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2. Overall Objectives

2.1. Research at Gallium
The research conducted in the Gallium group aims at improving the safety, reliability and security of software
through advances in programming languages and formal verification of programs. Our work is centered on the
design, formalization and implementation of functional programming languages, with particular emphasis on
type systems and type inference, formal verification of compilers, and interactions between programming and
program proof. The OCaml language and the CompCert verified C compiler embody many of our research
results. Our work spans the whole spectrum from theoretical foundations and formal semantics to applications
to real-world problems.

3. Research Program

3.1. Programming languages: design, formalization, implementation
Like all languages, programming languages are the media by which thoughts (software designs) are communi-
cated (development), acted upon (program execution), and reasoned upon (validation). The choice of adequate
programming languages has a tremendous impact on software quality. By “adequate”, we mean in particular
the following four aspects of programming languages:

• Safety. The programming language must not expose error-prone low-level operations (explicit
memory deallocation, unchecked array access, etc) to programmers. Further, it should provide
constructs for describing data structures, inserting assertions, and expressing invariants within
programs. The consistency of these declarations and assertions should be verified through compile-
time verification (e.g. static type-checking) and run-time checks.
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• Expressiveness. A programming language should manipulate as directly as possible the concepts
and entities of the application domain. In particular, complex, manual encodings of domain notions
into programmatic notations should be avoided as much as possible. A typical example of a language
feature that increases expressiveness is pattern matching for examination of structured data (as
in symbolic programming) and of semi-structured data (as in XML processing). Carried to the
extreme, the search for expressiveness leads to domain-specific languages, customized for a specific
application area.

• Modularity and compositionality. The complexity of large software systems makes it impossi-
ble to design and develop them as one, monolithic program. Software decomposition (into semi-
independent components) and software composition (of existing or independently-developed com-
ponents) are therefore crucial. Again, this modular approach can be applied to any programming
language, given sufficient fortitude by the programmers, but is much facilitated by adequate linguis-
tic support. In particular, reflecting notions of modularity and software components in the program-
ming language enables compile-time checking of correctness conditions such as type correctness at
component boundaries.

• Formal semantics. A programming language should fully and formally specify the behaviours of
programs using mathematical semantics, as opposed to informal, natural-language specifications.
Such a formal semantics is required in order to apply formal methods (program proof, model
checking) to programs.

Our research work in language design and implementation centers on the statically-typed functional program-
ming paradigm, which scores high on safety, expressiveness and formal semantics, complemented with full
imperative features and objects for additional expressiveness, and modules and classes for compositionality.
The OCaml language and system embodies many of our earlier results in this area [45]. Through collabora-
tions, we also gained experience with several domain-specific languages based on a functional core, including
distributed programming (JoCaml), XML processing (XDuce, CDuce), reactive functional programming, and
hardware modeling.

3.2. Type systems
Type systems [47] are a very effective way to improve programming language reliability. By grouping the
data manipulated by the program into classes called types, and ensuring that operations are never applied to
types over which they are not defined (e.g. accessing an integer as if it were an array, or calling a string as if it
were a function), a tremendous number of programming errors can be detected and avoided, ranging from the
trivial (misspelled identifier) to the fairly subtle (violation of data structure invariants). These restrictions are
also very effective at thwarting basic attacks on security vulnerabilities such as buffer overflows.

The enforcement of such typing restrictions is called type-checking, and can be performed either dynamically
(through run-time type tests) or statically (at compile-time, through static program analysis). We favor static
type-checking, as it catches bugs earlier and even in rarely-executed parts of the program, but note that not
all type constraints can be checked statically if static type-checking is to remain decidable (i.e. not degenerate
into full program proof). Therefore, all typed languages combine static and dynamic type-checking in various
proportions.

Static type-checking amounts to an automatic proof of partial correctness of the programs that pass the
compiler. The two key words here are partial, since only type safety guarantees are established, not full
correctness; and automatic, since the proof is performed entirely by machine, without manual assistance from
the programmer (beyond a few, easy type declarations in the source). Static type-checking can therefore be
viewed as the poor man’s formal methods: the guarantees it gives are much weaker than full formal verification,
but it is much more acceptable to the general population of programmers.

3.2.1. Type systems and language design.
Unlike most other uses of static program analysis, static type-checking rejects programs that it cannot prove
safe. Consequently, the type system is an integral part of the language design, as it determines which programs
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are acceptable and which are not. Modern typed languages go one step further: most of the language design is
determined by the type structure (type algebra and typing rules) of the language and intended application area.
This is apparent, for instance, in the XDuce and CDuce domain-specific languages for XML transformations
[43], [41], whose design is driven by the idea of regular expression types that enforce DTDs at compile-time.
For this reason, research on type systems – their design, their proof of semantic correctness (type safety), the
development and proof of associated type-checking and inference algorithms – plays a large and central role
in the field of programming language research, as evidenced by the huge number of type systems papers in
conferences such as Principles of Programming Languages.

3.2.2. Polymorphism in type systems.
There exists a fundamental tension in the field of type systems that drives much of the research in this area.
On the one hand, the desire to catch as many programming errors as possible leads to type systems that
reject more programs, by enforcing fine distinctions between related data structures (say, sorted arrays and
general arrays). The downside is that code reuse becomes harder: conceptually identical operations must be
implemented several times (say, copying a general array and a sorted array). On the other hand, the desire
to support code reuse and to increase expressiveness leads to type systems that accept more programs, by
assigning a common type to broadly similar objects (for instance, the Object type of all class instances in
Java). The downside is a loss of precision in static typing, requiring more dynamic type checks (downcasts in
Java) and catching fewer bugs at compile-time.

Polymorphic type systems offer a way out of this dilemma by combining precise, descriptive types (to catch
more errors statically) with the ability to abstract over their differences in pieces of reusable, generic code
that is concerned only with their commonalities. The paradigmatic example is parametric polymorphism,
which is at the heart of all typed functional programming languages. Many forms of polymorphic typing
have been studied since then. Taking examples from our group, the work of Rémy, Vouillon and Garrigue on
row polymorphism [50], integrated in OCaml, extended the benefits of this approach (reusable code with no
loss of typing precision) to object-oriented programming, extensible records and extensible variants. Another
example is the work by Pottier on subtype polymorphism, using a constraint-based formulation of the type
system [48]. Finally, the notion of “coercion polymorphism” proposed by Cretin and Rémy[5] combines and
generalizes both parametric and subtyping polymorphism.

3.2.3. Type inference.
Another crucial issue in type systems research is the issue of type inference: how many type annotations
must be provided by the programmer, and how many can be inferred (reconstructed) automatically by the
type-checker? Too many annotations make the language more verbose and bother the programmer with
unnecessary details. Too few annotations make type-checking undecidable, possibly requiring heuristics,
which is unsatisfactory. OCaml requires explicit type information at data type declarations and at component
interfaces, but infers all other types.

In order to be predictable, a type inference algorithm must be complete. That is, it must not find one, but all
ways of filling in the missing type annotations to form an explicitly typed program. This task is made easier
when all possible solutions to a type inference problem are instances of a single, principal solution.

Maybe surprisingly, the strong requirements – such as the existence of principal types – that are imposed
on type systems by the desire to perform type inference sometimes lead to better designs. An illustration of
this is row variables. The development of row variables was prompted by type inference for operations on
records. Indeed, previous approaches were based on subtyping and did not easily support type inference. Row
variables have proved simpler than structural subtyping and more adequate for type-checking record update,
record extension, and objects.

Type inference encourages abstraction and code reuse. A programmer’s understanding of his own program
is often initially limited to a particular context, where types are more specific than strictly required. Type
inference can reveal the additional generality, which allows making the code more abstract and thus more
reuseable.
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3.3. Compilation
Compilation is the automatic translation of high-level programming languages, understandable by humans, to
lower-level languages, often executable directly by hardware. It is an essential step in the efficient execution,
and therefore in the adoption, of high-level languages. Compilation is at the interface between programming
languages and computer architecture, and because of this position has had considerable influence on the
design of both. Compilers have also attracted considerable research interest as the oldest instance of symbolic
processing on computers.

