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2. Overall Objectives
2.1. Overall Objectives

Moving data on large supercomputers is becoming a major performance bottleneck, and the situation is
expected to worsen even more at exascale and beyond. Data transfer capabilities are growing at a slower
rate than processing power ones. The profusion of flops available will be difficult to use efficiently due to
constrained communication capabilities. Moving data is also an important source of power consumption.
The DataMove team focuses on data aware large scale computing, investigating approaches to reduce
data movements on large scale HPC machines. We will investigate data aware scheduling algorithms for
job management systems. The growing cost of data movements requires adapted scheduling policies able
to take into account the influence of intra-application communications, IOs as well as contention caused
by data traffic generated by other concurrent applications. At the same time experimenting new scheduling
policies on real platforms is unfeasible. Simulation tools are required to probe novel scheduling policies. Our
goal is to investigate how to extract information from actual compute centers traces in order to replay job
allocations and executions with new scheduling policies. Schedulers need information about the jobs behavior
on the target machine to actually make efficient allocation decisions. We will research approaches relying
on learning techniques applied to execution traces to extract data and forecast job behaviors. In addition to
traditional computation intensive numerical simulations, HPC platforms also need to execute more and more
often data intensive processing tasks like data analysis. In particular, the ever growing amount of data generated
by numerical simulation calls for a tighter integration between the simulation and the data analysis. The goal
is to reduce the data traffic and to speed-up result analysis by processing results in-situ, i.e. as closely as
possible to the locus and time of data generation. Our goal is here to investigate how to program and schedule
such analysis workflows in the HPC context, requiring the development of adapted resource sharing strategies,
data structures and parallel analytics schemes. To tackle these issues, we will intertwine theoretical research
and practical developments to elaborate solutions generic and effective enough to be of practical interest.
Algorithms with performance guarantees will be designed and experimented on large scale platforms with
realistic usage scenarios developed with partner scientists or based on logs of the biggest available computing
platforms. Conversely, our strong experimental expertise will enable to feed theoretical models with sound
hypotheses, to twist proven algorithms with practical heuristics that could be further retro-feeded into adequate
theoretical models.
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3. Research Program
3.1. Motivation

Today’s largest supercomputers 1 are composed of few millions of cores, with performances almost reaching
100 PetaFlops 2 for the largest machine. Moving data in such large supercomputers is becoming a major
performance bottleneck, and the situation is expected to worsen even more at exascale and beyond. The data
transfer capabilities are growing at a slower rate than processing power ones. The profusion of available flops
will very likely be underused due to constrained communication capabilities. It is commonly admitted that data
movements account for 50% to 70% of the global power consumption 3. Thus, data movements are potentially
one of the most important source of savings for enabling supercomputers to stay in the commonly adopted
energy barrier of 20 MegaWatts. In the mid to long term, non volatile memory (NVRAM) is expected to deeply
change the machine I/Os. Data distribution will shift from disk arrays with an access time often considered
as uniform, towards permanent storage capabilities at each node of the machine, making data locality an even
more prevalent paradigm.

The proposed DataMove team will work on optimizing data movements for large scale computing mainly
at two related levels:

• Resource allocation
• Integration of numerical simulation and data analysis

The resource and job management system (also called batch scheduler or RJMS) is in charge of allocating
resources upon user requests for executing their parallel applications. The growing cost of data movements
requires adapted scheduling policies able to take into account the influence of intra-application communica-
tions, I/Os as well as contention caused by data traffic generated by other concurrent applications. Modelling
the application behavior to anticipate its actual resource usage on such architecture is known to be challenging,
but it becomes critical for improving performances (execution time, energy, or any other relevant objective).
The job management system also needs to handle new types of workloads: high performance platforms now
need to execute more and more often data intensive processing tasks like data analysis in addition to traditional
computation intensive numerical simulations. In particular, the ever growing amount of data generated by nu-
merical simulation calls for a tighter integration between the simulation and the data analysis. The challenge
here is to reduce data traffic and to speed-up result analysis by performing result processing (compression,
indexation, analysis, visualization, etc.) as closely as possible to the locus and time of data generation. This
emerging trend called in-situ analytics requires to revisit the traditional workflow (loop of batch processing
followed by postmortem analysis). The application becomes a whole including the simulation, in-situ process-
ing and I/Os. This motivates the development of new well-adapted resource sharing strategies, data structures
and parallel analytics schemes to efficiently interleave the different components of the application and globally
improve the performance.

3.2. Strategy
DataMove targets HPC (High Performance Computing) at Exascale. But such machines and the associated
applications are expected to be available only in 5 to 10 years. Meanwhile, we expect to see a growing number
of petaflop machines to answer the needs for advanced numerical simulations. A sustainable exploitation of
these petaflop machines is a real and hard challenge that we will address. We may also see in the coming
years a convergence between HPC and Big Data, HPC platforms becoming more elastic and supporting Big
Data jobs, or HPC applications being more commonly executed on cloud like architectures. This is the second
top objective of the 2015 US Strategic Computing Initiative 4: Increasing coherence between the technology
base used for modelling and simulation and that used for data analytic computing. We will contribute to that
convergence at our level, considering more dynamic and versatile target platforms and types of workloads.

1Top500 Ranking, http://www.top500.org
21015 floating point operations per second
3SciDAC Review, 2010
4https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative

http://www.top500.org
https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
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Our approaches should entail minimal modifications on the code of numerical simulations. Often large scale
numerical simulations are complex domain specific codes with a long life span. We assume these codes
as being sufficiently optimized. We will influence the behavior of numerical simulations through resource
allocation at the job management system level or when interleaving them with analytics code.

To tackle these issues, we propose to intertwine theoretical research and practical developments in an agile
mode. Algorithms with performance guarantees will be designed and experimented on large scale platforms
with realistic usage scenarios developed with partner scientists or based on logs of the biggest available
computing platforms (national supercomputers like Curie, or the BlueWaters machine accessible through our
collaboration with Argonne National Lab). Conversely, a strong experimental expertise will enable to feed
theoretical models with sound hypotheses, to twist proven algorithms with practical heuristics that could be
further retro-feeded into adequate theoretical models.

A central scientific question is to make the relevant choices for optimizing performance (in a broad sense)
in a reasonable time. HPC architectures and applications are increasingly complex systems (heterogeneity,
dynamicity, uncertainties), which leads to consider the optimization of resource allocation based on
multiple objectives, often contradictory (like energy and run-time for instance). Focusing on the optimization
of one particular objective usually leads to worsen the others. The historical positioning of some members
of the team who are specialists in multi-objective optimization is to generate a (limited) set of trade-off
configurations, called Pareto points, and choose when required the most suitable trade-off between all the
objectives. This methodology differs from the classical approaches, which simplify the problem into a single
objective one (focus on a particular objective, combining the various objectives or agglomerate them). The real
challenge is thus to combine algorithmic techniques to account for this diversity while guaranteeing a target
efficiency for all the various objectives.

The DataMove team aims to elaborate generic and effective solutions of practical interest. We will make our
new algorithms accessible through the team flagship software tools, the OAR batch scheduler and the in-
situ processing framework FlowVR. We will maintain and enforce strong links with teams closely connected
with large architecture design and operation (CEA DAM, BULL, Argonne National Lab), as well as scientists
of other disciplines, in particular computational biologists, with whom we will elaborate and validate new
usage scenarios (IBPC, CEA DAM, EDF).

