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2. Overall Objectives

2.1. Programming securely with cryptography
In recent years, an increasing amount of sensitive data is being generated, manipulated, and accessed online,
from bank accounts to health records. Both national security and individual privacy have come to rely on
the security of web-based software applications. But even a single design flaw or implementation bug in an
application may be exploited by a malicious criminal to steal, modify, or forge the private records of innocent
users. Such attacks are becoming increasingly common and now affect millions of users every year.

The risks of deploying insecure software are too great to tolerate anything less than mathematical proof,
but applications have become too large for security experts to examine by hand, and automated verification
tools do not scale. Today, there is not a single widely-used web application for which we can give a proof
of security, even against a small class of attacks. In fact, design and implementation flaws are still found in
widely-distributed and thoroughly-vetted security libraries designed and implemented by experts.

Software security is in crisis. A focused research effort is needed if security programming and analysis tech-
niques are to keep up with the rapid development and deployment of security-critical distributed applications
based on new cryptographic protocols and secure hardware devices. The goal of our team PROSECCO is to
draw upon our expertise in cryptographic protocols and program verification to make decisive contributions in
this direction.

Our vision is that, over its lifetime, PROSECCO will contribute to making the use of formal techniques
when programming with cryptography as natural as the use of a software debugger. To this end, our
long-term goals are to design and implement programming language abstractions, cryptographic models,
verification tools, and verified security libraries that developers can use to deploy provably secure distributed
applications. Our target applications include cryptographic protocol implementations, hardware-based security
APIs, smartphone- and browser-based web applications, and cloud-based web services. In particular, we aim
to verify the full application: both the cryptographic core and the high-level application code. We aim to verify
implementations, not just models. We aim to account for computational cryptography, not just its symbolic
abstraction.

We identify five key focus areas for our research in the short- to medium term.

2.1.1. New programming languages for verified software
Building realistic verified applications requires new programming languages that enable the systematic
development of efficient software hand-in-hand with their proofs of correctness. Our current focus is on
designing and implementing the programming language F*, in collaboration with Microsoft Research. F*
(pronounced F star) is an ML-like functional programming language aimed at program verification. Its
type system includes polymorphism, dependent types, monadic effects, refinement types, and a weakest
precondition calculus. Together, these features allow expressing precise and compact specifications for
programs, including functional correctness and security properties. The F* type-checker aims to prove that
programs meet their specifications using a combination of SMT solving and manual proofs. Programs written
in F* can be translated to OCaml, F#, or C for execution.

2.1.2. Symbolic verification of cryptographic applications
We aim to develop our own security verification tools for models and implementations of cryptographic
protocols and security APIs using symbolic cryptography. Our starting point is the tools we have previously
developed: the specialized cryptographic prover ProVerif, the reverse engineering and formal test tool Tookan,
and the security-oriented programming language and type system F*. These tools are already used to verify
industrial-strength cryptographic protocol implementations and commercial cryptographic hardware. We plan
to extend and combine these approaches to capture more sophisticated attacks on applications consisiting of
protocols, software, and hardware, as well as to prove symbolic security properties for such composite systems.
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2.1.3. Computational verification of cryptographic applications
We aim to develop our own cryptographic application verification tools that use the computational model
of cryptography. The tools include the computational prover CryptoVerif, and the computationally sound
type system F* for applications written in F#. Working together, we plan to extend these tools to analyze,
for the first time, cryptographic protocols, security APIs, and their implementations under fully precise
cryptographic assumptions. We also plan to pursue links between symbolic and computational verification,
such as computational soundness results that enable computational proofs by symbolic techniques.

2.1.4. Efficient formally secure compilers for tagged architectures
We aim to leverage emerging hardware capabilities for fine-grained protection to build the first, efficient secure
compilers for realistic programming languages, both low-level (the C language) and high-level (ML and F*, a
dependently-typed variant). These compilers will provide a secure semantics for all programs and will ensure
that high-level abstractions cannot be violated even when interacting with untrusted low-level code. To achieve
this level of security without sacrificing efficiency, our secure compilers will target a tagged architecture, which
associates a metadata tag to each word and efficiently propagates and checks tags according to software-
defined rules. We will use property-based testing and formal verification to provide high confidence that our
compilers are indeed secure.

2.1.5. Building provably secure web applications
We aim to develop analysis tools and verified libraries to help programmers build provably secure web
applications. The tools will include static and dynamic verification tools for client- and server-side JavaScript
web applications, their verified deployment within HTML5 websites and browser extensions, as well as type-
preserving compilers from high-level applications written in F* to JavaScript. In addition, we plan to model
new security APIs in browsers and smartphones and develop the first formal semantics for various HTML5 web
standards. We plan to combine these tools and models to analyze the security of multi-party web applications,
consisting of clients on browsers and smartphones, and servers in the cloud.

3. Research Program
3.1. Symbolic verification of cryptographic applications

Despite decades of experience, designing and implementing cryptographic applications remains dangerously
error-prone, even for experts. This is partly because cryptographic security is an inherently hard problem, and
partly because automated verification tools require carefully-crafted inputs and are not widely applicable.
To take just the example of TLS, a widely-deployed and well-studied cryptographic protocol designed,
implemented, and verified by security experts, the lack of a formal proof about all its details has regularly
led to the discovery of major attacks (including several in 2014) on both the protocol and its implementations,
after many years of unsuspecting use.

As a result, the automated verification for cryptographic applications is an active area of research, with a wide
variety of tools being employed for verifying different kinds of applications.

In previous work, the we have developed the following three approaches:
• ProVerif: a symbolic prover for cryptographic protocol models
• Tookan: an attack-finder for PKCS#11 hardware security devices
• F*: a dependent type system that enables the verification of cryptographic applications

3.1.1. Verifying cryptographic protocols with ProVerif
Given a model of a cryptographic protocol, the problem is to verify that an active attacker, possibly with
access to some cryptographic keys but unable to guess other secrets, cannot thwart security goals such
as authentication and secrecy [59]; it has motivated a serious research effort on the formal analysis of
cryptographic protocols, starting with [57] and eventually leading to effective verification tools, such as our
tool ProVerif.
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To use ProVerif, one encodes a protocol model in a formal language, called the applied pi-calculus, and
ProVerif abstracts it to a set of generalized Horn clauses. This abstraction is a small approximation: it just
ignores the number of repetitions of each action, so ProVerif is still very precise, more precise than, say, tree
automata-based techniques. The price to pay for this precision is that ProVerif does not always terminate;
however, it terminates in most cases in practice, and it always terminates on the interesting class of tagged
protocols [54]. ProVerif also distinguishes itself from other tools by the variety of cryptographic primitives it
can handle, defined by rewrite rules or by some equations, and the variety of security properties it can prove:
secrecy [52], [43], correspondences (including authentication) [53], and observational equivalences [51].
Observational equivalence means that an adversary cannot distinguish two processes (protocols); equivalences
can be used to formalize a wide range of properties, but they are particularly difficult to prove. Even if the
class of equivalences that ProVerif can prove is limited to equivalences between processes that differ only
by the terms they contain, these equivalences are useful in practice and ProVerif is the only tool that proves
equivalences for an unbounded number of sessions.

Using ProVerif, it is now possible to verify large parts of industrial-strength protocols, such as TLS [48],
JFK [44], and Web Services Security [50], against powerful adversaries that can run an unlimited number of
protocol sessions, for strong security properties expressed as correspondence queries or equivalence assertions.
ProVerif is used by many teams at the international level, and has been used in more than 30 research papers
(references available at http://proverif.inria.fr/proverif-users.html).

3.1.2. Verifying security APIs using Tookan
Security application programming interfaces (APIs) are interfaces that provide access to functionality while
also enforcing a security policy, so that even if a malicious program makes calls to the interface, certain security
properties will continue to hold. They are used, for example, by cryptographic devices such as smartcards and
Hardware Security Modules (HSMs) to manage keys and provide access to cryptographic functions whilst
keeping the keys secure. Like security protocols, their design is security critical and very difficult to get right.
Hence formal techniques have been adapted from security protocols to security APIs.

