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2. Overall Objectives
2.1. Presentation

Algorithmic number theory dates back to the dawn of mathematics itself, cf. Eratosthenes’s sieve to enumerate
consecutive prime numbers. With the arrival of computers, previously unsolvable problems have come into
reach, which has boosted the development of more or less practical algorithms for essentially all number
theoretic problems. The field is now mature enough for a more computer science driven approach, taking into
account the theoretical complexities and practical running times of the algorithms.

https://raweb.inria.fr/rapportsactivite/RA2017/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2017/static/keywords/OtherResearchTopicsandApplicationDomains.html
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Concerning the lower level multiprecision arithmetic, folklore has asserted for a long time that asymptotically
fast algorithms such as SchÃÂ¶nhage–Strassen multiplication are impractical; nowadays, however, they are
used routinely. On a higher level, symbolic computation provides numerous asymptotically fast algorithms
(such as for the simultaneous evaluation of a polynomial in many arguments or linear algebra on sparse
matrices), which have only partially been exploited in computational number theory. Moreover, precise
complexity analyses do not always exist, nor do sound studies to choose between different algorithms (an
exponential algorithm may be preferable to a polynomial one for a large range of inputs); folklore cannot be
trusted in a fast moving area such as computer science.

Another problem is the reliability of the computations; many number theoretic algorithms err with a small
probability, depend on unknown constants or rely on a Riemann hypothesis. The correctness of their output
can either be ensured by a special design of the algorithm itself (slowing it down) or by an a posteriori
verification. Ideally, the algorithm outputs a certificate, providing an independent fast correctness proof. An
example is integer factorisation, where factors are hard to obtain but trivial to check; primality proofs have
initiated sophisticated generalisations.

One of the long term goals of the LFANT project team is to make an inventory of the major number theoretic
algorithms, with an emphasis on algebraic number theory and arithmetic geometry, and to carry out complexity
analyses. So far, most of these algorithms have been designed and tested over number fields of small degree
and scale badly. A complexity analysis should naturally lead to improvements by identifying bottlenecks,
systematically redesigning and incorporating modern asymptotically fast methods.

Reliability of the developed algorithms is a second long term goal of our project team. Short of proving the
Riemann hypothesis, this could be achieved through the design of specialised, slower algorithms not relying
on any unproven assumptions. We would prefer, however, to augment the fastest unproven algorithms with the
creation of independently verifiable certificates. Ideally, it should not take longer to check the certificate than
to generate it.

All theoretical results are complemented by concrete reference implementations in PARI/GP, which allow to
determine and tune the thresholds where the asymptotic complexity kicks in and help to evaluate practical
performances on problem instances provided by the research community. Another important source for
algorithmic problems treated by the LFANT project team is modern cryptology. Indeed, the security of all
practically relevant public key cryptosystems relies on the difficulty of some number theoretic problem; on the
other hand, implementing the systems and finding secure parameters require efficient algorithmic solutions to
number theoretic problems.

3. Research Program

3.1. Number fields, class groups and other invariants
Participants: Bill Allombert, Jared Guissmo Asuncion, Karim Belabas, Jean-Paul Cerri, Henri Cohen, Jean-
Marc Couveignes, Andreas Enge, Fredrik Johansson, Aurel Page.

Modern number theory has been introduced in the second half of the 19th century by Dedekind, Kummer,
Kronecker, Weber and others, motivated by Fermat’s conjecture: There is no non-trivial solution in integers
to the equation xn + yn = zn for n > 3. For recent textbooks, see [5]. Kummer’s idea for solving Fermat’s
problem was to rewrite the equation as (x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζn−1y) = zn for a primitive n-th
root of unity ζ, which seems to imply that each factor on the left hand side is an n-th power, from which a
contradiction can be derived.

The solution requires to augment the integers by algebraic numbers, that are roots of polynomials in Z[X].
For instance, ζ is a root of Xn − 1, 3

√
2 is a root of X3 − 2 and

√
3
5 is a root of 25X2 − 3. A number field

consists of the rationals to which have been added finitely many algebraic numbers together with their sums,
differences, products and quotients. It turns out that actually one generator suffices, and any number field K
is isomorphic to Q[X]/(f(X)), where f(X) is the minimal polynomial of the generator. Of special interest
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are algebraic integers, “numbers without denominators”, that are roots of a monic polynomial. For instance,
ζ and 3

√
2 are integers, while

√
3
5 is not. The ring of integers of K is denoted by OK ; it plays the same role in

K as Z in Q.

Unfortunately, elements in OK may factor in different ways, which invalidates Kummer’s argumentation.
Unique factorisation may be recovered by switching to ideals, subsets of OK that are closed under addition
and under multiplication by elements of OK . In Z, for instance, any ideal is principal, that is, generated by
one element, so that ideals and numbers are essentially the same. In particular, the unique factorisation of
ideals then implies the unique factorisation of numbers. In general, this is not the case, and the class group
ClK of ideals of OK modulo principal ideals and its class number hK = |ClK | measure how far OK is from
behaving like Z.

