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2. Overall Objectives

2.1. Overall Objectives
Our research addresses the broad application domain of cryptography and cryptanalysis from the algorithmic
perspective. We study all the algorithmic aspects, from the top-level mathematical background down to the
optimized high-performance software implementations. Several kinds of mathematical objects are commonly
encountered in our research. Some basic ones are truly ubiquitous: integers, finite fields, polynomials, real
and complex numbers. We also work with more structured objects such as number fields, algebraic curves, or
polynomial systems. In all cases, our work is geared towards making computations with these objects effective
and fast.

The mathematical objects we deal with are of utmost importance for the applications to cryptology, as they are
the background of the most widely developed public-key cryptographic primitives, such as the RSA cryptosys-
tem or the Diffie–Hellman key exchange. The two facets of cryptology—cryptography and cryptanalysis—are
central to our research. The key challenges are the assessment of the security of proposed cryptographic primi-
tives, through the study of the cornerstone problems, which are the integer factorization and discrete logarithm
problems, as well as the optimization work in order to enable cryptographic implementations that are both
efficient and secure.

Among the research themes we set forth, two are guided by the most important mathematical objects used in
today’s cryptography, and the two others are rather guided by the technological background we use to address
these problems.
• Extended NFS family. A common algorithmic framework, called the Number Field Sieve (NFS),

addresses both the integer factorization problem as well as the discrete logarithm problem over finite
fields. We have numerous algorithmic contributions in this context, and develop software to illustrate
them.

We plan to improve on the existing state of the art in this domain by researching new algorithms, by
optimizing the software performance, and by demonstrating the reach of our software with highly
visible computations.

• Algebraic curves and their Jacobians. We develop algorithms and software for computing essential
properties of algebraic curves for cryptology, eventually enabling their widespread cryptographic
use.

One of the challenges we address here is point counting. In a wider perspective, we also study the
link between abelian varieties over finite fields and principally polarized abelian varieties over fields
of characteristic zero, together with their endomorphism ring. In particular, we work in the direction
of making this link an effective one. We are also investigating various approaches for attacking the
discrete logarithm problem in Jacobians of algebraic curves.

• Arithmetic. Our work relies crucially on efficient arithmetic, be it for small or large sizes. We work
on improving algorithms and implementations, for computations that are relevant to our application
areas.
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• Polynomial systems. It is rather natural with algebraic curves, and occurs also in NFS-related
contexts, that many important challenges can be represented via polynomial systems, which have
structural specificities. We intend to develop algorithms and tools that, when possible, take advantage
of these specificities.

As represented by Figure 1, the first two challenges above interact with the latter two, which are also research
topics in their own right. Both algorithmic and software improvements are the necessary ingredients for
success. The different axes of our research form thus a coherent set of research directions, where we apply a
common methodology.

Extended NFS family Algebraic curves

Arithmetic

Polynomial systemsSmall characteristic
DLP algorithms

DLP on E(F2n);
Decomposition;
Point counting.

Cado-NFS;
Linear algebra.

Explicit formulae;
Isogenies, End(J);
Abel–Jacobi, Θ(z).

Figure 1. Visual representation of the thematic organization of CARAMBA.

We consider that the impact of our research on cryptology in general owes a lot to the publication of concrete
practical results. We are strongly committed to making our algorithms available as software implementations.
We thus have several long-term software development projects that are, and will remain, parts of our research
activity.

2.2. Scientific Grounds
Public-key cryptography is our main application target. We are interested in the study of the cryptographic
primitives that serve as a basis for the most widespread protocols.

Since the early days of public-key cryptography, and through the practices and international standards that
have been established for several decades, the most widespread cryptographic primitives have been the RSA
cryptosystem, as well as the Diffie–Hellman key exchange using multiplicative groups of finite fields. The level
of security provided by these cryptographic primitives is related to the hardness of the underlying mathematical
problems, which are integer factorization and the discrete logarithm problem. The complexity of attacking
them is known to be subexponential in the public key size, and more precisely written as LN (1/3, c) for
factoring an integer N , where the L notation stands for

LN (α, c) = exp
(
c(1 + o(1))(logN)

α
(log logN)

1−α
)
.

This complexity is achieved with the Number Field Sieve (NFS) algorithm and its many derivatives. This
means that as the desired security level s grows, the matching public key size grows roughly like s3. As to
how these complexity estimates translate into concrete assessments and recommendations, the hard facts are
definitely the computational records that are set periodically by academics, and used as key ingredients by
governmental agencies emitting recommendations for industry [31], [18].
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Software for NFS is obviously the entry point to computational records. Few complete NFS implementations
exist, and their improvement is of crucial importance for better assessment of the hardness of the key cryp-
tographic primitives considered. Here, “improvement” may be understood in many ways: better algorithms
(outperforming the NFS algorithm as a whole is certainly a tremendous improvement, but replacing one of its
numerous substeps is one, too), better implementations, better parallelization, or better adaptation to suitable
hardware. The numerous sub-algorithms of NFS strongly depend on arithmetic efficiency. This concerns vari-
ous mathematical objects, from integers and polynomials to ideals in number fields, lattices, or linear algebra.

Since the early 1990’s, no new algorithm has improved on the complexity of NFS. As it is used in practice,
the algorithm has complexity LN (1/3, (64/9)

1/3
) for factoring general integers or for computing discrete

logarithms in prime fields of similar size (the so-called “multiple polynomial” variants have better complexity
by a very thin margin, but this has not yet yielded a practical improvement). Given the wide use of the
underlying hard problems, progress in this area is of utmost importance. In 2013, several new algorithms have
modified the complexity of the discrete logarithm problem in small characteristic fields, which is a closely
related problem, reaching a heuristic quasi-polynomial time algorithm [20], [27], [26], [24]. A stream of
computational records have been obtained since 2013 with these algorithms, using in particular techniques
from polynomial system solving, or from Galois theory. These new algorithms, together with these practical
realizations, have had a very strong impact of course on the use of small-characteristic fields for cryptography
(now clearly unsuitable), as well as on pairings on elliptic curves over small-characteristic finite fields (which
are also no longer considered safe to use).

While it is relatively easy to set public key sizes for RSA or Diffie–Hellman that are “just above” the reach of
academic computing power with NFS, the sensible cryptographic choice is to aim at security parameters that
are well above this feasibility limit, in particular because assessing this limit precisely is in fact a very difficult
problem. In line with the security levels offered by symmetric primitives such as AES-128, public key sizes
should be chosen so that with current algorithmic knowledge, an attacker would need at least 2128 elementary
operations to solve the underlying hard problem. Such security parameters would call for RSA key sizes above
3,000 bits, which is seldom seen, except in contexts where computing power is plentiful anyway.

Since the mid-1980’s, elliptic curves, and more generally Jacobians of algebraic curves, have been proposed
as alternative mathematical settings for building cryptographic primitives.

A genus-1 curve

y2 = x3 + ax+ b.

A genus-2 curve

y2 = x5 + a4x
4 + · · ·+ a0.

Figure 2.