Compilation has been the topic of much research work in the last 40 years, focusing mostly on high-
performance execution (“optimization”) of low-level languages such as Fortran and C. Two major results
came out of these efforts: one is a superb body of performance optimization algorithms, techniques and
methodologies; the other is the whole field of static program analysis, which now serves not only to increase
performance but also to increase reliability, through automatic detection of bugs and establishment of safety
properties. The work on compilation carried out in the Gallium group focuses on a less investigated topic:
compiler certification.

3.3.1. Formal verification of compiler correctness.
While the algorithmic aspects of compilation (termination and complexity) have been well studied, its semantic
correctness – the fact that the compiler preserves the meaning of programs – is generally taken for granted.
In other terms, the correctness of compilers is generally established only through testing. This is adequate
for compiling low-assurance software, themselves validated only by testing: what is tested is the executable
code produced by the compiler, therefore compiler bugs are detected along with application bugs. This is
not adequate for high-assurance, critical software which must be validated using formal methods: what is
formally verified is the source code of the application; bugs in the compiler used to turn the source into the
final executable can invalidate the guarantees so painfully obtained by formal verification of the source.

To establish strong guarantees that the compiler can be trusted not to change the behavior of the program,
it is necessary to apply formal methods to the compiler itself. Several approaches in this direction have
been investigated, including translation validation, proof-carrying code, and type-preserving compilation. The
approach that we currently investigate, called compiler verification, applies program proof techniques to the
compiler itself, seen as a program in particular, and use a theorem prover (the Coq system) to prove that the
generated code is observationally equivalent to the source code. Besides its potential impact on the critical
software industry, this line of work is also scientifically fertile: it improves our semantic understanding of
compiler intermediate languages, static analyses and code transformations.

3.4. Interface with formal methods
Formal methods collectively refer to the mathematical specification of software or hardware systems and to the
verification of these systems against these specifications using computer assistance: model checkers, theorem
provers, program analyzers, etc. Despite their costs, formal methods are gaining acceptance in the critical
software industry, as they are the only way to reach the required levels of software assurance.

In contrast with several other Inria projects, our research objectives are not fully centered around formal
methods. However, our research intersects formal methods in the following two areas, mostly related to
program proofs using proof assistants and theorem provers.

3.4.1. Software-proof codesign
The current industrial practice is to write programs first, then formally verify them later, often at huge costs.
In contrast, we advocate a codesign approach where the program and its proof of correctness are developed
in interaction, and we are interested in developing ways and means to facilitate this approach. One possibility
that we currently investigate is to extend functional programming languages such as OCaml with the ability
to state logical invariants over data structures and pre- and post-conditions over functions, and interface with
automatic or interactive provers to verify that these specifications are satisfied. Another approach that we
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practice is to start with a proof assistant such as Coq and improve its capabilities for programming directly
within Coq.

3.4.2. Mechanized specifications and proofs for programming languages components
We emphasize mathematical specifications and proofs of correctness for key language components such as
semantics, type systems, type inference algorithms, compilers and static analyzers. These components are
getting so large that machine assistance becomes necessary to conduct these mathematical investigations.
We have already mentioned using proof assistants to verify compiler correctness. We are also interested in
using them to specify and reason about semantics and type systems. These efforts are part of a more general
research topic that is gaining importance: the formal verification of the tools that participate in the construction
and certification of high-assurance software.

4. Application Domains

4.1. High-assurance software
A large part of our work on programming languages and tools focuses on improving the reliability of software.
Functional programming, program proof, and static type-checking contribute significantly to this goal.

Because of its proximity with mathematical specifications, pure functional programming is well suited to
program proof. Moreover, functional programming languages such as OCaml are eminently suitable to
develop the code generators and verification tools that participate in the construction and qualification of high-
assurance software. Examples include Esterel Technologies’s KCG 6 code generator, the Astrée static analyzer,
the Caduceus/Jessie program prover, and the Frama-C platform. Our own work on compiler verification
combines these two aspects of functional programming: writing a compiler in a pure functional language
and mechanically proving its correctness.

Static typing detects programming errors early, prevents a number of common sources of program crashes
(null dereferences, out-of bound array accesses, etc), and helps tremendously to enforce the integrity of data
structures. Judicious uses of generalized abstract data types (GADTs), phantom types, type abstraction and
other encapsulation mechanisms also allow static type checking to enforce program invariants.

4.2. Software security
Static typing is also highly effective at preventing a number of common security attacks, such as buffer
overflows, stack smashing, and executing network data as if it were code. Applications developed in a language
such as OCaml are therefore inherently more secure than those developed in unsafe languages such as C.

The methods used in designing type systems and establishing their soundness can also deliver static analyses
that automatically verify some security policies. Two examples from our past work include Java bytecode
verification [46] and enforcement of data confidentiality through type-based inference of information flow and
noninterference properties [49].

4.3. Processing of complex structured data
Like most functional languages, OCaml is very well suited to expressing processing and transformations of
complex, structured data. It provides concise, high-level declarations for data structures; a very expressive
pattern-matching mechanism to destructure data; and compile-time exhaustiveness tests. Therefore, OCaml is
an excellent match for applications involving significant amounts of symbolic processing: compilers, program
analyzers and theorem provers, but also (and less obviously) distributed collaborative applications, advanced
Web applications, financial modeling tools, etc.
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4.4. Rapid development
Static typing is often criticized as being verbose (due to the additional type declarations required) and
inflexible (due to, for instance, class hierarchies that must be fixed in advance). Its combination with type
inference, as in the OCaml language, substantially diminishes the importance of these problems: type inference
allows programs to be initially written with few or no type declarations; moreover, the OCaml approach to
object-oriented programming completely separates the class inheritance hierarchy from the type compatibility
relation. Therefore, the OCaml language is highly suitable for fast prototyping and the gradual evolution of
software prototypes into final applications, as advocated by the popular “extreme programming” methodology.

4.5. Teaching programming
Our work on the Caml language family has an impact on the teaching of programming. Caml Light is one of
the programming languages selected by the French Ministry of Education for teaching Computer Science
in classes préparatoires scientifiques. OCaml is also widely used for teaching advanced programming in
engineering schools, colleges and universities in France, the USA, and Japan.

5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Awards

In 2017, Jacques-Henri Jourdan received the “prix du GDR GPL” (http://gdr-gpl.cnrs.fr/node/284) for his
dissertation, entitled “Verasco: a Formally Verified C Static Analyzer”. Jacques-Henri was a Ph.D. student in
the Gallium team, advised by Xavier Leroy.

6. New Software and Platforms

6.1. Compcert
The CompCert formally-verified C compiler
KEYWORDS: Compilers - Formal methods - Deductive program verification - C - Coq
FUNCTIONAL DESCRIPTION: CompCert is a compiler for the C programming language. Its intended use is
the compilation of life-critical and mission-critical software written in C and meeting high levels of assurance.
It accepts most of the ISO C 99 language, with some exceptions and a few extensions. It produces machine
code for the ARM, PowerPC, RISC-V, and x86 architectures. What sets CompCert C apart from any other
production compiler, is that it is formally verified to be exempt from miscompilation issues, using machine-
assisted mathematical proofs (the Coq proof assistant). In other words, the executable code it produces is
proved to behave exactly as specified by the semantics of the source C program. This level of confidence
in the correctness of the compilation process is unprecedented and contributes to meeting the highest levels
of software assurance. In particular, using the CompCert C compiler is a natural complement to applying
formal verification techniques (static analysis, program proof, model checking) at the source code level: the
correctness proof of CompCert C guarantees that all safety properties verified on the source code automatically
hold as well for the generated executable.

http://gdr-gpl.cnrs.fr/node/284
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RELEASE FUNCTIONAL DESCRIPTION: Novelties include a formally-verified type checker for CompCert
C, a more careful modeling of pointer comparisons against the null pointer, algorithmic improvements in the
handling of deeply nested struct and union types, much better ABI compatibility for passing composite values,
support for GCC-style extended inline asm, and more complete generation of DWARF debugging information
(contributed by AbsInt).

