y 4

: informatics g”mathematics

IN PARTNERSHIP WITH:
CNRS

Max Planck Institut fiir
Informatik de Saarbriicken

Université de Lorraine

Activity Report 2017

Project-Team VERIDIS

Modeling and Verification of Distributed
Algorithms and Systems

IN COLLABORATION WITH: Laboratoire lorrain de recherche en informatique et ses applications (LORIA)

RESEARCH CENTER
Nancy - Grand Est

THEME
Proofs and Verification

b=

o

Personne

Research

Table of contents

P
Overall Objectives
Program

3.1. Automated and Interactive Theorem Proving
3.2. Formal Methods for Developing and Analyzing Algorithms and Systems

Applicati

Highlights of the Year
New Software and Platforms

on Domains

6.1. Redlog
6.2. SPASS
6.3. TLAPS
6.4. veriT

6.5. Nunchaku

New Results

7.1. Automated and Interactive Theorem Proving

7.1.1.
7.1.2.
7.1.3.
7.1.4.

7.1.5.
7.1.6.
7.1.7.
7.1.8.
7.1.9.
7.1.10.
7.1.11.

IsaFoL: Isabelle Formalization of Logic
Extension of Term Orders to A-Free Higher-Order Logic
A Fine-Grained Approach of Understanding First-Order Logic Complexity

Theorem Proving Based on Approximation-Refinement into the Monadic Shallow Linear

Fragment with Straight Dismatching Constraints
Combination of Satisfiability Procedures
Quantifier Handling in SMT
Non-Linear Arithmetic in SMT
Proofs for SMT
Coding Modal and Description Logics in SAT solvers
Work on the TLA+ Proof System
Automated Analysis of Systems of ODE for Multistationarity

7.2. Formal Methods for Developing and Analyzing Algorithms and Systems

7.2.1.
7.2.2.
7.2.3.
7.2.4.
7.2.5.
7.2.6.
Bilateral

Making Explicit Domain Knowledge in Formal System Development
Incremental Development of Systems and Algorithms

Modeling Network Flows in View of Building Security Chains
Satisfiability Techniques for Reliability Assessment

Statistical evaluation of the robustness of production schedules

Using Cubicle for Verifying TLA+ Specifications

Contracts and Grants with Industry

8.1. Modeling a Distributed File System
8.2. Modeling a Distributed Development Process

Partnerships and Cooperations

9.1. Na
9.1.1.
9.1.2.
9.1.3.
9.14.
9.1.5.
9.1.6.

tional Initiatives
ANR-DFG Project SMArT
ANR Project IMPEX
ANR Project Formedicis
ANR Project PARDI
Inria IPL HAC SPECIS
Inria Technological Development Action CUIC

9.2. European Initiatives
9.2.1.1. ERC Matryoshka

9.2

.1.2. FET-Open CSA SC?

9.3. International Initiatives

Activity Report INRIA 2017

9.4. International Research Visitors
9.4.1. Visits of International Scientists
9.4.2. Internships

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Organization of Scientific Events
10.1.2. Program Committees
10.1.2.1. Chair of Conference Program Committees
10.1.2.2. Member of the Conference Program Committees
10.1.3. Journals
10.1.4. Invited Talks
10.1.5. Leadership within the Scientific Community
10.1.6. Scientific Expertise
10.1.7. Research Administration
10.2. Teaching - Supervision - Juries
10.2.1. Teaching
10.2.2. Supervision
10.2.3. Thesis committees
10.3. Science outreach

11. Bibliography

16
16
17

.......................... 17

17
17
18
18
18
19
19
19
19
20
20
20
21
21
21

Project-Team VERIDIS

Creation of the Team: 2010 January 01, updated into Project-Team: 2012 July 01
Keywords:

Computer Science and Digital Science:
A2.1.7. - Distributed programming
A2.1.11. - Proof languages
A2.4. - Verification, reliability, certification
A2.4.1. - Analysis
A2.4.2. - Model-checking
A2.4.3. - Proofs
A7.2. - Logic in Computer Science
A8.4. - Computer Algebra

Other Research Topics and Application Domains:
B6.1. - Software industry
B6.3.2. - Network protocols
B6.6. - Embedded systems