The discrete logarithm problem in these groups is formidably hard, and in comparison to the situation with the
traditional primitives mentioned above, the cryptanalysis algorithms are such that the appropriate public-key
size grows only linearly with the desired security level: a 256-bit public key, using algebraic curves, is well
suited to match the hardness of AES-128. This asset makes algebraic curves more attractive for the future of
public-key cryptography.
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Challenges related to algebraic curves in cryptology are rather various, and call for expertise in several areas.
Suggesting curves to be used in the cryptographic context requires solving the point counting problem.
This may be done by variants of the Schoof–Elkies–Atkin algorithm and its generalizations (which, in
genus 2, require arithmetic modulo multivariate systems of equations), or alternatively the use of the complex
multiplication method, a rich theory that opens the way to several problems in computational number theory.

The long-awaited transition from the legacy primitives to primitives based on curves is ready to happen, only
circumstantially slowed down presently by the need to agree on a new set of elliptic curves (not because
of any attack, but because of skepticism over how the currently widespread ones have been generated). The
Internet Research Task Force has completed in 2015 a standardization proposal [30]. In this context, the
recommended curves are not of the complex multiplication family, and enjoy instead properties that allow fast
implementation, and avoid a few implementation difficulties. Those are also naturally chosen to be immune to
the few known attacks on the discrete logarithm problem for curves. No curve of genus 2 has made its way to
the standardization process so far, however one candidate exists for the 128-bit security level [23].

The discrete logarithm problem on curves is very hard. Some results were obtained however for curves over
extension fields, using techniques such as the Weil descent, or the point decomposition problem. In this
context, the algorithmic setup connects to polynomial system solving, fast arithmetic, and linear algebra.

Another possible route for transitioning away from RSA and finite field-based cryptography is suggested,
namely the switch to the “post-quantum” cryptographic primitives. Public-key cryptographic primitives that
rely on mathematical problems related to Euclidean lattices or coding theory have an advantage: they would
resist the potential advent of a quantum computer. Research on these topics is quite active, and there is no
doubt that when the efficiency challenges that are currently impeding their deployment are overcome, the
standardization of some post-quantum cryptographic primitives will be a worthwhile addition to the general
cryptographic portfolio. The NSA has recently devoted an intriguing position text to this topic [32] (for
a glimpse of some of the reactions within the academic community, the reference [29] is useful). Post-
quantum cryptography, as a research topic, is complementary to the topics we address most, which are
NFS and algebraic curves. We are absolutely confident that, at the very least for the next decade, primitives
based on integer factoring, finite fields, and algebraic curves will continue to hold the lion’s share in the
cryptographic landscape. We also expect that before the advent of standardized and widely developed post-
quantum cryptographic primitives, the primitives based on algebraic curves will become dominant (despite the
apparent restraint from the NSA on this move).

We acknowledge that the focus on cryptographic primitives is part of a larger picture. Cryptographic primitives
are part of cryptographic protocols, which eventually become part of cryptographic software. All these steps
constitute research topics in their own right, and need to be scrutinized (as part of independent research efforts)
in order to be considered as dependable building blocks. This being said, the interplay of the different aspects,
from primitives to protocols, sometimes spawns very interesting and fruitful collaborations. A very good
example of this is the LogJam attack [17].

3. Research Program
3.1. The Extended Family of the Number Field Sieve

The Number Field Sieve (NFS) has been the leading algorithm for factoring integers for more than 20 years,
and its variants have been used to set records for discrete logarithms in finite fields. It is reasonable to
understand NFS as a framework that can be used to solve various sorts of problems. Factoring integers and
computing discrete logarithms are the most prominent for the cryptographic observer, but the same framework
can also be applied to the computation of class groups.

The state of the art with NFS is built from numerous improvements of its inner steps. In terms of algorithmic
improvements, the recent research activity on the NFS family has been rather intense. Several new algorithms
have been discovered during the 2014–2016 period, and their practical reach has been demonstrated by actual
experiments.
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The algorithmic contributions of the CARAMBA members to NFS would hardly be possible without access to
a dependable software implementation. To this end, members of the CARAMBA team have been developing
the Cado-NFS software suite since 2007. Cado-NFS is now the most widely visible open source implementa-
tion of NFS, and is a crucial platform for developing prototype implementations for new ideas for the many
sub-algorithms of NFS. Cado-NFS is free software (LGPL) and follows an open development model, with
publicly accessible development repository and regular software releases. Competing free software imple-
mentations exist, such as msieve, developed by J. Papadopoulos. In Lausanne, T. Kleinjung develops his own
code base, which is unfortunately not public.

The work plan of CARAMBA on the topic of the Number Field Sieve algorithm and its cousins includes the
following aspects:

• Pursue the work on NFS, which entails in particular making it ready to tackle larger challenges.
Several of the important computational steps of NFS that are currently identified as stumbling
blocks will require algorithmic advances and implementation improvements. We will illustrate the
importance of this work by computational records.

• Work on the specific aspects of the computation of discrete logarithms in finite fields.

• As a side topic, the application of the broad methodology of NFS to the treatment of “ideal lattices”
and their use in cryptographic proposals based on Euclidean lattices is also relevant.

3.2. Algebraic Curves in Cryptology
The challenges associated with algebraic curves in cryptology are diverse, because of the variety of mathemat-
ical objects to be considered. These challenges are also connected to each other. On the cryptographic side,
efficiency matters. As of 2016, the most widely used set of elliptic curves, the so-called NIST curves, are in
the process of being replaced by a new set of candidate elliptic curves for future standardization. This is the
topic of RFC 7748 [30].

On the cryptanalytic side, the discrete logarithm problem on (Jacobians of) curves has resisted all attempts
for many years. Among the currently active topics, the decomposition algorithms raise interesting problems
related to polynomial system solving, as do attempts to solve the discrete logarithm problem on curves defined
over binary fields. In particular, while it is generally accepted that the so-called Koblitz curves (base field
extensions of curves defined over GF(2)) are likely to be a weak class among the various curve choices, no
concrete attack supports this claim fully.

The research objectives of CARAMBA on the topic of algebraic curves for cryptology are as follows:

• Work on the practical realization of some of the rich mathematical theory behind algebraic curves.
In particular, some of the fundamental mathematical objects have potentially important connections
to the broad topic of cryptology: Abel-Jacobi map, Theta functions, computation of isogenies,
computation of endomorphisms, complex multiplication.

• Improve the point counting algorithms so as to be able to tackle larger problems. This includes
significant work connected to polynomial systems.

• Seek improvements on the computation of discrete logarithms on curves, including by identifying
weak instances of this problem.

3.3. Symmetric Cryptography
Since the recruiting of Marine Minier in September 2016 as a Professor at Université of Lorraine, and of
Virginie Lallemand as a CNRS researcher in October 2018, a new research domain has emerged in the
CARAMBA team: symmetric key cryptology. The aim is to design and analyze symmetric key cryptographic
primitives focusing on the following particular aspects:

• the use of constraint programming for the cryptanalysis, especially of block ciphers and the AES
standard;
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• the design of lightweight cryptographic primitives well-suited for constraint environment such as
micro-controllers, wireless sensors, etc.

• white-box cryptography and software obfuscation methods to protect services execution on dedi-
cated platforms.

3.4. Computer Arithmetic
Computer arithmetic is part of the common background of all team members, and is naturally ubiquitous in
the two previous application domains mentioned. However involved the mathematical objects considered may
be, dealing with them first requires to master more basic objects: integers, finite fields, polynomials, and real
and complex floating-point numbers. Libraries such as GNU MP, GNU MPFR, GNU MPC do an excellent job
for these, both for small and large sizes (we rarely, if ever, focus on small-precision floating-point data, which
explains our lack of mention of libraries relevant to it).