• Participants: Xavier Leroy, Sandrine Blazy, Jacques-Henri Jourdan, Sylvie Boldo and Guillaume
Melquiond

• Partner: AbsInt Angewandte Informatik GmbH

• Contact: Xavier Leroy

• URL: http://compcert.inria.fr/

6.2. Diy
Do It Yourself
KEYWORD: Parallelism
FUNCTIONAL DESCRIPTION: The diy suite provides a set of tools for testing shared memory models: the
litmus tool for running tests on hardware, various generators for producing tests from concise specifications,
and herd, a memory model simulator. Tests are small programs written in x86, Power or ARM assembler that
can thus be generated from concise specification, run on hardware, or simulated on top of memory models.
Test results can be handled and compared using additional tools.

• Participants: Jade Alglave and Luc Maranget

• Partner: University College London UK

• Contact: Luc Maranget

• URL: http://diy.inria.fr/

6.3. Menhir
KEYWORDS: Compilation - Context-free grammars - Parsing
FUNCTIONAL DESCRIPTION: Menhir is a LR(1) parser generator for the OCaml programming language.
That is, Menhir compiles LR(1) grammar specifications down to OCaml code. Menhir was designed and
implemented by François Pottier and Yann Régis-Gianas.

• Contact: François Pottier

• Publications: A Simple, Possibly Correct LR Parser for C11 - Reachability and Error Diagnosis in
LR(1) Parsers

6.4. OCaml
KEYWORDS: Functional programming - Static typing - Compilation
FUNCTIONAL DESCRIPTION: The OCaml language is a functional programming language that combines
safety with expressiveness through the use of a precise and flexible type system with automatic type inference.
The OCaml system is a comprehensive implementation of this language, featuring two compilers (a bytecode
compiler, for fast prototyping and interactive use, and a native-code compiler producing efficient machine
code for x86, ARM, PowerPC and System Z), a debugger, a documentation generator, a compilation manager,
a package manager, and many libraries contributed by the user community.

• Participants: Damien Doligez, Xavier Leroy, Fabrice Le Fessant, Luc Maranget, Gabriel Scherer,
Alain Frisch, Jacques Garrigue, Marc Shinwell, Jeremy Yallop and Leo White

• Contact: Damien Doligez

• URL: https://ocaml.org/

http://compcert.inria.fr/
http://diy.inria.fr/
https://hal.inria.fr/hal-01633123
https://hal.inria.fr/hal-01417004
https://hal.inria.fr/hal-01417004
https://ocaml.org/
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6.5. PASL
KEYWORD: Parallel computing
FUNCTIONAL DESCRIPTION: PASL is a C++ library for writing parallel programs targeting the broadly
available multicore computers. The library provides a high level interface and can still guarantee very good
efficiency and performance, primarily due to its scheduling and automatic granularity control mechanisms.

• Participants: Arthur Charguéraud, Michael Rainey and Umut Acar
• Contact: Michael Rainey
• URL: http://deepsea.inria.fr/pasl/

6.6. ZENON
FUNCTIONAL DESCRIPTION: Zenon is an automatic theorem prover based on the tableaux method. Given a
first-order statement as input, it outputs a fully formal proof in the form of a Coq proof script. It has special
rules for efficient handling of equality and arbitrary transitive relations. Although still in the prototype stage,
it already gives satisfying results on standard automatic-proving benchmarks.

Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive
proof assistant), and also to be retargeted to output scripts for different frameworks (for example, Isabelle
and Dedukti).

• Author: Damien Doligez
• Contact: Damien Doligez
• URL: http://zenon-prover.org/

6.7. OPAM Builder
KEYWORDS: Ocaml - Continuous integration - Opam
FUNCTIONAL DESCRIPTION: OPAM Builder checks in real-time the installability on a computer of all
packages after any modification of the repository. To achieve this result, it uses smart mechanisms to compute
incremental differencies between package updates, to be able to reuse cached compilations, and switch from
a quadratic complexity to a linear complexity.

• Partner: OCamlPro
• Contact: Fabrice Le Fessant
• URL: http://github.com/OCamlPro/opam-builder

6.8. TLAPS
TLA+ proof system
KEYWORD: Proof assistant
FUNCTIONAL DESCRIPTION: TLAPS is a platform for developing and mechanically verifying proofs about
TLA+ specifications. The TLA+ proof language is hierarchical and explicit, allowing a user to decompose
the overall proof into proof steps that can be checked independently. TLAPS consists of a proof manager that
interprets the proof language and generates a collection of proof obligations that are sent to backend verifiers.
The current backends include the tableau-based prover Zenon for first-order logic, Isabelle/TLA+, an encoding
of TLA+ set theory as an object logic in the logical framework Isabelle, an SMT backend designed for use
with any SMT-lib compatible solver, and an interface to a decision procedure for propositional temporal logic.
NEWS OF THE YEAR: In 2017, we have continued to work on a complete reimplementation of the proof
manager. One objective is a cleaner interaction with the TLA+ front-ends, in particular SANY, the standard
parser and semantic analyzer. The reimplementation is also necessary for extending the scope of the fragment
of TLA+ that is handled by TLAPS, in particular full temporal logic and module instantiation.

• Participants: Damien Doligez, Stephan Merz and Martin Riener
• Contact: Stephan Merz
• URL: https://tla.msr-inria.inria.fr/tlaps/content/Home.html

http://deepsea.inria.fr/pasl/
http://zenon-prover.org/
http://github.com/OCamlPro/opam-builder
https://tla.msr-inria.inria.fr/tlaps/content/Home.html
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6.9. CFML
Interactive program verification using characteristic formulae
KEYWORDS: Coq - Software Verification - Deductive program verification - Separation Logic
FUNCTIONAL DESCRIPTION: The CFML tool supports the verification of OCaml programs through interac-
tive Coq proofs. CFML proofs establish the full functional correctness of the code with respect to a specifica-
tion. They may also be used to formally establish bounds on the asymptotic complexity of the code. The tool is
made of two parts: on the one hand, a characteristic formula generator implemented as an OCaml program that
parses OCaml code and produces Coq formulae, and, on the other hand, a Coq library that provides notations
and tactics for manipulating characteristic formulae interactively in Coq.

• Participants: Arthur Charguéraud, Armaël Guéneau and François Pottier

• Contact: Arthur Charguéraud

• URL: http://www.chargueraud.org/softs/cfml/

6.10. ldrgen
Liveness-driven random C code generator
KEYWORDS: Code generation - Randomized algorithms - Static program analysis
FUNCTIONAL DESCRIPTION: The ldrgen program is a generator of C code: On every call it generates a
new random C function and prints it to the standard output. The generator is "liveness-driven", which means
that it tries to avoid generating dead code: All the computations it generates are (in a certain, limited sense)
actually used to compute the function’s return value. This is achieved by generating the program backwards,
in combination with a simultaneous liveness analysis that guides the random generator’s choices.

• Participant: Gergö Barany

• Contact: Gergö Barany

• Publication: Liveness-Driven Random Program Generation

• URL: https://github.com/gergo-/ldrgen

7. New Results

7.1. Formal verification of compilers and static analyzers
7.1.1. The CompCert formally-verified compiler

Participants: Xavier Leroy, Daniel Kästner [AbsInt GmbH], Michael Schmidt [AbsInt GmbH], Bernhard
Schommer [AbsInt GmbH], Prashanth Mundkur [SRI International].

In the context of our work on compiler verification (see section 3.3.1), since 2005 we have been developing
and formally verifying a moderately-optimizing compiler for a large subset of the C programming language,
generating assembly code for the ARM, PowerPC, RISC-V and x86 architectures [9]. This compiler comprises
a back-end part, translating the Cminor intermediate language to PowerPC assembly and reusable for source
languages other than C [8], and a front-end translating the CompCert C subset of C to Cminor. The compiler
is mostly written within the specification language of the Coq proof assistant, from which Coq’s extraction
facility generates executable OCaml code. The compiler comes with a 100000-line, machine-checked Coq
proof of semantic preservation establishing that the generated assembly code executes exactly as prescribed
by the semantics of the source C program.

http://www.chargueraud.org/softs/cfml/
https://hal.inria.fr/hal-01658563
https://github.com/gergo-/ldrgen
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This year, we improved the CompCert C compiler in several directions:

• The support for 64-bit target processors that was initiated last year was improved and released as
part of version 3.0 of CompCert. CompCert has been supporting 64-bit integer arithmetic since
2013. However, pointers and memory addresses were still assumed to be 32 bits wide. CompCert
3.0 lifts this restriction by parameterizing the compiler over the bit width of memory addresses. This
required extensive changes throughout the back-end compiler passes and their correctness proofs.