1. Personnel

Research Scientists
Jasmin Christian Blanchette [Inria, Starting Research Position, until Feb 2017; external collaborator from Mar
2017]
Stephan Merz [Team leader, Inria, Senior Researcher, HDR]
Thomas Sturm [CNRS, Senior Researcher, HDR]
Sophie Tourret [Max-Planck Institut fiir Informatik, Researcher, from Oct 2017]
Uwe Waldmann [Max-Planck Institut fiir Informatik, Senior Researcher]
Christoph Weidenbach [Team leader, Max-Planck Institut fiir Informatik, Senior Researcher, HDR]

Faculty Members
Marie Duflot-Kremer [Univ. de Lorraine, Associate Professor]
Pascal Fontaine [Univ. de Lorraine, Associate Professor]
Dominique Méry [Univ. de Lorraine, Professor, HDR]
Martin Strecker [Univ. Paul Sabatier Toulouse, Associate Professor, Inria secondment until Aug 2017]

PhD Students
Haniel Barbosa [Univ. de Lorraine, until Oct 2017]
Martin Bromberger [Univ. des Saarlandes]
Margaux Duroeulx [Univ. de Lorraine]
Daniel El Ouraoui [Inria, intern from Mar 2017 until Aug 2017 and PhD student from Oct 2017]
Mathias Fleury [Univ. des Saarlandes]
Souad Kherroubi [Univ. de Lorraine]
Nicolas Schnepf [Inria, joint with Team Madynes]
Hans-Jorg Schurr [Inria, from Nov 2017]
Andreas Teucke [Univ. des Saarlandes]
Marco Voigt [Univ. des Saarlandes]
Daniel Wand [Univ. des Saarlandes, until Jul 2017]

https://raweb.inria.fr/rapportsactivite/RA2017/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2017/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2017

Technical staff
Simon Cruanes [Inria, until Sep 2017]
Martin Riener [Inria, Microsoft-Inria Joint Centre]

Intern
Poonam Kumari [Inria, from Mar 2017 until Jul 2017]

Administrative Assistants
Sophie Drouot [Inria]
Christelle Levéque [Univ. de Lorraine]
Jennifer Miiller [Max-Planck Institut fiir Informatik]
Visiting Scientists
Andrew Reynolds [Univ. of Iowa, from Jul 2017 until Sep 2017]
Tung Vu Xuan [JAIST Kanazawa, until May 2017]

2. Overall Objectives

2.1. Overall Objectives

The VeriDis project team includes members of the MOSEL group at LORIA, the computer science laboratory
in Nancy, and members of the research group Automation of Logic at Max-Planck-Institut fiir Informatik in
Saarbriicken. It is headed by Stephan Merz and Christoph Weidenbach. VeriDis was created in 2010 as a local
research group of Inria Nancy — Grand Est and has been an Inria project team since July 2012.

The objectives of VeriDis are to contribute to advances in verification techniques, including automated and
interactive theorem proving, and to make them available for the formal development and analysis of concurrent
and distributed algorithms and systems, within the framework of mathematically precise and practically
applicable development methods. We intend to assist designers of algorithms and systems in carrying out
formally proved developments, where proofs of relevant properties, as well as bugs, can be found with a high
degree of automation.

Verification techniques based on theorem proving are already having substantial impact. In particular, they
have been successfully applied to the verification and analysis of sequential programs, often in combination
with static analysis and software model checking. Ideally, systems and their properties would be specified in
high-level, expressive languages, errors in specifications would be discovered automatically, and finally, full
verification could also be performed completely automatically. Due to the inherent complexity of the problem,
this cannot be achieved in general. We have, however, observed significant advances in theorem proving in
recent years. We are particularly interested in the integration of different deduction techniques and tools, such
as automated theorem proving for relevant theories, such as different fragments of arithmetic. These advances
suggest that a substantially higher degree of automation can be achieved in system verification than what is
available in today’s verification tools.

VeriDis aims at exploiting and further developing automation in system verification, and at applying its
techniques within the context of concurrent and distributed algorithms, which are by now ubiquitous and
whose verification is a big challenge. Concurrency problems are central for the development and verification
of programs for multi- and many-core architectures, and distributed computation underlies the paradigms of
grid and cloud computing. The potential of distributed systems for increased resilience to component failures
makes them attractive in many contexts, but also makes formal verification important and challenging. We
aim at moving current research in this area to a new level of productivity and quality. To give a concrete
example: today the designer of a new distributed protocol may validate it using testing or model checking.
Model checking will help finding bugs, but can only guarantee properties of a high-level model of the protocol,
usually restricted to finite instances. Testing distributed systems and protocols is notoriously difficult because
corner cases are hard to establish and reproduce. Also, many testing techniques require an executable, whose
production is expensive and time-consuming, and since an implementation is needed, errors are found only

Project-Team VERIDIS 3

when they are expensive to fix. The techniques that we develop aim at automatically proving significant
properties of the protocol already during the design phase. Our methods mainly target designs and algorithms
at high levels of abstraction; we aim at components of operating systems, distributed services, and down to the
(mobile) network systems industry.