Most of our involvement in subjects related to computer arithmetic is to be understood in connection to our
applications to the Number Field Sieve and to abelian varieties. As such, much of the research work we
envision will appear as side-effects of developments in these contexts. On the topic of arithmetic work per se:

• We will seek algorithmic and practical improvements to the most basic algorithms. That includes for
example the study of advanced algorithms for integer multiplication, and their practical reach.

• We will continue to work on the arithmetic libraries in which we have crucial involvement, such as
GNU MPFR, GNU MPC, GF2X, MPFQ, and also GMP-ECM.

3.5. Polynomial Systems
Systems of polynomial equations have been part of the cryptographic landscape for quite some time, with
applications to the cryptanalysis of block and stream ciphers, as well as multivariate cryptographic primitives.

Polynomial systems arising from cryptology are usually not generic, in the sense that they have some distinct
structural properties, such as symmetries, or bi-linearity for example. During the last decades, several results
have shown that identifying and exploiting these structures can lead to dedicated Gröbner basis algorithms
that can achieve large speedups compared to generic implementations [22], [21].

Solving polynomial systems is well done by existing software, and duplicating this effort is not relevant.
However we develop test-bed open-source software for ideas relevant to the specific polynomial systems that
arise in the context of our applications. The TinyGB software is our platform to test new ideas.

We aim to work on the topic of polynomial system solving in connection with our involvement in the
aforementioned topics.

• We have high expertise on Elliptic Curve Cryptography in general. On the narrower topic of the
Elliptic Curve Discrete Logarithm Problem on small characteristic finite fields, the highly structured
polynomial systems that are involved match well our expertise on the topic of polynomial systems.
Once a very hot topic in 2015, activity on this precise problem seems to have slowed down. Yet, the
conjunction of skills that we have may lead to results in this direction in the future.

• The recent hiring of Marine Minier is likely to lead the team to study particular polynomial systems
in contexts related to symmetric key cryptography.

• More centered on polynomial systems per se, we will mainly pursue the study of the specificities of
the polynomial systems that are strongly linked to our targeted applications, and for which we have
significant expertise [22], [21]. We also want to see these recent results provide practical benefits
compared to existing software, in particular for systems relevant for cryptanalysis.
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4. Application Domains

4.1. Better Awareness and Avoidance of Cryptanalytic Threats
Our study of the Number Field Sieve family of algorithms aims at showing how the threats underlying various
supposedly hard problems are real. Our record computations, as well as new algorithms, contribute to having
a scientifically accurate assessment of the feasibility limit for these problems, given academic computing
resources. The data we provide in this way is a primary ingredient for government agencies whose purpose
includes guidance for the choice of appropriate cryptographic primitives. For example the French ANSSI
1, German BSI, or the NIST 2 in the United States base their recommendations on such computational
achievements.

The software we make available to achieve these cryptanalytic computations also allows us to give cost esti-
mates for potential attacks to cryptographic systems that are taking the security/efficiency/legacy compatibility
trade-offs too lightly. Attacks such as LogJam [17] are understood as being serious concerns thanks to our con-
vincing proof-of-concepts. In the LogJam context, this impact has led to rapid worldwide security advisories
and software updates that eventually defeat some potential intelligence threats and improve confidentiality of
communications.

4.2. Promotion of Better Cryptography
We also promote the switch to algebraic curves as cryptographic primitives. Those offer nice speed and ex-
cellent security, while primitives based on elementary number theory (integer factorization, discrete logarithm
in finite fields), which underpin e.g., RSA, are gradually forced to adopt unwieldy key sizes so as to comply
with the desired security guarantees of modern cryptography. Our contributions to the ultimate goal of hav-
ing algebraic curves eventually take over the cryptographic landscape lie in our fast arithmetic contributions,
our contributions to the point counting problem, and more generally our expertise on the diverse surrounding
mathematical objects, or on the special cases where the discrete logarithm problem is not hard enough and
should be avoided.

We also promote cryptographically sound electronic voting, for which we develop the Belenios prototype
software (licensed under the AGPL). It depends on research made in collaboration with the PESTO team, and
provides stronger guarantees than current state of the art.

4.3. Key Software Tools
The vast majority of our work is eventually realized as software. We can roughly categorize it in two groups.
Some of our software covers truly fundamental objects, such as the GNU MPFR, GNU MPC, GF2X, or
MPFQ packages. To their respective extent, these software packages are meant to be included or used in
broader projects. For this reason, it is important that the license chosen for this software allows proper reuse,
and we favor licenses such as the LGPL, which is not restrictive. We can measure the impact of this software
by the way it is used in e.g., the GNU Compiler Collection (GCC), in Victor Shoup’s Number Theory Library
(NTL), or in the Sage computer algebra system. The availability of these software packages in most Linux
distributions is also a good measure for the impact of our work.

We also develop more specialized software. Our flagship software package is Cado-NFS, and we also
develop some others with various levels of maturity, such as GMP-ECM, CMH, or Belenios, aiming at
quite diverse targets. Within the lifespan of the CARAMBA project, we expect more software packages of
this kind to be developed, specialized towards tasks relevant to our research targets: important mathematical
structures attached to genus 2 curves, generation of cryptographically secure curves, or tools for attacking
cryptographically hard problems. Such software both illustrates our algorithms, and provides a base on which

1In [18], the minimal recommended RSA key size is 2048 bits for usage up to 2030. See also Annex B, in particular Section B.1
“Records de calculs cryptographiques”.

2The work [28] is one of only two academic works cited by NIST in the initial version (2011) of the report [31].
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further research work can be established. Because of the very nature of these specialized software packages
as research topics in their own right, needing both to borrow material from other projects, and being possible
source of inspiring material for others, it is again important that these be developed in a free and open-source
development model.

5. Highlights of the Year

5.1. Highlights of the Year
• Several Invited talks: Pierrick Gaudry was an invited speaker at the ECC 2018 workshop (Osaka,

Japan); Emmanuel Thomé was an invited speaker at the ANTS-XIII conference in Madison, WI,
USA (The biennial ANTS conference is the main international conference on algorithmic number
theory); Paul Zimmermann was an invited speaker at the 75th anniversary celebration of the journal
Mathematics of Computation (Providence, RI, USA).

• Cécile Pierrot was awarded the DGA (Direction Générale de l’Armement) Prize from Florence Parly,
the Minister of the Armed Forces, for her PhD Thesis.

BEST PAPER AWARD:

[11]
M. SCOTT, A. GUILLEVIC. A New Family of Pairing-Friendly elliptic curves, in "International Workshop on
the Arithmetic of Finite Fields - WAIFI", Bergen, Norway, L. BUDAGHYAN, F. RODRIGUEZ-HENRIQUEZ
(editors), June 2018, https://hal.inria.fr/hal-01875361

6. New Software and Platforms

6.1. Belenios
Belenios - Verifiable online voting system
KEYWORD: E-voting
FUNCTIONAL DESCRIPTION: Belenios is an open-source online voting system that provides confidentiality
and verifiability. End-to-end verifiablity relies on the fact that the ballot box is public (voters can check that
their ballots have been received) and on the fact that the tally is publicly verifiable (anyone can recount the
votes). Confidentiality relies on the encryption of the votes and the distribution of the decryption key.