3.3. Research Directions
DataMove research activity is organised around three directions. When a parallel job executes on a machine,
it triggers data movements through the input data it needs to read, the results it produces (simulation results as
well as traces) that need to be stored in the file system, as well as internal communications and temporary
storage (for fault tolerance related data for instance). Modeling in details the simulation and the target
machines to analyze scheduling policies is not feasible at large scales. We propose to investigate alternative
approaches, including learning approaches, to capture and model the influence of data movements on the
performance metrics of each job execution to develop Data Aware Batch Scheduling models and algorithms
(Sec. 4.1). Experimenting new scheduling policies on real platforms at scale is unfeasible. Theoretical
performance guarantees are not sufficient to ensure a new algorithm will actually perform as expected on
a real platform. An intermediate evaluation level is required to probe novel scheduling policies. The second
research axe focuses on the Empirical Studies of Large Scale Platforms (Sec. 4.2). The goal is to investigate
how we could extract from actual computing centers traces information to replay the job allocations and
executions on a simulated or emulated platform with new scheduling policies. Schedulers need information
about jobs behavior on target machines to actually be able to make efficient allocation decisions. Asking users
to caracterize jobs often does not lead to reliable information. The third research direction Integration of High
Performance Computing and Data Analytics (Sec. 4.3) addresses the data movement issue from a different
perspective. New data analysis techniques on the HPC platform introduce new type of workloads, potentially
more data than compute intensive, but could also enable to reduce data movements by directly enabling to
pipe-line simulation execution with a live analysis of the produced results. Our goal is here to investigate how
to program and schedule such analysis workflows in the HPC context.
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4. Application Domains

4.1. Data Aware Batch Scheduling
Large scale high performance computing platforms are becoming increasingly complex. Determining efficient
allocation and scheduling strategies that can adapt to technological evolutions is a strategic and difficult
challenge. We are interested in scheduling jobs in hierarchical and heterogeneous large scale platforms. On
such platforms, application developers typically submit their jobs in centralized waiting queues. The job
management system aims at determining a suitable allocation for the jobs, which all compete against each
other for the available computing resources. Performances are measured using different classical metrics like
maximum completion time or slowdown. Current systems make use of very simple (but fast) algorithms that
however rely on simplistic platform and execution models, and thus, have limited performances.

For all target scheduling problems we aim to provide both theoretical analysis and complementary analysis
through simulations. Achieving meaningful results will require strong improvements on existing models (on
power for example) and the design of new approximation algorithms with various objectives such as stretch,
reliability, throughput or energy consumption, while keeping in focus the need for a low-degree polynomial
complexity.

4.1.1. Algorithms
The most common batch scheduling policy is to consider the jobs according to the First Come First
Served order (FCFS) with backfilling (BF). BF is the most widely used policy due to its easy and robust
implementation and known benefits such as high system utilization. It is well-known that this strategy does not
optimize any sophisticated function, but it is simple to implement and it guarantees that there is no starvation
(i.e. every job will be scheduled at some moment).

More advanced algorithms are seldom used on production platforms due to both the gap between theoretical
models and practical systems and speed constraints. When looking at theoretical scheduling problems, the
generally accepted goal is to provide polynomial algorithms (in the number of submitted jobs and the number
of involved computing units). However, with millions of processing cores where every process and data
transfer have to be individually scheduled, polynomial algorithms are prohibitive as soon as the polynomial
degree is too large. The model of parallel tasks simplifies this problem by bundling many threads and
communications into single boxes, either rigid, rectangular or malleable. Especially malleable tasks capture
the dynamicity of the execution. Yet these models are ill-adapted to heterogeneous platforms, as the running
time depends on more than simply the number of allotted resources, and some of the common underlying
assumptions on the speed-up functions (such as monotony or concavity) are most often only partially verified.

In practice, the job execution times depend on their allocation (due to communication interferences and
heterogeneity in both computation and communication), while theoretical models of parallel jobs usually
consider jobs as black boxes with a fixed (maximum) execution time. Though interesting and powerful, the
classical models (namely, synchronous PRAM model, delay, LogP) and their variants (such as hierarchical
delay), are not well-suited to large scale parallelism on platforms where the cost of moving data is significant,
non uniform and may change over time. Recent studies are still refining such models in order to take into
account communication contentions more accurately while remaining tractable enough to provide a useful
tool for algorithm design.

Today, all algorithms in use in production systems are oblivious to communications. One of our main goals
is to design a new generation of scheduling algorithms fitting more closely job schedules according to
platform topologies.

4.1.2. Locality Aware Allocations
Recently, we developed modifications of the standard back-filling algorithm taking into account platform
topologies. The proposed algorithms take into account locality and contiguity in order to hide communication
patterns within parallel tasks. The main result here is to establish good lower bounds and small approximation
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ratios for policies respecting the locality constraints. The algorithms work in an online fashion, improving the
global behavior of the system while still keeping a low running time. These improvements rely mainly on
our past experience in designing approximation algorithms. Instead of relying on complex networking models
and communication patterns for estimating execution times, the communications are disconnected from the
execution time. Then, the scheduling problem leads to a trade-off: optimizing locality of communications on
one side and a performance objective (like the makespan or stretch) on the other side.

In the perspective of taking care of locality, other ongoing works include the study of schedulers for platforms
whose interconnection network is a static structured topology (like the 3D-torus of the BlueWaters platform
we work on in collaboration with the Argonne National Laboratory). One main characteristic of this 3D-torus
platform is to provide I/O nodes at specific locations in the topology. Applications generate and access specific
data and are thus bounded to specific I/O nodes. Resource allocations are constrained in a strong and unusual
way. This problem is close for actual hierarchical platforms. The scheduler needs to compute a schedule such
that I/O nodes requirements are filled for each application while at the same time avoiding communication
interferences. Moreover, extra constraints can arise for applications requiring accelerators that are gathered on
the nodes at the edge of the network topology.

While current results are encouraging, they are however limited in performance by the low amount of
information available to the scheduler. We look forward to extend ongoing work by progressively increasing
application and network knowledge (by technical mechanisms like profiling or monitoring or by more
sophisticated methods like learning). It is also important to anticipate on application resource usage in terms
of compute units, memory as well as network and I/Os to efficiently schedule a mix of applications with
different profiles. For instance, a simple solution is to partition the jobs as "communication intensive" or
"low communications". Such a tag could be achieved by the users them selves or obtained by learning
techniques. We could then schedule low communications jobs using leftover spaces while taking care
of high communication jobs. More sophisticated options are possible, for instance those that use more
detailed communication patterns and networking models. Such options would leverage the work proposed
in Section 4.2 for gathering application traces.

4.1.3. Data-Centric Processing
Exascale computing is shifting away from the traditional compute-centric models to a more data-centric one.
This is driven by the evolving nature of large scale distributed computing, no longer dominated by pure
computations but also by the need to handle and analyze large volumes of data. These data can be large
databases of results, data streamed from a running application or another scientific instrument (collider for
instance). These new workloads call for specific resource allocation strategies.

Data movements and storage are expected to be a major energy and performance bottleneck on next gener-
ation platforms. Storage architectures are also evolving, the standard centralized parallel file system being
complemented with local persistent storage (Burst Buffers, NVRAM). Thus, one data producer can stage
data on some nodes’ local storage, requiring to schedule close by the associated analytics tasks to limit data
movements. This kind of configuration, often referred as in-situ analytics, is expected to become common as it
enables to switch from the traditional I/O intensive workflow (batch-processing followed by post mortem anal-
ysis and visualization) to a more storage conscious approach where data are processed as closely as possible
to where and when they are produced (in-situ processing is addressed in details in section 4.3). By reducing
data movements and scheduling the extra processing on resources not fully exploited yet, in-situ processing
is expected to have also a significant positive energetic impact. Analytics codes can be executed in the same
nodes than the application, often on dedicated cores commonly called helper cores, or on dedicated nodes
called stagging nodes. The results are either forwarded to the users for visualization or saved to disk through
I/O nodes. In-situ analytics can also take benefit of node local disks or burst buffers to reduce data movements.
Future job scheduling strategies should take into account in-situ processes in addition to the job allocation to
optimize both energy consumption and execution time. On the one hand, this problem can be reduced to an
allocation problem of extra asynchronous tasks to idle computing units. But on the other hand, embedding
analytics in applications brings extra difficulties by making the application more heterogeneous and imposing
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more constraints (data affinity) on the required resources. Thus, the main point here is to develop efficient
algorithms for dealing with heterogeneity without increasing the global computational cost.