3. Research Program

3.1. Automated and Interactive Theorem Proving

The VeriDis team gathers experts in techniques and tools for automatic deduction and interactive theorem
proving, and specialists in methods and formalisms designed for the development of trustworthy concurrent
and distributed systems and algorithms. Our common objective is twofold: first, we wish to advance the state
of the art in automated and interactive theorem proving, and their combinations. Second, we work on making
the resulting technology available for the computer-aided verification of distributed systems and protocols. In
particular, our techniques and tools are intended to support sound methods for the development of trustworthy
distributed systems that scale to algorithms relevant for practical applications.

VeriDis members from Saarbriicken are developing SPASS [10], one of the leading automated theorem provers
for first-order logic based on the superposition calculus [52]. The group also studies general frameworks for
the combination of theories such as the locality principle [64] and automated reasoning mechanisms these
induce.

In a complementary approach to automated deduction, VeriDis members from Nancy work on techniques for
integrating reasoners for specific theories. They develop veriT [1], an SMT ! solver that combines decision
procedures for different fragments of first-order logic and that integrates an automatic theorem prover for full
first-order logic. The veriT solver is designed to produce detailed proofs; this makes it particularly suitable as
a component of a robust cooperation of deduction tools.

Finally, VeriDis members design effective quantifier elimination methods and decision procedures for alge-
braic theories, supported by their efficient implementation in the Redlog system [4].

An important objective of this line of work is the integration of theories in automated deduction. Typical
theories of interest, including fragments of arithmetic, are not expressible in first-order logic. We therefore
explore efficient, modular techniques for integrating semantic and syntactic reasoning methods, develop novel
combination results and techniques for quantifier instantiation. These problems are addressed from both sides,
e.g. by embedding decision procedures into the superposition framework or by allowing an SMT solver to
accept axiomatizations for plug-in theories. We also develop specific decision procedures for theories such as
non-linear real arithmetic that are important when reasoning about certain classes of (e.g., real-time) systems
but that also have interesting applications beyond verification.

We rely on interactive theorem provers for reasoning about specifications at a high level of abstraction
when fully automatic verification is not (yet) feasible. An interactive proof platform should help verification
engineers lay out the proof structure at a sufficiently high level of abstraction; powerful automatic plug-ins
should then discharge the resulting proof steps. Members of VeriDis have ample experience in the specification
and subsequent machine-assisted, interactive verification of algorithms. In particular, we participate in a
project at the joint Microsoft Research-Inria Centre in Saclay on the development of methods and tools for the
formal proof of TLAY [59] specifications. Our prover relies on a declarative proof language, and calls upon
several automatic backends [3]. Trust in the correctness of the overall proof can be ensured when the backends
provide justifications that can be checked by the trusted kernel of a proof assistant. During the development of a
proof, most obligations that are passed to the prover actually fail — for example, because necessary information
is not present in the context or because the invariant is too weak, and we are interested in explaining failed
proof attempts to the user, in particular through the construction of counter-models.

I'Satisfiability Modulo Theories [54]

4 Activity Report INRIA 2017

3.2. Formal Methods for Developing and Analyzing Algorithms and Systems

Theorem provers are not used in isolation, but they support the application of sound methodologies for
modeling and verifying systems. In this respect, members of VeriDis have gained expertise and recognition in
making contributions to formal methods for concurrent and distributed algorithms and systems [2], [9], and
in applying them to concrete use cases. In particular, the concept of refinement [49], [53], [60] in state-based
modeling formalisms is central to our approach because it allows us to present a rational (re)construction of
system development. An important goal in designing such methods is to establish precise proof obligations
many of which can be discharged by automatic tools. This requires taking into account specific characteristics
of certain classes of systems and tailoring the model to concrete computational models. Our research in this
area is supported by carrying out case studies for academic and industrial developments. This activity benefits
from and influences the development of our proof tools.