Belenios builds upon Helios, a voting protocol used in several elections. The main design enhancement of
Belenios vs. Helios is that the ballot box can no longer add (fake) ballots, due to the use of credentials.
Moreover, Belenios includes a practical threshold decryption system that allows splitting the decryption key
among several authorities.
NEWS OF THE YEAR: Since 2015, it has been used by CNRS for remote election among its councils (more
than 30 elections every year) and since 2016, it has been used by Inria to elect representatives in the “comités
de centre” of each Inria center. In 2018, it has been used to organize about 250 elections (not counting test
elections). Belenios is typically used for elections in universities as well as in associations. This goes from
laboratory councils (e.g. Irisa, Cran), scientific societies (e.g. SMAI) to various associations (e.g. FFBS -
Fédération Française de Baseball et Softball, or SRFA - Société du Rat Francophone et de ses Amateurs).

In total in 2018, more than 13000 ballots have been cast using the voting platform Belenios.

• Participants: Pierrick Gaudry, Stéphane Glondu and Véronique Cortier

• Partners: CNRS - Inria

• Contact: Stéphane Glondu

• URL: http://belenios.gforge.inria.fr/

https://hal.inria.fr/hal-01875361
http://belenios.gforge.inria.fr/
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6.2. CADO-NFS
Crible Algébrique: Distribution, Optimisation - Number Field Sieve
KEYWORDS: Cryptography - Number theory
FUNCTIONAL DESCRIPTION: CADO-NFS is a complete implementation in C/C++ of the Number Field Sieve
(NFS) algorithm for factoring integers and computing discrete logarithms in finite fields. It consists in various
programs corresponding to all the phases of the algorithm, and a general script that runs them, possibly in
parallel over a network of computers.
NEWS OF THE YEAR: The main program for relation collection now supports composite "special-q", and
also parallelizes better. The memory footprint of the central step of linear algebra has been reduced, and the
parallelism of this step has been improved.

• Participants: Pierrick Gaudry, Emmanuel Thomé and Paul Zimmermann

• Contact: Emmanuel Thomé

• URL: http://cado-nfs.gforge.inria.fr/

6.3. rrspace
RIemann-Roch spaces
KEYWORD: Riemann-Roch spaces
FUNCTIONAL DESCRIPTION: The software rrspace implements an algorithm for computing a basis of the
Riemann-Roch space associated to a divisor on a curve defined over a finite field. It also implements an
algorithm for computing the group law in the Jacobian of such curves. The main algorithm is a variant of
Brill-Noether’s approach, designed during Aude Le Gluher’s Master thesis.

• Participants: Pierre-Jean Spaenlehauer and Aude Le Gluher

• Contact: Pierre-Jean Spaenlehauer

• URL: https://gitlab.inria.fr/pspaenle/rrspace

6.4. Platforms
6.4.1. Platform: computational resources

The computational resources of Caramba have increased significantly in 2018. On the one hand, the CPER
«CyberEntreprises» (French Ministry of Research, Région Grand Est, Inria, CNRS) funded the acquisition of
a 64-node, 2,048-core cluster called grvingt. This cluster is installed in the Inria facility. Other slightly older
hardware (a medium-size cluster called grcinq from 2013, funded by ANR, and a special machine funded
by the aforementioned CPER grant) was moved in the same location to form a coherent platform with about
3,000 cpu cores, 100 TB of storage, and specific machines for RAM-demanding computation. As a whole,
this platform provides an excellent support for the computational part of the work done in Caramba. This
platform is also embedded in the larger Grid’5000/Silecs platform (and accessible as a normal resource within
this platform). Technical administration is done by the Grid’5000 staff.

7. New Results

7.1. A new family of pairing-friendly elliptic curves
Participant: Aurore Guillevic.

In [11], together with M. Scott from Miracl, we presented an algorithm to generate new families of pairing-
friendly curves. It generalizes the very popular Barreto-Naehrig curves. This paper jointly received the best
paper award of the conference.

http://cado-nfs.gforge.inria.fr/
https://gitlab.inria.fr/pspaenle/rrspace
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7.2. Faster individual discrete logarithms in finite fields of composite extension
degree
Participant: Aurore Guillevic.

We improved in [7] the previous work [25] on speeding-up the first phase of the individual discrete logarithm
computation, the initial splitting, a.k.a. the smoothing phase. We extended the algorithm to any non-prime
finite field Fpn where n is composite. We also applied it to the new variant Tower-NFS. The paper is now
published.

7.3. Polynomial Time Bounded Distance Decoding near Minkowski’s Bound in
Discrete Logarithm Lattices
Participant: Cécile Pierrot [contact].

In [6], together with Léo Ducas, we proposed a concrete family of dense lattices of arbitrary dimension n in
which the lattice Bounded Distance Decoding (BDD) problem can be solved in deterministic polynomial time.
The lattice construction needs discrete logarithm computations that can be made in deterministic polynomial
time for well-chosen parameters. Each lattice comes with a deterministic polynomial time decoding algorithm
able to decode up to a large radius. Namely, we reached decoding radius within O(log n) Minkowski’s bound,
for both `1 and `2-norms.

7.4. Improved complexity bounds for counting points on hyperelliptic curves
Participants: Simon Abelard, Pierrick Gaudry [contact], Pierre-Jean Spaenlehauer [contact].

In [3], we presented a probabilistic Las Vegas algorithm for computing the local zeta function of a hyperelliptic
curve of genus g defined over Fq . It is based on the approaches by Schoof and Pila combined with a modeling
of the `-torsion by structured polynomial systems. Our main result improves on previously known complexity
bounds by showing that there exists a constant c > 0 such that, for any fixed g, this algorithm has expected
time and space complexity O((log q)

cg
) as q grows and the characteristic is large enough.

7.5. Counting points on genus-3 hyperelliptic curves with explicit real
multiplication
Participants: Simon Abelard, Pierrick Gaudry [contact], Pierre-Jean Spaenlehauer [contact].

In [9], we proposed a Las Vegas probabilistic algorithm to compute the zeta function of a genus-3 hyperelliptic
curve defined over a finite field Fq , with explicit real multiplication by an order Z[η] in a totally real cubic
field. Our main result states that this algorithm requires an expected number of O((log q)

6
) bit-operations,

where the constant in the O() depends on the ring Z[η] and on the degrees of polynomials representing the
endomorphism η. As a proof-of-concept, we computed the zeta function of a curve defined over a 64-bit prime
field, with explicit real multiplication by Z[2 cos(2π/7)].

7.6. Counting points on hyperelliptic curves with explicit real multiplication in
arbitrary genus
Participant: Simon Abelard.

In [14], we presented a probabilistic Las Vegas algorithm for computing the local zeta function of a genus-g
hyperelliptic curve defined over Fq with explicit real multiplication (RM) by an order Z[η] in a degree-g totally
real number field. It is based on the approaches by Schoof and Pila in a more favorable case where we can split
the `-torsion into g kernels of endomorphisms, as introduced by Gaudry, Kohel, and Smith in genus 2. To deal
with these kernels in any genus, we adapted a technique that Abelard, Gaudry, and Spaenlehauer introduced
to model the `-torsion by structured polynomial systems. Applying this technique to the kernels, the systems
we obtained are much smaller and so is the complexity of solving them. Our main result is that there exists a
constant c > 0 such that, for any fixed g, this algorithm has expected time and space complexity O((log q)

c
)

as q grows and the characteristic is large enough. We proved that c ≤ 8 and we also conjecture that the result
still holds for c = 6.
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7.7. A fast randomized geometric algorithm for computing Riemann-Roch
spaces
Participants: Aude Le Gluher, Pierre-Jean Spaenlehauer [contact].