• The x86 code generator, initially 32-bit only, was extended to handle 64-bit x86 as well. This is
the first instantiation of the generic support for 64-bit target architectures mentioned above. This
extension greatly improves the usability and performance of CompCert on servers and PCs, where
x86 64-bit is the dominant architecture.

• Support for the RISC-V processor architecture was added to CompCert. Prashanth Mundkur con-
tributed a prototype port targeting 32-bit RISC-V. Xavier Leroy extended this port to target 64-bit
RISC-V as well and to integrate it in CompCert 3.1. While not commercially available yet, the
RISC-V architecture is used in many academic verification projects.

• Several minor optimizations were added to address inefficiencies observed in AbsInt’s customer
code. The most notable one is the optimization of leaf functions to avoid return address reloads.

• Error and warning messages were improved and made more like those of GCC and Clang.
Command-line flags were added to control which warning to emit and which warnings to treat as
fatal errors.

We released version 3.0 of CompCert in February 2017 incorporating support for 64-bit architectures, and
version 3.1 in August 2017 incorporating the other enhancements listed above.

Two papers describing industrial uses of CompCert for critical software were written, with Daniel Kästner
from AbsInt as lead author. The first paper [24] was presented at the 2017 symposium of the British Safety-
Critical Systems Club. The second paper [23] will be presented in January 2018 at the ERTS congress. It
describes the use of CompCert to compile software for nuclear power plant equipment developed by MTU
Friedrichshafen, and the required certification of CompCert according to the IEC 60880 regulations for the
nuclear industry.

7.1.2. A verified model of register aliasing in CompCert
Participants: Gergö Barany, Xavier Leroy.

In the setting of the ASSUME ITEA3 project, Gergö Barany and Xavier Leroy are working on implementing
a CompCert back-end for the Kalray MPPA processor architecture. This architecture features pervasive
register aliasing: each of its 64-bit registers can also be accessed as two separate 32-bit halves. The ARM
architecture’s floating-point register file is similarly aliased. Modifying a superregister invalidates the data
stored in subregisters and vice versa; this behavior was not yet modeled in CompCert’s semantics.

Integrating subregister aliasing in CompCert involved re-engineering much of its semantic model of the
register file and of the call stack. Rather than simple mappings of locations to values, the register file and
the stack are now modeled more realistically as blocks of memory containing bytes that represent fragments
of values. In this way, we can verify a semantic model in which a 64-bit register or stack slot may contain
either a single 64-bit value or a pair of two unrelated 32-bit values. This ongoing work is nearing completion.

7.1.3. Random program generation for compiler testing
Participant: Gergö Barany.

Randomized testing is a powerful tool for finding bugs in compilers. In a project aimed at finding missed
compiler optimizations, Gergö Barany wanted to use such random testing techniques, but found that the
standard random C program generator, Csmith, generates very large amounts of dead code. This is code whose
results are never used and that can therefore be removed by the compiler.
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The presence of large amounts of dead code prevents testing optimizations: almost all of the code is trivially
removed by compilers’ dead code elimination passes. Gergö resolved this problem by designing a new
approach to random program generation. The new generator generates code backwards and performs a
simultaneous liveness analysis of the program to rule out the generation of dead code. Its practical evaluation
shows that it is much more efficient than Csmith at generating programs that compile to large amounts of
machine code with a much more varied instruction mix than Csmith-generated code. In addition, the new
generator is much faster than Csmith, because it is designed to work in a single, linear pass, without generating
invalid states that cause backtracking. This work resulted in the development of the ldrgen tool, and was
presented at LOPSTR 2017 [34].

7.1.4. Testing compiler optimizations
Participant: Gergö Barany.

Compilers should be correct, but they should ideally also generate machine code that is as efficient as possible.
Gergö Barany started work on adapting compiler correctness testing techniques for testing the quality of the
generated code.

In a differential testing approach, one generates random C programs, compiles them with different compilers,
then compares the generated code. The comparison is done by a custom binary analysis tool that Gergö
developed for this purpose. This tool assigns scores to programs according to various criteria such as the
number of instructions, the number of reads from the stack (for comparing the quality of register spilling), or
the numbers of various other classes of instructions affected by optimizations of interest. New criteria can be
added using a simple plug-in system. If the binaries generated by different compilers are assigned different
scores, the input program is considered interesting, and it is reduced to a minimal test case using an off-the-
shelf program reducer (C-Reduce).

This automated process often results in small, simple examples of missed optimizations: optimizations that
compilers should be able to perform, but that they failed to apply for various reasons. Gergö found previously
unreported missing arithmetic optimizations, as well as individual cases of unnecessary register spilling,
missed opportunities for register coalescing, dead stores, redundant computations, and missing instruction
selection patterns. Several of these missed optimization issues were reported and fixed in the GCC, Clang, and
CompCert compilers. An article describing this work is currently under review, and work is in progress on
other binary analysis techniques that can find further missed optimizations.

7.1.5. Towards a verified compilation stack for concurrent programs
Participants: Jean-Marie Madiot, Andrew Appel [Princeton University].

The verified compiler CompCert compiles programs from C to assembly while preserving their semantics,
thus allowing formal reasoning on source programs, which is much more tractable than reasoning on assembly
code. It is however limited to sequential programs, running as one thread on one processor. Jean-Marie Madiot
is working to extend CompCert to shared-memory concurrency and to provide users with techniques to reason
and prove properties about concurrent programs.

Concurrent Separation Logic is used to reason about source programs and prove their correctness with
respect to a “concurrent permission machine”. The programs are compiled by a concurrency-aware version
of CompCert. As of 2017, this has been done for the x86 architecture only.

This project is a continuation of a collaboration with Andrew Appel’s team at Princeton University. Appel’s
team has been working for several years on the “Verified Software Toolchain” project, which provides users
with tools to establish properties of sequential programs. Jean-Marie Madiot has been extending the program
logic to shared-memory concurrency and developing a new proof of concurrent separation logic that is both
formalised and usable in this setting. A paper has been submitted and rejected and is being improved.

Jean-Marie Madiot is now also working on a more general adaptation of CompCert to the reasoning principles
of concurrency, and started a collaboration to adapt it to architectures other than x86 (see Section 7.3.4).
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7.1.6. Verified compilation of Lustre
Participants: Xavier Leroy, Timothy Bourke [team Parkas], Lélio Brun [team Parkas], Pierre-Évariste Dagand
[team Whisper], Marc Pouzet [team Parkas], Lionel Rieg [Yale University].

The Velus project of team Parkas develops a compiler for the Lustre reactive language that generates CompCert
Clight intermediate code and is proved correct using the Coq proof assistant. A paper describing the Velus
compiler and its verification was presented at the conference PLDI 2017 [20]. Xavier Leroy contributed to
the verification of the final pass of Velus, the one that translates from the Obc object-oriented intermediate
language of Velus to the Clight C-like, early intermediate language of CompCert. The correctness proof of
this pass captures the shape of memory states during execution using formulas from separation logic. The
separation logic assertions for CompCert memory states used in this proof come from a library that Xavier
Leroy developed last year to help revise the proof of the “stacking” pass of CompCert, and that Timothy
Bourke and Xavier Leroy later extended with a “magic wand” operator.

7.2. Language design and type systems
7.2.1. Refactoring with ornaments in ML

Participants: Thomas Williams, Didier Rémy.

Thomas Williams and Didier Rémy continued working on ornaments for program refactoring and program
transformation in ML. Ornaments have been introduced as a way of describing changes in data type definitions
that preserve the recursive structure but can reorganize, add, or drop pieces of data. After a new data structure
has been described as an ornament of an older one, the functions that operate on the bare structure can be
partially or sometimes totally lifted into functions that operate on the ornamented structure.