In this line of work, we investigate specific development and verification patterns for particular classes of
algorithms, in order to reduce the work associated with their verification. We are also interested in applications
of formal methods and their associated tools to the development of systems that underlie specific certification
requirements in the sense of, e.g., Common Criteria. Finally, we are interested in the adaptation of model
checking techniques for verifying actual distributed programs, rather than high-level models.

Today, the formal verification of a new algorithm is typically the subject of a PhD thesis, if it is addressed
at all. This situation is not sustainable given the move towards more and more parallelism in mainstream
systems: algorithm developers and system designers must be able to productively use verification tools
for validating their algorithms and implementations. On a high level, the goal of VeriDis is to make
formal verification standard practice for the development of distributed algorithms and systems, just as
symbolic model checking has become commonplace in the development of embedded systems and as security
analysis for cryptographic protocols is becoming standard practice today. Although the fundamental problems
in distributed programming are well-known, they pose new challenges in the context of modern system
paradigms, including ad-hoc and overlay networks or peer-to-peer systems, and they must be integrated for
concrete applications.

4. Application Domains

4.1. Application Domains

Distributed algorithms and protocols are found at all levels of computing infrastructure, from many-core
processors and systems-on-chip to wide-area networks. We are particularly interested in the verification of
algorithms that are developed for supporting novel computing paradigms, including ad-hoc networks that
underly mobile and low-power computing or overlay networks, peer-to-peer networking that provide services
for telecommunication or cloud computing services. Computing infrastructure must be highly available and
is ideally invisible to the end user, therefore correctness is crucial. One should note that standard problems of
distributed computing such as consensus, group membership or leader election have to be reformulated for the
dynamic context of these modern systems. We are not ourselves experts in the design of distributed algorithms,
but we work together with domain experts on designing formal models of these protocols, and on verifying
their properties. These cooperations help us focus on concrete algorithms and ensure that our work is relevant
to the distributed algorithm community.

Formal verification techniques can contribute to certifying the correctness of systems. In particular, they
help assert under which assumptions an algorithm or system functions as required. For example, the highest
levels of the Common Criteria for Information Technology Security Evaluation encourage the use of formal
methods. While initially the requirements of certified development have mostly been restricted to safety-
critical systems, the cost of unavailable services due to malfunctioning system components and software
provides wider incentives for verification. For example, we have been working on modeling and verifying
medical devices that require closed-loop models of both the system and its environment.

Project-Team VERIDIS 5

S. Highlights of the Year

5.1. Highlights of the Year

Jasmin Blanchette, Mathias Fleury, and Christoph Weidenbach were invited to submit a short version of their
IJCAR 2016 paper “A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality” (which
had received the Best Paper Award) to the Sister Conference Best Paper Track of IJCAI 2017 [25]. The paper
was also invited to a special issue of Logical Methods in Computer Science.

The paper “A Formal Proof of the Expressiveness of Deep Learning” [22] by Jasmin Blanchette et al.,
presented at ITP 2017, has been invited to a special issue of the Journal of Automated Reasoning.

The paper “Decidability of the Monadic Shallow Linear First-Order Fragment with Straight Dismatching
Constraints” [39] by Andreas Teucke and Christoph Weidenbach presented at CADE 26 has been invited to a
special issue of the Journal of Automated Reasoning.

Two systems developed in the context of the SMATT project were submitted to the SMT competition SMT-
COMP 2017. Redlog won the non-linear real arithmetic (NRA) category, and veriT+Redlog performed nicely
on the quantifier-free non-linear real arithmetic (QF_NRA) category.

6. New Software and Platforms

6.1. Redlog

Reduce Logic System

KEYWORDS: Computer algebra system (CAS) - First-order logic - Constraint solving

SCIENTIFIC DESCRIPTION: Redlog is an integral part of the interactive computer algebra system Reduce.
It supplements Reduce’s comprehensive collection of powerful methods from symbolic computation by
supplying more than 100 functions on first-order formulas.

Redlog generally works with interpreted first-order logic in contrast to free first-order logic. Each first-
order formula in Redlog must exclusively contain atoms from one particular Redlog-supported theory, which
corresponds to a choice of admissible functions and relations with fixed semantics. Redlog-supported theories
include Nonlinear Real Arithmetic (Real Closed Fields), Presburger Arithmetic, Parametric QSAT, and many
more.

NEWS OF THE YEAR: In 2017, there was a strong focus on applications of Redlog. With the final phase of
the ANR-DFG Project SMArT, Redlog was integrated with the SMT solver veriT. That combination, as well
as a stand-alone version of Redlog, participated in the SMT competition SMTCOMP 2017. All configurations
performed very well, the stand-alone version won the category NRA (nonlinear real arithmetic).