4.1.4. Learning
Another important issue is to adapt the job management system to deal with the bad effects of uncertainties,
which may be catastrophic in large scale heterogeneous HPC platforms (jobs delayed arbitrarly far or jobs
killed). A natural question is then: is it possible to have a good estimation of the job and platform parameters
in order to be able to obtain a better scheduling ? Many important parameters (like the number or type of
required resources or the estimated running time of the jobs) are asked to the users when they submit their
jobs. However, some of these values are not accurate and in many cases, they are not even provided by the
end-users. In DataMove, we propose to study new methods for a better prediction of the characteristics of the
jobs and their execution in order to improve the optimization process. In particular, the methods well-studied
in the field of big data (in supervised Machine Learning, like classical regression methods, Support Vector
Methods, random forests, learning to rank techniques or deep learning) could and must be used to improve
job scheduling in large scale HPC platforms. This topic received a great attention recently in the field of
parallel and distributed processing. A preliminary study has been done recently by our team with the target
of predicting the job running times (called wall times). We succeeded to improve significantly in average the
reference EASY Back Filling algorithm by estimating the wall time of the jobs, however, this method leads to
big delay for the stretch of few jobs. Even if we succeed in determining more precisely hidden parameters, like
the wall time of the jobs, this is not enough to determine an optimized solution. The shift is not only to learn on
dedicated parameters but also on the scheduling policy. The data collected from the accounting and profiling
of jobs can be used to better understand the needs of the jobs and through learning to propose adaptations for
future submissions. The goal is to propose extensions to further improve the job scheduling and improve the
performance and energy efficiency of the application. For instance preference learning may enable to compute
on-line new priorities to back-fill the ready jobs.

4.1.5. Multi-objective Optimization
Several optimization questions that arise in allocation and scheduling problems lead to the study of several
objectives at the same time. The goal is then not a single optimal solution, but a more complicated mathemat-
ical object that captures the notion of trade-off. In broader terms, the goal of multi-objective optimization is
not to externally arbitrate on disputes between entities with different goals, but rather to explore the possible
solutions to highlight the whole range of interesting compromises. A classical tool for studying such multi-
objective optimization problems is to use Pareto curves. However, the full description of the Pareto curve can
be very hard because of both the number of solutions and the hardness of computing each point. Addressing
this problem will opens new methodologies for the analysis of algorithms.

To further illustrate this point here are three possible case studies with emphasis on conflicting interests
measured with different objectives. While these cases are good representatives of our HPC context, there
are other pertinent trade-offs we may investigate depending on the technology evolution in the coming years.
This enumeration is certainly not limitative.

Energy versus Performance. The classical scheduling algorithms designed for the purpose of performance
can no longer be used because performance and energy are contradictory objectives to some extent. The
scheduling problem with energy becomes a multi-objective problem in nature since the energy consumption
should be considered as equally important as performance at exascale. A global constraint on energy could be
a first idea for determining trade-offs but the knowledge of the Pareto set (or an approximation of it) is also
very useful.

Administrators versus application developers. Both are naturally interested in different objectives: In
current algorithms, the performance is mainly computed from the point of view of administrators, but the users
should be in the loop since they can give useful information and help to the construction of better schedules.
Hence, we face again a multi-objective problem where, as in the above case, the approximation of the Pareto set
provides the trade-off between the administrator view and user demands. Moreover, the objectives are usually
of the same nature. For example, max stretch and average stretch are two objectives based on the slowdown
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factor that can interest administrators and users, respectively. In this case the study of the norm of stretch can
be also used to describe the trade-off (recall that the L1-norm corresponds to the average objective while the
L∞-norm to the max objective). Ideally, we would like to design an algorithm that gives good approximate
solutions at the same time for all norms. The L2 or L3-norm are useful since they describe the performance
of the whole schedule from the administrator point of view as well as they provide a fairness indication to the
users. The hard point here is to derive theoretical analysis for such complicated tools.

Resource Augmentation. The classical resource augmentation models, i.e. speed and machine augmentation,
are not sufficient to get good results when the execution of jobs cannot be frequently interrupted. However,
based on a resource augmentation model recently introduced, where the algorithm may reject a small number
of jobs, some members of our team have given the first interesting results in the non-preemptive direction. In
general, resource augmentation can explain the intuitive good behavior of some greedy algorithms while, more
interestingly, it can give ideas for new algorithms. For example, in the rejection context we could dedicate a
small number of nodes for the usually problematic rejected jobs. Some initial experiments show that this can
lead to a schedule for the remaining jobs that is very close to the optimal one.

4.2. Empirical Studies of Large Scale Platforms
Experiments or realistic simulations are required to take into account the impact of allocations and assess the
real behavior of scheduling algorithms. While theoretical models still have their interest to lay the groundwork
for algorithmic designs, the models are necessarily reflecting a purified view of the reality. As transferring our
algorithm in a more practical setting is an important part of our creed, we need to ensure that the theoretical
results found using simplified models can really be transposed to real situations. On the way to exascale
computing, large scale systems become harder to study, to develop or to calibrate because of the costs in
both time and energy of such processes. It is often impossible to convince managers to use a production
cluster for several hours simply to test modifications in the RJMS. Moreover, as the existing RJMS production
systems need to be highly reliable, each evolution requires several real scale test iterations. The consequence
is that scheduling algorithms used in production systems are mostly outdated and not customized correctly.
To circumvent this pitfall, we need to develop tools and methodologies for alternative empirical studies, from
analysis of workload traces, to job models, simulation and emulation with reproducibility concerns.

4.2.1. Workload Traces with Resource Consumption
Workload traces are the base element to capture the behavior of complete systems composed of submitted jobs,
running applications, and operating tools. These traces must be obtained on production platforms to provide
relevant and representative data. To get a better understanding of the use of such systems, we need to look at
both, how the jobs interact with the job management system, and how they use the allocated resources. We
propose a general workload trace format that adds jobs resource consumption to the commonly used SWF 5

workload trace format. This requires to instrument the platforms, in particular to trace resource consumptions
like CPU, data movements at memory, network and I/O levels, with an acceptable performance impact. In
a previous work we studied and proposed a dedicated job monitoring tool whose impact on the system has
been measured as lightweight (0.35% speed-down) with a 1 minute sampling rate. Other tools also explore job
monitoring, like TACC Stats. A unique feature from our tool is its ability to monitor distinctly jobs sharing
common nodes.

Collected workload traces with jobs resource consumption will be publicly released and serve to provide
data for works presented in Section 4.1. The trace analysis is expected to give valuable insights to define
models encompassing complex behaviours like network topology sensitivity, network congestion and resource
interferences.

We expect to join efforts with partners for collecting quality traces (ATOS/Bull, Ciment meso center, Joint
Laboratory on Extreme Scale Computing) and will collaborate with the Inria team POLARIS for their analysis.

5Standard Workload Format: http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
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4.2.2. Simulation
Simulations of large scale systems are faster by multiple orders of magnitude than real experiments. Unfor-
tunately, replacing experiments with simulations is not as easy as it may sound, as it brings a host of new
problems to address in order to ensure that the simulations are closely approximating the execution of typical
workloads on real production clusters. Most of these problems are actually not directly related to scheduling
algorithms assessment, in the sense that the workload and platform models should be defined independently
from the algorithm evaluations, in order to ensure a fair assessment of the algorithms’ strengths and weak-
nesses. These research topics (namely platform modeling, job models and simulator calibration) are addressed
in the other subsections.

We developed an open source platform simulator within DataMove (in conjunction with the OAR development
team) to provide a widely distributable test bed for reproducible scheduling algorithm evaluation. Our
simulator, named Batsim, allows to simulate the behavior of a computational platform executing a workload
scheduled by any given scheduling algorithm. To obtain sound simulation results and to broaden the scope of
the experiments that can be done thanks to Batsim, we did not chose to create a (necessarily limited) simulator
from scratch, but instead to build on top of the SimGrid simulation framework.