Using ideals introduces the additional difficulty of having to deal with units , the invertible elements of OK :
Even when hK = 1, a factorisation of ideals does not immediately yield a factorisation of numbers, since ideal
generators are only defined up to units. For instance, the ideal factorisation (6) = (2) · (3) corresponds to the
two factorisations 6 = 2 · 3 and 6 = (−2) · (−3). While in Z, the only units are 1 and −1, the unit structure
in general is that of a finitely generated Z-module, whose generators are the fundamental units. The regulator
RK measures the “size” of the fundamental units as the volume of an associated lattice.

One of the main concerns of algorithmic algebraic number theory is to explicitly compute these invariants
(ClK and hK , fundamental units and RK), as well as to provide the data allowing to efficiently compute with
numbers and ideals of OK ; see [24] for a recent account.

The analytic class number formula links the invariants hK andRK (unfortunately, only their product) to the ζ-
function of K, ζK(s) :=

∏
p prime ideal of OK

(1−N p−s)
−1, which is meaningful when R(s) > 1, but which

may be extended to arbitrary complex s 6= 1. Introducing characters on the class group yields a generalisation
of ζ- to L-functions. The generalised Riemann hypothesis (GRH), which remains unproved even over the
rationals, states that any such L-function does not vanish in the right half-plane R(s) > 1/2. The validity of
the GRH has a dramatic impact on the performance of number theoretic algorithms. For instance, under GRH,
the class group admits a system of generators of polynomial size; without GRH, only exponential bounds are
known. Consequently, an algorithm to compute ClK via generators and relations (currently the only viable
practical approach) either has to assume that GRH is true or immediately becomes exponential.

When hK = 1 the number fieldK may be norm-Euclidean, endowing OK with a Euclidean division algorithm.
This question leads to the notions of the Euclidean minimum and spectrum of K, and another task in
algorithmic number theory is to compute explicitly this minimum and the upper part of this spectrum, yielding
for instance generalised Euclidean gcd algorithms.

3.2. Function fields, algebraic curves and cryptology
Participants: Karim Belabas, Guilhem Castagnos, Jean-Marc Couveignes, Andreas Enge, Damien Robert,
Emmanouil Tzortzakis.

Algebraic curves over finite fields are used to build the currently most competitive public key cryptosystems.
Such a curve is given by a bivariate equation C(X,Y ) = 0 with coefficients in a finite field Fq . The
main classes of curves that are interesting from a cryptographic perspective are elliptic curves of equation
C = Y 2 − (X3 + aX + b) and hyperelliptic curves of equation C = Y 2 − (X2g+1 + · · ·) with g > 2.

The cryptosystem is implemented in an associated finite abelian group, the Jacobian JacC. Using the language
of function fields exhibits a close analogy to the number fields discussed in the previous section. Let Fq(X)
(the analogue of Q) be the rational function field with subring Fq[X] (which is principal just as Z). The
function field of C is KC = Fq(X)[Y ]/(C); it contains the coordinate ring OC = Fq[X,Y ]/(C). Definitions
and properties carry over from the number field case K/Q to the function field extension KC/Fq(X).
The Jacobian JacC is the divisor class group of KC, which is an extension of (and for the curves used in
cryptography usually equals) the ideal class group of OC.
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The size of the Jacobian group, the main security parameter of the cryptosystem, is given by an L-
function. The GRH for function fields, which has been proved by Weil, yields the Hasse–Weil bound
(
√
q − 1)

2g 6 | JacC | 6 (
√
q + 1)

2g
, or | JacC | ≈qg , where the genus g is an invariant of the curve that cor-

relates with the degree of its equation. For instance, the genus of an elliptic curve is 1, that of a hyperelliptic
one is degX C−1

2 . An important algorithmic question is to compute the exact cardinality of the Jacobian.

The security of the cryptosystem requires more precisely that the discrete logarithm problem (DLP) be difficult
in the underlying group; that is, given elementsD1 andD2 = xD1 of JacC, it must be difficult to determine x.
Computing x corresponds in fact to computing JacC explicitly with an isomorphism to an abstract product of
finite cyclic groups; in this sense, the DLP amounts to computing the class group in the function field setting.

For any integer n, the Weil pairing en on C is a function that takes as input two elements of order n of JacC
and maps them into the multiplicative group of a finite field extension Fqk with k = k(n) depending on n. It
is bilinear in both its arguments, which allows to transport the DLP from a curve into a finite field, where it is
potentially easier to solve. The Tate-Lichtenbaum pairing, that is more difficult to define, but more efficient to
implement, has similar properties. From a constructive point of view, the last few years have seen a wealth of
cryptosystems with attractive novel properties relying on pairings.

For a random curve, the parameter k usually becomes so big that the result of a pairing cannot even be output
any more. One of the major algorithmic problems related to pairings is thus the construction of curves with a
given, smallish k.

3.3. Complex multiplication
Participants: Jared Guissmo Asuncion, Karim Belabas, Henri Cohen, Jean-Marc Couveignes, Andreas Enge,
Fredrik Johansson, Chloë Martindale, Damien Robert.

Complex multiplication provides a link between number fields and algebraic curves; for a concise introduction
in the elliptic curve case, see [26], for more background material, [25]. In fact, for most curves C over a finite
field, the endomorphism ring of JacC, which determines its L-function and thus its cardinality, is an order in
a special kind of number field K, called CM field. The CM field of an elliptic curve is an imaginary-quadratic
field Q(

√
D) with D < 0, that of a hyperelliptic curve of genus g is an imaginary-quadratic extension of a

totally real number field of degree g. Deuring’s lifting theorem ensures that C is the reduction modulo some
prime of a curve with the same endomorphism ring, but defined over the Hilbert class field HK of K.