In [16], we proposed a probabilistic Las Vegas variant of Brill-Noether’s algorithm for computing a basis of
the Riemann-Roch space L(D) associated to a divisorD on a projective plane curve C over a sufficiently large
perfect field k. Our main result shows that this algorithm requires at most O(max (deg (C)

2ω
,deg (D+)

ω
))

arithmetic operations in k, where ω is a feasible exponent for matrix multiplication and D+ is the smallest
effective divisor such that D+ ≥ D. This improves the best known upper bounds on the complexity of
computing Riemann-Roch spaces. Our algorithm may fail, but we showed that provided that a few mild
assumptions are satisfied, the failure probability is bounded by O(max (deg (C)

4
,deg (D+)

2
)/|E|), where

E is a finite subset of k in which we pick elements uniformly at random. We provide a freely available
C++/NTL implementation of the proposed algorithm, and experimental data. In particular, our implementation
enjoys a speed-up larger than 9 on several examples compared to the reference implementation in the Magma
computer algebra system. As a by-product, our algorithm also yields a method for computing the group law
on the Jacobian of a smooth plane curve of genus g within O(gω) operations in k, which slightly improves in
this context the best known complexity O(gω+ε) of Khuri-Makdisi’s algorithm.

7.8. Formal proof of mpfr_add
Participants: Jianyang Pan, Paul Zimmermann [contact].

With the help of Karthik Bhargavan (Prosecco project-team), we proved formally the correctness of the
mpfr_add code in case where all inputs and the output have the same precision, and this precision is less
than one limb (i.e., less than 64 bits on modern computers). The algorithm was proven formally correct using
the F ∗ language, and the extracted code, which was shown to be as efficient as the original MPFR code, is now
available in MPFR. A similar work was done for the multiplication mpfr_mul, but the proof of correctness
was only partly completed.

7.9. Various ways to split a floating-point number
Participant: Paul Zimmermann.

Together with Claude-Pierre Jeannerod and Jean-Michel Muller (AriC project-team), we revisited in an unified
way the classical algorithms to split a floating-point number in two parts, and some applications of these
algorithms. Some new algorithms were also designed. This work was presented at the 25th IEEE Symposium
on Computer Arithmetic [10].

7.10. A polyhedral method for sparse systems with many positive solutions
Participant: Pierre-Jean Spaenlehauer.

Together with Frédéric Bihan (Université Savoie Mont Blanc) and Francisco Santos (Universidad de
Cantabria), we investigated in [4] a version of Viro’s method for constructing polynomial systems with many
positive solutions, based on regular triangulations of the Newton polytope of the system. The number of posi-
tive solutions obtained with our method is governed by the size of the largest positively decorable subcomplex
of the triangulation. Here, positive decorability is a property that we introduced and which is dual to being a
subcomplex of some regular triangulation. Using this duality, we produced large positively decorable subcom-
plexes of the boundary complexes of cyclic polytopes. As a byproduct we obtained new lower bounds, some
of them being the best currently known, for the maximal number of positive solutions of polynomial systems
with prescribed numbers of monomials and variables. We also studied the asymptotics of these numbers and
observed a log-concavity property.

7.11. Fast Integer Multiplication Using Generalized Fermat Primes
Participants: Svyatoslav Covanov, Emmanuel Thomé [contact].
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In [5] we described an algorithm for the multiplication of two n-bit integers. It achieves the best asymptotic
complexity bound O(n log n · 4log∗ n) under a hypothesis on the distribution of generalized Fermat primes of
the form r2

λ

+ 1. This hypothesis states that there always exists a sufficiently small interval in which we can
find such a prime. Experimental results support this assumption. This article was submitted to Mathematics of
Computation and was completely rewritten in late 2017-early 2018. It is now accepted for final publication.

7.12. Improved Methods for Finding Optimal Formulae for Bilinear Maps in a
Finite Field
Participant: Svyatoslav Covanov.

In [15], we described a method improving on the exhaustive search algorithm originally developed in [19]. We
are able to compute new optimal formulae for the short product modulo X5 and the circulant product modulo
(X5 − 1). Moreover, we proved that there is essentially only one optimal decomposition of the product of
3× 2 by 2× 3 matrices up to the action of some group of automorphisms. This work has been submitted to
Theoretical Computer Science and is tentatively accepted, pending minor revisions.

7.13. Using Constraint Programming to Solve a Cryptanalytic Problem
Participant: Marine Minier.

In [8], we described Constraint Programming (CP) models to solve a cryptanalytic problem: the related key
differential attacks against the standard block cipher AES. We improved our models for those attacks and
the time required to solve the related key differential attacks for all instances of this particular problem. In
particular, we were able to find the best related key differential trails for all the instances of AES-128, AES-
192 and AES-256 in less than 5 core-hours except for one instance (AES-128 with 5 rounds) that took 15
core-hours.

7.14. Preparation of a submission for the NIST call dedicated to
standardization of lightweight cryptography
Participants: Marine Minier [contact], Paul Huynh, Virginie Lallemand.

During these last six months, we prepared a submission to the NIST call dedicated on lightweight cryptog-
raphy. The criteria required by this call are various and concern both small embedded micro-controllers and
efficient hardware implementation with side channel and fault attack resistance. The proposal will be submit-
ted by the call deadline, at the latest on Feb 25th, 2019.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
• We have training and consulting activities with the French Ministry of Defense.

• Together with the PESTO team, we have a contract with the Docapost company, the purpose of
which is to impove their e-voting solution by adding some verifiability properties and switching to
elliptic curve cryptography.

• In this contract handled in collaboration with the University of Bristol and the PESTO team, the goal
is to audit and prove security properties of a new e-voting protocol called CHVote, to be used in a
few cantons of Switzerland.

8.2. Bilateral Grants with Industry

https://www.docapost.com/
https://www.ge.ch/dossier/chvote-plateforme-vote-electronique-du-canton-geneve
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• This contract with Orange Gardens at Chatillon-Montrouge is dedicated to the supervision of Sandra
Rasoamiaramanana’s PhD thesis about security in the white box context. The co-supervisor for
Orange Gardens is Gilles Macario-rat.

• This contract with Thales (Thales Communication & Security, Genneviliers, subsidiary of Thales
Group) is dedicated to the supervision of Simon Masson’s PhD thesis about elliptic curves for
bilinear and post-quantum cryptography. The co-supervisor for Thales is Olivier Bernard.

9. Partnerships and Cooperations

9.1. Regional Initiatives
9.1.1. CPER CyberEntreprises

Program: CPER (Contrat de Plan État Région)
Project title: Cyber-Entreprises
Duration: 01/07/2015 - 31/12/2020
Coordinator: Emmanuel Thomé and Marc Jungers (CRAN)
Other partners: Inria, LORIA, CRAN, IECL, Centrale Supelec, LCFC.
Abstract: cf web site (in French only).

A high-performance computer cluster was funded by the CPER Cyber-entreprises project (Région Grand-Est,
French Ministry of Research and Higher Education, Inria, CNRS). This cluster is also mentioned in 6.4.