The most widely used standard for cryptographic APIs is RSA PKCS#11, ubiquitous in devices from
smartcards to HSMs. A 2003 paper highlighted possible flaws in PKCS#11 [55], results which were extended
by formal analysis work using a Dolev-Yao style model of the standard [56]. However at this point it was
not clear to what extent these flaws affected real commercial devices, since the standard is underspecified
and can be implemented in many different ways. The Tookan tool, developed by Steel in collaboration with
Bortolozzo, Centenaro and Focardi, was designed to address this problem. Tookan can reverse engineer the
particular configuration of PKCS#11 used by a device under test by sending a carefully designed series of
PKCS#11 commands and observing the return codes. These codes are used to instantiate a Dolev-Yao model
of the device’s API. This model can then be searched using a security protocol model checking tool to find
attacks. If an attack is found, Tookan converts the trace from the model checker into the sequence of PKCS#11
queries needed to make the attack and executes the commands directly on the device. Results obtained by
Tookan are remarkable: of 18 commercially available PKCS#11 devices tested, 10 were found to be susceptible
to at least one attack.

3.1.3. Verifying cryptographic applications using F*
Verifying the implementation of a protocol has traditionally been considered much harder than verifying its
model. This is mainly because implementations have to consider real-world details of the protocol, such as
message formats, that models typically ignore. This leads to a situation that a protocol may have been proved
secure in theory, but its implementation may be buggy and insecure. However, with recent advances in both
program verification and symbolic protocol verification tools, it has become possible to verify fully functional
protocol implementations in the symbolic model.

One approach is to extract a symbolic protocol model from an implementation and then verify the model, say,
using ProVerif. This approach has been quite successful, yielding a verified implementation of TLS in F#
[48]. However, the generated models are typically quite large and whole-program symbolic verification does
not scale very well.

http://proverif.inria.fr/proverif-users.html
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An alternate approach is to develop a verification method directly for implementation code, using well-known
program verification techniques such as typechecking. F7 [46] is a refinement typechecker for F#, developed
jointly at Microsoft Research Cambridge and Inria. It implements a dependent type-system that allows us
to specify security assumptions and goals as first-order logic annotations directly inside the program. It has
been used for the modular verification of large web services security protocol implementations [49]. F* (see
below) is an extension of F7 with higher-order kinds and a certifying typechecker. The cryptographic protocol
implementations verified using F7 and F* already represent the largest verified cryptographic applications to
our knowledge.

3.2. Computational verification of cryptographic applications
Proofs done by cryptographers in the computational model are mostly manual. Our goal is to provide computer
support to build or verify these proofs. In order to reach this goal, we have already designed the automatic
tool CryptoVerif, which generates proofs by sequences of games. Much work is still needed in order to
develop this approach, so that it is applicable to more protocols. We also plan to design and implement
techniques for proving implementations of protocols secure in the computational model, by generating them
from CryptoVerif specifications that have been proved secure, or by automatically extracting CryptoVerif
models from implementations.

A different approach is to directly verify cryptographic applications in the computational model by typing. A
recent work [58] shows how to use refinement typechecking in F7 to prove computational security for protocol
implementations. In this method, henceforth referred to as computational F7, typechecking is used as the main
step to justify a classic game-hopping proof of computational security. The correctness of this method is based
on a probabilistic semantics of F# programs and crucially relies on uses of type abstraction and parametricity
to establish strong security properties, such as indistinguishability.

In principle, the two approaches, typechecking and game-based proofs, are complementary. Understanding
how to combine these approaches remains an open and active topic of research.

An alternative to direct computation proofs is to identify the cryptographic assumptions under which symbolic
proofs, which are typically easier to derive automatically, can be mapped to computational proofs. This line
of research is sometimes called computational soundness and the extent of its applicability to real-world
cryptographic protocols is an active area of investigation.

3.3. F*: A Higher-Order Effectful Language Designed for Program
Verification
F* [60] is a verification system for ML programs developed collaboratively by Inria and Microsoft Research.
ML types are extended with logical predicates that can conveniently express precise specifications for pro-
grams (pre- and post- conditions of functions as well as stateful invariants), including functional correctness
and security properties. The F* typechecker implements a weakest-precondition calculus to produce first-order
logic formulas that are automatically discharged using the Z3 SMT solver. The original F* implementation
has been successfully used to verify nearly 50,000 lines of code, including cryptographic protocol imple-
mentations, web browser extensions, cloudhosted web applications, and key parts of the F* typechecker and
compiler (itself written in F*). F* has also been used for formalizing the semantics of other languages, in-
cluding JavaScript and a compiler from a subset of F* to JavaScript, and TS*, a secure subset of TypeScript.
Programs verified with F* can be extracted to F#, OCaml, C, and JavaScript and then efficiently executed and
integrated into larger code bases.

The latest version of F* is written entirely in F*, and bootstraps in OCaml and F#. It is open source and under
active development on GitHub. A detailed description of this new F* version is available in a POPL 2016
paper [62] and a POPL 2017 one [22]. We continue to evolve and develop F* and we use it to develop large
case studies of verified cryptographic applications, such as miTLS.
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3.4. Efficient Formally Secure Compilers to a Tagged Architecture
Severe low-level vulnerabilities abound in today’s computer systems, allowing cyber-attackers to remotely
gain full control. This happens in big part because our programming languages, compilers, and architectures
were designed in an era of scarce hardware resources and too often trade off security for efficiency. The
semantics of mainstream low-level languages like C is inherently insecure, and even for safer languages,
establishing security with respect to a high-level semantics does not guarantee the absence of low-level attacks.
Secure compilation using the coarse-grained protection mechanisms provided by mainstream hardware
architectures would be too inefficient for most practical scenarios.

We aim to leverage emerging hardware capabilities for fine-grained protection to build the first, efficient secure
compilers for realistic programming languages, both low-level (the C language) and high-level (ML and F*, a
dependently-typed variant). These compilers will provide a secure semantics for all programs and will ensure
that high-level abstractions cannot be violated even when interacting with untrusted low-level code. To achieve
this level of security without sacrificing efficiency, our secure compilers will target a tagged architecture,
which associates a metadata tag to each word and efficiently propagates and checks tags according to software-
defined rules. We will experimentally evaluate and carefully optimize the efficiency of our secure compilers on
realistic workloads and standard benchmark suites. We will use property-based testing and formal verification
to provide high confidence that our compilers are indeed secure. Formally, we will construct machine-checked
proofs of full abstraction with respect to a secure high-level semantics. This strong property complements
compiler correctness and ensures that no machine-code attacker can do more harm to securely compiled
components than a component in the secure source language already could.

3.5. Provably secure web applications
Web applications are fast becoming the dominant programming platform for new software, probably because
they offer a quick and easy way for developers to deploy and sell their apps to a large number of customers.
Third-party web-based apps for Facebook, Apple, and Google, already number in the hundreds of thousands
and are likely to grow in number. Many of these applications store and manage private user data, such as
health information, credit card data, and GPS locations. To protect this data, applications tend to use an ad
hoc combination of cryptographic primitives and protocols. Since designing cryptographic applications is
easy to get wrong even for experts, we believe this is an opportune moment to develop security libraries and
verification techniques to help web application programmers.

As a typical example, consider commercial password managers, such as LastPass, RoboForm, and 1Password.
They are implemented as browser-based web applications that, for a monthly fee, offer to store a user’s
passwords securely on the web and synchronize them across all of the user’s computers and smartphones. The
passwords are encrypted using a master password (known only to the user) and stored in the cloud. Hence,
no-one except the user should ever be able to read her passwords. When the user visits a web page that has
a login form, the password manager asks the user to decrypt her password for this website and automatically
fills in the login form. Hence, the user no longer has to remember passwords (except her master password) and
all her passwords are available on every computer she uses.

Password managers are available as browser extensions for mainstream browsers such as Firefox, Chrome,
and Internet Explorer, and as downloadable apps for Android and Apple phones. So, seen as a distributed
application, each password manager application consists of a web service (written in PHP or Java), some
number of browser extensions (written in JavaScript), and some smartphone apps (written in Java or Objective
C). Each of these components uses a different cryptographic library to encrypt and decrypt password data.
How do we verify the correctness of all these components?

