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2. Overall Objectives
2.1. Statement

Machine learning is a recent scientific domain, positioned between applied mathematics, statistics and
computer science. Its goals are the optimization, control, and modelisation of complex systems from examples.
It applies to data from numerous engineering and scientific fields (e.g., vision, bioinformatics, neuroscience,
audio processing, text processing, economy, finance, etc.), the ultimate goal being to derive general theories
and algorithms allowing advances in each of these domains. Machine learning is characterized by the high
quality and quantity of the exchanges between theory, algorithms and applications: interesting theoretical
problems almost always emerge from applications, while theoretical analysis allows the understanding of why
and when popular or successful algorithms do or do not work, and leads to proposing significant improvements.

Our academic positioning is exactly at the intersection between these three aspects—algorithms, theory and
applications—and our main research goal is to make the link between theory and algorithms, and between
algorithms and high-impact applications in various engineering and scientific fields, in particular computer
vision, bioinformatics, audio processing, text processing and neuro-imaging.
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Machine learning is now a vast field of research and the team focuses on the following aspects: supervised
learning (kernel methods, calibration), unsupervised learning (matrix factorization, statistical tests), parsimony
(structured sparsity, theory and algorithms), and optimization (convex optimization, bandit learning). These
four research axes are strongly interdependent, and the interplay between them is key to successful practical
applications.

3. Research Program
3.1. Supervised Learning

This part of our research focuses on methods where, given a set of examples of input/output pairs, the goal
is to predict the output for a new input, with research on kernel methods, calibration methods, and multi-task
learning.

3.2. Unsupervised Learning
We focus here on methods where no output is given and the goal is to find structure of certain known types
(e.g., discrete or low-dimensional) in the data, with a focus on matrix factorization, statistical tests, dimension
reduction, and semi-supervised learning.

3.3. Parsimony
The concept of parsimony is central to many areas of science. In the context of statistical machine learning,
this takes the form of variable or feature selection. The team focuses primarily on structured sparsity, with
theoretical and algorithmic contributions.

3.4. Optimization
Optimization in all its forms is central to machine learning, as many of its theoretical frameworks are based at
least in part on empirical risk minimization. The team focuses primarily on convex and bandit optimization,
with a particular focus on large-scale optimization.

4. Application Domains
4.1. Application Domains

Machine learning research can be conducted from two main perspectives: the first one, which has been
dominant in the last 30 years, is to design learning algorithms and theories which are as generic as possible, the
goal being to make as few assumptions as possible regarding the problems to be solved and to let data speak
for themselves. This has led to many interesting methodological developments and successful applications.
However, we believe that this strategy has reached its limit for many application domains, such as computer
vision, bioinformatics, neuro-imaging, text and audio processing, which leads to the second perspective our
team is built on: Research in machine learning theory and algorithms should be driven by interdisciplinary
collaborations, so that specific prior knowledge may be properly introduced into the learning process, in
particular with the following fields:
• Computer vision: object recognition, object detection, image segmentation, image/video processing,

computational photography. In collaboration with the Willow project-team.
• Bioinformatics: cancer diagnosis, protein function prediction, virtual screening. In collaboration

with Institut Curie.
• Text processing: document collection modeling, language models.
• Audio processing: source separation, speech/music processing.
• Neuro-imaging: brain-computer interface (fMRI, EEG, MEG).
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5. New Software and Platforms

5.1. ProxASAGA
KEYWORD: Optimization
FUNCTIONAL DESCRIPTION: A C++/Python code implementing the methods in the paper "Breaking the
Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization", F. Pedregosa, R. Leblond and
S. Lacoste-Julien, Advances in Neural Information Processing Systems (NIPS) 2017. Due to their simplicity
and excellent performance, parallel asynchronous variants of stochastic gradient descent have become popular
methods to solve a wide range of large-scale optimization problems on multi-core architectures. Yet, despite
their practical success, support for nonsmooth objectives is still lacking, making them unsuitable for many
problems of interest in machine learning, such as the Lasso, group Lasso or empirical risk minimization
with convex constraints. In this work, we propose and analyze ProxASAGA, a fully asynchronous sparse
method inspired by SAGA, a variance reduced incremental gradient algorithm. The proposed method is easy
to implement and significantly outperforms the state of the art on several nonsmooth, large-scale problems.
We prove that our method achieves a theoretical linear speedup with respect to the sequential version under
assumptions on the sparsity of gradients and block-separability of the proximal term. Empirical benchmarks
on a multi-core architecture illustrate practical speedups of up to 12x on a 20-core machine.