To be open to as many batch schedulers as possible, Batsim decouples the platform simulation and the
scheduling decisions in two clearly-separated software components communicating through a complete and
documented protocol. The Batsim component is in charge of simulating the computational resources behaviour
whereas the scheduler component is in charge of taking scheduling decisions. The scheduler component may
be both a resource and a job management system. For jobs, scheduling decisions can be to execute a job, to
delay its execution or simply to reject it. For resources, other decisions can be taken, for example to change
the power state of a machine i.e. to change its speed (in order to lower its energy consumption) or to switch it
on or off. This separation of concerns also enables interfacing with potentially any commercial RJMS, as long
as the communication protocol with Batsim is implemented. A proof of concept is already available with the
OAR RJMS.

Using this test bed opens new research perspectives. It allows to test a large range of platforms and workloads
to better understand the real behavior of our algorithms in a production setting. In turn, this opens the
possibility to tailor algorithms for a particular platform or application, and to precisely identify the possible
shortcomings of the theoretical models used.

4.2.3. Job and Platform Models
The central purpose of the Batsim simulator is to simulate job behaviors on a given target platform under
a given resource allocation policy. Depending on the workload, a significant number of jobs are parallel
applications with communications and file system accesses. It is not conceivable to simulate individually all
these operations for each job on large plaforms with their associated workload due to implied simulation
complexity. The challenge is to define a coarse grain job model accurate enough to reproduce parallel
application behavior according to the target platform characteristics. We will explore models similar to the
BSP (Bulk Synchronous Program) approach that decomposes an application in local computation supersteps
ended by global communications and a global synchronization. The model parameters will be established by
means of trace analysis as discussed previously, but also by instrumenting some parallel applications to capture
communication patterns. This instrumentation will have a significant impact on the concerned application
performance, restricting its use to a few applications only. There are a lot of recurrent applications executed
on HPC platform, this fact will help to reduce the required number of instrumentations and captures. To assign
each job a model, we are considering to adapt the concept of application signatures as proposed in. Platform
models and their calibration are also required. Large parts of these models, like those related to network, are
provided by Simgrid. Other parts as the filesystem and energy models are comparatively recent and will need
to be enhanced or reworked to reflect the HPC platform evolutions. These models are then generally calibrated
by running suitable benchmarks.

4.2.4. Emulation and Reproducibility
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The use of coarse models in simulation implies to set aside some details. This simplification may hide system
behaviors that could impact significantly and negatively the metrics we try to enhance. This issue is particularly
relevant when large scale platforms are considered due to the impossibility to run tests at nominal scale on these
real platforms. A common approach to circumvent this issue is the use of emulation techniques to reproduce,
under certain conditions, the behavior of large platforms on smaller ones. Emulation represents a natural
complement to simulation by allowing to execute directly large parts of the actual evaluated software and
system, but at the price of larger compute times and a need for more resources. The emulation approach was
chosen in to compare two job management systems from workload traces of the CURIE supercomputer (80000
cores). The challenge is to design methods and tools to emulate with sufficient accuracy the platform and the
workload (data movement, I/O transfers, communication, applications interference). We will also intend to
leverage emulation tools like Distem from the MADYNES team. It is also important to note that the Batsim
simulator also uses emulation techniques to support the core scheduling module from actual RJMS. But the
integration level is not the same when considering emulation for larger parts of the system (RJMS, compute
node, network and filesystem).

Replaying traces implies to prepare and manage complex software stacks including the OS, the resource
management system, the distributed filesystem and the applications as well as the tools required to conduct
experiments. Preparing these stacks generate specific issues, one of the major one being the support for re-
producibility. We propose to further develop the concept of reconstructability to improve experiment repro-
ducibility by capturing the build process of the complete software stack. This approach ensures reproducibility
over time better than other ways by keeping all data (original packages, build recipe and Kameleon engine)
needed to build the software stack.

In this context, the Grid’5000 (see Sec. 5.4) experimentation infrastructure that gives users the control on the
complete software stack is a crucial tool for our research goals. We will pursue our strong implication in this
infrastructure.

4.3. Integration of High Performance Computing and Data Analytics
Data produced by large simulations are traditionally handled by an I/O layer that moves them from the compute
cores to the file system. Analysis of these data are performed after reading them back from files, using some
domain specific codes or some scientific visualisation libraries like VTK. But writing and then reading back
these data generates a lot of data movements and puts under pressure the file system. To reduce these data
movements, the in situ analytics paradigm proposes to process the data as closely as possible to where
and when the data are produced. Some early solutions emerged either as extensions of visualisation tools
or of I/O libraries like ADIOS. But significant progresses are still required to provide efficient and flexible
high performance scientific data analysis tools. Integrating data analytics in the HPC context will have an
impact on resource allocation strategies, analysis algorithms, data storage and access, as well as computer
architectures and software infrastructures. But this paradigm shift imposed by the machine performance also
sets the basis for a deep change on the way users work with numerical simulations. The traditional workflow
needs to be reinvented to make HPC more user-centric, more interactive and turn HPC into a commodity
tool for scientific discovery and engineering developments. In this context DataMove aims at investigating
programming environments for in situ analytics with a specific focus on task scheduling in particular, to
ensure an efficient sharing of resources with the simulation.

4.3.1. Programming Model and Software Architecture
In situ creates a tighter loop between the scientist and her/his simulation. As such, an in situ framework needs
to be flexible to let the user define and deploy its own set of analysis. A manageable flexibility requires to
favor simplicity and understandability, while still enabling an efficient use of parallel resources. Visualization
libraries like VTK or Visit, as well as domain specific environments like VMD have initially been developed
for traditional post-mortem data analysis. They have been extended to support in situ processing with some
simple resource allocation strategies but the level of performance, flexibility and ease of use that is expected
requires to rethink new environments. There is a need to develop a middleware and programming environment
taking into account in its fundations this specific context of high performance scientific analytics.
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Similar needs for new data processing architectures occurred for the emerging area of Big Data Analytics,
mainly targeted to web data on cloud-based infrastructures. Google Map/Reduce and its successors like Spark
or Stratosphere/Flink have been designed to match the specific context of efficient analytics for large volumes
of data produced on the web, on social networks, or generated by business applications. These systems have
mainly been developed for cloud infrastructures based on commodity architectures. They do not leverage the
specifics of HPC infrastructures. Some preliminary adaptations have been proposed for handling scientific
data in a HPC context. However, these approaches do not support in situ processing.

Following the initial development of FlowVR, our middleware for in situ processing, we will pursue our
effort to develop a programming environment and software architecture for high performance scientific data
analytics. Like FlowVR, the map/reduce tools, as well as the machine learning frameworks like TensorFlow,
adopted a dataflow graph for expressing analytics pipe-lines. We are convinced that this dataflow approach
is both easy to understand and yet expresses enough concurrency to enable efficient executions. The graph
description can be compiled towards lower level representations, a mechanism that is intensively used by
Stratosphere/Flink for instance. Existing in situ frameworks, including FlowVR, inherit from the HPC way
of programming with a thiner software stack and a programming model close to the machine. Though this
approach enables to program high performance applications, this is usually too low level to enable the scientist
to write its analysis pipe-line in a short amount of time. The data model, i.e. the data semantics level accessible
at the framework level for error check and optimizations, is also a fundamental aspect of such environments.
The key/value store has been adopted by all map/reduce tools. Except in some situations, it cannot be adopted
as such for scientific data. Results from numerical simulations are often more structured than web data,
associated with acceleration data structures to be processed efficiently. We will investigate data models for
scientific data building on existing approaches like Adios or DataSpaces.

4.3.2. Resource Sharing
To alleviate the I/O bottleneck, the in situ paradigm proposes to start processing data as soon as made available
by the simulation, while still residing in the memory of the compute node. In situ processings include data
compression, indexing, computation of various types of descriptors (1D, 2D, images, etc.). Per se, reducing
data output to limit I/O related performance drops or keep the output data size manageable is not new. Scientists
have relied on solutions as simple as decreasing the frequency of result savings. In situ processing proposes
to move one step further, by providing a full fledged processing framework enabling scientists to more easily
and thoroughly manage the available I/O budget.