We propose three approaches. For client-side web applications and browser extensions written in JavaScript,
we propose to build a static and dynamic program analysis framework to verify security invariants. To this end,
we have developed two security-oriented type systems for JavaScript, Defensive JavaScript [47] [47] and TS*
[61], and used them to guarantee security properties for a number of JavaScript applications. For Android
smartphone apps and web services written in Java, we propose to develop annotated JML cryptography
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libraries that can be used with static analysis tools like ESC/Java to verify the security of application code. For
clients and web services written in F# for the .NET platform, we propose to use F* to verify their correctness.
We also propose to translate verified F* web applications to JavaScript via a verified compiler that preserves
the semantics of F* programs in JavaScript.

3.6. Design and Verification of next-generation protocols: identity,
blockchains, and messaging
Building on the our work on verifying and re-designing pre-existing protocols like TLS and Web Security
in general, with the resources provided by the NEXTLEAP project, we are working on both designing and
verifying new protocols in rapidly emerging areas like identity, blockchains, and secure messaging. These
are all areas where existing protocols, such as the heavily used OAuth protocol, are in need of considerable
re-design in order to maintain privacy and security properties. Other emerging areas, such as blockchains
and secure messaging, can have modifications to existing pre-standard proposals or even a complete ’clean
slate’ design. As shown by Prosecco’s work, newer standards, such as IETF OAuth, W3C Web Crypto, and
W3C Web Authentication API, can have vulnerabilities fixed before standardization is complete and heavily
deployed. We hope that the tools used by Prosecco can shape the design of new protocols even before they are
shipped to standards bodies.

4. Application Domains

4.1. Cryptographic Protocol Libraries
Cryptographic protocols such as TLS, SSH, IPSec, and Kerberos are the trusted base on which the security of
modern distributed systems is built. Our work enables the analysis and verification of such protocols, both in
their design and implementation. Hence, for example, we build and verify models and reference implementa-
tions for well-known protocols such as TLS and SSH, as well as analyze their popular implementations such
as OpenSSL.

4.2. Hardware-based security APIs
Cryptographic devices such as Hardware Security Modules (HSMs) and smartcards are used to protect long-
terms secrets in tamper-proof hardware, so that even attackers who gain physical access to the device cannot
obtain its secrets. These devices are used in a variety of scenarios ranging from bank servers to transportation
cards (e.g. Navigo). Our work investigates the security of commercial cryptographic hardware and evaluates
the APIs they seek to implement.

4.3. Web application security
Web applications use a variety of cryptographic techniques to securely store and exchange sensitive data for
their users. For example, a website may serve pages over HTTPS, authenticate users with a single sign-on
protocol such as OAuth, encrypt user files on the server-side using XML encryption, and deploy client-side
cryptographic mechanisms using a JavaScript cryptographic library. The security of these applications depends
on the public key infrastructure (X.509 certificates), web browsers’ implementation of HTTPS and the same
origin policy (SOP), the semantics of JavaScript, HTML5, and their various associated security standards, as
well as the correctness of the specific web application code of interest. We build analysis tools to find bugs
in all these artifacts and verification tools that can analyze commercial web applications and evaluate their
security against sophisticated web-based attacks.
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5. Highlights of the Year

5.1. Highlights of the Year
• We published 20 papers at top-tier conferences such as POPL (2), IEEE S&P (2), ACM CCS (1),

IEEE CSF (1), ICFP (1), PETS (1), and IEEE Euro S&P (2).

• Bruno Blanchet published a paper on the applied pi calculus in the prestigious Journal of the ACM.

• The HACL* verified cryptographic library developed in our group was integrated into Mozilla
Firefox 57 and is being actively used by hundreds of millions of users around the world.

• We organized the second edition of the IEEE Euro S&P Conference in Paris, which was attended by
over 200 security researchers from around the world.

5.1.1. Awards
• Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi won a Distinguished Paper award at

IEEE S&P 2017 .

• Catalin Hritcu was awarded a new DARPA SSITH grant called HOPE with DRAPER Labs.

• Antoine Delignat-Lavaud received an “accessit” for the prix de thèse GDR GPL 2016.

BEST PAPER AWARD:

[24]
K. BHARGAVAN, B. BLANCHET, N. KOBEISSI. Verified Models and Reference Implementations for the TLS
1.3 Standard Candidate, in "38th IEEE Symposium on Security and Privacy", San Jose, United States, May
2017, pp. 483 - 502 [DOI : 10.1109/SP.2017.26], https://hal.inria.fr/hal-01575920

6. New Software and Platforms

6.1. Cryptosense Analyzer
SCIENTIFIC DESCRIPTION: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool
for cryptographic devices such as smartcards, security tokens and Hardware Security Modules that support the
most widely-used industry standard interface, RSA PKCS#11. Each device implements PKCS#11 in a slightly
different way since the standard is quite open, but finding a subset of the standard that results in a secure device,
i.e. one where cryptographic keys cannot be revealed in clear, is actually rather tricky. Cryptosense Analyzer
analyses a device by first reverse engineering the exact implementation of PKCS#11 in use, then building a
logical model of this implementation for a model checker, calling a model checker to search for attacks, and in
the case where an attack is found, executing it directly on the device. It has been used to find at least a dozen
previously unknown flaws in commercially available devices.
FUNCTIONAL DESCRIPTION: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool
for cryptographic devices such as smartcards,

• Participants: Graham Steel and Romain Bardou

• Contact: Graham Steel

• URL: https://cryptosense.com/

6.2. CryptoVerif
Cryptographic protocol verifier in the computational model
KEYWORDS: Security - Verification - Cryptographic protocol

https://hal.inria.fr/hal-01575920
https://cryptosense.com/
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FUNCTIONAL DESCRIPTION: CryptoVerif is an automatic protocol prover sound in the computational model.
In this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing machine.
CryptoVerif can prove secrecy and correspondences, which include in particular authentication. It provides
a generic mechanism for specifying the security assumptions on cryptographic primitives, which can handle
in particular symmetric encryption, message authentication codes, public-key encryption, signatures, hash
functions, and Diffie-Hellman key agreements. It also provides an explicit formula that gives the probability
of breaking the protocol as a function of the probability of breaking each primitives, this is the exact security
framework.
NEWS OF THE YEAR: We made several case studies using CryptoVerif (Signal, TLS 1.3 Draft 18, ARINC
823 avionic protocol) and have made a few technical improvements.

• Participants: Bruno Blanchet and David Cadé

• Contact: Bruno Blanchet

• Publications: Proved Implementations of Cryptographic Protocols in the Computational Model -
Proved Generation of Implementations from Computationally Secure Protocol Specifications - Ver-
ified Models and Reference Implementations for the TLS 1.3 Standard Candidate - Verified Models
and Reference Implementations for the TLS 1.3 Standard Candidate - Symbolic and Computational
Mechanized Verification of the ARINC823 Avionic Protocols - Automated Verification for Secure
Messaging Protocols and Their Implementations: A Symbolic and Computational Approach

• URL: http://cryptoverif.inria.fr/

6.3. F*
FStar
KEYWORDS: Programming language - Software Verification
FUNCTIONAL DESCRIPTION: F* is a new higher order, effectful programming language (like ML) designed
with program verification in mind. Its type system is based on a core that resembles System Fw (hence
the name), but is extended with dependent types, refined monadic effects, refinement types, and higher
kinds. Together, these features allow expressing precise and compact specifications for programs, including
functional correctness properties. The F* type-checker aims to prove that programs meet their specifications
using an automated theorem prover (usually Z3) behind the scenes to discharge proof obligations. Programs
written in F* can be translated to OCaml, F#, or JavaScript for execution.