• Contact: Fabian Pedregosa

• URL: https://github.com/fabianp/ProxASAGA

5.2. object-states-action
KEYWORD: Computer vision
FUNCTIONAL DESCRIPTION: Code for the paper Joint Discovery of Object States and Manipulation Actions,
ICCV 2017: Many human activities involve object manipulations aiming to modify the object state. Examples
of common state changes include full/empty bottle, open/closed door, and attached/detached car wheel. In
this work, we seek to automatically discover the states of objects and the associated manipulation actions.
Given a set of videos for a particular task, we propose a joint model that learns to identify object states
and to localize state-modifying actions. Our model is formulated as a discriminative clustering cost with
constraints. We assume a consistent temporal order for the changes in object states and manipulation actions,
and introduce new optimization techniques to learn model parameters without additional supervision. We
demonstrate successful discovery of seven manipulation actions and corresponding object states on a new
dataset of videos depicting real-life object manipulations. We show that our joint formulation results in an
improvement of object state discovery by action recognition and vice versa.

• Contact: Jean-Baptiste Alayrac

6. New Results

6.1. On Structured Prediction Theory with Calibrated Convex Surrogate
Losses
In [16], we provide novel theoretical insights on structured prediction in the context of efficient convex
surrogate loss minimization with consistency guarantees. For any task loss, we construct a convex surrogate
that can be optimized via stochastic gradient descent and we prove tight bounds on the so-called "calibration
function" relating the excess surrogate risk to the actual risk. In contrast to prior related work, we carefully
monitor the effect of the exponential number of classes in the learning guarantees as well as on the optimization
complexity. As an interesting consequence, we formalize the intuition that some task losses make learning
harder than others, and that the classical 0-1 loss is ill-suited for general structured prediction.

https://github.com/fabianp/ProxASAGA


Project-Team SIERRA 5

6.2. Domain-Adversarial Training of Neural Networks
In [18], we introduce a new representation learning approach for domain adaptation, in which data at
training and test time come from similar but different distributions. Our approach is directly inspired by
the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions
must be made based on features that cannot discriminate between the training (source) and test (target)
domains. The approach implements this idea in the context of neural network architectures that are trained
on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain
data is necessary). As the training progresses, the approach promotes the emergence of features that are (i)
discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift
between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward
model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented
architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be
implemented with little effort using any of the deep learning packages. We demonstrate the success of our
approach for two distinct classification problems (document sentiment analysis and image classification),
where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate
the approach for descriptor learning task in the context of person re-identification application.

6.3. Linearly Convergent Randomized Iterative Methods for Computing the
Pseudoinverse
In [25], we develop the first stochastic incremental method for calculating the Moore-Penrose pseudoinverse
of a real matrix. By leveraging three alternative characterizations of pseudoinverse matrices, we design three
methods for calculating the pseudoinverse: two general purpose methods and one specialized to symmetric
matrices. The two general purpose methods are proven to converge linearly to the pseudoinverse of any given
matrix. For calculating the pseudoinverse of full rank matrices we present two additional specialized methods
which enjoy a faster convergence rate than the general purpose methods. We also indicate how to develop
randomized methods for calculating approximate range space projections, a much needed tool in inexact
Newton type methods or quadratic solvers when linear constraints are present. Finally, we present numerical
experiments of our general purpose methods for calculating pseudoinverses and show that our methods greatly
outperform the Newton-Schulz method on large dimensional matrices.

6.4. Sharp asymptotic and finite-sample rates of convergence of empirical
measures in Wasserstein distance
The Wasserstein distance between two probability measures on a metric space is a measure of closeness with
applications in statistics, probability, and machine learning. In [39], we consider the fundamental question
of how quickly the empirical measure obtained from n independent samples from µ approaches µ in the
Wasserstein distance of any order. We prove sharp asymptotic and finite-sample results for this rate of
convergence for general measures on general compact metric spaces. Our finite-sample results show the
existence of multi-scale behavior, where measures can exhibit radically different rates of convergence as n
grows. Collaboration with Jonathan Weed, Francis Bach)

6.5. Efficient Algorithms for Non-convex Isotonic Regression through
Submodular Optimization
In [19], we consider the minimization of submodular functions subject to ordering constraints. We show
that this optimization problem can be cast as a convex optimization problem on a space of uni-dimensional
measures, with ordering constraints corresponding to first-order stochastic dominance. We propose new
discretization schemes that lead to simple and efficient algorithms based on zero-th, first, or higher order
oracles; these algorithms also lead to improvements without isotonic constraints. Finally, our experiments
show that non-convex loss functions can be much more robust to outliers for isotonic regression, while still
leading to an efficient optimization problem.
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6.6. Bridging the Gap between Constant Step Size Stochastic Gradient
Descent and Markov Chains
In [21], we consider the minimization of an objective function given access to unbiased estimates of its
gradient through stochastic gradient descent (SGD) with constant step-size. While the detailed analysis was
only performed for quadratic functions, we provide an explicit asymptotic expansion of the moments of the
averaged SGD iterates that outlines the dependence on initial conditions, the effect of noise and the step-size,
as well as the lack of convergence in the general (non-quadratic) case. For this analysis, we bring tools from
Markov chain theory into the analysis of stochastic gradient and create new ones (similar but different from
stochastic MCMC methods). We then show that Richardson-Romberg extrapolation may be used to get closer
to the global optimum and we show empirical improvements of the new extrapolation scheme.