On the scientific side, we made significant progress with the symbolic bifurcation analysis for biological
networks.

Redlog technology for biological network analysis from last year, viz. subtropical solving, has raised consid-
erable attention in the SMT community, where it has been adopted and triggered new research.

e Participant: Thomas Sturm
e Contact: Thomas Sturm

e URL: http://www.redlog.eu/

6.2. SPASS

KEYWORD: First-order logic

http://www.redlog.eu/

6 Activity Report INRIA 2017

SCIENTIFIC DESCRIPTION: The classic SPASS is an automated theorem prover based on superposition that
handles first-order logic with equality and several extensions for particular classes of theories. With version
SPASS 3.9 we have stopped the development of the classic prover and have started the bottom-up development
of SPASS 4.0 that will actually be a workbench of automated reasoning tools. Furthermore, we use SPASS 3.9
as a test bed for the development of new calculi.

Meanwhile we have released the second version of SPASS-1Q, our solver for linear integer arithmetic that we
are currently extending to real and mixed real-integer arithmetic. We didn’t release SPASS-SATT yet, instead
we further investigated the use of redundency elimination in SAT solving and underlying implementation
techniques. Our aim is a new approach to SAT solving that needs fewer conflicts (on average) and is faster
than the current state-of-the art solvers. Furthermore, we have developed a new calculus and first prototypical
implementation of a SAT solver with mixed OR/XOR clauses.

SPASS 3.9 has been used as the basis for SPASS-AR, an new approximation refinement theorem proving
approach.

FUNCTIONAL DESCRIPTION: SPASS is an automated theorem prover based on superposition that handles
first-order logic with equality and several extensions for particular classes of theories.

e Contact: Christoph Weidenbach
e URL: http://www.spass-prover.org/

6.3. TLAPS

TLA+ proof system

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: TLAPS is a platform for developing and mechanically verifying proofs about
TLA+ specifications. The TLA+ proof language is hierarchical and explicit, allowing a user to decompose
the overall proof into proof steps that can be checked independently. TLAPS consists of a proof manager that
interprets the proof language and generates a collection of proof obligations that are sent to backend verifiers.
The current backends include the tableau-based prover Zenon for first-order logic, Isabelle/TLA+, an encoding
of TLA+ set theory as an object logic in the logical framework Isabelle, an SMT backend designed for use
with any SMT-lib compatible solver, and an interface to a decision procedure for propositional temporal logic.
NEWS OF THE YEAR: In 2017, we have continued to work on a complete reimplementation of the proof
manager. Its objectives are a cleaner interaction with the TLA" front-ends, in particular SANY, the standard
parser and semantic analyzer. The reimplementation is also necessary for extending the scope of the fragment
of TLA™ that is handled by TLAPS, in particular full temporal logic and module instantiation.

e Participants: Damien Doligez, Stephan Merz and Martin Riener
e Contact: Stephan Merz
e URL: https://tla.msr-inria.inria.fr/tlaps/content/Home.html

6.4. veriT

KEYWORDS: Automated deduction - Formula solving - Verification

SCIENTIFIC DESCRIPTION: veriT comprises a SAT solver, a decision procedure for uninterpreted symbols
based on congruence closure, a simplex-based decision procedure for linear arithmetic, and instantiation-based
quantifier handling.

FUNCTIONAL DESCRIPTION: VeriT is an open, trustable and efficient SMT (Satisfiability Modulo Theories)
solver, featuring efficient decision procedure for uninterpreted symbols and linear arithmetic, and quantifier
reasoning.

NEWS OF THE YEAR: Efforts in 2017 have been focused on non-linear arithmetic reasoning and quantifier
handling. The reasoning capabilities of veriT have been significantly improved along those two axes.