This year, Williams and Rémy continued working on the description of the lifting algorithm: using ornament
inference, an ML program is first elaborated into a generic program, which can be seen as a template for all
possible liftings of the original program. The generic program is defined in a superset of ML. It can then be
instantiated with specific ornaments, and simplified back into an ML program. Williams and Rémy studied
the semantics of this intermediate language and used it to prove the correctness of the lifting, using logical
relations techniques. A paper has been accepted for presentation at POPL 2018 [14]. A research report gives
more technical details [30].

On the practical side, several families of case studies have been explored, including refactoring and code
specialization, as so as to make certain existing invariants apparent, or so as to use more efficient data
structures. We improved the user interface of the prototype implementation so as to make it easier to write
useful examples. We are currently developing a new version of the prototype that will handle most of the
OCaml language.

7.3. Shared-memory parallelism
7.3.1. The Linux Kernel Memory Model

Participants: Luc Maranget, Jade Alglave [University College London–Microsoft Research, UK], Paul
Mckenney [IBM Corporation], Andrea Parri [Sant’Anna School of Advanced Studies, PISA, Italy], Alan Stern
[Harvard University].

Modern multi-core and multi-processor computers do not follow the intuitive “Sequential Consistency” model
that would define a concurrent execution as the interleaving of the executions of its constituent threads and that
would command instantaneous writes to the shared memory. This situation is due both to in-core optimizations
such as speculative and out-of-order execution of instructions, and to the presence of sophisticated (and
cooperating) caching devices between processors and memory. Luc Maranget is taking part in an international
research effort to define the semantics of the computers of the multi-core era, and more generally of shared-
memory parallel devices or languages, with a clear initial focus on devices.
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This year saw progress as regards languages. To wit, a two-year effort to define a weak memory model for the
Linux Kernel has yielded an article in the Linux Weekly News online technical magazine [31], and a scholarly
paper accepted for publication at the Architectural Support for Programming Languages and Operating
Systems (ASPLOS) conference in March 2018. While targeting different audiences, both articles describe a
formal model that defines how Linux programs are supposed to behave. The model is of course a CAT model,
hence is understood by the herd simulator (Section 7.3.3) that allows programmers to experiment and develop
an intuition. The model has been tested against hardware and refined in consultation with maintainers. Finally,
the ASPLOS article formalizes the fundamental law of the Read-Copy-Update synchronization mechanism,
and proves that one of its implementations satisfies this law.

For the record, Luc Maranget also co-authored a paper that has been presented at POPL 2017 [22]. This work,
which we described last year, is joint work with many researchers, including S. Flur and other members of
P. Sewell’s team (University of Cambridge) as well as M. Batty (University of Kent). Moreover, Luc Maranget
still interacts with the Cambridge team, mostly by providing tests and performing comparisons between his
axiomatic models and the operational models developed by this team.

7.3.2. ARMv8 and RISC-V memory models
Participants: Will Deacon [ARM Ltd], Luc Maranget, Jade Alglave [University College London–Microsoft
Research, UK].

Jade Alglave and Luc Maranget helped Will Deacon, an engineer at ARM Ltd., who developed a model for
the ARMv8 64-bit processor. Will wrote a CAT model, which ARM uses internally as a specification. (CAT
is the domain-specific language for describing memory models and is understood by the herd simulator; see
Section 7.3.3.) ARM’s official documentation presents a natural language transliteration of the CAT model.

Luc Maranget also joined the RISC-V consortium (https://riscv.org/) as an individual and as a member of the
memory model group. He takes part in the development of the memory model of this open architecture, mostly
by writing CAT models and reviewing tests that will be part of the documentation. A CAT model will be part
of the next version (V2.3) of the User-Level ISA Specification.

7.3.3. Improvements to the diy tool suite
Participants: Luc Maranget [ contact ], Jade Alglave [University College London–Microsoft Research, UK].

The diy suite (for “Do It Yourself”) provides a set of tools for testing shared memory models: the litmus tool
for running tests on hardware, various generators for producing tests from concise specifications, and herd, a
memory model simulator. Tests are small programs written in x86, Power, ARM, generic (LISA) assembler,
or a subset of the C language that can thus be generated from concise specifications, run on hardware, or
simulated on top of memory models. Test results can be handled and compared using additional tools.

This year’s new features are a model for the Linux Kernel developed as a collaborative effort (see Section 7.3.1)
and an ongoing RISC-V model transliterated by Luc Maranget from the model elaborated by the RISC-V
committee which Luc Maranget joined this year (see Section 7.3.2). Those new models were made possible
due to significant extensions of diy, such as a new tool chain for RISC-V and the extension of the macro
system so as to handle most of the memory-model-related macros used by Linux kernel developers.

7.3.4. Towards formal software verification with respect to weak memory models
Participants: Jean-Marie Madiot, Jade Alglave [University College London & Microsoft Research Cam-
bridge], Simon Castellan [Imperial College London].

Past research efforts on weak memory models have provided both academia and industry with very efficient
tools to precisely describe memory models and to carefully test them on a wide variety of architectures.
While these models give us a good understanding of complex hardware behaviors, exploiting them to formally
guarantee the good behavior of software remains practically out of reach.

https://riscv.org/
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A difficulty is that weak memory models are described in terms of properties of graphs of execution candidates.
Because graphs are far from the usual way of defining programming language semantics, because execution
candidates are not defined formally, and because existing proofs of “data-race freedom” (DRF) theorems are
hard to fathom and formally imprecise, there is a strong demand in the programming language community for
a formal account of weak memory models.

In 2017, Jean-Marie Madiot started a collaboration with weak memory model expert Jade Alglave and
concurrent game semantics researcher Simon Castellan to tackle these problems. The idea is to have a formal
description, using partial-order techniques similar to the ones used in game semantics, of execution candidates.
On the other side, a given model of shared memory is then described in terms of partial orders, and the
composition of those partial orders provides the final possible executions of a given program in a given
architecture. This should yield a formal semantics for programs in a weak memory setting, and should allow
proving a DRF theorem so as to connect this semantics to more standard sequentially consistent semantics.
A success in this direction would finally allow tractable verification of concurrent programs, particularly
in combination with Madiot’s ongoing work on a generalization to concurrency of the CompCert certified
compiler (see Section 7.1.5).

7.3.5. Granularity control for parallel programs
Participants: Umut Acar, Vitaly Aksenov, Arthur Charguéraud, Adrien Guatto, Mike Rainey, Filip
Sieczkowski.

The DeepSea team focused this year on the development of techniques for controlling granularity in parallel
programs. Granularity control is an essential problem because creating too many tasks may induce overwhelm-
ing overheads, while creating too few tasks may harm the ability to process tasks in parallel. Granularity
control turns out to be especially challenging for nested parallel programs, i.e., programs in which parallel
constructs such as fork-join or parallel-loops can be arbitrarily nested. Two different approaches were investi-
gated.

The first approach is based on the use of asymptotic complexity functions provided by the programmer,
combined with runtime measurements to estimate the constant factors that apply. Combining these two sources
of information allows to predict with reasonable accuracy the execution time of tasks. Such predictions may be
used to guide the generation of tasks, by sequentializing computations of sufficiently-small size. An analysis is
developed, establishing that task creation overheads are indeed bounded to a small fraction of the total runtime.
These results builds upon prior work by the same authors [39], extending it with a carefully-designed algorithm
for ensuring convergence of the estimation of the constant factors deduced from the measures, even in the face
of noise and cache effects, which are taken into account in the analysis. The approach is demonstrated on a
range of benchmarks taken from the state-of-the-art PBBS benchmark suite. A paper describing the results is
under preparation.

The second approach is based on an instrumentation of the runtime system. The idea is to process parallel
function calls just like normal function calls, by pushing a frame on the stack, and only subsequently promoting
these frames as threads that might get scheduled on other cores. The promotion of frames takes place at regular
time intervals, which is why we named this approach heartbeat scheduling. Unlike prior approaches such as
lazy scheduling, in which promotion is guided by the workload of the system, heartbeat scheduling can be
proved to induce only small scheduling overheads, and to not asymptotically reduce the amount of parallelism
inherent in the program. The theory behind the approach is formalized in Coq. It is also implemented through
instrumented C++ programs, and evaluated on PBBS benchmarks. A paper describing this approach was
submitted to an international conference.

