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2. Overall Objectives

2.1. Overall Objectives
DataShape is a research project in Topological Data Analysis (TDA), a recent field whose aim is to uncover,
understand and exploit the topological and geometric structure underlying complex and possibly high di-
mensional data. The DATASHAPE project gathers a unique variety of expertise that allows it to embrace the
mathematical, statistical, algorithmic and applied aspects of the field in a common framework ranging from
fundamental theoretical studies to experimental research and software development.
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The expected output of DATASHAPE is two-fold. First, we intend to set-up and develop the mathematical,
statistical and algorithmic foundations of Topological and Geometric Data Analysis. Second, we intend to
develop the Gudhi platform in order to provide an efficient state-of-the-art toolbox for the understanding of
the topology and geometry of data.

3. Research Program
3.1. Algorithmic aspects of topological and geometric data analysis

TDA requires to construct and manipulate appropriate representations of complex and high dimensional
shapes. A major difficulty comes from the fact that the complexity of data structures and algorithms used
to approximate shapes rapidly grows as the dimensionality increases, which makes them intractable in high
dimensions. We focus our research on simplicial complexes which offer a convenient representation of general
shapes and generalize graphs and triangulations. Our work includes the study of simplicial complexes with
good approximation properties and the design of compact data structures to represent them.

In low dimensions, effective shape reconstruction techniques exist that can provide precise geometric approx-
imations very efficiently and under reasonable sampling conditions. Extending those techniques to higher
dimensions as is required in the context of TDA is problematic since almost all methods in low dimensions
rely on the computation of a subdivision of the ambient space. A direct extension of those methods would
immediately lead to algorithms whose complexities depend exponentially on the ambient dimension, which
is prohibitive in most applications. A first direction to by-pass the curse of dimensionality is to develop al-
gorithms whose complexities depend on the intrinsic dimension of the data (which most of the time is small
although unknown) rather than on the dimension of the ambient space. Another direction is to resort to cruder
approximations that only captures the homotopy type or the homology of the sampled shape. The recent the-
ory of persistent homology provides a powerful and robust tool to study the homology of sampled spaces in a
stable way.

3.2. Statistical aspects of topological and geometric data analysis
The wide variety of larger and larger available data - often corrupted by noise and outliers - requires to consider
the statistical properties of their topological and geometric features and to propose new relevant statistical
models for their study.

There exist various statistical and machine learning methods intending to uncover the geometric structure
of data. Beyond manifold learning and dimensionality reduction approaches that generally do not allow to
assert the relevance of the inferred topological and geometric features and are not well-suited for the analysis
of complex topological structures, set estimation methods intend to estimate, from random samples, a set
around which the data is concentrated. In these methods, that include support and manifold estimation,
principal curves/manifolds and their various generalizations to name a few, the estimation problems are usually
considered under losses, such as Hausdorff distance or symmetric difference, that are not sensitive to the
topology of the estimated sets, preventing these tools to directly infer topological or geometric information.

Regarding purely topological features, the statistical estimation of homology or homotopy type of compact
subsets of Euclidean spaces, has only been considered recently, most of the time under the quite restrictive
assumption that the data are randomly sampled from smooth manifolds.

In a more general setting, with the emergence of new geometric inference tools based on the study of distance
functions and algebraic topology tools such as persistent homology, computational topology has recently seen
an important development offering a new set of methods to infer relevant topological and geometric features
of data sampled in general metric spaces. The use of these tools remains widely heuristic and until recently
there were only a few preliminary results establishing connections between geometric inference, persistent
homology and statistics. However, this direction has attracted a lot of attention over the last three years. In
particular, stability properties and new representations of persistent homology information have led to very
promising results to which the DATASHAPE members have significantly contributed. These preliminary results
open many perspectives and research directions that need to be explored.
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Our goal is to build on our first statistical results in TDA to develop the mathematical foundations of Statistical
Topological and Geometric Data Analysis. Combined with the other objectives, our ultimate goal is to provide
a well-founded and effective statistical toolbox for the understanding of topology and geometry of data.

3.3. Topological approach for multimodal data processing
Due to their geometric nature, multimodal data (images, video, 3D shapes, etc.) are of particular interest for
the techniques we develop. Our goal is to establish a rigorous framework in which data having different
representations can all be processed, mapped and exploited jointly. This requires adapting our tools and
sometimes developing entirely new or specialized approaches.