The most direct way to perform in situ analytics is to inline computations directly in the simulation code. In
this case, in situ processing is executed in sequence with the simulation that is suspended meanwhile. Though
this approach is direct to implement and does not require complex framework environments, it does not enable
to overlap analytics related computations and data movements with the simulation execution, preventing to
efficiently use the available resources. Instead of relying on this simple time sharing approach, several works
propose to rely on space sharing where one or several cores per node, called helper cores, are dedicated to
analytics. The simulation responsibility is simply to handle a copy of the relevant data to the node-local in situ
processes, both codes being executed concurrently. This approach often lead to significantly beter performance
than in-simulation analytics.

For a better isolation of the simulation and in situ processes, one solution consists in offloading in situ tasks
from the simulation nodes towards extra dedicated nodes, usually called staging nodes. These computations
are said to be performed in-transit. But this approach may not always be beneficial compared to processing on
simulation nodes due to the costs of moving the data from the simulation nodes to the staging nodes.

FlowVR enables to mix these different resources allocation strategies for the different stages of an analytics
pile-line. Based on a component model, the scientist designs analytics workflows by first developing process-
ing components that are next assembled in a dataflow graph through a Python script. At runtime the graph is
instantiated according to the execution context, FlowVR taking care of deploying the application on the target
architecture, and of coordinating the analytics workflows with the simulation execution.
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But today the choice of the resource allocation strategy is mostly ad-hoc and defined by the programmer.
We will investigate solutions that enable a cooperative use of the resource between the analytics and the
simulation with minimal hints from the programmer. In situ processings inherit from the parallelization scale
and data distribution adopted by the simulation, and must execute with minimal perturbations on the simulation
execution (whose actual resource usage is difficult to know a priori). We need to develop adapted scheduling
strategies that operate at compile and run time. Because analysis are often data intensive, such solutions
must take into consideration data movements, a point that classical scheduling strategies designed first for
compute intensive applications often overlook. We expect to develop new scheduling strategies relying on
the methodologies developed in Sec. 4.1.5. Simulations as well as analysis are iterative processes exposing a
strong spatial and temporal coherency that we can take benefit of to anticipate their behavior and then take
more relevant resources allocation strategies, possibly based on advanced learning algorithms or as developed
in Section 4.1.

In situ analytics represent a specific workload that needs to be scheduled very closely to the simulation, but
not necessarily active during the full extent of the simulation execution and that may also require to access
data from previous runs (stored in the file system or on specific burst-buffers). Several users may also need
to run concurrent analytics pipe-lines on shared data. This departs significantly from the traditional batch
scheduling model, motivating the need for a more elastic approach to resource provisioning. These issues will
be conjointly addressed with research on batch scheduling policies (Sec. 4.1).

4.3.3. Co-Design with Data Scientists
Given the importance of users in this context, it is of primary importance that in situ tools be co-designed with
advanced users, even if such multidisciplinary collaborations are challenging and require constant long term
investments to learn and understand the specific practices and expectations of the other domain.

We will tightly collaborate with scientists of some application domains, like molecular dynamics or fluid
simulation, to design, develop, deploy and assess in situ analytics scenarios, as already done with Marc Baaden,
a computational biologist from LBT.

We recently extended our collaboration network. We started in 2015 a PhD co-advised with CEA DAM to
investigate in situ analytics scenarios in the context of atomistic material simulations. CEA DAM is a French
energy lab hosting one of the largest european supercomputer. They gather physicists, numerical scientists
as well as high performance computer engineers, making it a very interesting partner for developing new
scientific data analysis solutions. We also got a national grant (2015-2018) to compute in situ statistics for
multi-parametric parallel studies with the research department of French power company EDF. In this context
we collaborate with statisticians and fluid simulation experts to define in situ scenarios, revisit the statistic
operators to be amenable to in situ processing, and define an adapted in situ framework.

5. New Software and Platforms

5.1. FlowVR
SCIENTIFIC DESCRIPTION: FlowVR adopts the "data-flow" paradigm, where your application is divided as a
set of components exchanging messages (think of it as a directed graph). FlowVR enables to encapsulate
existing codes in components, interconnect them through data channels, and deploy them on distributed
computing resources. FlowVR takes care of all the heavy lifting such as application deployment and message
exchange.

The base entity, called a module or component, is an autonomous process, potentially multi-threaded with tools
like OpenMP, TBB, or deferring computations to a GPU or Xeon Phi. This module processes data coming from
input ports and write data on output ports. A module has no global insight on where the data comes from or
goes to. The programming interface is designed to limit code refactoring, easing turning an existing code into
a FlowVR component. The three main functions are:
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wait(): Blocking function call that waits for the availability of new messages on input ports. get(): Retrieve
a handle to access the message received at the previous wait() call on a given input port. put(): Notify
FlowVR that a new message on a given output port is ready for dispatch. FlowVR manages data transfers.
Intra-node communications between two components take place through a shared memory segment, avoiding
copies. Once the sender has prepared the data in a shared memory segment, it simply handles a pointer to the
destination that can directly access them. Inter-node communications extend this mechanism, FlowVR taking
care of packing and transferring the data from the source shared memory segment to the destination shared
memory segment.

Assembling components to build an application consists in writing a Python script, instanciate it according
to the target machine. FlowVR will process it and prepare everything so that in one command line you can
deploy and start your application.
FUNCTIONAL DESCRIPTION: FlowVR adopts the "data-flow" paradigm, where your application is divided as
a set of components exchanging messages (think of it as a directed graph). FlowVR enables to encapsulate
existing codes in components, interconnect them through data channels, and deploy them on distributed
computing resources. FlowVR takes care of all the heavy lifting such as application deployment and message
exchange.

• Participants: Bruno Raffin, Clément Ménier, Emmanuel Melin, Jean Denis Lesage, Jérémie Allard,
Jérémy Jaussaud, Matthieu Dreher, Sébastien Limet, Sophie Robert and Valérie Gourantou

• Contact: Bruno Raffin

• URL: http://flowvr.sf.net

5.2. OAR
KEYWORDS: HPC - Cloud - Clusters - Resource manager - Light grid
SCIENTIFIC DESCRIPTION: This batch system is based on a database (PostgreSQL (preferred) or MySQL),
a script language (Perl) and an optional scalable administrative tool (e.g. Taktuk). It is composed of modules
which interact mainly via the database and are executed as independent programs. Therefore, formally, there
is no API, the system interaction is completely defined by the database schema. This approach eases the
development of specific modules. Indeed, each module (such as schedulers) may be developed in any language
having a database access library.
FUNCTIONAL DESCRIPTION: OAR is a versatile resource and task manager (also called a batch scheduler)
for HPC clusters, and other computing infrastructures (like distributed computing experimental testbeds where
versatility is a key).

• Participants: Bruno Bzeznik, Olivier Richard and Pierre Neyron

• Partners: LIG - CNRS - Grid’5000 - CIMENT

• Contact: Olivier Richard

• URL: http://oar.imag.fr

5.3. MELISSA
Modular External Library for In Situ Statistical Analysis
KEYWORD: Sensitivity Analysis
FUNCTIONAL DESCRIPTION: Melissa is an in situ solution for sensitivity analysis. It implements iterative
algorithms to compute spatio-temporal statistic fields over results of large scale sensitivity studies. Melissa
relies on a client/server architecture, composed of three main modules:

http://flowvr.sf.net
http://oar.imag.fr


14 Activity Report INRIA 2018

Melissa Server: an independent parallel executable. It receives data from the simulations, updates iterative
statistics as soon as possible, then trow data away. Melissa API: a shared library to be linked within the
simulation code. It mainly transmit simulation data to Melissa Server at each timestep. The simulations of
the sensitivity analysis become the clients of Melissa Server. Melissa Launcher: A Python script in charge of
generating and managing the whole global sensitivity analysis.