7.3.6. Non-zero indicators: a provably-efficient, concurrent data structure
Participants: Umut Acar, Mike Rainey.
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This work, conducted in collaboration with Naama Ben David from Carnegie Mellon University, investigates
the design and analysis of an implementation of a concurrent data structure called non-zero indicator. This data
structure plays a crucial role in the scheduling of nested parallel programs: it is used to handle dependency
resolution among parallel tasks. Concretely, a non-zero indicator is initialized with value 1, and it supports the
following two concurrent operations, which may be invoked by threads that have knowledge that the counter
is non-zero: (1) atomically increase the counter by one unit, and (2) atomically decrease the counter by one
unit, and detect whether the counter reaches zero. While a trivial implementation can be set up using an atomic
operation on a shared memory cell (e.g., fetch-and-add), the key challenge is to design a non-zero indicator
that scales well to hundreds if not thousands of threads, without suffering from contention.

Prior work leverages dynamic tree data structures to tame contention [42]. Yet, such prior work, as well as most
concurrent data structures in general, are analyzed empirically, omitting asymptotic bounds on their efficiency.
In this work, we propose a new variant of a tree-based non-zero indicator implementation, for which we are
able to present a formal analysis establishing bounds on the worst-case contention of concurrent updates. Our
analysis is the first to achieve relevant bounds of this kind. Furthermore, we demonstrate in practice that our
proposal improves scalability, compared with a naive fetch-and-add atomic counter, and also compared with
the original tree-based data structure. Our work was presented at PPoPP [16].

7.3.7. Efficient sequence data structures for ML
Participants: Arthur Charguéraud, Mike Rainey.

The use of sequence containers, including stacks, queues, and double-ended queues, is ubiquitous in program-
ming. When the maximal number of elements to be stored is not known in advance, containers need to grow
dynamically. For this purpose, most ML programs rely on either lists or vectors. These data structures are
inefficient, both in terms of time and space usage. In this work, we investigate the use of data structures based
on chunks, adapting ideas from some of our prior work implemented in C++ [38]. Each chunk stores items
in a fixed-capacity array. All chunks are linked together to represent the full sequence. These chunk-based
structures save a lot of memory and generally deliver better performance than classic container data structures
for long sequences. We measured a 2x speedup compared with vectors, and up to a 3x speedup compared
with long lists. This work was presented at the ML Family Workshop [36]. Generalization of this work to
double-ended sequences and to persistent sequences is under progress.

7.3.8. A parallel algorithm for the dynamic trees problem
Participants: Umut Acar, Vitaly Aksenov.

Dynamic algorithms are used to compute a property of some data while the data undergoes changes over time.
Many dynamic algorithms have been proposed, but nearly all of them are sequential.

In collaboration with Sam Westrick (Carnegie Mellon University), Umut Acar and Vitaly Aksenov investigated
the design of an efficient parallel dynamic tree data structure. This data structure supports four operations,
namely insertion and deletion of vertices and edges; these operations can be executed in parallel. The proposed
data structure is work-efficient and highly parallel. A preliminary version of this work was presented in a brief
announcement at SPAA 2017 [15].

7.3.9. A concurrency-optimal binary search tree
Participant: Vitaly Aksenov.

In joint work with Vincent Gramoli (IT School of Information Technologies, Sydney), Petr Kuznetsov (Tele-
com ParisTech), Anna Malova (Washington University in St Louis), and Srivatsan Ravi (Purdue Univer-
sity), Vitaly Aksenov proposed a concurrency-optimal implementation of binary search trees. Concurrency-
optimality means that the data structure allows all interleavings of the underlying sequential implementa-
tion, except those that would violate linearizability. Aksenov and co-authors show that none of the state-of-
the-art concurrent binary search trees are concurrency-optimal, and they experimentally verify that the new
concurrency-optimal binary search tree is competitive with known implementations. This work was presented
at Euro-Par 2017 [17].
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7.4. The OCaml language and system
7.4.1. The OCaml system

Participants: Damien Doligez, Xavier Leroy, Luc Maranget, David Allsop [Cambridge University], Florian
Angeletti, Alain Frisch [Lexifi], Jacques Garrigue [University of Nagoya], Sébastien Hinderer [SED], Nicolás
Ojeda Bär [Lexifi], Thomas Refis [Jane Street], Gabriel Scherer [team Parsifal], Mark Shinwell [Jane Street],
Leo White [Jane Street], Jeremy Yallop [Cambridge University].

This year, we released four versions of the OCaml system: versions 4.04.1 and 4.04.2 are minor releases that
fix about 16 issues; versions 4.05.0 and 4.06.0 are major releases that introduce some new features, many
improvements in usability and performance, and fix about 100 issues. The most important new features are:

• Character strings are now immutable (read-only) by default. This completes the evolution of OCaml
towards immutable strings that started in 2014 with the introduction of a compile-time option to
separate text-like read-only strings from array-like read-write byte sequences. This option is now the
default, making OCaml programs safer and clearer.

• Extensions of the “destructive substitution” operator over module signatures (sig with type t := ...)
to make it more general and more widely usable.

• Support for the UTF8 encoding of Unicode characters in strings was improved with the introduction
of an escape \u{XXXX} in string literals, and more importantly with a complete overhaul of
the OCaml interface for Windows system calls that make them compatible with UTF8-encoded
Unicode.

• An alternate register allocator based on linear scan was added and can be selected to reduce
compilation times.

On the organization side, we switched to a deadline-based release cycle whereby a major release occurs at a
set date with the features that are ready by that date, instead of waiting for a set of new features to be ready.
Releases 4.05.0 and 4.06.0 were produced in this manner at 6-months intervals. Damien Doligez and Gabriel
Scherer served as release managers.

Sébastien Hinderer worked on integrating ocamltest, the compiler’s test driver he developed last year, in the
4.06 release of OCaml. He migrated a large part of the test suite from the former Makefile-based infrastructure
to ocamltest. He also started to rewrite OCaml’s build system so that the compiler can be built in parallel as
much as its dependencies allow.

We have improved our Continuous Integration infrastructure by taking advantage of Jenkins features such as
configuration matrices, adding five new architectures (ARM-64, Fedora, FreeBSD, PPC64-LE, Ubuntu), and
upgrading to the latest version of MacOS. Our testing is now done on all of the major architectures that are
officially supported by OCaml.

7.4.2. Type-checking the OCaml intermediate languages
Participants: Pierrick Couderc [ENSTA-ParisTech & OCamlPro], Grégoire Henry [OCamlPro], Fabrice Le
Fessant, Michel Mauny.

This work aims at designing and implementing a consistency checker for the type-annotated abstract syntax
trees (TASTs) produced by the OCaml compiler. When presented as inference rules, the different cases of this
TAST checker can be read as the rules of the OCaml type system. Proving the correctness of (part of) the
checker would prove the soundness of the corresponding part of the OCaml type system. A preliminary report
on this work has been presented at the 17th Symposium on Trends in Functional Programming (TFP 2016).

In 2017, Pierrick Couderc formalized the consistency checker, and wrote a Coq proof of its correctness. The
dissertation is being written, and Pierrick’s Ph.D. defense should take place at the beginning of 2018.

7.4.3. Optimizing OCaml for satisfiability problems
Participants: Sylvain Conchon [LRI, Univ. Paris Sud], Albin Coquereau [ENSTA-ParisTech], Mohamed
Iguernelala [OCamlPro], Fabrice Le Fessant, Michel Mauny.
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This work aims at improving the performance of the Alt-Ergo SMT solver, implemented in OCaml. For
safety reasons and to ease reasoning about its algorithms, the implementation of Alt-Ergo uses as much as
possible a functional programming style and persistent data structures, which are sometimes less efficient
than imperative style and mutable data. Moreover, some efficient algorithms, such as CDCL SAT solvers, are
naturally expressed in an imperative style.

We therefore explored the replacement of Alt-Ergo’s default, functional, SAT solver by an imperative CDCL
solver. In a first step, we reimplemented a C++ version of miniSAT in OCaml. A comparison of their respective
performance showed that the OCaml version is slower and has more cache misses.