The veriT solver participated in the SMT competition SMT-COMP 2017 with good results.

http://www.spass-prover.org/
https://tla.msr-inria.inria.fr/tlaps/content/Home.html
http://www.smtcomp.org

Project-Team VERIDIS 7

We target applications where validation of formulas is crucial, such as the validation of TLAY and B
specifications, and work together with the developers of the respective verification platforms to make veriT
even more useful in practice. The solver is available as a plugin for the Rodin platform, it is integrated within
the Atelier B.

e Participants: Haniel Barbosa, Daniel El Ouraoui, Pascal Fontaine and Hans-Jorg Schurr
e Partner: Université de Lorraine
e Contact: Pascal Fontaine

e URL: http://www.veriT-solver.org

6.5. Nunchaku

The Nunchaku Higher-Order Model Finder

KEYWORDS: Proof - Higher-order logic

SCIENTIFIC DESCRIPTION: Nunchaku is a model finder for higher-order logic, with dedicated support for
various definitional principles. It is designed to work as a backend for various proof assistants (notably
Isabelle/HOL and Coq) and to use state-of-the-art model finders and other solvers as backends.
FUNCTIONAL DESCRIPTION: Nunchaku is a model finder (counterexample generator) for higher-order logic.
NEWS OF THE YEAR: A noteworthy development this year is the creation of a backend called SMBC, based
on new ideas by Cruanes about how to combine SAT solving and narrowing.

e Participants: Jasmin Christian Blanchette and Simon Cruanes
o Contact: Jasmin Christian Blanchette
e URL: https://github.com/nunchaku-inria

7. New Results

7.1. Automated and Interactive Theorem Proving

7.1.1.

Participants: Haniel Barbosa, Jasmin Christian Blanchette, Martin Bromberger, Simon Cruanes, Daniel El
Ouraoui, Mathias Fleury, Pascal Fontaine, Stephan Merz, Martin Riener, Hans-Jorg Schurr, Martin Strecker,
Thomas Sturm, Andreas Teucke, Sophie Tourret, Marco Voigt, Tung Vu Xuan, Uwe Waldmann, Daniel Wand,
Christoph Weidenbach.

IsaFoL: Isabelle Formalization of Logic

Joint work with Andreas Halkjeer From (DTU Copenhagen), Alexander Birch Jensen (DTU Copenhagen),
Maximilian Kirchmeier (TU Miinchen), Peter Lammich (TU Miinchen), John Bruntse Larsen (DTU Copen-
hagen), Julius Michaelis (TU Miinchen), Tobias Nipkow (TU Miinchen), Nicolas Peltier (IMAG Grenoble)
Anders Schlichtkrull (DTU Copenhagen), Dmitriy Traytel (ETH Ziirich), and Jgrgen Villadsen (DTU Copen-
hagen).

Researchers in automated reasoning spend a significant portion of their work time specifying logical calculi
and proving metatheorems about them. These proofs are typically carried out with pen and paper, which is
error-prone and can be tedious. As proof assistants are becoming easier to use, it makes sense to employ them.

In this spirit, we started an effort, called IsaFoL (Isabelle Formalization of Logic), that aims at developing li-
braries and methodology for formalizing modern research in the field, using the Isabelle/HOL proof assistant.?
Our initial emphasis is on established results about propositional and first-order logic. In particular, we are for-
malizing large parts of Weidenbach’s forthcoming textbook, tentatively called Automated Reasoning—The Art
of Generic Problem Solving.

2https://bitbucket.org/isafol/isafol/wiki/Home

http://www.veriT-solver.org
https://github.com/nunchaku-inria
https://bitbucket.org/isafol/isafol/wiki/Home

7.1.2.

7.1.3.

7.1.4.

7.1.5.

8 Activity Report INRIA 2017

The objective of formalization work is not to eliminate paper proofs, but to complement them with rich formal
companions. Formalizations help catch mistakes, whether superficial or deep, in specifications and theorems;
they make it easy to experiment with changes or variants of concepts; and they help clarify concepts left vague
on paper.

The repository contains 14 completed entries and four entries that are still in development. Notably, Mathias
Fleury formalized a SAT solver framework with learn, forget, restart, and incrementality. This year he extended
it with key optimizations such as the two-watched-literal procedure. The corresponding paper, written together
with Jasmin Blanchette and Peter Lammich, was accepted at a highly competitive conference (CPP 2018).

Extension of Term Orders to \-Free Higher-Order Logic

Superposition is one of the most successful proof calculi for first-order logic today, but in contrast to resolution,
tableaux, and connections, it has not yet been generalized to higher-order logic (also called simple type theory).
Yet, most proof assistants and many specification languages are based on some variant of higher-order logic.

This motivates us to design a graceful generalization of superposition: a proof calculus that behaves like
standard superposition on first-order problems and that smoothly scales up to arbitrary higher-order problems.
A challenge is that superposition relies on a simplification order, which is fixed in advance of the proof attempt,
to prune the search space.