6.7. AdaBatch: Efficient Gradient Aggregation Rules for Sequential and
Parallel Stochastic Gradient Methods
In [22], we study a new aggregation operator for gradients coming from a mini-batch for stochastic gradient
(SG) methods that allows a significant speed-up in the case of sparse optimization problems. We call this
method AdaBatch and it only requires a few lines of code change compared to regular mini-batch SGD
algorithms. We provide a theoretical insight to understand how this new class of algorithms is performing and
show that it is equivalent to an implicit per-coordinate rescaling of the gradients, similarly to what Adagrad
methods can do. In theory and in practice, this new aggregation allows to keep the same sample efficiency
of SG methods while increasing the batch size. Experimentally, we also show that in the case of smooth
convex optimization, our procedure can even obtain a better loss when increasing the batch size for a fixed
number of samples. We then apply this new algorithm to obtain a parallelizable stochastic gradient method
that is synchronous but allows speed-up on par with Hogwild! methods as convergence does not deteriorate
with the increase of the batch size. The same approach can be used to make mini-batch provably efficient for
variance-reduced SG methods such as SVRG.

6.8. Structure-Adaptive, Variance-Reduced, and Accelerated Stochastic
Optimization
In [38], we explore the fundamental structure-adaptiveness of state of the art randomized first order algorithms
on regularized empirical risk minimization tasks, where the solution has intrinsic low-dimensional structure
(such as sparsity and low-rank). Such structure is often enforced by non-smooth regularization or constraints.
We start by establishing the fast linear convergence rate of the SAGA algorithm on non-strongly-convex
objectives with convex constraints, via an argument of cone-restricted strong convexity. Then for the composite
minimization task with a coordinate-wise separable convex regularization term, we propose and analyse a two
stage accelerated coordinate descend algorithm (Two-Stage APCG). We provide the convergence analysis
showing that the proposed method has a global convergence in general and enjoys a local accelerated linear
convergence rate with respect to the low-dimensional structure of the solution. Then based on this convergence
result, we proposed an adaptive variant of the two-stage APCG method which does not need to foreknow the
restricted strong convexity beforehand, but estimate it on the fly. In numerical experiments we compare the
adaptive two-stage APCG with various state of the art variance-reduced stochastic gradient methods on sparse
regression tasks, and demonstrate the effectiveness of our approach.

6.9. Exponential convergence of testing error for stochastic gradient methods
In [31], we consider binary classification problems with positive definite kernels and square loss, and study
the convergence rates of stochastic gradient methods. We show that while the excess testing loss (squared loss)
converges slowly to zero as the number of observations (and thus iterations) goes to infinity, the testing error
(classification error) converges exponentially fast if low-noise conditions are assumed.
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6.10. Optimal algorithms for smooth and strongly convex distributed
optimization in networks
In [35], we determine the optimal convergence rates for strongly convex and smooth distributed optimization in
two settings: centralized and decentralized communications over a network. For centralized (i.e. master/slave)
algorithms, we show that distributing Nesterov’s accelerated gradient descent is optimal and achieves a
precision ε > 0 in time O(

√
κg(1 + ∆τ) ln (1/ε)), where κg is the condition number of the (global) function

to optimize, ∆ is the diameter of the network, and τ (resp. 1) is the time needed to communicate values
between two neighbors (resp. perform local computations). For decentralized algorithms based on gossip, we
provide the first optimal algorithm, called the multi-step dual accelerated (MSDA) method, that achieves a
precision ε > 0 in time O(

√
κl(1 + τ√

γ ) ln (1/ε)), where κl is the condition number of the local functions
and γ is the (normalized) eigengap of the gossip matrix used for communication between nodes. We then
verify the efficiency of MSDA against state-of-the-art methods for two problems: least-squares regression and
classification by logistic regression.

6.11. Stochastic Composite Least-Squares Regression with convergence rate
O(1/n)
In [23], we consider the minimization of composite objective functions composed of the expectation of
quadratic functions and an arbitrary convex function. We study the stochastic dual averaging algorithm with a
constant step-size, showing that it leads to a convergence rate ofO(1/n) without strong convexity assumptions.
This thus extends earlier results on least-squares regression with the Euclidean geometry to (a) all convex
regularizers and constraints, and (b) all geome-tries represented by a Bregman divergence. This is achieved by
a new proof technique that relates stochastic and deterministic recursions.

6.12. Sharpness, Restart and Acceleration
The Łojasiewicz inequality shows that sharpness bounds on the minimum of convex optimization problems
hold almost generically. Sharpness directly controls the performance of restart schemes. The constants
quantifying error bounds are of course unobservable, but we show in [33] that optimal restart strategies are
robust, and searching for the best scheme only increases the complexity by a logarithmic factor compared to
the optimal bound. Overall then, restart schemes generically accelerate accelerated methods.