In a second step, we studied the use of the imperative miniSAT-like SAT solver in Alt-Ergo. The integration is
actually not immediate because of the interaction between this solver and both the theories and the quantifier
instantiation engines of Alt-Ergo. In fact, although the default (functional) SAT solver of Alt-Ergo is not as
effective as a CDCL solver for reasoning on pure Boolean problems, its smart interaction with theories and
instantation engines makes it quite effective in the context of program verification.

7.4.4. Type compatibility checking for dynamically-loaded OCaml data
Participants: Florent Balestrieri [ENSTA-ParisTech], Michel Mauny.

The SecureOCaml project (FUI 18) aims at enhancing the OCaml language and environment in order to make
it more suitable for building secure applications, following the recommendations published by the French
ANSSI in 2013. Florent Balestrieri (ENSTA-ParisTech) represents ENSTA-Paristech in this project for 2016
and 2017.

The first year has been dedicated to designing and producing an effective OCaml implementation that checks
whether a memory graph – typically the result obtained by unmarshalling some data – is compatible with a
given OCaml type, following the algorithm designed by Henry et al. in 2012. Because the algorithm requires a
runtime representation of OCaml types, Florent Balestrieri implemented a library for generic programming in
OCaml. This library was presented at the OCaml Users and Developers Workshop in 2016 [40]; an extended
version of this paper has been submitted [33]. He also implemented a type-checker which, when given a type
and a memory graph, checks whether the former could be the type of the latter. In 2017, Florent Balestrieri
implemented a prototype type-checker for OCaml bytecode.

7.4.5. Visitors
Participant: François Pottier.

Traversing and transforming abstract syntax trees that involve name binding is notoriously difficult to do in a
correct, concise, modular, customizable manner. In 2017, François Pottier addressed this problem in the setting
of OCaml by proposing visitor classes as partial, composable descriptions of the operations that one wishes to
perform on abstract syntax trees. By combining auto-generated visitor classes (which have no knowledge of
binding) and hand-written visitor classes (each of which knows about a specific binding construct, a specific
representation of names, and/or a specific operation on abstract syntax trees), a wide range of operations can
be defined. A syntax extension for OCaml has been released under the name visitors and this work has been
presented at the conference ICFP 2017 [13].

7.4.6. Improvements in Menhir
Participant: François Pottier.

In 2017, François Pottier incorporated several improvements, proposed by Frédéric Bour, to the Menhir parser
generator. Many functions were added to Menhir’s incremental API, which (at runtime) allows inspecting and
updating the parser’s state from the outside. A new library, MENHIRSDK, was introduced, which (at compile-
time) allows inspecting the grammar and the automaton constructed by Menhir. Together, these improvements
allow new features to be programmed outside of Menhir; the advanced error recovery mode implemented in
the Merlin IDE is an example.
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François Pottier also improved the termination test that takes place before parameterized symbols are expanded
away. The new test, it is hoped, should reject the grammar if and only if expansion would not terminate. This
improves the expressive power of the grammar description language.

7.5. Software specification and verification
7.5.1. Formal reasoning about asymptotic complexity

Participants: Armaël Guéneau, Arthur Charguéraud, François Pottier.

For several years, Arthur Charguéraud and François Pottier have been investigating the use of Separation
Logic, extended with Time Credits, as an approach to the formal verification of the time complexity of OCaml
programs. An extended version of their work on the UnionFind algorithm has appeared in the Journal of
Automated Reasoning [11]. In this work, the complexity bounds that are established involve explicit constants:
for instance, the complexity of find is 2α(n) + 4.

Armaël Guéneau, who is supervised by Arthur Charguéraud and François Pottier, is working on relaxing this
approach so as to use asymptotic bounds: e.g., the advertised complexity of find should be O(α(n)). The
challenge is to give a formal account of the O notation and of its properties and to develop techniques that
make asymptotic reasoning as convenient in Coq as it seemingly is on paper.

For that purpose, this year, Armaël Guéneau developed two Coq libraries. A first library gives a formal
definition of the O notation, provides proofs for many commonly used lemmas, as well as a number of
tactics that automate the application of these lemmas. A second library implements a simple yet very useful
mechanism, allowing the user to delay and collect proof obligations in Coq scripts. Using these libraries,
Armaël extended the CFML tool with support for making asymptotic time complexity claims as part of
specifications. He developed tactics that perform (guided) inference and resolution of recursive equations
for the cost of recursive programs.

Armaël evaluated this framework on several small-scale case studies, namely simple algorithms such as binary
search, selection sort, and the Bellman-Ford algorithm. This work has been accepted for publication at the
conference ESOP 2018.

7.5.2. Revisiting the CPS transformation and its implementation
Participant: François Pottier.

While preparing an MPRI lecture on the CPS transformation, François Pottier did a machine-checked
proof of semantic correctness for Danvy and Filinski’s properly tail-recursive, one-pass, call-by-value CPS
transformation.

He proposed a new first-order, one-pass, compositional formulation of the transformation. He pointed out that
Danvy and Filinski’s simulation diagram does not hold in the presence of let and proved a slightly more
complex diagram, which involves parallel reduction. He suggested representing variables as de Bruijn indices
and showed that, thanks to state-of-the-art libraries such as Autosubst, this does not represent a significant
impediment to formalization. Finally, he noted that, given this representation of terms, it is not obvious how to
efficiently implement the transformation. To address this issue, he proposed a novel higher-order formulation
of the CPS transformation, proved that it is correct, and informally argued that it runs in time O(n log n).

This work has been submitted for publication in a journal.

7.5.3. Zenon
Participant: Damien Doligez.

This year, Damien Doligez did maintenance work on Zenon: updating to the latest version of OCaml and
fixing a few bugs. He also started work on adding a few minor features, such as inductive proofs for mutually
inductive types.
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7.5.4. TLA+
Participants: Damien Doligez, Leslie Lamport [Microsoft Research], Martin Riener [team VeriDis], Stephan
Merz [team VeriDis].

Damien Doligez is head of the “Tools for Proofs” team in the Microsoft-Inria Joint Centre. The aim of this
project is to extend the TLA+ language with a formal language for hierarchical proofs, formalizing Lamport’s
ideas [44], and to build tools for writing TLA+ specifications and mechanically checking the proofs.

Damien is still working on a new version of TLAPS and has started writing a formal description of the
semantics of TLA+.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
8.1.1. The Caml Consortium

Participants: Xavier Leroy [ contact ], Damien Doligez, Michel Mauny, Didier Rémy.

The Caml Consortium is a formal structure where industrial and academic users of OCaml can support the
development of the language and associated tools, express their specific needs, and contribute to the long-term
stability of Caml. Membership fees are used to fund specific developments targeted towards industrial users.
Members of the Consortium automatically benefit from very liberal licensing conditions on the OCaml system,
allowing for instance the OCaml compiler to be embedded within proprietary applications.

The Consortium currently has 16 member companies:

• Aesthetic Integration

• Ahrefs

• Be Sport

• Bloomberg

• CEA

• Citrix

• Dassault Aviation

• Docker

• Esterel Technologies

• Facebook

• Jane Street

• Kernelyze LLC

• LexiFi

• Microsoft

• OCamlPro

• SimCorp

For a complete description of this structure, refer to http://caml.inria.fr/consortium/. Xavier Leroy chairs the
scientific committee of the Consortium.

8.1.2. The OCaml Foundation
Participant: Michel Mauny.

http://caml.inria.fr/consortium/
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Throughout 2017, Michel Mauny has been preparing the project of an OCaml Foundation, which should
support OCaml in a more efficient way than the existing Caml Consortium could do, thanks to the facilities and
flexibility provided by the recently created Inria Foundation. The goal is to raise enough funds to effectively
support the development and evolution of OCaml, and to animate and grow its user and teaching communities.

8.1.3. Scientific Advisory for OCamlPro
Participant: Fabrice Le Fessant.

OCamlPro is a startup company founded in 2011 by Fabrice Le Fessant to promote the use of OCaml in the
industry, by providing support, services and tools for OCaml to software companies. OCamlPro performs a lot
of research and development, in close partnership with academic institutions such as IRILL, Inria and Univ.
Paris Sud, and is involved in several collaborative projects with Gallium, such as the Bware ANR, the Vocal
ANR and the Secur-OCaml FUI.