Algebraically, HK is defined as the maximal unramified abelian extension of K; the Galois group of HK/K
is then precisely the class group ClK . A number field extension H/K is called Galois if H ' K[X]/(f) and
H contains all complex roots of f . For instance, Q(

√
2) is Galois since it contains not only

√
2, but also the

second root −
√

2 of X2 − 2, whereas Q( 3
√

2) is not Galois, since it does not contain the root e2πi/3 3
√

2 of
X3 − 2. The Galois group GalH/K is the group of automorphisms of H that fix K; it permutes the roots of f .
Finally, an abelian extension is a Galois extension with abelian Galois group.

Analytically, in the elliptic case HK may be obtained by adjoining to K the singular value j(τ) for a
complex valued, so-called modular function j in some τ ∈ OK ; the correspondence between GalH/K and ClK
allows to obtain the different roots of the minimal polynomial f of j(τ) and finally f itself. A similar, more
involved construction can be used for hyperelliptic curves. This direct application of complex multiplication
yields algebraic curves whose L-functions are known beforehand; in particular, it is the only possible way of
obtaining ordinary curves for pairing-based cryptosystems.

The same theory can be used to develop algorithms that, given an arbitrary curve over a finite field, compute
its L-function.

A generalisation is provided by ray class fields; these are still abelian, but allow for some well-controlled
ramification. The tools for explicitly constructing such class fields are similar to those used for Hilbert class
fields.
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4. Highlights of the Year

4.1. Highlights of the Year
Aurel Page has been recruited as a Inria CR in the team.

Damien Robert organised a one-week workshop with the members of the associated team FAST with several
African countries.

The book [18] by Henri Cohen on Modular Forms: A Classical Approach has been published.

4.1.1. Awards
The paper [11] describing Arb in the IEEE Transactions on Computers was selected as the best paper of this
journal’s Special Issue on Computer Arithmetic.

BEST PAPER AWARD:

[11]
F. JOHANSSON. Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic, in "IEEE Transac-
tions on Computers", August 2017, vol. 66, no 8, pp. 1281 - 1292 [DOI : 10.1109/TC.2017.2690633],
https://hal.inria.fr/hal-01678734

5. New Software and Platforms

5.1. APIP
Another Pairing Implementation in PARI
SCIENTIFIC DESCRIPTION: Apip , Another Pairing Implementation in PARI, is a library for computing
standard and optimised variants of most cryptographic pairings.

The following pairings are available: Weil, Tate, ate and twisted ate, optimised versions (à la Ver-
cauteren–Hess) of ate and twisted ate for selected curve families.

The following methods to compute the Miller part are implemented: standard Miller double-and-add method,
standard Miller using a non-adjacent form, Boxall et al. version, Boxall et al. version using a non-adjacent
form.

The final exponentiation part can be computed using one of the following variants: naive exponentiation,
interleaved method, Avanzi–Mihailescu’s method, Kato et al.’s method, Scott et al.’s method.

Part of the library has been included into Pari/Gp proper.
FUNCTIONAL DESCRIPTION: APIP is a library for computing standard and optimised variants of most
cryptographic pairings.

• Participant: Jérôme Milan

• Contact: Jérôme Milan

• URL: http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml

5.2. AVIsogenies
Abelian Varieties and Isogenies
FUNCTIONAL DESCRIPTION: AVIsogenies is a Magma package for working with abelian varieties, with a
particular emphasis on explicit isogeny computation.

Its prominent feature is the computation of (l,l)-isogenies between Jacobian varieties of genus-two hyperellip-
tic curves over finite fields of characteristic coprime to l, practical runs have used values of l in the hundreds.

https://hal.inria.fr/hal-01678734
http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml
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It can also be used to compute endomorphism rings of abelian surfaces, and find complete addition laws on
them.

• Participants: Damien Robert, Gaëtan Bisson and Romain Cosset

• Contact: Gaëtan Bisson

• URL: http://avisogenies.gforge.inria.fr/

5.3. CM
KEYWORD: Arithmetic
FUNCTIONAL DESCRIPTION: The Cm software implements the construction of ring class fields of imaginary
quadratic number fields and of elliptic curves with complex multiplication via floating point approximations. It
consists of libraries that can be called from within a C program and of executable command line applications.

RELEASE FUNCTIONAL DESCRIPTION: Features - Precisions beyond 300000 bits are now supported by an
addition chain of variable length for the -function. Dependencies - The minimal version number of Mpfr has
been increased to 3.0.0, that of Mpc to 1.0.0 and that of Pari to 2.7.0.

• Participant: Andreas Enge

• Contact: Andreas Enge

• URL: http://www.multiprecision.org/

5.4. CMH
Computation of Igusa Class Polynomials
KEYWORDS: Mathematics - Cryptography - Number theory
FUNCTIONAL DESCRIPTION: Cmh computes Igusa class polynomials, parameterising two-dimensional
abelian varieties (or, equivalently, Jacobians of hyperelliptic curves of genus 2) with given complex multi-
plication.