The choice of multimedia data is motivated primarily by the fact that the amount of such data is steadily
growing (with e.g. video streaming accounting for nearly two thirds of peak North-American Internet traffic,
and almost half a billion images being posted on social networks each day), while at the same time it poses
significant challenges in designing informative notions of (dis)-similarity as standard metrics (e.g. Euclidean
distances between points) are not relevant.

3.4. Experimental research and software development
We develop a high quality open source software platform called GUDHI which is becoming a reference in
geometric and topological data analysis in high dimensions. The goal is not to provide code tailored to the
numerous potential applications but rather to provide the central data structures and algorithms that underlie
applications in geometric and topological data analysis.

The development of the GUDHI platform also serves to benchmark and optimize new algorithmic solutions
resulting from our theoretical work. Such development necessitates a whole line of research on software
architecture and interface design, heuristics and fine-tuning optimization, robustness and arithmetic issues,
and visualization. We aim at providing a full programming environment following the same recipes that made
up the success story of the CGAL library, the reference library in computational geometry.

Some of the algorithms implemented on the platform will also be interfaced to other software platform, such
as the R software 1 for statistical computing, and languages such as Python in order to make them usable in
combination with other data analysis and machine learning tools. A first attempt in this direction has been
done with the creation of an R package called TDA in collaboration with the group of Larry Wasserman at
Carnegie Mellon University (Inria Associated team CATS) that already includes some functionalities of the
GUDHI library and implements some joint results between our team and the CMU team. A similar interface
with the Python language is also considered a priority. To go even further towards helping users, we will
provide utilities that perform the most common tasks without requiring any programming at all.

4. Application Domains

4.1. Main application domains
Our work is mostly of a fundamental mathematical and algorithmic nature but finds a variety of applications
in data analysis, e.g., in material science, biology, sensor networks, 3D shape analysis and processing, to name
a few.

More specifically, DATASHAPE is working on the analysis of trajectories obtained from inertial sensors (PhD
thesis of Bertrand Beaufils with Sysnav) and, more generally on the development of new TDA methods for
Machine Learning and Artificial Intelligence for (multivariate) time-dependent data from various kinds of
sensors in collaboration with Fujitsu.

1https://www.r-project.org/

https://www.r-project.org/
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5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Books

• Jean-Daniel Boissonnat, Frédéric Chazal, Mariette Yvinec. Geometric and Topological Inference.
Cambridge Texts in Applied Mathematics, vol. 57, Cambridge University Press, 2018.

5.1.2. Awards
• Mathieu Carrière was awarded the Prix de thèse solennel Thiessé de Rosemont / Schneider in

Mathematics by the Chancellerie des Universités de Paris for his Ph.D. work under Steve Oudot’s
supervision (Ph.D. funded by ERC grant Gudhi), December 2018.

6. New Software and Platforms

6.1. GUDHI
Geometric Understanding in Higher Dimensions
KEYWORDS: Computational geometry - Topology
SCIENTIFIC DESCRIPTION: The current release of the GUDHI library includes: – Data structures to represent,
construct and manipulate simplicial and cubical complexes. – Algorithms to compute simplicial complexes
from point cloud data. – Algorithms to compute persistent homology and multi-field persistent homology. –
Simplification methods via implicit representations.
FUNCTIONAL DESCRIPTION: The GUDHI open source library will provide the central data structures and
algorithms that underly applications in geometry understanding in higher dimensions. It is intended to both
help the development of new algorithmic solutions inside and outside the project, and to facilitate the transfer
of results in applied fields.
NEWS OF THE YEAR: - Cover complex - Representation of persistence diagrams - Cech complex - weighted
periodic 3d alpha-complex - sparse Rips complex - debian / docker / conda-forge packages

• Participants: Clément Maria, François Godi, David Salinas, Jean-Daniel Boissonnat, Marc Glisse,
Mariette Yvinec, Pawel Dlotko, Siargey Kachanovich and Vincent Rouvreau

• Contact: Jean-Daniel Boissonnat

• URL: http://gudhi.gforge.inria.fr/

7. New Results

7.1. Algorithmic aspects of topological and geometric data analysis
7.1.1. DTM-based filtrations

Participants: Frédéric Chazal, Marc Glisse, Raphaël Tinarrage.

In collaboration with H. Anai, Y. Ike, H. Inakoshi and Y. Umeda of Fujitsu.