• Participants: Antoine Delignat-Lavaud, Catalin Hritcu, Cédric Fournet, Chantal Keller, Karthikeyan
Bhargavan and Pierre-Yves Strub

• Contact: Catalin Hritcu

• URL: https://www.fstar-lang.org/

6.4. miTLS
KEYWORDS: Cryptographic protocol - Software Verification
FUNCTIONAL DESCRIPTION: miTLS is a verified reference implementation of the TLS protocol. Our code
fully supports its wire formats, ciphersuites, sessions and connections, re-handshakes and resumptions, alerts
and errors, and data fragmentation, as prescribed in the RFCs, it interoperates with mainstream web browsers
and servers. At the same time, our code is carefully structured to enable its modular, automated verification,
from its main API down to computational assumptions on its cryptographic algorithms.

• Participants: Alfredo Pironti, Antoine Delignat-Lavaud, Cédric Fournet, Jean-Karim Zinzindohoué,
Karthikeyan Bhargavan, Pierre-Yves Strub and Santiago Zanella-Béguelin

• Contact: Karthikeyan Bhargavan

• URL: https://github.com/mitls/mitls-fstar

https://hal.inria.fr/tel-01112630
https://hal.inria.fr/hal-01102382
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01575923
http://cryptoverif.inria.fr/
https://www.fstar-lang.org/
https://github.com/mitls/mitls-fstar
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6.5. ProVerif
KEYWORDS: Security - Verification - Cryptographic protocol
FUNCTIONAL DESCRIPTION: ProVerif is an automatic security protocol verifier in the symbolic model (so
called Dolev-Yao model). In this model, cryptographic primitives are considered as black boxes. This protocol
verifier is based on an abstract representation of the protocol by Horn clauses. Its main features are:

It can verify various security properties (secrecy, authentication, process equivalences).

It can handle many different cryptographic primitives, specified as rewrite rules or as equations.

It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded message
space.
NEWS OF THE YEAR: Marc Sylvestre improved the display of attacks, in particular by showing the
computations performed by the attacker to obtain the messages sent in the attack, and by explaining why
the found trace breaks the considered security property. He also developed an interactive simulator that allows
the user to run the protocol step by step. We also made several case studies using this tool (Signal, TLS 1.3
Draft 18, ARINC 823 avionic protocol).

• Participants: Bruno Blanchet, Marc Sylvestre and Vincent Cheval

• Contact: Bruno Blanchet

• Publications: Automated Reasoning for Equivalences in the Applied Pi Calculus with Barriers - Au-
tomated reasoning for equivalences in the applied pi calculus with barriers - Modeling and Verifying
Security Protocols with the Applied Pi Calculus and ProVerif - Automatic Verification of Security
Protocols in the Symbolic Model: The Verifier ProVerif - Verified Models and Reference Implemen-
tations for the TLS 1.3 Standard Candidate - Verified Models and Reference Implementations for
the TLS 1.3 Standard Candidate - Automated Verification for Secure Messaging Protocols and Their
Implementations: A Symbolic and Computational Approach - Symbolic and Computational Mecha-
nized Verification of the ARINC823 Avionic Protocols - Symbolic and Computational Mechanized
Verification of the ARINC823 Avionic Protocols

• URL: http://proverif.inria.fr/

6.6. HACL*
High Assurance Cryptography Library
KEYWORDS: Cryptography - Software Verification
FUNCTIONAL DESCRIPTION: HACL* is a formally verified cryptographic library in F*, developed by the
Prosecco team at Inria Paris in collaboration with Microsoft Research, as part of Project Everest.

HACL stands for High-Assurance Cryptographic Library and its design is inspired by discussions at the
HACS series of workshops. The goal of this library is to develop verified C reference implementations for
popular cryptographic primitives and to verify them for memory safety, functional correctness, and secret
independence.

• Contact: Karthikeyan Bhargavan

• URL: https://github.com/mitls/hacl-star

7. New Results

7.1. Verification of Security Protocols in the Symbolic Model
Participants: Bruno Blanchet, Marc Sylvestre.

https://hal.inria.fr/hal-01423742
https://hal.inria.fr/hal-01306440
https://hal.inria.fr/hal-01306440
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01102136
https://hal.inria.fr/hal-01102136
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01527671
https://hal.inria.fr/hal-01527671
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575861
http://proverif.inria.fr/
https://github.com/mitls/hacl-star
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The applied pi calculus is a widely used language for modeling security protocols, including as a theoretical
basis of PROVERIF. However, the seminal paper that describes this language [45] does not come with proofs,
and detailed proofs for the results in this paper were never published. Martín Abadi, Bruno Blanchet, and
Cédric Fournet wrote detailed proofs of all results of this paper. This work appears in the Journal of the
ACM [12].

Marc Sylvestre improved the display of attacks in ProVerif, in particular by showing the computations
performed by the attacker to obtain the messages sent in the attack, and by explaining why the found trace
breaks the considered security property. He also developed an interactive simulator that allows the user to run
the protocol step by step. The extended tool is available at http://proverif.inria.fr.

7.2. Symbolic and Computational Verification of Signal
Participants: Karthikeyan Bhargavan, Bruno Blanchet, Nadim Kobeissi.

We proposed a novel methodology that allows protocol designers, implementers, and security analysts to
collaboratively verify a protocol using automated tools. The protocol is implemented in ProScript, a new
domain-specific language that is designed for writing cryptographic protocol code that can both be executed
within JavaScript programs and automatically translated to a readable model in the applied pi calculus. This
model can then be analyzed symbolically using ProVerif to find attacks in a variety of threat models. The
model can also be used as the basis of a computational proof using CryptoVerif, which reduces the security
of the protocol to standard cryptographic assumptions. If ProVerif finds an attack, or if the CryptoVerif proof
reveals a weakness, the protocol designer modifies the ProScript protocol code and regenerates the model to
enable a new analysis. We demonstrated our methodology by implementing and analyzing two protocols: a
variant of the popular Signal Protocol and TLS 1.3 Draft-18.

In our analysis of Signal, we used ProVerif and CryptoVerif to find new and previously-known weaknesses
in the protocol and suggest practical countermeasures. Our ProScript protocol code is incorporated within the
current release of Cryptocat, a desktop secure messenger application written in JavaScript. Our results indicate
that, with disciplined programming and some verification expertise, the systematic analysis of complex
cryptographic web applications is now becoming practical [33].

7.3. Symbolic and Computational Verification of TLS 1.3
Participants: Karthikeyan Bhargavan, Bruno Blanchet, Nadim Kobeissi.

We also applied our verification methodology to TLS 1.3, the next version of the Transport Layer Security
(TLS) protocol. Its clean-slate design is a reaction both to the increasing demand for low-latency HTTPS
connections and to a series of recent high-profile attacks on TLS. The hope is that a fresh protocol with
modern cryptography will prevent legacy problems; the danger is that it will expose new kinds of attacks, or
reintroduce old flaws that were fixed in previous versions of TLS. The protocol is nearing completion, and
the working group has appealed to researchers to analyze the protocol before publication. We responded by
presenting a comprehensive analysis of the TLS 1.3 Draft-18 protocol.

We seeked to answer three questions that had not been fully addressed in previous work on TLS 1.3: (1) Does
TLS 1.3 prevent well-known attacks on TLS 1.2, such as Logjam or the Triple Handshake, even if it is run in
parallel with TLS 1.2? (2) Can we mechanically verify the computational security of TLS 1.3 under standard
(strong) assumptions on its cryptographic primitives? (3) How can we extend the guarantees of the TLS 1.3
protocol to the details of its implementations?

To answer these questions, we used our methodology for developing verified symbolic and computational
models of TLS 1.3 hand-in-hand with a high-assurance reference implementation of the protocol. We presented
symbolic ProVerif models for various intermediate versions of TLS 1.3 and evaluated them against a rich
class of attacks to reconstruct both known and previously unpublished vulnerabilities that influenced the
current design of the protocol. We presented a computational CryptoVerif model for TLS 1.3 Draft-18 and
proved its security. We presented RefTLS, an interoperable implementation of TLS 1.0-1.3 in ProScript and
automatically analyzed its protocol core by extracting a ProVerif model from its typed JavaScript code [24],
[37]. This work was awarded the Distinguished Paper award at IEEE S&P 2017.

http://proverif.inria.fr/
http://proverif.inria.fr


Project-Team PROSECCO 13

7.4. Verification of Avionic Security Protocols
Participant: Bruno Blanchet.

Within the ANR project AnaStaSec, we studied an air-ground avionic security protocol, the ARINC823 public
key protocol [41]. We verified this protocol both in the symbolic model of cryptography, using ProVerif, and
in the computational model, using CryptoVerif. While this study confirmed the main security properties of the
protocol (entity and message authentication, secrecy), we found several weaknesses and imprecisions in the
standard. We proposed fixes for these problems. This work appears in [27], [38].