• Participants: Andreas Enge, Emmanuel Thomé and Regis Dupont

• Contact: Emmanuel Thomé

• URL: http://cmh.gforge.inria.fr

5.5. CUBIC
FUNCTIONAL DESCRIPTION: Cubic is a stand-alone program that prints out generating equations for cubic
fields of either signature and bounded discriminant. It depends on the Pari library. The algorithm has quasi-
linear time complexity in the size of the output.

• Participant: Karim Belabas

• Contact: Karim Belabas

• URL: http://www.math.u-bordeaux1.fr/~belabas/research/software/cubic-1.2.tgz

5.6. Euclid
FUNCTIONAL DESCRIPTION: Euclid is a program to compute the Euclidean minimum of a number field. It
is the practical implementation of the algorithm described in [38] . Some corresponding tables built with the
algorithm are also available. Euclid is a stand-alone program depending on the PARI library.

• Participants: Jean-Paul Cerri and Pierre Lezowski

• Contact: Pierre Lezowski

• URL: http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php

http://avisogenies.gforge.inria.fr/
http://www.multiprecision.org/
http://cmh.gforge.inria.fr
http://www.math.u-bordeaux1.fr/~belabas/research/software/cubic-1.2.tgz
http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php
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5.7. KleinianGroups
FUNCTIONAL DESCRIPTION: KleinianGroups is a Magma package that computes fundamental domains of
arithmetic Kleinian groups.
• Participant: Aurel Page
• Contact: Aurel Page
• URL: http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html

5.8. GNU MPC
KEYWORD: Arithmetic
FUNCTIONAL DESCRIPTION: Mpc is a C library for the arithmetic of complex numbers with arbitrarily high
precision and correct rounding of the result. It is built upon and follows the same principles as Mpfr. The
library is written by Andreas Enge, Philippe Théveny and Paul Zimmermann.

RELEASE FUNCTIONAL DESCRIPTION: Fixed mpc_pow, see http://lists.gforge.inria.fr/pipermail/mpc-
discuss/2014-October/001315.html - #18257: Switched to libtool 2.4.5.
• Participants: Andreas Enge, Mickaël Gastineau, Paul Zimmermann and Philippe Théveny
• Contact: Andreas Enge
• URL: http://www.multiprecision.org/

5.9. MPFRCX
KEYWORD: Arithmetic
FUNCTIONAL DESCRIPTION: Mpfrcx is a library for the arithmetic of univariate polynomials over arbitrary
precision real (Mpfr ) or complex (Mpc ) numbers, without control on the rounding. For the time being, only
the few functions needed to implement the floating point approach to complex multiplication are implemented.
On the other hand, these comprise asymptotically fast multiplication routines such as Toom-Cook and the FFT.

RELEASE FUNCTIONAL DESCRIPTION: - new function product_and_hecke - improved memory consump-
tion for unbalanced FFT multiplications
• Participant: Andreas Enge
• Contact: Andreas Enge
• URL: http://www.multiprecision.org/

5.10. PARI/GP
KEYWORD: Computational number theory
FUNCTIONAL DESCRIPTION: Pari/Gp is a widely used computer algebra system designed for fast computa-
tions in number theory (factorisation, algebraic number theory, elliptic curves, modular forms ...), but it also
contains a large number of other useful functions to compute with mathematical entities such as matrices,
polynomials, power series, algebraic numbers, etc., and many transcendental functions.
• Participants: Andreas Enge, Hamish Ivey-Law, Henri Cohen and Karim Belabas
• Partner: CNRS
• Contact: Karim Belabas
• URL: http://pari.math.u-bordeaux.fr/

6. New Results
6.1. Non commutative number theory

Participant: Jean Paul Cerri.

http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html
http://www.multiprecision.org/
http://www.multiprecision.org/
http://pari.math.u-bordeaux.fr/
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Pierre Lezowski has studied in [12], Euclidean properties of matrix algebras. He proved that if A is a
commutative ring and if n > 1 is an integer , then Mn(A) is right and left Euclidean if and only if A is a
principal ideal ring. Moreover, under the hypothesis that the stathm takes integer values, he established that if
A is an integral domain, then Mn(A) is ω-stage right and left Euclidean if and only if A is a Bézout ring. He
also proved, under the same hypothesis, that if A is a K-Hermite ring, then Mn(A) is (4n− 3)-stage left and
right Euclidean, that ifA is an elementary divisor ring, thenMn(A) is (2n− 1)-stage left and right Euclidean,
and that ifA is a principal ideal ring, thenMn(A) is 2-stage right and left Euclidean. In each case, he obtained
an explicit algorithm allowing to compute, among other things, right or left gcd in Mn(A).

Jean-Paul Cerri and Pierre Lezowski have generalized in [19], Cerri’s algorithm (for the computation of the
upper part of the norm-Euclidean spectrum of a number field) to totally definite quaternion fields. This allowed
them to establish the exact value of the norm-Euclidean minimum of many orders in totally definite quaternion
fields over a quadratic number field. Before this work, nobody knew how to compute the exact value of such
a minimum when the base number field has degree > 1. They also proved that the Euclidean minimum and
the inhomogeneous minimum of orders in such quaternion fields are always equal and that moreover they are
rational under the hypothesis that the base number field is not quadratic, which remains the only open case, as
for real number fields.