6.13. PAC-Bayes and Domain Adaptation
In [24], we provide two main contributions in PAC-Bayesian theory for domain adaptation where the objective
is to learn, from a source distribution, a well-performing majority vote on a different, but related, target
distribution. Firstly, we propose an improvement of the previous approach we proposed in Germain et al.
(2013), which relies on a novel distribution pseudodistance based on a disagreement averaging, allowing us
to derive a new tighter domain adaptation bound for the target risk. While this bound stands in the spirit of
common domain adaptation works, we derive a second bound (recently introduced in Germain et al., 2016)
that brings a new perspective on domain adaptation by deriving an upper bound on the target risk where the
distributions’ divergence—expressed as a ratio—controls the trade-off between a source error measure and
the target voters’ disagreement. We discuss and compare both results, from which we obtain PAC-Bayesian
generalization bounds. Furthermore, from the PAC-Bayesian specialization to linear classifiers, we infer two
learning algorithms, and we evaluate them on real data.

6.14. Kernel Square-Loss Exemplar Machines for Image Retrieval
Zepeda and Pérez have recently demonstrated the promise of the exemplar SVM (ESVM) as a feature encoder
for image retrieval. The paper [6] extends this approach in several directions: We first show that replacing the
hinge loss by the square loss in the ESVM cost function significantly reduces encoding time with negligible
effect on accuracy. We call this model square-loss exemplar machine, or SLEM. We then introduce a kernelized
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SLEM which can be implemented efficiently through low-rank matrix decomposition , and displays improved
performance. Both SLEM variants exploit the fact that the negative examples are fixed, so most of the
SLEM computational complexity is relegated to an offline process independent of the positive examples. Our
experiments establish the performance and computational advantages of our approach using a large array of
base features and standard image retrieval datasets.

6.15. Breaking the Nonsmooth Barrier: A Scalable Parallel Method for
Composite Optimization
Due to their simplicity and excellent performance, parallel asynchronous variants of stochastic gradient
descent have become popular methods to solve a wide range of large-scale optimization problems on multi-
core architectures. Yet, despite their practical success, support for nonsmooth objectives is still lacking, making
them unsuitable for many problems of interest in machine learning, such as the Lasso, group Lasso or empirical
risk minimization with convex constraints. In [10], we propose and analyze ProxASAGA, a fully asynchronous
sparse method inspired by SAGA, a variance reduced incremental gradient algorithm. The proposed method
is easy to implement and significantly outperforms the state of the art on several nonsmooth, large-scale
problems. We prove that our method achieves a theoretical linear speedup with respect to the sequential
version under assumptions on the sparsity of gradients and block-separability of the proximal term. Empirical
benchmarks on a multi-core architecture illustrate practical speedups of up to 12x on a 20-core machine.

6.16. PAC-Bayesian Analysis for a two-step Hierarchical Multiview Learning
Approach
In [15], we study a two-level multiview learning with more than two views under the PAC-Bayesian
framework. This approach, sometimes referred as late fusion, consists in learning sequentially multiple view-
specific classifiers at the first level, and then combining these view-specific classifiers at the second level. Our
main theoretical result is a generalization bound on the risk of the majority vote which exhibits a term of
diversity in the predictions of the view-specific classifiers. From this result it comes out that controlling the
trade-off between diversity and accuracy is a key element for multiview learning, which complements other
results in multiview learning.

6.17. Integration Methods and Accelerated Optimization Algorithms
In [37], we show that accelerated optimization methods can be seen as particular instances of multi-step
integration schemes from numerical analysis, applied to the gradient flow equation. In comparison with recent
advances in this vein, the differential equation considered here is the basic gradient flow and we show that
multi-step schemes allow integration of this differential equation using larger step sizes, thus intuitively
explaining acceleration results.

6.18. GANs for Biological Image Synthesis
In [17], we propose a novel application of Generative Adversarial Networks (GAN) to the synthesis of cells
imaged by fluorescence microscopy. Compared to natural images, cells tend to have a simpler and more
geometric global structure that facilitates image generation. However, the correlation between the spatial
pattern of different fluorescent proteins reflects important biological functions, and synthesized images have
to capture these relationships to be relevant for biological applications. We adapt GANs to the task at hand
and propose new models with casual dependencies between image channels that can generate multi-channel
images, which would be impossible to obtain experimentally. We evaluate our approach using two independent
techniques and compare it against sensible baselines. Finally, we demonstrate that by interpolating across the
latent space we can mimic the known changes in protein localization that occur through time during the cell
cycle, allowing us to predict temporal evolution from static images.
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6.19. Nonlinear Acceleration of Stochastic Algorithms
Extrapolation methods use the last few iterates of an optimization algorithm to produce a better estimate
of the optimum. They were shown to achieve optimal convergence rates in a deterministic setting using
simple gradient iterates. In [36], we study extrapolation methods in a stochastic setting, where the iterates
are produced by either a simple or an accelerated stochastic gradient algorithm. We first derive convergence
bounds for arbitrary, potentially biased perturbations, then produce asymptotic bounds using the ratio between
the variance of the noise and the accuracy of the current point. Finally, we apply this acceleration technique
to stochastic algorithms such as SGD, SAGA, SVRG and Katyusha in different settings, and show significant
performance gains.