We also verified the ATN Secure Dialogue protocol (ICAO 9880-IV [42]), which is currently under
development. We verified it using ProVerif and CryptoVerif. While we confirmed the main security properties
of the intended protocol, we found several incoherences, weaknesses, and imprecisions in the draft standard.
We proposed fixes for these problems. We presented this work to the ICAO Secure Dialogue Subgroup
(September 2017).

7.5. Design and Verification of next-generation protocols: identity,
blockchains, and messaging
Participants: Harry Halpin, George Danezis [University College London], Carmela Troncoso [IMDEA].

We continued work on next-generation protocols via the NEXTLEAP project in 2017. The work started in
2016 to define the principles of design of decentralized protocols and a paper was published in the Privacy
Enhancing Techologies Symposium as "Systematizing Decentralization and Privacy: Lessons from 15 years of
research and deployments", which systematized over 180 papers from p2p to blockchains. We formally defined
decentralization in terms of a distributed system operating in an adversarial environment, which we hope will
be a foundational contribution to the field. NEXTLEAP also published a paper in ARES 2017 on how these
principles can be applied to secure messaging systems, including the work of Prosecco on formalizing secure
messaging as presented in EuroS&P 2017. NEXTLEAP had a successful launch event at Centre Pompidou,
colocated with Eurocrypt, which was attended by a panel of prominent cryptographers (Phil Rogaway, Moti
Yung, Tanja Lange, Daniel Bernstein) and members of the European Commission and European Parliament,
attracting over 100 members of the general public to hear about Prosecco’s research.

Building on the work on identity started in 2017, we finished the design of ClaimChain, the privacy-enhanced
blockchain-based identity system, and work started on a F* implementation and scalability simulations. Unlike
most blockchain systems that are public and are essentially replicated state machines, Claimchains use VRFs
for privacy and do not require global consensus, instead allowing private linking between Claimchains and
gossiping to maintain local consensus on secret material. We believe that this design may be the first workable
approach to decentralizing PKI. Claimchains also use Merkle Trees for efficiency, and some of this library
may end up as generally useful for F* programming after more development in 2018. Claimchain has yet to
be published in an academic venue, but it has already attracted considerable interest and was presented in
the popular CCC security conference in Leipzig Germany. We also continued to raise the bar on security and
privacy, hosting the first ever workshop on "Security and Privacy on the Blockchain" at EuroS&P 2017, which
was sponsored by Blockstream. We expect the first formally verified blockchain system based on this design
to be finished in 2018.

Another aspect of building next-generation protocols is to evaluate their usability. Prior studies have shown that
users typically do not understand encryption and are even hostile to open-source code. However, these studies
are typically done with students drawn for a general population, and in response Prosecco, in co-operation
with sociologists from CNRS/Sorbonne, have started the largest-ever study of high-risk users from countries
as diverse as Ukraine, Russia, Egypt and Tunisia. Preliminary results were presented at the European Usable
Security (EuroUSEC) workshop, and already have attracted considerable attention from developers of secure
messaging applications such as Signal and Briar. We hope that our findings on how users actually do group
messaging and key verification will lead to changes in the underlying protocols.
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Lastly, we continue to work with standards bodies in order to do security and privacy analysis of new protocols.
For example, we have started formalizing W3C Web Authentication and inspecting its privacy properties, and
our work on the lack of security in Semantic Web standards led to "Semantic Insecurity: Security and the
Semantic Web" at ISWC 2017. Work on the security and privacy properties of the W3C Encrypted Media
Extension led to an invited keynote at SPACE 2017.

Next year, we will finalize ClaimChain and add on the mix-network we have been developing over the last year,
leading to a metadata-resistant and decentralized secure messaging application. We will work on spreading
awareness of the importance of formally verified open standards as being necessary for the future of security,
rather than closed-source solutions that may have backdoors and dangerous bugs that could cause severe
economic damage if not fixed. To this end, we will work with ECRYPT CSA on the IACR Summer School of
Societal and Business Impact of Cryptography, colocated with Real-World Crypto 2018, and co-organize an
event at the European Commission and Parliament.

7.6. The F* programming language
Participants: Danel Ahman, Benjamin Beurdouche, Karthikeyan Bhargavan, Barry Bond [Microsoft Re-
search], Tej Chajed [MIT], Antoine Delignat-Lavaud [Microsoft Research], Victor Dumitrescu, Cédric Four-
net [Microsoft Research], Catalin Hritcu, Qunyan Mangus [Microsoft Research], Markulf Kohlweiss [Mi-
crosoft Research], Kenji Maillard, Asher Manning [McGill University], Guido Martínez [CIFASIS-CONICET
Rosario], Zoe Paraskevopoulou [Princeton University], Clément Pit-Claudel [MIT], Jonathan Protzenko [Mi-
crosoft Research], Tahina Ramananandro [Microsoft Research], Aseem Rastogi [Microsoft Research], Jared
Roesch [University of Washington], Nikhil Swamy [Microsoft Research], Christoph M. Wintersteiger [Mi-
crosoft Research], Santiago Zanella-Béguelin [Microsoft Research].

F* is an ML-like functional programming language aimed at program verification. Its type system includes
polymorphism, dependent types, monadic effects, refinement types, and a weakest precondition calculus. To-
gether, these features allow expressing precise and compact specifications for programs, including functional
correctness and security properties. The F* type-checker aims to prove that programs meet their specifications
using a combination of SMT solving and manual proofs. Programs written in F* can be translated to OCaml,
F#, or C for execution.

The latest version of F* is written entirely in F*, and bootstraps in OCaml and F#. It is open source and under
active development on http://github.com/FStarLang/FStar. A detailed description of this new F* version is
available in a series of POPL papers [62], [22], [14].

The main ongoing use case of F* is building a verified, drop-in replacement for the whole HTTPS stack in
Project Everest [25]. This includes verified implementations of TLS 1.2 and 1.3 including the underlying
cryptographic primitives. Moreover, while F* is extracted to OCaml by default, we have devised a subset of
F* that can be compiled to C for efficiency [18].

We released two versions of the software this year.

7.7. Micro-Policies
Participants: Arthur Azevedo de Amorim [University of Pennsylvania], Chris Casinghino [Draper Labs],
André Dehon [University of Pennsylvania], Catalin Hritcu, Théo Laurent [ENS Paris], Benjamin Pierce
[University of Pennsylvania], Howard Shrobe [MIT], Greg Sullivan [Dover Microsystems], Andrew Tolmach
[Portland State University].

This year we obtained a new DARPA grant called SSITH/HOPE on “Advanced New Hardware Optimized for
Policy Enforcement, A New HOPE”. This grant is in the process of starting and our contribution will focus
on devising a high-level micro-policy language and investigating micro-policies targetting today’s most severe
security vulnerabilities.

http://github.com/FStarLang/FStar
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7.8. HACL*: A Verified Modern Cryptographic Library
Participants: Jean Karim Zinzindohoue, Karthikeyan Bhargavan, Jonathan Protzenko [Microsoft Research],
Benjamin Beurdouche.

HACL* is a verified portable C cryptographic library that implements modern cryptographic primitives such
as the ChaCha20 and Salsa20 encryption algorithms, Poly1305 and HMAC message authentication, SHA-256
and SHA-512 hash functions, the Curve25519 elliptic curve, and Ed25519 signatures.