• Authors: Théophile Terraz, Bruno Raffin, Alejandro Ribes and Bertrand Iooss

• Partner: Edf

• Contact: Bruno Raffin

• Publications: In Situ Statistical Analysis for Parametric Studies - Melissa: Large Scale In Transit
Sensitivity Analysis Avoiding Intermediate Files

• URL: https://melissa-sa.github.io

5.4. Platforms
5.4.1. Grid’5000 (https://www.grid5000.fr/) and Meso Center Ciment

(https://ciment.ujf-grenoble.fr)
We have been very active in promoting the factorization of compute resources at a regional and national level.
We have a three level implication, locally to maintain a pool of very flexible experimental machines (hundreds
of cores), regionally through the CIMENT meso center (Equipex Grant), and nationally by contributing to
the Grid’5000 platform, our local resources being included in this platform. Olivier Richard is member of
Grid’5000 scientific committee and Pierre Neyron is member of the technical committee. The OAR scheduler
in particular is deployed on both infrastructures. We are currently preparing proposals for the next generation
machines within the context of the new university association (Univ. Grenoble-Alpes).

6. New Results

6.1. Integration of High Performance Computing and Data Analytics
6.1.1. I/O Survey

First contribution is a comprehensive survey on parallel I/O in the HPC context [14]. As the available
processing power and amount of data increase, I/O remains a central issue for the scientific community. This
survey focuses on a traditional I/O stack, with a POSIX parallel file system. Through the comprehensive study
of publications from the most important conferences and journals in a five-year time window, we discuss
the state of the art of I/O optimization approaches, access pattern extraction techniques, and performance
modeling, in addition to general aspects of parallel I/O research. This survey enables us to identify the general
characteristics of the field and the main current and future research topics.

6.1.2. Task Based In Situ Processing
One approach to bypass the I/O bottleneck is in situ processing, an important research topic at DataMove. The
in situ paradigm proposes to reduce data movement and to analyze data while still resident in the memory of
the compute node by co-locating simulation and analytics on the same compute node. The simplest approach
consists in modifying the simulation timeloop to directly call analytics routines. However, several works
have shown that an asynchronous approach where analytics and simulation run concurrently can lead to a
significantly better performance. Today, the most efficient approach consists in running the analytics processes
on a set of dedicated cores, called helper cores, to isolate them from the simulation processes. Simulation and
analytics thus run concurrently on different cores but this static isolation can lead to underused resources if the
simulation or the analytics do not fully use all the assigned cores.

https://hal.inria.fr/hal-01383860
https://hal.inria.fr/hal-01607479
https://hal.inria.fr/hal-01607479
https://melissa-sa.github.io
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In this work performed in collaboration with CEA, we developed TINS, a task-based in situ framework that
implements a novel dynamic helper core strategy. TINS relies on a work stealing scheduler and on task-
based programming. Simulation and analytics tasks are created concurrently and scheduled on a set of worker
threads created by a single instance of the work stealing scheduler. Helper cores are assigned dynamically:
some worker threads are dedicated to analytics when analytics tasks are available while they join the other
threads for processing simulation tasks otherwise, leading to a better resource usage. We leverage the good
compositionality properties of task-based programming to seamlessly keep the analytics and simulation codes
well separated and a plugin system enables to develop parallel analytics codes outside of the simulation code.

TINS is implemented with the Intel Threading Building Blocks (TBB) library that provides a task-based
programming model and a work stealing scheduler. The experiments are conducted with the hybrid MPI+TBB
ExaStamp molecular dynamics code that we associate with a set of analytics representative of computational
physics algorithms. We show up to 40% performance improvement over various other approaches, including
the standard helper core, on experiments on up to 14,336 Broadwell cores.

6.1.3. Stream Processing
Stream processing is the Big Data equivalent of in situ processing. It consists in analyzing on-line incoming
streams of data, often produced from sensors or social networks like Twitter. We investigated the convergence
between both paradigms through different directions: how the programming environment developed specifi-
cally for stream processing can applied to the data produced by large parallel simulations [18]; Proposing a
dynamics data structure to keep sorted data streams [12]; Evaluating the performance of the FlameMR frame-
work on data produced from a parallel simulation[13]. We summarize here the 2 first contributions.

6.1.3.1. Packed Memory QuadTree.

Over the past years, several in-memory big-data management systems have appeared in academia and industry.
In-memory databases systems avoid the overheads related to traditional I/O disk-based systems and have made
possible to perform interactive data-analysis over large amounts of data. A vast literature of systems and
research strategies deals with different aspects, such as the limited storage size and a multi-level memory-
hierarchy of caches. Maintaining the right data layout that favors locality of accesses is a determinant factor
for the performance of in-memory processing systems. Stream processing engines like Spark or Flink support
the concept of window, which collects the latest events without a specific data organization. It is possible to
trigger the analysis upon the occurrence of a given criterion (time, volume, specific event occurrence). After a
window is updated, the system shifts the processing to the next batch of events. There is a need to go one step
further to keep a live window continuously updated while having a fine grain data replacement policy to control
the memory footprint. The challenge is the design of dynamic data structures to absorb high rate data streams,
stash away the oldest data to stay in the allowed memory budget while enabling fast queries executions to
update visual representations. A possible solution is the extension of database structures like R-trees used in
SpatiaLite or PostGis, or to develop dedicated frameworks like Kit based on a pyramid structure.

We developed a novel self-organized cache-oblivious data structure, called PMQ, for in-memory storage and
indexing of fixed length records tagged with a spatiotemporal index. We store the data in an array with a
controlled density of gaps (i.e., empty slots) that benefits from the properties of the Packed Memory Arrays.
The empty slots guarantee that insertions can be performed with a low amortized number of data movements
(O(log2 (N))) while enabling efficient spatiotemporal queries. During insertions, we rebalance parts of the
array when required to respect density constraints, and the oldest data is stashed away when reaching the
memory budget. To spatially subdivide the data, we sort the records according to their Morton index, thus
ensuring spatial locality in the array while defining an implicit, recursive quadtree, which leads to efficient
spatiotemporal queries. We validate PMQ for consuming a stream of tweets to answer visual and range queries.
PMQ significantly outperforms the widely adopted spatial indexing data structure R-tree, typically used by
relational databases, as well as the conjunction of Geohash and B+-tree, typically used by NoSQL databases.

6.1.3.2. Flink based in situ Processing.

We proposed to leverage Apache Flink, a scalable stream processing engine from the Big Data domain, in
this HPC context. Flink enables to program analyses within a simple window based map/reduce model, while
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the runtime takes care of the deployment, load balancing and fault tolerance. We build a complete in transit
analytics workflow, connecting an MD simulation to Apache Flink and to a distributed database, Apache
HBase, to persist all the desired data. To demonstrate the expressivity of this programming model and its
suitability for HPC scientific environments, two common analytics in the Molecular Dynamics field have been
implemented. We assessed the performance of this framework, concluding that it can handle simulations of
sizes used in the literature while providing an effective and versatile tool for scientists to easily incorporate
on-line parallel analytics in their current workflows.

6.2. Data Aware Batch Scheduling
6.2.1. Batch Scheduling for Energy

The project COSMIC [24], [22], [16], [17], in collaboration with Myriads team in Inria Rennes-Atlantique,
targets the optimization of green energy usage in Clouds. The project considers a geographically distributed
cloud, with each data center associated with a local photovoltaic (PV) farm. The objective is to maximize
the photovoltaic energy by allocation the computing workload to the data centers according to its energy
production. The production forecasting is modeled with a truncated normal law, permitting to consider the
uncertainty of the forecast.

Chapter [24] considers a simple model with homogeneous Virtual Machines submitted at unpredictable rate.
This study has resulted in a scheduling algorithm for task allocation. The chapter demonstrates the optimality
of this algorithm at current time slot according to production forecast parameters.

Paper [22] extends these results to heterogeneous VM. Each VM is defined by its arrival date, its execution
time, its memory requirement and its CPU usage. In this model, due to execution time durations, the possibility
to migrate running VM was considered. An algorithm is detailed in the paper that is compared to standard
algorithm through simulations.