6.20. Algorithmic Chaining and the Role of Partial Feedback in Online
Nonparametric Learning
In [20], we investigate contextual online learning with nonparametric (Lipschitz) comparison classes under
different assumptions on losses and feedback information. For full information feedback and Lipschitz losses,
we design the first explicit algorithm achieving the minimax regret rate (up to log factors). In a partial feedback
model motivated by second-price auctions, we obtain algorithms for Lipschitz and semi-Lipschitz losses with
regret bounds improving on the known bounds for standard bandit feedback. Our analysis combines novel
results for contextual second-price auctions with a novel algorithmic approach based on chaining. When the
context space is Euclidean, our chaining approach is efficient and delivers an even better regret bound.

6.21. Frank-Wolfe Algorithms for Saddle Point Problems
In [14], we extend the Frank-Wolfe (FW) optimization algorithm to solve constrained smooth convex-concave
saddle point (SP) problems. Remarkably, the method only requires access to linear minimization oracles.
Leveraging recent advances in FW optimization, we provide the first proof of convergence of a FW-type
saddle point solver over polytopes, thereby partially answering a 30 year-old conjecture. We also survey other
convergence results and highlight gaps in the theoretical underpinnings of FW-style algorithms. Motivating
applications without known efficient alternatives are explored through structured prediction with combinatorial
penalties as well as games over matching polytopes involving an exponential number of constraints.

6.22. Convex optimization over intersection of simple sets: improved
convergence rate guarantees via an exact penalty approach
In [29], We consider the problem of minimizing a convex function over the intersection of finitely many simple
sets which are easy to project onto. This is an important problem arising in various domains such as machine
learning. The main difficulty lies in finding the projection of a point in the intersection of many sets. Existing
approaches yield an infeasible point with an iteration-complexity of O(1/ε2) for nonsmooth problems with
no guarantees on the in-feasibility. By reformulating the problem through exact penalty functions, we derive
first-order algorithms which not only guarantees that the distance to the intersection is small but also improve
the complexity to O(1/ε) and O(1/

√
ε) for smooth functions. For composite and smooth problems, this

is achieved through a saddle-point reformulation where the proximal operators required by the primal-dual
algorithms can be computed in closed form. We illustrate the benefits of our approach on a graph transduction
problem and on graph matching. (Collaboration with Achintya Kundu, Francis Bach, Chiranjib Bhattacharyya)

6.23. A Generic Approach for Escaping Saddle points
A central challenge to using first-order methods for optimizing nonconvex problems is the presence of saddle
points. First-order methods often get stuck at saddle points, greatly deteriorating their performance. Typically,
to escape from saddles one has to use second-order methods. However, most works on second-order methods
rely extensively on expensive Hessian-based computations, making them impractical in large-scale settings.
To tackle this challenge, we introduce in [32] a generic framework that minimizes Hessian based computations
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while at the same time provably converging to second-order critical points. Our framework carefully alternates
between a first-order and a second-order subroutine, using the latter only close to saddle points, and yields
convergence results competitive to the state-of-the-art. Empirical results suggest that our strategy also enjoys a
good practical performance. (Collaboration with Sashank Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poczos,
Ruslan Salakhutdinov, and Alexander Smola)

6.24. Tracking the gradients using the Hessian: A new look at variance
reducing stochastic methods
The goal of [26] is to improve variance reducing stochastic methods through better control variates. We
first propose a modification of SVRG which uses the Hessian to track gradients over time, rather than to
recondition, increasing the correlation of the control variates and leading to faster theoretical convergence
close to the optimum. We then propose accurate and computationally efficient approximations to the Hessian,
both using a diagonal and a low-rank matrix. Finally, we demonstrate the effectiveness of our method on a
wide range of problems.

6.25. Combinatorial Penalties: Which structures are preserved by convex
relaxations?
In [28] we consider the homogeneous and the non-homogeneous convex relaxations for combinatorial penalty
functions defined on support sets. Our study identifies key differences in the tightness of the resulting
relaxations through the notion of the lower combinatorial envelope of a set-function along with new necessary
conditions for support identification. We then propose a general adaptive estimator for convex monotone
regularizers, and derive new sufficient conditions for support recovery in the asymptotic setting. (Collaboration
with Marwa El Halabi, Francis Bach, Volkan Cevher)

6.26. On the Consistency of Ordinal Regression Methods
Many of the ordinal regression models that have been proposed in the literature can be seen as methods that
minimize a convex surrogate of the zero-one, absolute, or squared loss functions. A key property that allows to
study the statistical implications of such approximations is that of Fisher consistency. Fisher consistency is a
desirable property for surrogate loss functions and implies that in the population setting, i.e., if the probability
distribution that generates the data were available, then optimization of the surrogate would yield the best
possible model. In [3] we will characterize the Fisher consistency of a rich family of surrogate loss functions
used in the context of ordinal regression, including support vector ordinal regression, ORBoosting and least
absolute deviation. We will see that, for a family of surrogate loss functions that subsumes support vector
ordinal regression and ORBoosting, consistency can be fully characterized by the derivative of a real-valued
function at zero, as happens for convex margin-based surrogates in binary classification. We also derive excess
risk bounds for a surrogate of the absolute error that generalize existing risk bounds for binary classification.
Finally, our analysis suggests a novel surrogate of the squared error loss. We compare this novel surrogate
with competing approaches on 9 different datasets. Our method shows to be highly competitive in practice,
outperforming the least squares loss on 7 out of 9 datasets.