In [13] Lezowski determines which cyclic field of degree d are norm-Euclidean for
d = 5, 7, 19, 31, 37, 43, 47, 59, 67, 71, 73, 79, 97.

6.2. Cryptographic Protocols
Participant: Guilhem Castagnos.

In [16] G. Castagnos, L. Imbert, and F. Laguillaumie revisit a recent cryptographic primitive called encryption
switching protocols (ESP). This primitive was introduced by Couteau, Peters and Pointcheval last year. It
allows to switch ciphertexts between two encryption schemes. If such an ESP is built with two schemes
that are respectively additively and multiplicatively homomorphic, it naturally gives rise to a secure 2-party
computation protocol. It is thus perfectly suited for evaluating functions, such as multivariate polynomials,
given as arithmetic circuits. Couteau et al. built an ESP to switch between Elgamal and Paillier encryptions
which do not naturally fit well together. Consequently, they had to design a clever variant of Elgamal over
Z/nZ with a costly shared decryption.

In this work, Castagnos et. al. first present a conceptually simple generic construction for encryption switching
protocols. Then, they give an efficient instantiation of our generic approach that uses two well-suited protocols,
namely a variant of Elgamal in Z/pZ and the Castagnos-Laguillaumie encryption which is additively
homomorphic over Z/pZ. Among other advantages, this allows to perform all computations modulo a prime
p instead of an RSA modulus. Overall, this solution leads to significant reductions in the number of rounds as
well as the number of bits exchanged by the parties during the interactive protocols. They also show how to
extend its security to the malicious setting.

This paper was presented at the CRYPTO Conference 2017, and is part of the ALAMBIC project.

6.3. Algorithmic number theory
Participant: Henri Cohen.

The book [18] by Henri Cohen on Modular Forms: A Classical Approach has been published. The theory
of modular forms is a fundamental tool used in many areas of mathematics and physics. It is also a very
concrete subject in itself and abounds with an amazing number of surprising identities. This comprehensive
textbook, gives a complete picture of the classical aspects of the subject, with an emphasis on explicit formulas.
Content include: elliptic functions and theta functions, the modular group, its subgroups, and general aspects
of holomorphic and nonholomorphic modular forms, with an emphasis on explicit examples. The heart of the
book is the classical theory developed by Hecke and continued up to the Atkin–Lehner–Li theory of newforms
and including the theory of Eisenstein series, Rankin–Selberg theory, and a more general theory of theta series
including the Weil representation. The final chapter also explores in some detail more general types of modular
forms such as half-integral weight, Hilbert, Jacobi, Maass, and Siegel modular forms.
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The article by Bill Allombert, Jean-Paul Allouche and Michel Mendès France on Euler’s divergent series
and an elementary model in Statistical Physics has been published in Statistical Physics Ars Mathematica
Contemporanea. This article study the multiple integral of a multivariate exponential taken with respect either
to the Lebesgue measure or to the discrete uniform Bernoulli measure. In the first case the integral is linked
to Euler’s everywhere divergent power series and its generalizations, while in the second case the integral is
linked to a one-dimensional model of spin systems as encountered in physics.

Bill Allombert has worked with Nicolas Brisebarre and Alain Lasjaunias on a two-valued sequence and related
continued fractions in power series fields. They explicitly describe a noteworthy transcendental continued
fraction in the field of power series over Q, having irrationality measure equal to 3. This continued fraction is
a generating function of a particular sequence in the set {1, 2}.
In the Pari software, K. Belabas and H. Cohen have added an extensive new package mf for modular forms.
This package allows to build spaces of classical modular form Mk(Γ0(N), χ) where 2k ∈ Z and perform
standard tasks like finding bases, splitting the space using Hecke operators and the computation of eigenforms.
It also solves important difficult problems: the computation of forms of weight 1, the realization of Shimura
lifts as an explicit isomorphism between Kohnen’s +-space S+

k (Γ0(4N), χ) and S2k−1(Γ0(N), χ2) and the
Fourier expansion of f |k γ for arbitrary f and arbitrary γ ∈ GL2(Q)

+, which includes as a special case the
expansion of f at all cusps (where other modular form packages usualy deal with the expansion at infinity
and the cusps reachable via Atkin-Lehner operators, e.g. all cusps in squarefree levels). The latter is especially
important as it allows an explicit description of Atkin-Lehner operators, the evaluation of f arbitrary points in
the upper-half plane, the computation of period polynomials and Pettersson products, etc.

6.4. Elliptic curve and Abelian varieties cryptology
Participant: Damien Robert.

In [22], E. Milio and D. Robert describe an algorithm to evaluate in quasi-linear time Hilbert modular functions
in dimension 2, and also how to recover in time quasi-linear the period matrix from the value of the function.
They apply this theory to the modular functions j(τ/β) and θ(τ/β) where β is a totally real positive number of
the quadratic real field corresponding to the Hilbert surface to construct modular polynomials parametrizing
cyclic isogenies between principally polarised abelian varieties. This extends the construction of classical
modular polynomials but allow to have much smaller polynomials, which allow to compute them up to norm
` = 91 rather than ` = 7 in dimension 2 for classical polynomials.