9.2. National Initiatives
9.2.1. FUI Industrial Partnership on Lightweight Cryptography

Program: FUI (Fonds Unique Interministériel)
Project acronym: PACLIDO
Project title: Protocoles et Algorithmes Cryptographiques Légers pour l’Internet Des Objets
Duration: 12/2017 - 12/2020
Coordinator: Airbus Cybersecurity.
Other partners: organisme, labo (pays) Airbus Cybersecurity, LORIA-CNRS, Rtone, Trusted Ob-
jects, CEA, Sophia Engineering, Université de Limoges, Saint-Quentin-en-Yvelines.
This contract is dedicated to the definition of new lightweight cryptographic primitives for the IoT.
See web site for a full presentation.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. Member of the Organizing Committees

Paul Zimmermann co-organized two workshops on the development of the iRRAM, GNU MPFR and GNU
MPC libraries: one in Dagstuhl in April, with 10 participants, and one in Trier in November, with 12
participants.

Paul Zimmermann also chaired the organizing committee of the EJCIM (École Jeunes Chercheurs Informa-
tique Informatique Mathématique) which took place in Nancy in 2018.

https://crypto.orange-labs.fr/people/Macario-Rat
http://www.thalesgroup.com/
http://www.thalesgroup.com/
https://project.inria.fr/cyberentreprises
https://airbus-cyber-security.com/fr/
http://www.loria.fr/fr/
https://rtone.fr/
http://www.trusted-objects.com/
http://www.trusted-objects.com/
http://www.cea.com/
http://www.sophiaengineering.fr/
http://www.unilim.fr/
http://www.saint-quentin-en-yvelines.fr/
https://www.paclido.fr/


Project-Team CARAMBA 15

10.1.2. Scientific Events Selection
Emmanuel Thomé is a member of the scientific directorate of the Dagstuhl computer science seminar series.

10.1.2.1. Member of steering committees

Pierrick Gaudry is a member of the steering committee of the Workshop on Elliptic Curve Cryptography
(ECC).

10.1.2.2. Member of the Conference Program Committees

Paul Zimmermann was a member of the program committee of ANTS XIII (Thirteenth Algorithmic Number
Theory Symposium, University of Wisconsin, Madison, WI, USA).

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

• Virginie Lallemand is a member of the editorial board of the IACR Transactions on Symmetric
Cryptology (ToSC) Journal for 2018/2019. This journal is the open-access journal associated to the
International Conference on Fast Software Encryption (FSE).

• Marine Minier is a guest editor of the special issue of Workshop on Coding and Cryptography (WCC)
in the journal Designs, Codes and Cryptography (DCC).

10.1.3.2. Reviewer - Reviewing Activities

Members of the project-team did their share in reviewing submissions to renowned conferences and journals.
Actual publications venues are not disclosed for anonymity reasons.

10.1.4. Invited Talks
• Emmanuel Thomé was invited to give a talk at the ANTS-XIII conference (Madison, WI, USA).
• Marine Minier was invited to give a talk at the Journées Nationales du GT Codage & Cryptographie,

Aussois, France.
• Marine Minier was invited to give a talk at Journée “Protection du code et des données, obfuscation

& whitebox cryptography”, Paris Saclay, France.
• Paul Zimmermann was invited to give a talk at the topical workshop Celebrating 75 Years of

Mathematics of Computation (ICERM, Providence, RI, USA).
• Pierrick Gaudry was invited to give a talk at the 22nd Workshop on Elliptic Curve Cryptography

(ECC 2018) in Osaka, Japan.

10.1.5. Research Administration
• Jérémie Detrey chairs the Commission des Utilisateurs des Moyens Informatiques (CUMI) of the

Inria Nancy – Grand Est research center.
• Pierrick Gaudry is vice-head of the Commission de mention Informatique of the École doctorale

IAEM of the University of Lorraine and is a member of the Conseil Scientifique du GdR IM.

He was:
– member of the CoS, poste MCF number 27MCF1087, Université de Lorraine;
– member of the CoS, poste PR number 25PR1054, Université de Lorraine;
– member of the CoS, poste MCF number 25MCF4159, Université de Toulon.

• Marine Minier is a member of Collegium of Science et Techniques of Université de Lorraine. She
was:

– president of the CoS, poste PR number 27PR1057, Université de Lorraine;
– member of the CoS, poste MCF number 27MCF0403, Université de Grenoble;
– member of the CoS, poste PR number 270001, École Navale de Brest;
– member of the CoS, poste MCF number 27MCF4111, Université de Bretagne Sud;
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• Pierre-Jean Spaenlehauer is a member of the commission développement technologique (CDT) of
the Inria Nancy Grand-Est research center.

• Emmanuel Thomé

– is a member of the management committee for the research project “CPER Cyberen-
treprises” (co-chair).

– is a member of the Comité Local Hygiène, Sécurité, et Conditions de Travail of the Inria
Nancy – Grand Est research center.

– chaired the hiring committee for the junior research positions (CR) at Inria Nancy.

• Marion Videau

– was a member of the hiring committee for the junior research positions (CR) at Inria
Rennes.

• Paul Zimmermann is member of the Scientific Committee of the EXPLOR Mésocentre, of the
“groupe de réflexion” Calcul, Codage, Information of the GDR-IM, of the advisory board of the
OpenDreamKit european project, of the scientific council of the LIRMM laboratory in Montpellier.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Licence: Cécile Pierrot, Programmation avancée en Python - TCSS5AC, 20 eq. TD, L3, Ecole des
Mines, Nancy, France.

Master: Cécile Pierrot, Introduction à Latex, 3 eq. TD, M1, Ecole des Mines, Nancy, France.

Licence: Jérémie Detrey, Sécurité des applications Web, 2 hours (lecture), L1, Université de Lor-
raine, IUT Charlemagne, Nancy, France.

Licence, Aurore Guillevic, Méthodologie de conception et de programmation, 16 eq. TD (24 TP),
L1, Université de Lorraine, Nancy, France.

Formation Continue, Aurore Guillevic, Introduction à la cryptographie pour enseignants de l’option
ISN (informatique et sciences du numérique) en lycée, 7 eq. TD, Espé de Lorraine (École supérieure
du professorat et de l’éducation), Nancy, France.

Licence, Aurore Guillevic, Introduction to algorithms (CSE103), 32 eq. TD, L1, École Polytech-
nique, Palaiseau, France.

Licence, Aurore Guillevic, Les bases de la programmation et de l’algorithmique (INF411), 40
eq. TD, 2e année, École Polytechnique, Palaiseau, France.

Master: Marine Minier, Contrôle d’accès, 40h eq. TD, M2 Informatique, Université de Lorraine,
Faculté des sciences et technologies, Vandœuvre-les-Nancy, France.

Master: Marine Minier, Introduction à la cryptographie, 18h eq. TD, M1 Informatique, Université
de Lorraine, Faculté des sciences et technologies, Vandœuvre-les-Nancy, France.

Licence: Marine Minier, Introduction à la sécurité et à la cryptographie, 10 hours (lectures) + 10
hours (tutorial sessions) + 10 hours (practical sessions), L3, Université de Lorraine, Faculté des
sciences et technologies, Vandœuvre-les-Nancy, France.

Licence: Marine Minier, Mathématiques Discrètes, 80h eq. TD, L2, Université de Lorraine, Faculté
des sciences et technologies, Vandœuvre-les-Nancy, France.