A third study [16], [17] has carefully modeled the interactions between the Cloud and the energy supplier.
Due to variability of PV production and workload submission, each data center will alternatively inject energy
into the electricity grid or purchase energy. The energy model considers a virtual energy pool mitigating the
surplus and deficit of the different data center, with reduced costs regarding the difference between electricity
cost and electricity injection tariff. The algorithm detailed in this paper outperforms well-known round-robin
approaches, as shown by simulations.

6.2.2. Learning Methods for Batch Scheduling
Most of Job Scheduling algorithms apply greedy tasks ordering, as First Come First Served (FCFS) or Shortest
Processing time First (SPF). They give simple methods, highly practical with certain guarantees. They are
however far from optimal. Mixed methods, combining many of this basic methods permit to improve their
performance. DataMove has developed [27] a learning method permitting to adapt the Mixed method to
benchmarks. An extensive experimental campaign has permitted to determine the possibilities of basic and
mixed methods according to the benchmarks characteristics, enhancing the efficiency of mixed methods.

6.2.3. Reproducibility
Related to batch scheduling experimentation, DataMove has led investigations on reproducibility [23]. Exist-
ing approaches focus on repeatability, but this is only the first step to reproducibility: Continuing a scientific
work from a previous experiment requires to be able to modify it. This ability is called reproducibility with
Variation. We show that capturing the environment of execution is necessary but not sufficient ; we also need
the environment of development. The variation also implies that those environments are subject to evolution,
so the whole software development lifecycle needs to be considered. To take into account these evolutions,
software environments need to be clearly defined, reconstructible with variation, and easy to share. In this
context, we propose new way of seeing reproducibility through the scientific software development lifecycle.
Each step in this lifecycle requires a software environment. We define a software environment by a set of
applications and libraries, with all their dependencies, and their configurations, required to achieve a step in a
scientific workflow.
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6.2.4. Online Algorithms
Rob van Stee wrote a review of 2018 online algorithms including our recent contributions on resource
augmentation 6 We quote him here:

Progress was also made on scheduling to minimize weighted flow time on unrelated machines. In ESA 2016,
Giorgio Lucarelli et al. [1] had considered a version where the online algorithm can reject some εr > 0
fraction (by weight) of the jobs and have machines that are 1 + εs as fast as the offline machines, for some
εs > 0. They showed that this is already enough to achieve a competitive ratio of O(1/(εsεr)).

In SPAA 2018, Giorgio Lucarelli et al.[20] (a superset of the previous authors) showed that it is in fact
sufficient to reject a 2ε fraction of the total number of jobs to achieve a competitive ratio of 2( 1+ε

ε ) for
minimizing the total flow time. This algorithm sometimes rejects a job other than the one that has just arrived.
The authors show that this is necessary, as otherwise there is a lower bound of Ω(∆) even on a single machine.
Here ∆ is the size ratio (the ratio of largest to smallest job size). (Obviously this lower bound also holds if you
cannot reject jobs at all.)

They also consider the speed scaling model, in which machines can be sped up if additional energy is invested,
and the goal is to minimize the total weighted flow time plus energy usage. If the power function of machine
i is given by P (si(t)) = si(t)

α, where si(t) is the current speed of machine i, there is an algorithm which is
O((1 + 1/ε)

α/(α−1))-competitive that rejects jobs of total weight at most a fraction ε of the total weight of all
the jobs. They also give a positive result for jobs with hard deadlines, where the goal is to minimize the total
energy usage and no job may be rejected.

In ESA 2018, the same set of authors [11] improved/generalized these results by showing that rejection alone
is sufficient for an algorithm to be competitive even for weighted flow time. They presented an O(1/ε3)-
competitive algorithm that rejects at most O(ε) of the total weight of the jobs. In this algorithm, jobs are
assigned (approximately) greedily to machines, and each machine runs the jobs assigned to it using Highest
Density First. A job may be rejected if it is running while much heavier jobs arrive or if it is in the queue while
very many jobs arrive. The second rule simulates the resource augmentation on the speed.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
• BULL-ATOS SE (2016-2019). Two PhD grants (Michael Mercier and Adrien Faure). Job and

resource management algorithms.

• CEA DAM (2016-2018). PhD grant support contract (PhD of Estelle Dirand, funded by CEA). In
situ analysis for Molecular Simulations.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR

• ANR grant GRECO (2017-2020). Resource manager for cloud of things. Coordinator: Quarnot
Computing. Partners: Quarnot Computing, Grenoble-INP, Inria.

• ANR grant Energumen (2018-2022). Resource management: malleable jobs for a better use of the
resources along with energy optimization. Coordinator: Denis Trystram. Partners: Grenoble-INP,
IRIT, Sorbonne Université.

6Rob van Stee. 2018. SIGACT News Online Algorithms Column 34: 2018 in review. SIGACT News 49, 4 (December 2018), 36-45.
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8.1.2. Competitivity Clusters
• PIA Avido (2015-2018). In situ analysis and visualization for large scale numerical simulation.

Coordinator: EDF SA. Partners: EDF R&D, Total SA, Kitware SAS , Université Pierre et Marie
CURIE, Inria (DataMove).

• FUI OverMind (2015-2018). Task planification and asset management for the cartoon productions.
Coordinator: Teamto Studio. Partners: Teamto Studio, Folimage Studio, Ecole de Gobelins, Inria
(DataMove).

• FUI IDIOM (2018-2020). Monitoring and optimization of I/Os. Coordinator DDN Storage. Part-
ners: DDN Storage, Criteo, Quarnot, QuasarDB, CEA, Université de Bretagne Occidentale, Telecom
SudParis, Inria (DataMove).

8.1.3. Inria
• Inria PRE COSMIC (exploratory research project), 2017-2019. Photovoltaic Energy Management

for Distributed Cloud Platforms. Myriads, DataMove.
• Inria IPL HPC-BigData, 2018-2021). Convergence between HPC, Big Data and AI. Coordinator:

Bruno Raffin. Partners: the Inria teams Zenith, Kerdata, Datamove, Tadaam, SequeL, Parietal, Tau,
and the external partners ATOS, ANL, IBPC, ESI-Group. See https://project.inria.fr/hpcbigdata/

8.2. European Initiatives
8.2.1. Collaborations in European Programs, Except FP7 & H2020

Program: SKŁODOWSKA-CURIE ACTIONS - Individual Fellowship
Project acronym: DAMA
Project title: Extreme-Scale Data Management
Duration: November 2018 - October 2020
Coordinator: Bruno Raffin
Followship Recipient: Francieli Zanon Boito.
Abstract: This project is concerned with the I/O challenges that arise from the convergence between
these two different paradigms. It is clear data analytics tools cannot simply replace their typical
storage solutions for the HPC I/O stack, centered on the abstraction of files and powered by a parallel
file system, because their workload is not well suited for that and would observe poor performance.
Moreover, the separated storage infrastructure breaks the data affinity idea in which they are built
upon. Finally, even among traditional HPC applications there is a need to minimize data movement,
as it imposes high latency and increases energy consumption.

8.3. International Initiatives
8.3.1. Inria International Labs
8.3.1.1. JLESC

Title: Joint Laboratory for Extreme-Scale-Computing.
International Partners:

University of Illinois at Urbana Champaign (USA)
Argonne National Laboratory (USA),
Barcelona Supercomputing Center (Spain),
Jülich Supercomputing Centre (Germany)
Riken Advanced Institute for Computational Science (Japan)

Start year: 2009

https://project.inria.fr/hpcbigdata/
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See also: https://jlesc.github.io/

The purpose of the Joint Laboratory for Extreme Scale Computing is to be an international, virtual
organization whose goal is to enhance the ability of member organizations and investigators to
make the bridge between Petascale and Extreme computing. The JLESC organizes a workshop
every 6 months DataMove participates to. DataMove developed several collaborations related to
in situ processing with Tom Peterka group (ANL) , the Argo exascale operating system with Swann
Perarnau (ANL).