6.27. Iterative hard clustering of features
In [34], we seek to group features in supervised learning problems by constraining the prediction vector
coefficients to take only a small number of values. This problem includes non-convex constraints and is solved
using projected gradient descent. We prove exact recovery results using restricted eigenvalue conditions. We
then extend these results to combine sparsity and grouping constraints, and develop an efficient projection
algorithm on the set of grouped and sparse vectors. Numerical experiments illustrate the performance of our
algorithms on both synthetic and real data sets.
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6.28. Asaga: Asynchronous Parallel Saga
In [9], we describe Asaga, an asynchronous parallel version of the incremental gradient algorithm Saga that
enjoys fast linear convergence rates. We highlight a subtle but important technical issue present in a large
fraction of the recent convergence rate proofs for asynchronous parallel optimization algorithms, and propose
a simplification of the recently proposed “perturbed iterate” framework that resolves it. We thereby prove that
Asaga can obtain a theoretical linear speedup on multi-core systems even without sparsity assumptions. We
present results of an implementation on a 40-core architecture illustrating the practical speedup as well as the
hardware overhead.

6.29. Sparse Accelerated Exponential Weights
In [8], we consider the stochastic optimization problem where a convex function is minimized observing re-
cursively the gradients. We introduce SAEW, a new procedure that accelerates exponential weights procedures
with the slow rate 1/

√
T to procedures achieving the fast rate 1/T . Under the strong convexity of the risk,

we achieve the optimal rate of convergence for approximating sparse parameters in Rd. The acceleration is
achieved by using successive averaging steps in an online fashion. The procedure also produces sparse esti-
mators thanks to additional hard threshold steps.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
Microsoft Research: “Structured Large-Scale Machine Learning”. Machine learning is now ubiquitous in
industry, science, engineering, and personal life. While early successes were obtained by applying off-the-
shelf techniques, there are two main challenges faced by machine learning in the “big data” era: structure and
scale. The project proposes to explore three axes, from theoretical, algorithmic and practical perspectives: (1)
large-scale convex optimization, (2) large-scale combinatorial optimization and (3) sequential decision making
for structured data. The project involves two Inria sites (Paris and Grenoble) and four MSR sites (Cambridge,
New England, Redmond, New York). Project website: http://www.msr-inria.fr/projects/structured-large-scale-
machine-learning/.

7.2. Bilateral Grants with Industry
• A. d’Aspremont: AXA, "mécénat scientifique, chaire Havas-Dauphine", machine learning.

• F. Bach: Gift from Facebook AI Research.

8. Partnerships and Cooperations

8.1. National Initiatives
• A. d’Aspremont: IRIS, PSL “Science des données, données de la science”.

8.2. European Initiatives
8.2.1. FP7 & H2020 Projects

http://www.msr-inria.fr/projects/structured-large-scale-machine-learning/
http://www.msr-inria.fr/projects/structured-large-scale-machine-learning/
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• ITN Spartan
Title: Sparse Representations and Compressed Sensing Training Network
Type: FP7
Instrument: Initial Training Network
Duration: October 2014 to October 2018
Coordinator: Mark Plumbley (University of Surrey)
Inria contact: Francis Bach
Abstract: The SpaRTaN Initial Training Network will train a new generation of interdisciplinary
researchers in sparse representations and compressed sensing, contributing to Europe’s leading role
in scientific innovation. By bringing together leading academic and industry groups with expertise in
sparse representations, compressed sensing, machine learning and optimisation, and with an interest
in applications such as hyperspectral imaging, audio signal processing and video analytics, this
project will create an interdisciplinary, trans-national and inter-sectorial training network to enhance
mobility and training of researchers in this area. SpaRTaN is funded under the FP7-PEOPLE-2013-
ITN call and is part of the Marie Curie Actions — Initial Training Networks (ITN) funding scheme:
Project number - 607290

• ITN Macsenet
Title: Machine Sensing Training Network
Type: H2020
Instrument: Initial Training Network
Duration: January 2015 - January 2019
Coordinator: Mark Plumbley (University of Surrey)
Inria contact: Francis Bach
Abstract: The aim of this Innovative Training Network is to train a new generation of creative,
entrepreneurial and innovative early stage researchers (ESRs) in the research area of measurement
and estimation of signals using knowledge or data about the underlying structure. We will develop
new robust and efficient Machine Sensing theory and algorithms, together methods for a wide range
of signals, including: advanced brain imaging; inverse imaging problems; audio and music signals;
and non-traditional signals such as signals on graphs. We will apply these methods to real-world
problems, through work with non-Academic partners, and disseminate the results of this research
to a wide range of academic and non-academic audiences, including through publications, data,
software and public engagement events. MacSeNet is funded under the H2020-MSCA-ITN-2014
call and is part of the Marie Sklodowska- Curie Actions — Innovative Training Networks (ITN)
funding scheme.