Responsability of the M2 SIRAV Sécurité Informatique, Réseaux et Architectures Virtuelles, 30
students: Marine Minier. Université de Lorraine, Faculté des sciences et technologies, Vandœuvre-
les-Nancy, France.

Master: Emmanuel Thomé, Protocoles de sécurité et Vérification (sub-part dedicated to crypto-
graphic primitives), 8h (lectures) + 6h (tutorial sessions).
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10.2.2. Supervision
Ph.D.: Simon Abelard, Comptage de points de courbes algébriques sur les corps finis et interactions
avec les systèmes polynomiaux, Univ. Lorraine. Defended 7 sept 2018, Pierrick Gaudry & Pierre-
Jean Spaenlehauer.
PhD: Svyatoslav Covanov, Algorithmes de multiplication : complexité bilinéaire et méthodes asymp-
totiquement rapides, Université de Lorraine. Defended 5 June 2018, Emmanuel Thomé and Jérémie
Detrey.
PhD in progress: Aude Le Gluher, Analyse algorithmique fine et simulation du crible algébrique,
since Sep. 2018, Pierre-Jean Spaenlehauer and Emmanuel Thomé.
PhD in progress: Simon Masson, Algorithmique des courbes destinées aux contextes de la cryp-
tographie bilinéaire et post-quantique, since Jan. 2018, Emmanuel Thomé and Aurore Guillevic.
PhD in progress: Gabrielle De Micheli, Le logarithme discret dans les corps finis, since Oct. 2018,
Cécile Pierrot et Pierrick Gaudry.
PhD in progress: Paul Huynh, analyse et conception de chiffrements authentifiés à bas coût, since
Oct. 2017, Marine Minier.
PhD in progress: Sandra Rasoamiaramanana, Délivrance de contextes sécurisés par des approches
hybrides, since May 2017, Ph.D. CIFRE Orange Gardens, Marine Minier.

10.2.3. Juries
Pierrick Gaudry: reviewer of the PhD thesis: Arithmetric and geometric structures in cryptography
defended by Benjamin Wesolowski, October 2018, EPFL (Switzerland).
Marine Minier:
• reviewer of the PhD thesis: Trust evaluation in secure architectures defended by Jean-

Baptiste Orfila, July 2018, Université Grenoble Alpes.
• member of the PhD thesis jury: Security analysis of contactless communication protocols

defended by David Gérault, November 2018, Université Clermont Auvergne.
• member of the PhD thesis jury: Cryptanalysis of symmetric key algorithms defended by

Colin Chaigneau, November 2018, Université de Versailles.

10.3. Popularization
10.3.1. Articles and contents

• In books/journals for the general public.

Paul Zimmermann coordinated (and largely contributed to) the translation into English of the 2013
book Calcul mathématique avec Sage. At the same time, the book was updated to a more recent
version of the Sage software tool. The resulting book will be published by SIAM at the end of 2018,
while an electronic version will remain available under a Creative Commons license [12].

• For online publications. Pierrick Gaudry co-authored a blog article about e-voting and the Belenios
tool [13].

• Interviews in order to popularize. Cécile Pierrot gave a radio interview at France Bleue about being
a cryptographer.

• Videos. Cécile Pierrot worked with Accustica, a company which promotes popularization. A portrait
was created for the exhibition “Les filles, osez les sciences !” 3. (video link).

10.3.2. Education
Cécile Pierrot was invited to the exhibition “Les filles, osez les sciences !” to make teachers considers how to
deconstruct gender stereotypes in (Computer) Science.

3Girls, let’s dare to do science!

https://www.youtube.com/watch?v=Rnrjkkczfx4&feature=youtu.be
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10.3.3. Interventions
Pierrick Gaudry gave a talk about e-voting at the Académie des Sciences.

Emmanuel Thomé gave a talk for students of «classes préparatoires» in Nancy visiting the Inria Nancy research
center, on the topic of trapdoored primes in cryptographic standards.

Paul Zimmermann participated in the Maths-en-jeans programme, with a class from Lycée Vauban in
Luxembourg.

Paul Zimmermann (and Stéphane Glondu from the software development team SED) participated in Fête de
la Science in October.

Cécile Pierrot co-organized and participated in Ada Lovelace day.

Cécile Pierrot gave a talk at Forum de l’Innovation des Armées 2018 about the discrete logarithm problem.

Cécile Pierrot led workshops for secondary-school pupils in Nancy, Reims and Toulouse about research in
Computer Science.

11. Bibliography
Publications of the year

Doctoral Dissertations and Habilitation Theses

[1] S. ABELARD. Counting points on hyperelliptic curves in large characteristic : algorithms and complexity,
Université de Lorraine, September 2018, https://tel.archives-ouvertes.fr/tel-01876314

[2] S. COVANOV. Multiplication algorithms : bilinear complexity and fast asymptotic methods, Université de
Lorraine, June 2018, https://tel.archives-ouvertes.fr/tel-01825744

Articles in International Peer-Reviewed Journals

[3] S. ABELARD, P. GAUDRY, P.-J. SPAENLEHAUER. Improved Complexity Bounds for Counting Points on Hy-
perelliptic Curves, in "Foundations of Computational Mathematics", 2018, https://hal.inria.fr/hal-01613530

[4] F. BIHAN, F. SANTOS, P.-J. SPAENLEHAUER. A Polyhedral Method for Sparse Systems with many Positive
Solutions, in "SIAM Journal on Applied Algebra and Geometry", 2018, vol. 2, no 4, pp. 620–645, https://
arxiv.org/abs/1804.05683 [DOI : 10.1137/18M1181912], https://hal.inria.fr/hal-01877602

[5] S. COVANOV, E. THOMÉ. Fast integer multiplication using generalized Fermat primes, in "Mathematics of
Computation", 2018, https://arxiv.org/abs/1502.02800 [DOI : 10.1090/MCOM/3367], https://hal.inria.fr/hal-
01108166

[6] L. DUCAS, C. PIERROT. Polynomial Time Bounded Distance Decoding near Minkowski’s Bound in Dis-
crete Logarithm Lattices, in "Designs, Codes and Cryptography", 2018, https://hal.archives-ouvertes.fr/hal-
01891713

[7] A. GUILLEVIC. Faster individual discrete logarithms in finite fields of composite extension degree, in "Math-
ematics of Computation", 2018, https://arxiv.org/abs/1809.06135 [DOI : 10.1090/MCOM/3376], https://hal.
inria.fr/hal-01341849

https://tel.archives-ouvertes.fr/tel-01876314
https://tel.archives-ouvertes.fr/tel-01825744
https://hal.inria.fr/hal-01613530
https://arxiv.org/abs/1804.05683
https://arxiv.org/abs/1804.05683
https://hal.inria.fr/hal-01877602
https://arxiv.org/abs/1502.02800
https://hal.inria.fr/hal-01108166
https://hal.inria.fr/hal-01108166
https://hal.archives-ouvertes.fr/hal-01891713
https://hal.archives-ouvertes.fr/hal-01891713
https://arxiv.org/abs/1809.06135
https://hal.inria.fr/hal-01341849
https://hal.inria.fr/hal-01341849


Project-Team CARAMBA 19

[8] D. GÉRAULT, P. LAFOURCADE, M. MINIER, C. SOLNON. Revisiting AES Related-Key Differential Attacks
with Constraint Programming, in "Information Processing Letters", 2018, vol. 139, pp. 24-29, https://hal.
archives-ouvertes.fr/hal-01827727