In [20], Dudeanu, Alina and Jetchev, Dimitar and Robert, Damien and Vuille, Marius describe an algorithm to
compute cyclic isogenies from their kernels. This extends the work of [10] from isogenies with maximal
isotropic kernels for the Weil pairing to cyclic isogenies, using real multiplication. Such isogenies are
indispensable to fully explore the isogeny graph and will be able to speed up a lot of algorithms that needs
isogenous curves, like the CRT method for class polynomials.

6.5. Arbitrary-precision ball arithmetic
Participant: Fredrik Johansson.

During the year, F. Johansson has released three new versions (2.10, 2.11 and 2.12) of the Arb software for
arbitrary-precision ball arithmetic.

The paper [11] describing Arb has been published in the IEEE Transactions on Computers and was selected
as the best paper of this journal’s Special Issue on Computer Arithmetic. As a result, a video presentation was
featured on the journal’s website and Johansson was invited to present the paper in a special session at the
24th IEEE Symposium on Computer Arithmetic (ARITH24) at Imperial College London, UK.

In [21], Johansson describes the first complete algorithm for computing the Lambert W function rigorously in
complex ball arithmetic.
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6.6. Python and Julia computer algebra packages
Participant: Fredrik Johansson.

F. Johansson together with C. Fieker, W. Hart and T. Hofmann of TU Kaiserslautern have developed Nemo
and Hecke, two packages for computer algebra and algebraic number theory using the Julia programming
language. The paper [17] describing Nemo and Hecke has been published in the proceedings of ISSAC, the
main international computer algebra conference.

The paper [15] describing the SymPy package for computer algebra in Python has been published. SymPy
is a highly collaborative international project and F. Johansson is one of the 27 coauthors of this paper.
Johansson’s main contributions to the software include developing the mpmath package used for arbitrary-
precision numerical evaluation. In addition, Johansson has issued the stable version 1.0 release of mpmath.

7. Partnerships and Cooperations

7.1. National Initiatives
7.1.1. ANR Alambic – AppLicAtions of MalleaBIlity in Cryptography

Participant: Guilhem Castagnos.

https://crypto.di.ens.fr/projects:alambic:main

The ALAMBIC project is a research project formed by members of the Inria Project-Team CASCADE of ENS
Paris, members of the AriC Inria project-team of ENS Lyon, and members of the CRYPTIS of the university
of Limoges. G. Castagnos is an external member of the team of Lyon for this project.

Non-malleability is a security notion for public key cryptographic encryption schemes that ensures that it
is infeasible for an adversary to modify ciphertexts into other ciphertexts of messages which are related to
the decryption of the first ones. On the other hand, it has been realized that, in specific settings, malleability
in cryptographic protocols can actually be a very useful feature. For example, the notion of homomorphic
encryption allows specific types of computations to be carried out on ciphertexts and generate an encrypted
result which, when decrypted, matches the result of operations performed on the plaintexts. The homomorphic
property can be used to create secure voting systems, collision-resistant hash functions, private information
retrieval schemes, and for fully homomorphic encryption enables widespread use of cloud computing by
ensuring the confidentiality of processed data.

The aim of the ALAMBIC project to investigate further theoretical and practical applications of malleability in
cryptography. More precisely, this project focuses on three different aspects: secure computation outsourcing
and server-aided cryptography, homomorphic encryption and applications and << paradoxical >> applications
of malleability.

7.2. European Initiatives
7.2.1. FP7 & H2020 Projects

Title: OpenDreamKit

Program: H2020

Duration: January 2016 - December 2020

Coordinator: Nicolas Thiéry

Inria contact: Karim Belabas

https://crypto.di.ens.fr/projects:alambic:main
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Description http://cordis.europa.eu/project/rcn/198334_en.html, http://opendreamkit.org

OpenDreamKit is a Horizon 2020 European Research Infrastructure project (#676541) that will
run for four years, starting from September 2015. It provides substantial funding to the open
source computational mathematics ecosystem, and in particular popular tools such as LinBox,
MPIR, SageMath, GAP, Pari/GP, LMFDB, Singular, MathHub, and the IPython/Jupyter interactive
computing environment.

7.3. International Initiatives
7.3.1. Inria International Labs
7.3.1.1. FAST

Title: (Harder Better) FAster STronger cryptography
International Partner

Université des Sciences et Techniques de Masuku (Gabon) - Tony Ezome and the PRMAIS
project

Start year: 2017
See also: https://www.inria.fr/en/associate-team/fast
The project aims to develop better algorithms for elliptic curve cryptography with prospect of the
two challenges ahead: - securing the internet of things - preparing towards quantum computers.

Elliptic curves are currently the fastest public-key cryptosystem (with a key size that can fit on
embeded devices) while still through a different mode of operation beeing (possibly) able to resist
quantum based computers.
Activities for this year involved the funding of Luca De Feo to speak at the EMA “Mathématiques
pour la Cryptographie Post-quantique et Mathématiques pour le Traitement du Signal”, organised by
Djiby Sow and Abdoul Asiz Ciss organised an EMA at the École Polytechnique de Thiès (Sénégal)
from May 10 to May 23, about “Cryptographie à base d’isogénies”; the visit of Abdoulaye Maiga to
the LFANT team where he worked with Damien Robert to find absolute invariants of good reduction
modulo 2 for abelian surfaces; and the organisation by Damien Robert of a workshop in Bordeaux
with most of the team members from September 04 to September 08. The slides or proceedings are
available at https://lfant.math.u-bordeaux.fr/index.php?category=seminar&page=2017.