• ERC Sequoia
Title: Robust algorithms for learning from modern data
Programm: H2020
Type: ERC
Duration: 2017-2022
Coordinator: Inria
Inria contact: Francis BACH
Abstract: Machine learning is needed and used everywhere, from science to industry, with a growing
impact on many disciplines. While first successes were due at least in part to simple supervised
learning algorithms used primarily as black boxes on medium-scale problems, modern data pose
new challenges. Scalability is an important issue of course: with large amounts of data, many
current problems far exceed the capabilities of existing algorithms despite sophisticated computing
architectures. But beyond this, the core classical model of supervised machine learning, with
the usual assumptions of independent and identically distributed data, or well-defined features,
outputs and loss functions, has reached its theoretical and practical limits. Given this new setting,
existing optimization-based algorithms are not adapted. The main objective of this project is to
push the frontiers of supervised machine learning, in terms of (a) scalability to data with massive
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numbers of observations, features, and tasks, (b) adaptability to modern computing environments,
in particular for parallel and distributed processing, (c) provable adaptivity and robustness to
problem and hardware specifications, and (d) robustness to non-convexities inherent in machine
learning problems. To achieve the expected breakthroughs, we will design a novel generation of
learning algorithms amenable to a tight convergence analysis with realistic assumptions and efficient
implementations. They will help transition machine learning algorithms towards the same wide-
spread robust use as numerical linear algebra libraries. Outcomes of the research described in this
proposal will include algorithms that come with strong convergence guarantees and are well-tested
on real-life benchmarks coming from computer vision, bioin- formatics, audio processing and natural
language processing. For both distributed and non-distributed settings, we will release open-source
software, adapted to widely available computing platforms.

8.3. International Initiatives
8.3.1. BigFOKS2

Title: Learning from Big Data: First-Order methods for Kernels and Submodular functions
International Partner (Institution - Laboratory - Researcher):

IISc Bangalore (India) - Computer Science Department - Chiranjib Bhattacharyya
Start year: 2016
See also: http://mllab.csa.iisc.ernet.in/indo-french.html
Recent advances in sensor technologies have resulted in large amounts of data being generated in
a wide array of scientific disciplines. Deriving models from such large datasets, often known as
“Big Data”, is one of the important challenges facing many engineering and scientific disciplines. In
this proposal we investigate the problem of learning supervised models from Big Data, which has
immediate applications in Computational Biology, Computer vision, Natural language processing,
Web, E-commerce, etc., where specific structure is often present and hard to take into account with
current algorithms. Our focus will be on the algorithmic aspects. Often supervised learning problems
can be cast as convex programs. The goal of this proposal will be to derive first-order methods
which can be effective for solving such convex programs arising in the Big-Data setting. Keeping
this broad goal in mind we investigate two foundational problems which are not well addressed
in existing literature. The first problem investigates Stochastic Gradient Descent Algorithms in the
context of First-order methods for designing algorithms for Kernel based prediction functions on
Large Datasets. The second problem involves solving discrete optimization problems arising in
Submodular formulations in Machine Learning, for which first-order methods have not reached the
level of speed required for practical applications (notably in computer vision).

8.4. International Research Visitors
8.4.1. Internships

• Marwa El Halabi, from Jan. until Apr. 2017, EPFL, Lausanne, Switzerland
• Jonathan Weed, from Mar. 2017 until May 2017, MIT, US
• Alfredo Zermini, from Mar 2017 until June 2017, University of Surrey, UK
• Billy Tang, visited from Sept. 2017 until Dec. 2017, University of Edimburgh, UK

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific Events Organisation

http://mllab.csa.iisc.ernet.in/indo-french.html
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• P. Germain and F. Bach: co-organization of NIPS workshop: "(Almost) 50 Shades of Bayesian
Learning: PAC-Bayesian trends and insights" https://bguedj.github.io/nips2017/50shadesbayesian.
html

• A. d’Aspremont: co-organization of the workshop: “Optimization and Statistical Learning”, Les
Houches, France

9.1.1.1. Member of the Organizing Committees

• F. Bach: Senior Area chair for NIPS 2017

9.1.2. Journal
9.1.2.1. Member of the Editorial Boards

• F. Bach: Action Editor, Journal of Machine Learning Research.
• F. Bach: Information and Inference, Associate Editor.
• F. Bach: Electronic Journal of Statistics, Associate Editor.
• F. Bach: Mathematical Programming, Associate Editor.
• F. Bach: Foundations of Computational Mathematics, Associate Editor.
• A. d’Aspremont: SIAM Journal on Optimization, Associate Editor.