International Conferences with Proceedings

[9] S. ABELARD, P. GAUDRY, P.-J. SPAENLEHAUER. Counting points on genus-3 hyperelliptic curves with explicit
real multiplication, in "ANTS-XIII - Thirteenth Algorithmic Number Theory Symposium", Madison, United
States, July 2018, https://hal.inria.fr/hal-01816256

[10] C.-P. JEANNEROD, J.-M. MULLER, P. ZIMMERMANN. On various ways to split a floating-point number, in
"ARITH 2018 - 25th IEEE Symposium on Computer Arithmetic", Amherst (MA), United States, IEEE, June
2018, pp. 53-60 [DOI : 10.1109/ARITH.2018.8464793], https://hal.inria.fr/hal-01774587

[11] Best Paper
M. SCOTT, A. GUILLEVIC. A New Family of Pairing-Friendly elliptic curves, in "International Workshop on
the Arithmetic of Finite Fields - WAIFI", Bergen, Norway, L. BUDAGHYAN, F. RODRIGUEZ-HENRIQUEZ
(editors), June 2018, https://hal.inria.fr/hal-01875361.

Scientific Books (or Scientific Book chapters)

[12] P. ZIMMERMANN, A. CASAMAYOU, N. COHEN, G. CONNAN, T. DUMONT, L. FOUSSE, F. MALTEY,
M. MEULIEN, M. MEZZAROBBA, C. PERNET, N. M. THIERY, E. BRAY, J. CREMONA, M. FORETS, A.
GHITZA, H. THOMAS. Mathematical Computation with SageMath, SIAM, 2018, https://hal.inria.fr/hal-
01646401

Scientific Popularization

[13] V. CORTIER, P. GAUDRY, S. GLONDU. (a voté) Euh non : a cliqué, Le Monde, March 2018, https://hal.inria.
fr/hal-01936863

Other Publications

[14] S. ABELARD. Counting points on hyperelliptic curves with explicit real multiplication in arbitrary genus,
October 2018, working paper or preprint, https://hal.inria.fr/hal-01905580

[15] S. COVANOV. Improved method for finding optimal formulae for bilinear maps in a finite field, November
2018, https://arxiv.org/abs/1705.07728 - working paper or preprint, https://hal.inria.fr/hal-01519408

[16] A. LE GLUHER, P.-J. SPAENLEHAUER. A Fast Randomized Geometric Algorithm for Computing Riemann-
Roch Spaces, November 2018, https://arxiv.org/abs/1811.08237 - working paper or preprint, https://hal.inria.
fr/hal-01930573

References in notes

[17] D. ADRIAN, K. BHARGAVAN, Z. DURUMERIC, P. GAUDRY, M. GREEN, J. ALEX HALDERMAN, N.
HENINGER, D. SPRINGALL, E. THOMÉ, L. VALENTA, B. VANDERSLOOT, E. WUSTROW, S. ZANELLA-
BÉGUELIN, P. ZIMMERMANN. Imperfect Forward Secrecy: How Diffie-Hellman fails in practice, in
"CCS’15", ACM, 2015, pp. 5–17, http://dl.acm.org/citation.cfm?doid=2810103.2813707

https://hal.archives-ouvertes.fr/hal-01827727
https://hal.archives-ouvertes.fr/hal-01827727
https://hal.inria.fr/hal-01816256
https://hal.inria.fr/hal-01774587
https://hal.inria.fr/hal-01875361
https://hal.inria.fr/hal-01646401
https://hal.inria.fr/hal-01646401
https://hal.inria.fr/hal-01936863
https://hal.inria.fr/hal-01936863
https://hal.inria.fr/hal-01905580
https://arxiv.org/abs/1705.07728
https://hal.inria.fr/hal-01519408
https://arxiv.org/abs/1811.08237
https://hal.inria.fr/hal-01930573
https://hal.inria.fr/hal-01930573
http://dl.acm.org/citation.cfm?doid=2810103.2813707


20 Activity Report INRIA 2018

[18] AGENCE NATIONALE DE LA SÉCURITÉ DES SYSTÈMES D’INFORMATION. Référentiel général de sécurité,
annexe B1, 2014, Version 2.03, http://www.ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf

[19] R. BARBULESCU, J. DETREY, N. ESTIBALS, P. ZIMMERMANN. Finding Optimal Formulae for Bilinear
Maps, in "International Workshop of the Arithmetics of Finite Fields", Bochum, Germany, F. ÖZBUDAK,
F. RODRIGUEZ-HENRIQUEZ (editors), Lecture Notes in Computer Science, Ruhr Universitat Bochum, July
2012, vol. 7369 [DOI : 10.1007/978-3-642-31662-3_12], https://hal.inria.fr/hal-00640165

[20] R. BARBULESCU, P. GAUDRY, A. JOUX, E. THOMÉ. A heuristic quasi-polynomial algorithm for discrete
logarithm in finite fields of small characteristic, in "Eurocrypt 2014", Copenhagen, Denmark, P. Q. NGUYEN,
E. OSWALD (editors), Springer, May 2014, vol. 8441, pp. 1-16 [DOI : 10.1007/978-3-642-55220-5_1],
https://hal.inria.fr/hal-00835446

[21] J.-C. FAUGÈRE, P.-J. SPAENLEHAUER, J. SVARTZ. Sparse Gröbner bases: the unmixed case, in "ISSAC
2014", K. NABESHIMA (editor), ACM, 2014, pp. 178–185, Proceedings

[22] J.-C. FAUGÈRE, M. SAFEY EL DIN, P.-J. SPAENLEHAUER. Gröbner Bases of Bihomogeneous Ideals
generated by Polynomials of Bidegree (1, 1): Algorithms and Complexity, in "J. Symbolic Comput.", 2011,
vol. 46, no 4, pp. 406–437

[23] P. GAUDRY, É. SCHOST. Genus 2 point counting over prime fields, in "J. Symbolic Comput.", 2011, vol. 47,
no 4, pp. 368–400

[24] R. GRANGER, T. KLEINJUNG, J. ZUMBRÄGEL. On the Powers of 2, 2014, Cryptology ePrint Archive report,
http://eprint.iacr.org/2014/300

[25] A. GUILLEVIC. Computing Individual Discrete Logarithms Faster in GF (pn) with the NFS-DL Algorithm,
in "Asiacrypt 2015", Auckland, New Zealand, T. IWATA, J. H. CHEON (editors), Lecture Notes in Computer
Science, Springer, November 2015, vol. 9452, pp. 149-173 [DOI : 10.1007/978-3-662-48797-6_7], https://
hal.inria.fr/hal-01157378

[26] F. GÖLOGLU, R. GRANGER, J. MCGUIRE. On the Function Field Sieve and the Impact of Higher Splitting
Probabilities, in "CRYPTO 2013", R. CANETTI, J. A. GARAY (editors), Lecture Notes in Comput. Sci.,
Springer–Verlag, 2013, vol. 8043, pp. 109–128, Proceedings, Part II

[27] A. JOUX. A New Index Calculus Algorithm with Complexity L(1/4 + o(1)) in Small Characteristic, in
"Selected Areas in Cryptography – SAC 2013", T. LANGE, K. LAUTER, P. LISONĚK (editors), Lecture Notes
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