPRI, France.

Master: Steve Oudot, Topological Data Analysis, 45h eq-TD, M1, École Polytechnique, France.

Master: Frédéric Cazals and Frédéric Chazal, Geometric Methods for Data Analysis, 30h eq-TD,
M1, École Centrale Paris, France.

Master: Frédéric Chazal, Topological Data Analysis, 16h eq-TD, M2, Mathématiques, Vision,
Apprentissage (MVA), ENS Paris-Saclay, France.

Winter School on Computational geometry and topology for data analysis, Jean-Daniel Boissonnat,
Frédéric Chazal, Sophia-Antipolis, january 2017.

10.2.2. Supervision
PhD: Eddie Aamari, A Statistical Approach of Topological Data Analysis, September 1st, 2017,
Frédéric Chazal (co-advised by Pascal Massart).

PhD in progress: Claire Brécheteau, Statistical aspects of distance-like functions , started September
1st, 2015, Frédéric Chazal (co-advised by Pascal Massart).

PhD in progress: Bertrand Beaufils, Méthodes topologiques et apprentissage statistique pour
l’actimétrie du piéton à partir de données de mouvement, started November 2016, Frédéric Chazal
(co-advised by Bertrand Michel).

PhD: Mathieu Carrière, Topological signatures for geometric data, defended November 21st, 2017,
Steve Oudot.

PhD in progress: Jérémy Cochoy, Decomposition and stability of multidimensional persistence
modules, started September 1st, 2015, Steve Oudot.
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PhD in progress: Nicolas Berkouk, Categorification of topological graph structures, started Novem-
ber 1st, 2016, Steve Oudot.

PhD in progress: Théo Lacombe, Statistics for persistence diagrams using optimal transport, started
October 1st, 2017, Steve Oudot.

PhD in progress: Alba Chiara de Vitis, Concentration of measure and clustering, Jean-Daniel
Boissonnat and David Cohen-Steiner.

PhD in progress: Siargey Kachanovich, Manifold reconstruction in higher dimensions, Jean-Daniel
Boissonnat.

PhD in progress: François Godi, Data structures and algorithms for topological data analysis and
high dimensional geometry, Jean-Daniel Boissonnat.

PhD in progress: Siddharth Pritam, Approximation algorithms in Computational Topology, Jean-
Daniel Boissonnat.

PhD in progress: Raphaël Tinarrage, Persistence and stability of nerves in measured metric spaces
for Topological Data Analysis, started September 1st, 2017, Frédéric Chazal and Marc Glisse.

PhD in progress: Vincent Divol, statistical aspects of TDA, started September 1st, 2017, Frédéric
Chazal (co-advised by Pascal Massart).

10.2.3. Juries
Frédéric Chazal was a member of the PhD defense committee of Aruni Choudhary, MPI (reviewer)
and Aurelien Vasseur (co-advisor).

Jean-Daniel Boissonnat was a member of the PhD defense committee of Eddie Amari.

Steve Oudot was a member (examiner) of the PhD defence committees of Jérémy Dubut and Nicolas
Ninin (Cosynus team, Ecole polytechnique).

10.3. Popularization
10.3.1. Inria-Industry Meeting

Marc Glisse, Miro Kramar and Steve Oudot held a booth for half a day.

Marc Glisse played for a small video which is now on the InriaInnovation YouTube channel https://
youtu.be/lKNjGk-Z6b4.
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