HACL* is written in the F* programming language and then compiled to readable C code using the KreMLin
tool [18]. The F* source code for each cryptographic primitive is verified for memory safety, mitigations
against timing side-channels, and functional correctness with respect to a succinct high-level specification of
the primitive derived from its published standard. The translation from F* to C preserves these properties and
the generated C code can itself be compiled via the CompCert verified C compiler or mainstream compilers
like GCC or CLANG. When compiled with GCC on 64-bit platforms, our primitives are as fast as the
fastest pure C implementations in OpenSSL and Libsodium, significantly faster than the reference C code
in TweetNaCl, and between 1.1x-5.7x slower than the fastest hand-optimized vectorized assembly code in the
SUPERCOP benchmark test-suite.

HACL* implements the NaCl cryptographic API and can be used as a drop-in replacement for NaCl libraries
like Libsodium and TweetNaCl. HACL* provides the cryptographic components for a new mandatory
ciphersuite in TLS 1.3 and is being developed as the main cryptographic provider for the miTLS verified
implementation. Primitives from HACL* have now been integrated within Mozilla’s NSS cryptographic
library. Our results show that writing fast, verified, and usable C cryptographic libraries is now practical.

This work appeared at the ACM CCS conference [36] and all our software is publicly available and in active
development on GitHub.

7.9. miTLS: A Verified TLS Implementation
Participants: Karthikeyan Bhargavan, Antoine Delignat-Lavaud [Microsoft Research], Cédric Fournet [Mi-
crosoft Research], Markulf Kohlweiss [Microsoft Research], Jianyang Pan, Jonathan Protzenko [Microsoft
Research], Aseem Rastogi [Microsoft Research], Nikhil Swamy [Microsoft Research], Santiago Zanella-
Béguelin [Microsoft Research], Jean Karim Zinzindohoue.

The record layer is the main bridge between TLS applications and internal sub-protocols. Its core functionality
is an elaborate authenticated encryption: streams of messages for each sub-protocol (handshake, alert, and
application data) are fragmented, multiplexed, and encrypted with optional padding to hide their lengths.
Conversely, the sub-protocols may provide fresh keys or signal stream termination to the record layer.

Compared to prior versions, TLS 1.3 discards obsolete schemes in favor of a common construction for
Authenticated Encryption with Associated Data (AEAD), instantiated with algorithms such as AES-GCM
and ChaCha20-Poly1305. It differs from TLS 1.2 in its use of padding, associated data and nonces. It encrypts
the content-type used to multiplex between sub-protocols. New protocol features such as early application
data (0-RTT and 0.5-RTT) and late handshake messages require additional keys and a more general model of
stateful encryption.

As part of the miTLS project, we built and verified a reference implementation of the TLS record layer and
its cryptographic algorithms in F*. We reduced the high-level security of the record layer to cryptographic
assumptions on its ciphers. Each step in the reduction is verified by typing an F* module; when the step incurs
a security loss, this module precisely captures the corresponding game-based security assumption.

We computed concrete security bounds for the AES-GCM and ChaCha20-Poly1305 ciphersuites, and derived
recommended limits on sent data before re-keying. Combining our functional correctness and security
results, we obtained the first verified implementation of the main TLS 1.3 record ciphers. We plugged our
implementation into an existing TLS library and confirmed that the combination interoperates with Chrome
and Firefox, and thus that experimentally the new TLS record layer (as described in RFCs and cryptographic
standards) is provably secure.
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This work appeared at IEEE S&P 2017 [26] and our verified software is publicly available and actively
developed on GitHub.

7.10. A Cryptographic Analysis of Content Delivery of TLS
Participants: Karthikeyan Bhargavan, Ioana Boureanu [University of Surrey], Pierre-Alain Fouque [Univer-
sity of Rennes 1/IRISA], Cristina Onete [University of Rennes 1/IRISA], Benjamin Richard [Orange Labs
Chatillon].

The Transport Layer Security (TLS) protocol is designed to allow two parties, a client and a server, to
communicate securely over an insecure network. However, when TLS connections are proxied through an
intermediate middlebox, like a Content Delivery Network (CDN), the standard end-to-end security guarantees
of the protocol no longer apply.

As part of the SafeTLS project, we investigated the security guarantees provided by Keyless SSL, a CDN
architecture currently deployed by CloudFlare that composes two TLS 1.2 handshakes to obtain a proxied
TLS connection. We demonstrated new attacks that show that Keyless SSL does not meet its intended security
goals. We argued that proxied TLS handshakes require a new, stronger, 3-party security definition, and we
presented one.

We modified Keyless SSL and proved that our modifications guarantee this notion of security. Notably, we
showed that secure proxying in TLS 1.3 is computationally lighter and requires simpler assumptions on
the certificate infrastructure than our proposed fix for Keyless SSL. Our results indicate that proxied TLS
architectures, as currently used by a number of CDNs, may be vulnerable to subtle attacks and deserve close
attention [39].

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR
8.1.1.1. AnaStaSec

Title: Static Analysis for Security Properties (ANR générique 2014.)

Other partners: Inria/Antique, Inria/Celtique, Airbus Operations SAS, AMOSSYS, CEA-LIST,
TrustInSoft

Duration: January 2015 - December 2018.

Coordinator: Jérôme Féret, Inria Antique (France)

Participant: Bruno Blanchet

Abstract: The project aims at using automated static analysis techniques for verifying security and
confidentiality properties of critical avionics software.

8.1.1.2. AJACS

Title: AJACS: Analyses of JavaScript Applications: Certification and Security

Other partners: Inria-Rennes/Celtique, Inria-Saclay/Toccata, Inria-Sophia Antipolis/INDES, Impe-
rial College London

Duration: October 2014 - March 2019.

Coordinator: Alan Schmitt, Inria (France)

Participants: Karthikeyan Bhargavan, Bruno Blanchet, Nadim Kobeissi
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Abstract: The goal of the AJACS project is to provide strong security and privacy guarantees for web
application scripts. To this end, we propose to define a mechanized semantics of the full JavaScript
language, the most widely used language for the Web, to develop and prove correct analyses for
JavaScript programs, and to design and certify security and privacy enforcement mechanisms.

8.1.1.3. SafeTLS
Title: SafeTLS: La sécurisation de l’Internet du futur avec TLS 1.
Other partners: Université Rennes 1, IRMAR, Inria Sophia Antipolis, SGDSN/ANSSI
Duration: October 2016 - September 2020
Coordinator: Pierre-Alain Fouque, Univesité de Rennes 1 (France)
Participants: Karthikeyan Bhargavan
Abstract: Our project, SafeTLS, addresses the security of both TLS 1.3 and of TLS 1.2 as they are
(expected to be) used, in three important ways: (1) A better understanding: We will provide a better
understanding of how TLS 1.2 and 1.3 are used in real-world applications; (2) Empowering clients:
By developing a tool that will show clients the quality of their TLS connection and inform them of
potential security and privacy risks; (3) Analyzing implementations: We will analyze the soundness
of current TLS 1.2 implementations and use automated verification to provide a backbone of a secure
TLS 1.3 implementation.

8.2. European Initiatives
8.2.1. FP7 & H2020 Projects
8.2.1.1. ERC Consolidator Grant: CIRCUS

Title: CIRCUS: An end-to-end verification architecture for building Certified Implementations of
Robust, Cryptographically Secure web applications
Duration: April 2016 - March 2021
Coordinator: Karthikeyan Bhargavn, Inria
Abstract: The security of modern web applications depends on a variety of critical components
including cryptographic libraries, Transport Layer Security (TLS), browser security mechanisms,
and single sign-on protocols. Although these components are widely used, their security guarantees
remain poorly understood, leading to subtle bugs and frequent attacks. Rather than fixing one attack
at a time, we advocate the use of formal security verification to identify and eliminate entire classes
of vulnerabilities in one go.

CIRCUS proposes to take on this challenge, by verifying the end-to-end security of web applications
running in mainstream software. The key idea is to identify the core security components of web
browsers and servers and replace them by rigorously verified components that offer the same
functionality but with robust security guarantees.