7.3.2. Inria International Partners
7.3.2.1. Informal International Partners

The team is used to collaborate with Leiden University through the ALGANT program for PhD joint
supervision.

Eduardo Friedman (U. of Chile), long term collaborator of K. Belabas and H. Cohen is a regular visitor in
Bordeaux (about 1 month every year).

7.4. International Research Visitors
7.4.1. Visits of International Scientists

Researchers visiting the team to give a talk to the team seminar include Damien Stehlé (ENS Lyon), Cécile
Pierrot (Centrum Wiskunde and Informatica, Amsterdam), Christophe Petit (Oxford), Benjamin Wesolowski
(EPFL), Bernhard Schmidt (Nanyang Technological University, Singapore), Mohamadou Sall (Université
Cheikh Anta Diop, Dakar, Sénégal), Emmanuel Fouotsa (The University of Bamenda, Cameroon), Abdoulaye
Maiga (Université Cheikh Anta Diop, Dakar, Sénégal), Tony Ezome (Université des Sciences et Techniques de
Masuku (USTM), Franceville, Gabon), Abdoul Aziz Ciss (Université Cheikh Anta Diop, Dakar, Sénégal), José
Manuel Rodriguez Caballero (Labri), Jean Kieffer (ENS Paris), Christian Klein (Institut de Mathématiques de
Bourgogne), Frank Vallentin (Mathematisches Institut, Universität zu Köln).

http://cordis.europa.eu/project/rcn/198334_en.html
http://opendreamkit.org
https://www.inria.fr/en/associate-team/fast
https://lfant.math.u-bordeaux.fr/index.php?category=seminar&page=2017
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7.4.2. Visits to International Teams
Jared Asuncion went to the Autumn school: Topics in arithmetic and algebraic geometry last 9 - 13 October
2017 at the University of Mainz in Mainz, Germany.

Jared Asuncion went to see his cosupervisor, Marco String last 6 - 10 November 2017 at the Universiteit
Leiden in Leiden, The Netherlands. It is planned to stay in Leiden for a period of six months while working
on his PhD.

Jared Asuncion went to the 21st Workshop on Elliptic Curve Cryptography last 13 - 15 November 2017 at the
Radboud University in Nijmegen, The Netherlands.

A. Page visited C. Maire in Cornell University (Ithaca, US) from November 27th to December 4th and gave a
research talk there on December 1st. He then visited Michael Lipnowski in the Institute for Advanced Studies
(Princeton, US) from December 4th to December 14th.

A. Enge visited Bernhard Schmidt in Nanyang Technological University, Singapore for three weeks.

Fredrik Johansson participated in the OSCAR: Antic workshop at TU Kaiserslautern, Germany and gave an
invited talk on "Fundamental algorithms in Arb".

Fredrik Johansson participated in the workshop on Elliptic Integrals, Elliptic Functions and Modular Forms in
Quantum Field Theory at DESY, Zeuthen, Germany, and gave an invited talk on "Numerics of classical elliptic
functions, elliptic integrals and modular forms".

8. Dissemination

8.1. Promoting Scientific Activities
8.1.1. Scientific Events Organisation
8.1.1.1. General Chair, Scientific Chair

B. Allombert and K. Belabas organized a workshop PARI/GPin Lyon on 09-13 January 2017.

B. Allombert and K. Belabas organized a workshop “Elliptic curves, modular forms and L-functions in the
PARI/GPsystem” in Clermont-Ferrand on 19-23 June 2017.

B. Allombert and A. Page organized a mini-workshop PARI/GPin Oujda, Morocco on 22-23 November 2017.

8.1.2. Journal
8.1.2.1. Member of the Editorial Boards

K. Belabas acts on the editorial board of Journal de Théorie des Nombres de Bordeaux since 2005 and of
Archiv der Mathematik since 2006.

H. Cohen is an editor for the Springer book series Algorithms and Computations in Mathematics (ACM).

J.-M. Couveignes is a member of the editorial board (scientific committee) of the Publications mathématiques
de Besançon since 2010.

A. Enge is an editor of Designs, Codes and Cryptography since 2004.

8.1.3. Scientific Expertise
J.-M. Couveignes is a member of the scientific council of the labex "Fondation Sciences Mathématiques de
Paris", FSMP, Paris.

J.-M. Couveignes is a member of the ’conseil d’orientation’ of the labex "Institut de Recherche en Mathéma-
tiques, Interactions et Applications", IRMIA, Strasbourg.

K. Belabas is a member of the ’conseil scientifique’ of the Société Mathématique de France
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8.1.4. Research Administration
Since January 2017, A. Enge is “délégué scientifique” of the Inria research centre Bordeaux–Sud-Ouest. As
such, he is also a designated member of the “commission d’évaluation” of Inria.

Since January 2015, K. Belabas is vice-head of the Math Institute (IMB). He also leads the computer science
support service (“cellule informatique”) of IMB and coordinates the participation of the institute in the regional
computation cluster PlaFRIM.