Despite strong stability properties, the persistent homology of filtrations classically used in Topological Data
Analysis, such as, e.g. the Čech or Vietoris-Rips filtrations, are very sensitive to the presence of outliers in
the data from which they are computed. In this paper [33], we introduce and study a new family of filtrations,
the DTM-filtrations, built on top of point clouds in the Euclidean space which are more robust to noise and
outliers. The approach adopted in this work relies on the notion of distance-to-measure functions, and extends
some previous work on the approximation of such functions.

http://gudhi.gforge.inria.fr/
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7.1.2. Persistent Homology with Dimensionality Reduction: k-Distance vs Gaussian Kernels
Participants: Shreya Arya, Jean-Daniel Boissonnat, Kunal Dutta.

We investigate the effectiveness of dimensionality reduction for computing the persistent homology for both k-
distance and kernel distance [34]. For k-distance, we show that the standard Johnson-Lindenstrauss reduction
preserves the k-distance, which preserves the persistent homology upto a (1− ε)−1 factor with target
dimensionO(k log n/ε2). We also prove a concentration inequality for sums of dependent chi-squared random
variables, which, under some conditions, allows the persistent homology to be preserved in O(log n/ε2)
dimensions. This answers an open question of Sheehy. For Gaussian kernels, we show that the standard
Johnson-Lindenstrauss reduction preserves the persistent homology up to an 4(1− ε)−1 factor.

7.1.3. Computing Persistent Homology of Flag Complexes via Strong Collapses
Participants: Jean-Daniel Boissonnat, Siddharth Pritam.

In collaboration with Divyansh Pareek (Indian Institute of Technology Bombay, India)

We introduce a fast and memory efficient approach to compute the persistent homology (PH) of a sequence
of simplicial complexes. The basic idea is to simplify the complexes of the input sequence by using strong
collapses, as introduced by J. Barmak and E. Miniam [DCG (2012)], and to compute the PH of an induced
sequence of reduced simplicial complexes that has the same PH as the initial one. Our approach has several
salient features that distinguishes it from previous work. It is not limited to filtrations (i.e. sequences of nested
simplicial subcomplexes) but works for other types of sequences like towers and zigzags. To strong collapse
a simplicial complex, we only need to store the maximal simplices of the complex, not the full set of all
its simplices, which saves a lot of space and time. Moreover, the complexes in the sequence can be strong
collapsed independently and in parallel. Finally, we can compromize between precision and time by choosing
the number of simplicial complexes of the sequence we strong collapse. As a result and as demonstrated by
numerous experiments on publicly available data sets, our approach is extremely fast and memory efficient in
practice [27].

7.1.4. Strong Collapse for Persistence
Participants: Jean-Daniel Boissonnat, Siddharth Pritam.

In this paper, we build on the initial success of and show that further decisive progress can be obtained if
one restricts the family of simplicial complexes to flag complexes. Flag complexes are fully characterized by
their graph (or 1-skeleton), the other faces being obtained by computing the cliques of the graph. Hence, a
flag complex can be represented by its graph, which is a very compact representation. Flag complexes are
very popular and, in particular, Vietoris-Rips complexes are by far the most widely simplicial complexes used
in Topological Data Analysis. It has been shown in that the persistent homology of Vietoris-Rips filtrations
can be computed very efficiently using strong collapses. However, most of the time was devoted to computing
the maximal cliques of the complex prior to their strong collapse. In this paper [37], we observe that the
reduced complex obtained by strong collapsing a flag complex is itself a flag complex. Moreover, this reduced
complex can be computed using only the 1-skeleton (or graph) of the complex, not the set of its maximal
cliques. Finally, we show how to compute the equivalent filtration of the sequence of reduced flag simplicial
complexes using again only 1-skeletons. x On the theory side, we show that strong collapses of flag complexes
can be computed in time O(v2k2) where v is the number of vertices of the complex and k the maximal degree
of its graph. The algorithm described in this paper has been implemented and the code will be soon released
in the Gudhi library. Numerous experiments show that our method outperforms previous methods, e.g. Ripser.

7.1.5. Triangulating submanifolds: An elementary and quantified version of Whitney’s method
Participants: Jean-Daniel Boissonnat, Siargey Kachanovich, Mathijs Wintraecken.

We quantize Whitney’s construction to prove the existence of a triangulation for any C2 manifold, so that
we get an algorithm with explicit bounds. We also give a new elementary proof, which is completely
geometric [36].
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7.1.6. Randomized incremental construction of Delaunay triangulations of nice point sets
Participants: Jean-Daniel Boissonnat, Kunal Dutta, Marc Glisse.

In collaboration with Olivier Devillers (Inria, CNRS, Loria, Université de Lorraine).