We started our investigations by focusing on a fragment devoid of A-abstractions, but with partial application
and application of variables, two crucial higher-order features. We generalized the two main orders that are
used in superposition-based provers today—the lexicographic path order (LPO) [27] and the Knuth-Bendix
order (KBO) [21]. The new orders gracefully generalize their first-order counterparts and enjoy nearly all
properties needed for superpositions. An exception is compatibility with contexts, which is missing for LPO
and some KBO variants. Preliminary work suggests that we can define a version of the superposition calculus
that works well in theory and practice (i.e., is refutationally complete and does not lead to a search-space
explosion) despite the missing property.

A Fine-Grained Approach of Understanding First-Order Logic Complexity

By the introduction of the separated fragment [65] we have initiated a new framework for a fine-grained
understanding of the complexity of fragments of first-order logic, with and without the addition of theories.
We have related the classes of the polynomial hierarchy to subclasses of the separated fragment [40] and
developed new decidability results [36], [41] based on the techniques of our framework for the combination
of the Bernays-Schoenfinkel subfragment with linear arithmetic.

Theorem Proving Based on Approximation-Refinement into the Monadic Shallow
Linear Fragment with Straight Dismatching Constraints

We have introduced an approximation-refinement approach for first-order theorem proving based on
counterexample-guided abstraction refinement [39]. A given first-order clause set is transformed into an
over-approximation contained in the fragment of monadic, shallow, linear clauses with straight dismatching
constraints. We have shown the fragment to be decidable, strictly extending known results. If the abstraction
obtained that way is satisfiable, so is the original clause set. However, if it is unsatisfiable, then the approx-
imation provides a terminology for lifting the found refutation, step by step, into a proof for the original
clause set. If lifting fails, the cause is analyzed to refine the original clause set such that the found refutation is
ruled out for the future, and the procedure repeats. We have shown that this approach is superior to all known
calculi on certain classes of first-order clauses. In particular, it is able to detect satisfiability of clause sets that
have only infinite models.

Combination of Satisfiability Procedures

Joint work with Christophe Ringeissen from the PESTO project-team of Inria Nancy — Grand Est, and Paula
Chocron at IlIA-CSIC, Bellaterra, Catalonia, Spain.

7.1.6.

7.1.7.

7.1.8.

Project-Team VERIDIS 9

A satisfiability problem is often expressed in a combination of theories, and a natural approach consists in
solving the problem by combining the satisfiability procedures available for the component theories. This is
the purpose of the combination method introduced by Nelson and Oppen. However, in its initial presentation,
the Nelson-Oppen combination method requires the theories to be signature-disjoint and stably infinite (to
ensure the existence of an infinite model). The design of a generic combination method for non-disjoint unions
of theories is difficult, but it is worth exploring simple non-disjoint combinations that appear frequently in
verification. An example is the case of shared sets, where sets are represented by unary predicates. Another
example is the case of bridging functions between data structures and a target theory (e.g., a fragment of
arithmetic).

In 2015, we defined [55] a sound and complete combination procedure a la Nelson-Oppen for the theory of
absolutely free data structures (including lists and trees) connected to another theory via bridging functions.
This combination procedure has also been refined for standard interpretations. The resulting theory has a nice
politeness property, enabling combinations with arbitrary decidable theories of elements. We also investigated
other theories [56] amenable to similar combinations: this class includes the theory of equality, the theory of
absolutely free data structures, and all the theories in between.

In 2017, we have been improving the framework and unified both results. A new paper is in preparation.

Quantifier Handling in SMT
Joint work with Andrew J. Reynolds, Univ. of lowa, USA.

SMT solvers generally rely on various instantiation techniques for handling quantifiers. We built a unifying
framework encompassing quantified formulas with equality and uninterpreted functions, such that the major
instantiation techniques in SMT solving can be cast in that framework. It is based on the problem of E-ground
(dis)unification, a variation of the classic Rigid E-unification problem. We introduced a sound and complete
calculus to solve this problem in practice: Congruence Closure with Free Variables (CCFV). Experimental
evaluations of implementations of CCFV demonstrate notable improvements in the state-of-the-art solver
CVC4 and make the solver veriT competitive with state-of-the-art solvers for several benchmark libraries,
in particular those originating in verification problems. This was the subject of a publication [20]. In later,
unpublished work, we are revisiting enumerative instantiation for SMT. This effort takes place in the context
of the Matryoshka project.