Since 2011, Fabrice Le Fessant has been a scientific advisor at OCamlPro, as part of a collaboration contract
for Inria, to transfer his knowledge on the internals of the OCaml runtime and the OCaml compilers. Fabrice
has left Inria in October 2017 to join OCamlPro on a full-time position.

9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. ANR projects
9.1.1.1. Vocal

Participants: Armaël Guéneau, Xavier Leroy, François Pottier, Naomi Testard.

The “Vocal” project (2015–2020) aims at developing the first mechanically verified library of efficient general-
purpose data structures and algorithms. It is funded by Agence Nationale de la Recherche under its “appel à
projets générique 2015”.

The library will be made available to all OCaml programmers and will be of particular interest to implementors
of safety-critical OCaml programs, such as Coq, Astrée, Frama-C, CompCert, Alt-Ergo, as well as new
projects. By offering verified program components, our work will provide the essential building blocks that
are needed to significantly decrease the cost of developing new formally verified programs.

9.1.2. FUI Projects
9.1.2.1. Secur-OCaml

Participants: Damien Doligez, Fabrice Le Fessant.

The “Secur-OCaml” project (2015–2018) is coordinated by the OCamlPro company, with a consortium
focusing on the use of OCaml in security-critical contexts, while OCaml is currently mostly used in safety-
critical contexts. Gallium is invoved in this project to integrate security features in the OCaml language, to
build a new independant interpreter for the language, and to update the recommendations for developers issued
by the former LaFoSec project of ANSSI.

9.2. European Initiatives
9.2.1. FP7 & H2020 Projects
9.2.1.1. Deepsea

Participants: Umut Acar, Vitalii Aksenov, Arthur Charguéraud, Adrien Guatto, Michael Rainey.

The Deepsea project (2013–2018) is coordinated by Umut Acar and funded by FP7 as an ERC Starting Grant.
Its objective is to develop abstractions, algorithms and languages for parallelism and dynamic parallelism,
with applications to problems on large data sets.
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9.2.2. ITEA3 Projects
9.2.2.1. Assume

Participants: Xavier Leroy, Luc Maranget.

ASSUME (2015–2018) is an ITEA3 project involving France, Germany, Netherlands, Turkey and Sweden.
The French participants are coordinated by Jean Souyris (Airbus) and include Airbus, Kalray, Sagem, ENS
Paris, and Inria Paris. The goal of the project is to investigate the usability of multicore and manycore
processors for critical embedded systems. Our involvement in this project focuses on the formalisation and
verification of memory models and of automatic code generators from reactive languages.

9.3. International Initiatives
9.3.1. Informal International Partners

• Princeton University: interactions between the CompCert verified C compiler and the Verified
Software Toolchain developed at Princeton.

• Cambridge University and Microsoft Research Cambridge: formal modeling and testing of weak
memory models.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Selection
10.1.1.1. Member of the Conference Program Committees

Xavier Leroy participated in the program committee of the ACM symposium on Principles of Programming
Languages (POPL 2018), of the European Symposium on Programming (ESOP 2018), and of the second
Principles of Secure Compilation workshop (PRISC 2018).

Jean-Marie Madiot was a member of the program committee of the Interaction and Concurrency Experience
Workshop (ICE 2017).

Michel Mauny was a member of the program committee for Trends in Functional Programming in Education
(TFPIE 2017).

François Pottier was program chair of the ACM SIGPLAN Workshop on Higher-Order Programming with
Effects (HOPE 2017) and a member of the program committee of the Journées Françaises des Langages
Applicatifs (JFLA 2018).

Mike Rainey was a member of the program committee for the IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2018).

Didier Rémy was a member of the program commitee of the International Symposium on Functional and
Logic Programming (FLOPS 2018).

10.1.2. Journal
10.1.2.1. Member of the Editorial Boards

Xavier Leroy is area editor (programming languages) for Journal of the ACM. He is a member of the editorial
board of Journal of Automated Reasoning. Until June 2017, he was on the editorial board for the Research
Highlights column of Communications of the ACM.

Michel Mauny is a member of the steering committee of the OCaml workshop.

François Pottier is a member of the ICFP steering committee and a member of the editorial boards of the
Journal of Functional Programming and the Proceedings of the ACM on Programming Languages.
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Didier Rémy is a member of the steering committee of the ML Family workshop.

10.1.3. Research Administration
Until September 2017, Xavier Leroy was an appointed member of Inria’s Commission d’Évaluation. He
participated in the following Inria hiring committees: jury d’admissibilité DR2 and jury d’admissibilité CR1.

François Pottier is a member of Inria Paris’ Commission de Développement Technologique and the president
of Inria Paris’ Comité de Suivi Doctoral.

Didier Rémy is Deputy Scientific Director (ADS) in charge of Algorithmics, Programming, Software and
Architecture.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Didier Rémy is Inria’s delegate in the pedagogical team of the MPRI (Master Parisien de Recherche en
Informatique).

Master: Luc Maranget, “Semantics, languages and algorithms for multi-core programming”, 18
HETD, M2 (MPRI), Université Paris Diderot, France.
Master: Michel Mauny, “Principles of Programming Languages”, 32 HETD, M1, ENSTA-ParisTech,
France.
Master: François Pottier and Didier Rémy, “Functional programming and type systems”, 18 + 18
HETD, M2 (MPRI), Université Paris Diderot, France.
Licence: Armaël Guéneau, “Initiation à la programmation” (TP), “Projet informatique” (TP), “Con-
cepts informatiques” (TD), “Langages et automates” (TD), 64 HETD, L1 and L2, Université Paris
Diderot, France.
Licence: Thomas Williams, “Projet informatique” (TD), “Programation orientée objet et interfaces
graphiques” (TD/TP), 64 HETD, L2, Université Paris Diderot, France.

10.2.2. Supervision
M1: Danny Willems, Université de Mons, supervised by François Pottier.
PhD in progress: Vitalii Aksenov, “Parallel Dynamic Algorithms”, Université Paris Diderot, since
September 2015, supervised by Umut Acar (co-advised with Anatoly Shalyto, ITMO University of
Saint Petersburg, Russia).
PhD in progress: Pierrick Couderc (ENSTA-ParisTech & OCamlPro), “Typage modulaire du langage
intermédiaire du compilateur OCaml,” Université Paris-Saclay, since December 2014, supervised by
Michel Mauny, Grégoire Henry (OCamlPro) and Fabrice Le Fessant.
PhD in progress: Albin Coquereau (ENSTA-ParisTech), “Amélioration de performances pour le
solveur SMT Alt-Ergo: conception d’outils d’analyse, optimisations et structures de données ef-
ficaces pour OCaml,” Université Paris-Saclay, since October 2015, supervised by Michel Mauny,
Sylvain Conchon (LRI, Université Paris-Sud) and Fabrice Le Fessant.
PhD in progress: Armaël Guéneau, “Towards Machine-Checked Time Complexity Analyses”,
Université Paris Diderot, since September 2016, supervised by Arthur Charguéraud and François
Pottier.
PhD in progress: Naomi Testard, “Reasoning about Effect Handlers and Cooperative Concurrency”,
Université Paris Diderot, since January 2017, supervised by François Pottier.
PhD in progress: Thomas Williams, “Putting Ornaments into practice”, Université Paris Diderot,
since September 2014, supervised by Didier Rémy.

10.2.3. Juries
Xavier Leroy was on the Ph.D. committees of Quentin Carbonneaux (Yale University, August 2017) and of
Gabriel Radanne (University Paris Diderot, November 2017).
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François Pottier was a reviewer for the Ph.D. thesis of Sandro Stucki (École Polytechnique Fédérale de
Lausanne, September 2017). He was a member of the jury for the GDR GPL dissertation award (prix de
thèse du GDR GPL).

10.3. Popularization
Xavier Leroy wrote a popularization article describing the hunt for a hardware bug in Intel processors, which
was published by the Web news site The Next Web [32].
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