9.1.3. Invited Talks
• F. Bach: Workshop on Shape, Images and Optimization, Muenster, Germany invited talk, February

2017
• F. Bach: SIAM conference on Optimization, Vancouver, Canada, invited tutorial, May 2017
• F. Bach: LCCC workshop on Large-Scale and Distributed Optimization, Lund, Sweden, invited talk,

June 2017
• F. Bach: Summer school on Structured Regularization for High-Dimensional Data Analysis, Paris,

invited talk, June 2017
• F. Bach: FOCM Barcelona, two invited talks in special sessions, July 2017
• F. Bach: European Signal Processing conference (EUSIPCO), Kos, Greece, keynote speaker, August

2017
• F. Bach: StatMathAppli 2017, Frejus, mini-course on optimization, September 2017
• F. Bach: 2017 ERNSI Workshop on System Identification, Lyon, invited plenary talk, September

2017
• F. Bach: New-York University, Data science seminar, October 2017
• F. Bach: Workshop on Generative models, parameter learning and sparsity, Cambridge, UK, invited

talk, November 2017
• F. Bach: NIPS workshops, two invited talks, Long Beach, CA, December 2017
• A. d’Aspremont: “Regularized Nonlinear Acceleration”

– GdR MOA, Bordeaux.
– GdR MEGA, Paris.
– SIAM OPtimization conference
– Oxford computational math seminar
– Alan Turing institute

• A. d’Aspremont: “Sharpness, Restart and Acceleration”. Foundations of Computational Mathemat-
ics, Barcelona.

• P. Germain: “Generalization of the PAC-Bayesian Theory, and Applications to Semi-Supervised
Learning”, Modal Seminars, Lille, France, January 2017

https://bguedj.github.io/nips2017/50shadesbayesian.html
https://bguedj.github.io/nips2017/50shadesbayesian.html
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• P. Germain: “Theory Driven Domain Adaptation Algorithm”, Google Brain TechTalk, Mountain
View (CA), USA, April 2017

• P. Gaillard: “Sparse acceleration of exponential weights”
– Seminar of the SEQUEL project team, Lilles, February 2017
– 49e Journées Françaises de Statistique, Avignon, Juin 2017

• P. Gaillard: “Obtaining sparse and fast convergence rates online under Bernstein condition”, CWI-
Inria Workshop, September 2017

• P. Gaillard: “Online nonparametric learning”
– Cambridge Statistics Seminar, October 2017
– Statistics Seminar of the University Aix-Marseille, December 2017

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Master: A. d’Aspremont, “Optimization”, 21h, M1, Ecole Normale Supérieure, France
Master: A. d’Aspremont, “Optimization”, 21h, M2 (MVA), ENS Cachan, France
Master: F. Bach and P. Gaillard, “Apprentissage statistique”, 35h, M1, Ecole Normale Supérieure,
France.
Master: F. Bach (together with G. Obozinski), “Graphical models”, 30h, M2 (MVA), ENS Cachan,
France.
Master: F. Bach, “Optimisation et apprentissage statistique”, 20h, M2 (Mathématiques de
l’aléatoire), Université Paris-Sud, France.
Master: F. Pedregosa (together with Fajwel Fogel), “Introduction to scikit-learn”, M2 (MASH),
Université Paris-Dauphine, France.

9.2.2. Supervision
• PhD: Nicolas Flammarion, July 2017, co-directed by Alexandre d’Aspremont and Francis Bach.
• PhD: Aymeric Dieuleveut, September 2017, directed by Francis Bach.
• PhD: Christophe Dupuy, June 2017, directed by Francis Bach.
• PhD: Rafael Rezende, December 2017, Francis Bach, co-advised with Jean Ponce.
• PhD: Vincent Roulet, December 2017, directed by Alexandre d’Aspremont.
• PhD in progress: Damien Scieur, started September 2015, co-directed with Alexandre d’Aspremont

and Francis Bach
• PhD in progress: Antoine Recanati, started September 2015, directed by Alexandre d’Aspremont
• PhD in progress: Anaël Bonneton, started December 2014, co-advised by Francis Bach, located in

Agence nationale de la sécurité des systèmes d’information (ANSSI).
• PhD in progress: Dmitry Babichev, started September 2015, co-advised by Francis Bach and Anatoly

Judistky (Univ. Grenoble).
• PhD in progress: Tatiana Shpakova, started September 2015, advised by Francis Bach.
• PhD in progress: Loucas Pillaud-Vivie, started September 2017, co-directed by Alessandro Rudi and

Francis Bach
• PhD in progress: Margaux Brégère, started September 2017, co-advised by Pierre Gaillard, Gilles

Stoltz and Yannig Goude (EDF R&D)

9.3. Popularization
• A. d’Aspremont: Paris Science et Data, PSL & Inria.
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• A. d’Aspremont: Journée innovation défense

• P. Gaillard: testimony for EDF fellows day
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