8.2.1.2. ERC Starting Grant: SECOMP
Title: SECOMP: Efficient Formally Secure Compilers to a Tagged Architecture
Duration: Jan 2017 - December 2021
Coordinator: Catalin Hritcu, Inria
Abstract: This new ERC-funded project called SECOMP1 is aimed at leveraging emerging hardware
capabilities for fine-grained protection to build the first, efficient secure compilers for realistic
programming languages, both low-level (the C language) and high-level (F*, a dependently-typed
ML variant). These compilers will provide a secure semantics for all programs and will ensure that
high-level abstractions cannot be violated even when interacting with untrusted low-level code. To
achieve this level of security without sacrificing efficiency, our secure compilers will target a tagged
architecture, which associates a metadata tag to each word and efficiently propagates and checks
tags according to software-defined rules. We will use property-based testing and formal verification
to provide high confidence that our compilers are indeed secure.
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8.2.1.3. NEXTLEAP

Title: NEXTLEAP: NEXT generation Legal Encryption And Privacy

Programme: H2020

Duration: January 2016 - December 2018

Coordinator: Harry Halpin, Inria

Other partners: IMDEA, University College London, CNRS, IRI, and Merlinux

Abstract: NEXTLEAP aims to create, validate, and deploy protocols that can serve as pillars for
a secure, trust-worthy, and privacy-respecting Internet. For this purpose NEXTLEAP will develop
an interdisciplinary study of decentralisation that provides the basis on which these protocols can
be designed, working with sociologists to understand user needs. The modular specification of
decentralized protocols, implemented as verified open-source software modules, will be done for
both privacy-preserving secure federated identity as well as decentralized secure messaging services
that hide metadata (e.g., who, when, how often, etc.).

8.3. International Initiatives
8.3.1. Inria International Labs
8.3.1.1. Informal International Partners

We have a range of long- and short-term collaborations with various universities and research labs. We
summarize them by project:

• F*: Microsoft Research (Cambdridge, Redmond), IMDEA (Madrid)

• TLS analysis: Microsoft Research (Cambridge), Mozilla, University of Rennes

• Web Security: Microsoft Research (Cambridge, Redmond), Imperial College (London), University
of Stuttgart

• Micro-Policies: University of Pennsylvania, Portland State University

8.3.2. Participation in Other International Programs
8.3.2.1. International Initiatives

Title: Advanced New Hardware Optimized for Policy Enforcement, A New HOPE

Program: DARPA SSITH

Duration: January 2016 - December 2018

Coordinator: Charles Stark, Draper Laboratory

Participants: Catalin Hritcu

Abstract: A New HOPE builds on results from the Inherently Secure Processor (ISP) project that has
been internally funded at Draper. Recent architectural improvements decouple the tagged architec-
ture from the processor pipeline to improve performance and flexibility for new processors. HOPE
securely maintains metadata for each word in application memory and checks every instruction
against a set of installed security policies. The HOPE security architecture exposes tunable param-
eters that support Performance, Power, Area, Software compatibility and Security (PPASS) search
space exploration. Flexible software-defined security policies cover all 7 SSITH CWE vulnerability
classes, and policies can be tuned to meet PPASS requirements; for example, one can trade granular-
ity of security checks against performance using different policy configurations. HOPE will design
and formalize a new high-level domain-specific language (DSL) for defining security policies, based
on previous research and on extensive experience with previous policy languages. HOPE will for-
mally verify that installed security policies satisfy system-wide security requirements. A secure boot
process enables policies to be securely updated on deployed HOPE systems. Security policies can
adapt based on previously detected attacks. Over the multi-year, multi-million dollar Draper ISP
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project, the tagged security architecture approach has evolved from early prototypes based on results
from the DARPA CRASH program towards easier integration with external designs, and is better
able to scale from micro to server class implementations. A New HOPE team is led by Draper and
includes faculty from University of Pennsylvania (Penn), Portland State University (PSU), Inria, and
MIT, as well as industry collaborators from DornerWorks and Dover Microsystems. In addition to
Draper’s in-house expertise in hardware design, cyber-security (defensive and offensive, hardware
and software) and formal methods, the HOPE team includes experts from all domains relevant to
SSITH, including (a) computer architecture: DeHon (Penn), Shrobe (MIT); (b) formal methods in-
cluding programming languages and security: Pierce (Penn), Tolmach (PSU), Hritcu (Inria); and (c)
operating system integration (DornerWorks). Dover Microsystems is a spin-out from Draper that
will commercialize concepts from the Draper ISP project.

8.4. International Research Visitors
8.4.1. Visits of International Scientists

• Claudia Diaz from KUL visited the group from 1-2 March and gave a seminar “Designing Mix-nets”
• Peter Schwabe visited Inria Paris on 11 April; he gave a seminar: From NewHope to Kyber.
• Joseph Bonneau (Stanford University) visited Inria on 20 April 2017, he gave a seminar: Public

randomness, blockchains and proofs-of-delay
• Stefan Ciobaca (Alexandru Ioan Cuza University of Iai, Romania) visited Inria Paris on 15 May

2017; he gave a seminar: The RMT Tool for Rewriting Modulo Theories.
• Ana Nora Evans (University of Virginia) joined Inria as a Visiting Scientist Apr–Aug 2017; she gave

a seminar: Using Verified Software Fault Isolation for a Formally Secure Compiler.
• David Evans (University of Virginia) joined Inria as a Visiting Scientist Apr–Aug 2017; he gave a

seminar: Can Machine Learning Work in the Presence of Adversaries?
• Jean Yang (CMU) visited Inria Paris on 6 June 2017; she gave a seminar: Policy-Agnostic Program-

ming for Database-Backed Applications.
• Amal Ahmed (Northeastern University) joined Inria as a Visiting Professor from September 2017;

she gave a seminar: Prosecco Seminars: Compositional Compiler Verification for a Multi-Language
World.

• Aaron Weiss (Northeastern University) joined Inria as a Visiting Scientist from September 2017.
• Amin Timany (KU Leuven) visited Inria Paris 6-8 December 2017; he gave a seminar: A Logical

Relation for Monadic Encapsulation of State: Proving contextual equivalences in the presence of
runST.

• Eric Rescorla visited Prosecco to discuss the design of TLS 1.3.

8.4.1.1. Internships

• Benjamin Lipp: Dec 2017 until May 2018, supervised by B. Blanchet, K. Bhargavan, and H. Halpin
• Iness Ben Guirat: Masters student 2017, supervised by H. Halpin
• Carmine Abate (University of Trento): Dec 2017 until May 2018
• William Bowman (Northeastern University): Oct 2017 until Dec 2017
• Keith Cannon (American University Paris): Mar 2017 until Sep 2017
• Théo Laurent (ENS Paris): Mar 2017 until Aug 2017
• Clément Pit-Claudel (MIT): Jul 2017 until Oct 2017

8.4.2. Visits to International Teams
• Catalin Hritcu, October 8-13, 2017, Aarhus University, Denmark.
• Catalin Hritcu, October 16-17, 2017, MPI-SWS, Saarbrucken, Germany.
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• Catalin Hritcu, December 18, 2017, University of Iasi, Romania.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific Events Organisation
9.1.1.1. General Chair, Scientific Chair

• Prosecco organized the 2nd IEEE European Symposium on Security and Privacy in Paris, 26-28
April 2017. Catalin Hritcu was General Chair, Bruno Blanchet was Finance Chair, and Karthikeyan
Bhargavan was Local arrangements Chair.

• Harry Halpin co-chaired the IEEE Security and Privacy on the Blockchain workshop, colocated with
IEEE EuroS&P, on 29 April 2017.

• Catalin Hritcu is Artifact Evaluation Co-Chair of POPL 2018
• Catalin Hritcu created a New Workshop on Principles of Secure Compilation (PriSC) colocated with

POPL 2017 and 2018. He is PC Chair for PriSC 2018.
• Prosecco organized a Project Everest Workshop at Inria Paris, 2 October 2017
• Prosecco organized an ESOP PC workshop at Inria Paris, 15 December 2017 Workshop at POPL:

13 January 2018, Los Angeles, USA

9.1.2. Scientific Events Selection
9.1.2.1. Member of the Conference Program Committees

• Bruno Blanchet was PC member at TAP 2017.
• Harry Halpin was a PC member for ISWC 2017 and WWW 2017.
• Catalin Hritcu was PC member at ESOP 2018 and EuroS&P 2018
• Karthikeyan Bhargavan was a PC member at ACM CCS 2017-18, IEEE S&P 2017-18, POST 2018.