Non-Linear Arithmetic in SMT

In the context of the SMArT ANR-DFG (Satisfiability Modulo Arithmetic Theories), KANASA and SC2
projects (cf. sections 9.1 and 9.3), we study the theory, design techniques, and implement software to push
forward the non-linear arithmetic (NLA) reasoning capabilities in SMT. This year, we designed a framework
to combine interval constraint propagation with other decision procedures for NLA, with promising results,
notably in the international competition of SMT solvers SMT-COMP 2017. We also studied integration of
these procedures into combinations of theories. The ideas are validated within the veriT solver, together with
code from the raSAT solver (from JAIST). An article is in preparation.

We also adapted the subtropical method to use in an SMT context, with valuable results. This was the subject
of a publication in 2017 [33].

Proofs for SMT

We have developed a framework for processing formulas in automatic theorem provers, with generation
of detailed proofs. The main components are a generic contextual recursion algorithm and an extensible
set of inference rules. Clausification, skolemization, theory-specific simplifications, and expansion of ‘let’
expressions are instances of this framework. With suitable data structures, proof generation adds only a linear-
time overhead, and proofs can be checked in linear time. We implemented the approach in the SMT solver
veriT. This allowed us to dramatically simplify the code base while increasing the number of problems for
which detailed proofs can be produced, which is important for independent checking and reconstruction in
proof assistants. This was the subject of a publication in [19]. This effort takes place in the context of the
Matryoshka project.

10 Activity Report INRIA 2017

7.1.9. Coding Modal and Description Logics in SAT solvers

The application scenario behind this research is the verification of graph transformations, which themselves
are relevant for a wide range of practical problems such as pointer structures in imperative programs, graph
databases or access control mechanisms.

Graph structures can typically be perceived as models of modal logics, and modal logics and variants (such as
description logics that are the basis for the web ontology language OWL) are in principle suitable specification
formalisms for graph transformations. It turns out, however, that pure modal logics are often not sufficiently
expressive for the intended verification purpose and that extensions are needed for which traditional proof
methods such as tableau calculi become complex: the termination of the calculi are often very difficult to
prove, and huge efforts are required to obtain an efficient implementation.

For these reasons, we have explored methods of encoding the above-mentioned logics in SAT and SMT solvers
such as CVC4 and veriT. The idea is to traverse the formula to be verified in order to span up a pre-model
that possibly contains more elements (worlds in a Kripke structure) than the real model, and then to run a
solver to find out which of these elements can effectively be realized. A prototype has been implemented, with
encouraging results. It remains to connect this prototype to the graph verification engine and to publish this
work.

7.1.10. Work on the TLA+ Proof System

We continued our work on encoding set-theoretic formulas in multi-sorted first-order logic, and in particular
for SMT solvers. Specifically, we unified and streamlined a technique combining an injection of unsorted
expressions into sorted languages, simplification by rewriting, and abstraction that underlies the SMT backend
of the TLA* proof system TLAPS. A presentation of our technique was accepted in the journal Science of
Computer Programming, to appear in 2018.

The proof of the join protocol in a pure-join variant of the Pastry protocol [63] implementing a distributed
hash table over a peer-to-peer network is the largest case study carried out so far within TLAPS. Consisting
of roughly 30k lines of proof, it was developed as part of Noran Azmy’s PhD thesis, defended at the end of
2016 [51]. A presentation of the design of the protocol and its proof was accepted in the journal Science of
Computer Programming, to appear in 2018.

7.1.11. Automated Analysis of Systems of ODE for Multistationarity

Joint work with R. Bradford and J. Davenport (Bath, UK), M. England (Coventry, UK), H. Errami, C.
Hoyt, and A. Weber (Bonn, Germany), V. Gerdt (Dubna, Russia), D. Grigoriev (Lille, France), O. Radulescu
(Montpellier, France)

We considered the problem of determining multiple steady states for positive real values in models of
biological networks. Investigating the potential for these in models of the mitogen-activated protein kinases
(MAPK) network has consumed considerable effort using special insights into the structure of corresponding
models. We have applied combinations of symbolic computation methods for mixed equality/inequality
systems, specifically automated deduction methods like virtual substitution, lazy real triangularization and
cylindrical algebraic decomposition. We have determined multistationarity of an 11-dimensional MAPK
network when numeric values are known for all but potentially one parameter. More precisely, our considered
model has 11 equations in 11 variables and 19 parameters, 3 of which are of