He is an elected member of “commission de la recherche” in the academic senate of Bordeaux University.

He is a member of the “Conseil National des Université” (25th section, pure mathematics).

J.-P. Cerri is an elected member of the scientific council of the Mathematics Institute of Bordeaux (IMB) and
responsible for the bachelor programme in mathematics and informatics.

Since January 2015, J.-M. Couveignes is the head of the Math Institute (IMB). He is head of the Scientific
Committee of the Albatros (ALliance Bordeaux universities And Thales Research in AviOnicS) long term
cooperation between Inria, Bordeaux-INP, Université de Bordeaux and CNRS.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Master : G. Castagnos, Cryptanalyse, 60h, M2, University of Bordeaux, France;
Master : G. Castagnos, Cryptologie avancée, 30h, M2, University of Bordeaux, France;
Master : G. Castagnos, Courbes elliptiques, 60h, M2, University of Bordeaux, France;
Master : D. Robert, Courbes elliptiques, 60h, M2, University of Bordeaux, France;
Master : K. Belabas, Computer Algebra, 91h, M2, University of Bordeaux, France;
Licence : Jean-Paul Cerri, Arithmétique et Cryptologie, 24h TD, L3, Université de Bordeaux, France
Licence : Jean-Paul Cerri, Algèbre bilinéaire et géométrie, 35h TD, L3, Université de Bordeaux,
France
Licence : Jean-Paul Cerri, Structures algébriques 2, 35h TD, L3, Université de Bordeaux, France
Master : Jean-Paul Cerri, Cryptologie, 24h TD, M1, Université de Bordeaux, France
Master : Jean-Paul Cerri, Arithmétique, 60h TD, M1, Université de Bordeaux, France

8.2.2. Supervision
PhD in progress : Ida Tucker, Design of new advanced cryptosystems from homomorphic building
blocks, since October 2017, supervised by Guilhem Castagnos and Fabien Laguillaumie
PhD in progress: Abdoulaye Maiga, Computing canonical lift of genus 2 hyperelliptic curves,
University Dakar, supervised by Djiby Sow, Abdoul Aziz Ciss and D. Robert.
PhD in progress: Jared Asuncion, Class fields of complex multiplication fields, since September
2017, supervised by A. Enge and Marco Streng (Universiteit Leiden).
PhD in progress: Chloë Martindale, Isogeny graphs, since 2013, supervised by A. Enge and Marco
Streng (Universiteit Leiden).
PhD in progress: Emmanouil Tzortzakis Algorithms for Q-curves, supervised by K. Belabas, P. Bruin
and B. Edixhoven.
PhD in progress: Pavel Solomatin Topics on L-functions, supervised by B. de Smit and K. Belabas.
PhD in progress: Antonin Riffaut Calcul effectif de points spéciaux, supervised by Y. Bilu and K.
Belabas.
Master 2: Margarita Pierrakea, Supersingular isogeny key-exchange, supervised by D. Robert.

8.2.3. Juries
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• A. Enge has written a report for the doctoral dissertation by Alexandre Le Meur, Université de
Rennes, sur Formules de Thomae généralisées à des courbes galoisiennes résolubles sur la droite
projective.

• A. Enge has written a report for the doctoral dissertation by Alexandre Gélin, Université Pierre
et Marie Curie, Class Group Computations in Number Fields and Applications to Cryptology. K.
Belabas was a member of the defense committee.

• K. Belabas has written a report for the doctoral dissertation of Thomas Camus, Université Grenoble-
Alpes, Méthodes algorithmiques pour les réseaux algébriques.

• K. Belabas was a member of the defense committee of José Villanueva-Guttierez, Université de
Bordeaux, Sur quelques questions en théorie d’Iwasawa.

• K. Belabas was a member of the defense committee of Philippe Moustrou, Université de Bordeaux,
Geometric distance graphs, lattices and polytopes.

• J-M. Couveignes was a member of the defense committee of Carine Jaber (advisor Christian Klein),
Université de Dijon, Approche algorithmique au domaine fondamental de Siegel the 28 June 2017.

• J-M. Couveignes was the president of the defense committee of Matthieu Rambaud (advisor Hugues
Randriambololona), Telecom-ParisTech, Shimura curves and bilinear multiplication algorithms in
finite fields the 2 September 2017.

• D. Robert is a member of the jury of Agregations de Mathematiques. He is also the codirector with
Alain Couvreur of the option “calcul formel” of the Modelisation part of the oral examination.

8.3. Popularization
The book Guide to Pairing-Based Cryptography [27] has been published by CHAPMAN and HALL/CRC.
D. Robert wrote with Sorina Ionica the chapter “Pairings” of this book. This book aims to help Engineers
understand and implement pairing based cryptography; in the Chapter “Pairings”, D. Robert give a self
contained definition and proof of the Weil and Tate pairing; including how to handle divisors with non disjoint
support (this is often skipped in scientific papers but is important for practical implementations).

A. Page gave a popularization talk “À la découverte de la cryptologie : la science du secret” during the Fête de
la Science event. Two groups of high school students and one group of Inria agents participated in this activity.
Following this talk, three high school students decided to work on the RSA cryptosystem for their TPE essay
and came back to the IMB to meet A. Page and talk about this topic in greater detail.
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