9.1.2.2. Reviewer
• Harry Halpin served as a reviewer for LatinCrypt, AsiaCrypt, JAIST, TCS

9.1.3. Journal
9.1.3.1. Member of the Editorial Boards

Associate Editor
– of the International Journal of Applied Cryptography (IJACT) – Inderscience Publishers:

Bruno Blanchet

9.1.4. Invited Talks
• Bruno Blanchet gave an invited talk at the workshop on Models and Tools for Security Analysis and

Proofs, 2017.
• Bruno Blanchet gave an invited talk at the workshop TLS:DIV (TLS 1.3: Design, Implementation &

Verification), 2017.
• Bruno Blanchet gave an invited talk at the workshop TMSP (Trends in Mechanized Security Proofs),

2017.
• Bruno Blanchet gave an invited talk at the Summer Research Institute, EPFL, 2017.
• Harry Halpin gave an invited talk at SPACE 2017
• Harry Halpin gave an invited talk at Conference on Privacy and Data Protection, January 2017.
• Harry Halpin gave an invited talk at RightsCon, March 2017.
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• Harry Halpin gave an invited talk at E-CRYPT Cryptosympsium, March 2017.

• Harry Halpin gave an invited talk at La Firma Digital, July 2017.

• Harry Halpin gave an invited talk at Google, October 2017.

• Harry Halpin gave an invited talk at IMMWorld, November 2017.

• Harry Halpin gave an invited talk at Boston University Law School, November 2017.

• Harry Halpin gave an invited talk at University of North Carolina-Chapel Hill, December 2017.

• Harry Halpin gave a keynote talk at Security, and Privacy, and Cryptographic Engineering, December
2017.

• Catalin Hritcu was an invited speaker at TFP 2017

• Catalin Hritcu gave talks at Infoiasi, ESOP PC Workshop, Everest Workshop, TFP (Keynote),
FADEx 2017, EuroS&P 2017, Université Clermont Auvergne, University Paris-Sud.

• Karthikeyan Bhargavan gave a keynote at ACNS 2017, Kanazawa, Japan.

• Karthikeyan Bhargavan gave an invited talk at Apple, Cupertino, USA.

9.1.5. Scientific Expertise
• Bruno Blanchet is a member of the specialized temporary scientific committee of ANSM (Agence

nationale de sécurité du médicament et des produits de santé), on the cybersecurity of software
medical devices.

• Karthikeyan Bhargavan advises the TLS working group at the IETF and consults for Mozilla, Apple,
and Microsoft Research.

• Catalin Hritcu consilts for Microsoft Research and the DARPA SSITH/HOPE grant.

9.1.6. Research Administration
• Bruno Blanchet is a member of the Inria hiring committee for PhD, post-docs, and délégations

(Commision des Emplois Scientifiques, CES).

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

• Master: Catalin Hritcu, Cryptographic protocols: formal and computational proofs, 31.5h equivalent
TD, master M2 MPRI, université Paris VII, France

• Doctorat: Catalin Hritcu: Verifying Cryptographic Implementations with F* at Computer-aided
security proofs summer school. Aarhus, Denmark, October, 2017

• Doctorat: Catalin Hritcu: Verifying Cryptographic Implementations with F* course at Models and
Tools for Cryptographic Proofs summer school, Nancy, France, July 2017

• Master: Karthikeyan Bhargavan, Cryptographic protocols: formal and computational proofs, 31.5h
equivalent TD, master M2 MPRI, université Paris VII, France

• Master: Karthikeyan Bhargavan, Protocol Verification and Safety, 18h equivalent TD, master ACN,
Ecole Polytechnique et Telecom ParisTech, France

9.2.2. Supervision
• PhD: Evmorfia-Iro Bartzia, A formalization of elliptic curves for cryptography, Université Paris-

Saclay, February 2017. Co-supervised by Pierre-Yves Strub and Karthikeyan Bhargavan.

• PhD in progress: Kenji Maillard, Semantic Foundations for F*, started January 2017, supervised by
Catalin Hritcu and Karthikeyan Bhargavan

• PhD in progress: Jean Karim Zinzindohoue, A Verified Cryptographic Libary, supervised by
Karthikeyan Bhargavan
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• PhD in progress: Nadim Kobeissi, 2015-, Verified Web Security Applicaitons, supervised by
Karthikeyan Bhargavan

• PhD in progress: Benjamin Beurdouche, 2016-, Verified Cryptographic Protocols for the Internet of
Things, supervised by Karthikeyan Bhargavan

• PhD in progress: Natalia Kulatova, 2017-, Verified Hardware Security Devices, co-supervised by
Karthikeyan Bhargavan and Graham Steel

• PhD in progress: Marina Polybelova, 2017-, Verified Cryptographic Web Applications, supervised
by Karthikeyan Bhargavan

• PhD in progress: Yaëlle Vincont, 2017-, Software Security: combining fuzzing and symbolic execu-
tion for vulnerability detection, co-supervised by Karthikeyan Bhargavan and Sebastien Bardin

9.2.3. Juries
• Bruno Blanchet was reviewer of Lucca Hirschi’s PhD thesis.

• Harry Halpin served on the PhD jury of Evo Busseniers (Vrije Universitat Bruxelles)

9.3. Popularization
• Karthikeyan Bhargavan, Benjamin Beurdouche, Jean Karim Zinzindohoue published a paper in the

Communications of the ACM.
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DRO, A. RASTOGI, N. SWAMY, S. ZANELLA-BÉGUELIN. A Monadic Framework for Relational Verifica-
tion: Applied to Information Security, Program Equivalence, and Optimizations, in "7th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP)", Los Angeles, United States, ACM, Jan-
uary 2018, pp. 130–145, https://arxiv.org/abs/1703.00055 [DOI : 10.1145/3167090], https://hal.archives-
ouvertes.fr/hal-01672703

[30] H. HALPIN. A Roadmap for High Assurance Cryptography, in "FPS 2017 - 10th International Symposium on
Foundations & Practice of Security", Nancy, France, October 2017, pp. 1-9, https://hal.inria.fr/hal-01673294

[31] H. HALPIN. NEXTLEAP: Decentralizing Identity with Privacy for Secure Messaging, in "ARES 2017 - 12th
International Conference on Availability, Reliability and Security", Reggio Calabria, Italy, ACM, August 2017,
pp. 1-10 [DOI : 10.1145/3098954.3104056], https://hal.inria.fr/hal-01673292

[32] H. HALPIN. Semantic Insecurity: Security and the Semantic Web, in "Society, Privacy and the Semantic Web
- Policy and Technology (PrivOn 2017)", Vienna, Austria, October 2017, https://hal.inria.fr/hal-01673291

[33] N. KOBEISSI, K. BHARGAVAN, B. BLANCHET. Automated Verification for Secure Messaging Protocols and
Their Implementations: A Symbolic and Computational Approach, in "2nd IEEE European Symposium on
Security and Privacy", Paris, France, April 2017, pp. 435 - 450 [DOI : 10.1109/EUROSP.2017.38], https://
hal.inria.fr/hal-01575923

[34] N. KOBEISSI, K. BHARGAVAN, B. BLANCHET. Automated Verification for Secure Messaging Protocols and
Their Implementations: A Symbolic and Computational Approach, in "EuroS&P 2017 - 2nd IEEE European
Symposium on Security and Privacy", Paris, France, A. SABELFELD, M. SMITH (editors), IEEE, April 2017,
pp. 435 - 450 [DOI : 10.1109/EUROSP.2017.38], https://hal.inria.fr/hal-01583009

[35] L. LAMPROPOULOS, D. GALLOIS-WONG, C. HRIŢCU, J. HUGHES, B. C. PIERCE, L.-Y. XIA. Begin-
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