8.3.2. Participation in Other International Programs
8.3.2.1. LICIA

Title: International Laboratory in High Performance and Ubiquitous Computing

International Partner (Institution - Laboratory - Researcher):

UFRGS (Brazil)

Duration: 2011 - 2018

See also: http://licia-lab.org/

The LICIA is an Internacional Laboratory and High Performance and Ubiquitous Computing born
in 2011 from the common desire of members of Informatics Institute of the Federal University of
Rio Grande do Sul and of Laboratoire d’Informatique de Grenoble to enhance and develop their
scientific parternship that started by the end of the 1970. LICIA is an Internacional Associated Lab
of the CNRS, a public french research institution. It has support from several brazilian and french
research funding agencies, such as CNRS, Inria, ANR, European Union (from the french side) and
CAPES, CNPq, FAPERGS (from the Brazilian side). DataMove is deeply involved in the animation
of LICIA. Bruno Raffin is LICIA associate director.

8.4. International Research Visitors
8.4.1. Visits of International Scientists

Professor visit: Alba Cristina Magalhaes Alves De Melo, Professor at University of Brasilia, visited
the Datamove for one month in 2018.

PhD in progress: Danilo Carastan Dos Santos, Dynamic Scheduling of Tasks in High Performance
Platforms with Machine Learning (Sao Paulo, Brasil). 1 year "sandwich" visit. Local adviser: Denis
Trystram

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific Events Organisation
9.1.1.1. General Chair, Scientific Chair

President of the steering committee of Edu-Europar.

President of the steering committee of EGPGV (Eurographics Symposium on Parallel Graphics and
Visualization).

Member of the steering committee of Europar.

Member of the steering committee of Journée de visualisation scientifique.

Member of the steering committee of HeteroPar.

Co-chair of the First HPML Workshop collocated with SBAC-PAD Lyon , October 2018.

https://jlesc.github.io/
http://licia-lab.org/
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9.1.1.2. Member of the Organizing Committees

Euro-Par Advisory Board Member

9.1.2. Scientific Events Selection
9.1.2.1. Member of the Conference Program Committees

ISAV 2018 (Workshop on In Situ Infrastructures for Enabling Extreme-scale Analysis and Visual-
ization) , November, Dallas, USA

EGPGV 2018 (Eurographics Symposium on Parallel Graphics and Visualization), June, Brno, Czech
Republic.

LADV 2018 (IEEE Symposium on Large Data Analysis and Visualization), October, Berlin, Ger-
many.

IPDPS 2018 (nternational Parallel and Distributed Processing Symposium ), May, Vancouver,
Canada.

LATIN, April 2018, Buenos Aires, Argentina.

CCgrid 2018 (18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing),
May, Washington DC.

SPAA (30th ACM Symposium on Parallelism in Algorithms and Architecture), July 2018, Vienna,
Austria.

ISPDC, June 2018, Geneva, Switzerland.

CONPAS (Conference d’informatique en Parallelisme, Architecture et Systeme), July 2018,
Toulouse, France.

HiPC 2018 (IEEE internat. Conf on High Performance Computing, Data and Analytics), December
2018, Bengaluru, India.

EURO 2018 (29th European Conference On Operational Research), July, Valencia.

9.1.3. Journal
9.1.3.1. Member of the Editorial Boards

Associate Editor of the Parallel Computing journal PARCO.

Member of the Editorial Board of Computational Methods in Science and Technology.

Member of the Editorial Board of ARIMA (revue africaine de recherche en informatique et maths
appliquées).

9.1.4. Scientific Expertise
ANR project evaluation expert

9.1.5. Research Administration
Director of Pôle MSTIC of COMUE Univ. Grenoble-Alpes.

Head of the international Master program ( MOSIG1 ) at Grenoble INP (ENSIMAG)

Steering committee of Grid’5000

Steering committee of GRICAD

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Master: Denis Trystram is responsible of the first year (M1) of the international Master of Science
in Informatics at Grenoble (MOSIG-M1). 200 hours per year in average.
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Master: Fanny Dufossé. 30 hours per year. Combinatorial scientific computing in Master at ENS
Lyon and Algorithmic in Licence at Grenoble INP.

Master: Pierre-François Dutot. 226 hours per year. Licence (first and second year) at IUT2/UPMF
(Institut Universitaire Technologique de Univ. Grenoble-Alpes) and 9 hours Master M2R-ISC
Informatique-Systèmes-Communication at Univ. Grenoble-Alpes.

Master: Grégory Mounié. 242 hours per year. Master (M1/2nd year and M2/3rd year) at Engineering
school ENSIMAG, Grenoble-INP.

Master: Bruno Raffin. 28 hours per year. Parallel System. International Master of Science in
Informatics at Grenoble (MOSIG-M2).

Master: Olivier Richard is responsible of the third year of the computer science department of
Grenoble INP. 222 hours per year. Master at Engineering school Polytech-Grenoble, Univ. Grenoble-
Alpes.

Master: Frédéric Wagner. 220 hours per year. Engineering school ENSIMAG, Grenoble-INP
(M1/2nd year and M2/3rd year).

Master: Yves Denneulin. 192 hours per year. Engineering school ENSIMAG, Grenoble-INP
(M1/2nd year and M2/3rd year).

9.2.2. Supervision
PhD: Estelle Dirand, Integration of High-Performance Data Analytics and IOs for Molecular
Dynamics on Exascale Computer, Univ. Grenoble-Alpes. November 2018. Bruno Raffin and Laurent
Colombet (CEA).

PhD: Valentin Reis, Learning to Control Large-Scale Parallel Platforms, Univ. Grenoble-Alpes.
October 2018. Advisers: Denis Trystram and Eric Gaussier

PhD in progress: Michael Mercier, Resource Management and Job Scheduling in HPC–Cloud
environments towards the Big Data era, Univ. Grenoble Alpes. Started October 2016. Advisers:
Olivier Richard and Bruno Raffin.

PhD in progress: Alessandro Kraemer, Scheduling in the Cloud, Univ Grenoble-Alpes and UFPR
(co-tutelle). Started October 2014. Advisers: Olivier Richard and Denis Trystram.

PhD in progress: Mohammed Khatiri, Tasks scheduling on heterogeneous Multicore, Univ.
Grenoble-Alpes and University Mohammed First (co-tutelle), Advisers: Denis Trystram, El Mostafa
DAOUDI (University Mohammed First, Oujda, Morocco)

PhD in progress: Adrien Faure, Scheduling with Resource Augmentation, Advisers: Denis Trystram

PhD in progress: Clément Mommessin, Scheduling on heterogeneous platforms, Advisers: Denis
Trystram

PhD in progress: Loris Felardos, Deep Learning for the Analytics of Molecular Systems, Advisers:
Bruno Raffin, Guillaume Charpiat (Inria team Tau), Jérome Hénin (IBPC).

PhD in Progress: Salah Zrigui, Learning Scheduling Strategies, Advisers: Denis Trystram and Fanny
Dufossé.

9.2.3. Juries
PhD Defense of Jonathan Sarton, Visualisations interactives haute-performance de donnes volu-
miques massives : une approche out-of-core multi-resolution basee GPUs, 28 Novembre 2018, Uni-
versité de Reims Champagne-Ardenne. Reviewer

PhD Defense of Adrian Perez Dieguez, Parallel Prefix Operations on Heterogeneous Platforms,
December 2018, Universidad da Coruna. Reviewer.

PhD Defense of Khalil Labidi, Parallelisation of hybrid metaheuristics for COP solving, 20 septem-
bre 2018, Université de Tunis et Université Paris-Dauphine. President
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PhD Defense of Stéphane Durand, Contrôle distribué et théorie des jeux : application aux systèmes
auto-optimisants, 13 décembre 2018, Univ Grenoble Alpes. President
HDR Defense of Samuel Thibault, 13 décembre 2018, University Bordeaux I. Reviewer

9.3. Popularization
9.3.1. Interventions

• Talk Des besoins en calcul de plus en plus performant for the conference cycle "Accompagnement
de l’informatique au lycée en 2018".
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