Randomized incremental construction (RIC) is one of the most important paradigms for building geometric
data structures. Clarkson and Shor developed a general theory that led to numerous algorithms that are both
simple and efficient in theory and in practice.

Randomized incremental constructions are most of the time space and time optimal in the worst-case, as
exemplified by the construction of convex hulls, Delaunay triangulations and arrangements of line segments.

However, the worst-case scenario occurs rarely in practice and we would like to understand how RIC behaves
when the input is nice in the sense that the associated output is significantly smaller than in the worst-case.
For example, it is known that the Delaunay triangulations of nicely distributed points in Rd or on polyhedral
surfaces in R3 has linear complexity, as opposed to a worst-case complexity of Θ(nbd/2c) in the first case and
quadratic in the second. The standard analysis does not provide accurate bounds on the complexity of such
cases and we aim at establishing such bounds in this paper [35]. More precisely, we will show that, in the two
cases above and variants of them, the complexity of the usual RIC is O(n log n), which is optimal. In other
words, without any modification, RIC nicely adapts to good cases of practical value.

Along the way, we prove a probabilistic lemma for sampling without replacement, which may be of indepen-
dent interest.

7.1.7. Approximate Polytope Membership Queries
Participant: Guilherme Da Fonseca.

In collaboration with Sunil Arya (Hong Kong University of Science and Technology) and David Mount
(University of Maryland).

In the polytope membership problem, a convex polytope K in Rd is given, and the objective is to preprocess
K into a data structure so that, given any query point q ∈ Rd, it is possible to determine efficiently whether
q ∈ K. We consider this problem in an approximate setting. Given an approximation parameter ε, the query
can be answered either way if the distance from q to K’s boundary is at most ε times K’s diameter. We
assume that the dimension d is fixed, and K is presented as the intersection of n halfspaces. Previous
solutions to approximate polytope membership were based on straightforward applications of classic polytope
approximation techniques by Dudley (1974) and Bentley et al. (1982). The former is optimal in the worst-
case with respect to space, and the latter is optimal with respect to query time. We present four main results.
First, we show how to combine the two above techniques to obtain a simple space-time trade-off. Second, we
present an algorithm that dramatically improves this trade-off. In particular, for any constant α ≥ 4, this data
structure achieves query time roughly O(1/ε(d−1)/α) and space roughly O(1/ε(d−1)(1−Ω(logα))/α). We do
not know whether this space bound is tight, but our third result shows that there is a convex body such that
our algorithm achieves a space of at least Ω(1/ε(d−1)(1−O(

√
α))/α). Our fourth result shows that it is possible

to reduce approximate Euclidean nearest neighbor searching to approximate polytope membership queries.
Combined with the above results, this provides significant improvements to the best known space-time trade-
offs for approximate nearest neighbor searching in Rd. For example, we show that it is possible to achieve a
query time of roughly O(log n+ 1/εd/4) with space roughly O(n/εd/4), thus reducing by half the exponent
in the space bound [11].

7.1.8. Approximate Convex Intersection Detection with Applications to Width and Minkowski
Sums
Participant: Guilherme Da Fonseca.

In collaboration with Sunil Arya (Hong Kong University of Science and Technology) and David Mount
(University of Maryland).
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Approximation problems involving a single convex body in d-dimensional space have received a great deal
of attention in the computational geometry community. In contrast, works involving multiple convex bodies
are generally limited to dimensions d ≤ 3 and/or do not consider approximation. In this paper, we consider
approximations to two natural problems involving multiple convex bodies: detecting whether two polytopes
intersect and computing their Minkowski sum. Given an approximation parameter ε > 0, we show how to
independently preprocess two polytopes A, B into data structures of size O(1/ε(d−1)/2) such that we can
answer in polylogarithmic time whether A and B intersect approximately. More generally, we can answer this
for the images of A and B under affine transformations. Next, we show how to ε-approximate the Minkowski
sum of two given polytopes defined as the intersection of n halfspaces in O(n log (1/ε) + 1/ε(d−1)/2+α)
time, for any constant α > 0. Finally, we present a surprising impact of these results to a well studied
problem that considers a single convex body. We show how to ε-approximate the width of a set of n points in
O(n log (1/ε) + 1/ε(d−1)/2+α) time, for any constant α > 0, a major improvement over the previous bound
of roughly O(n+ 1/εd−1) time [22].

7.1.9. Approximating the Spectrum of a Graph
Participant: David Cohen-Steiner.

In collaboration with Weihao Kong (Stanford University), Christian Sohler (TU Dortmund) and Gregory
Valiant (Stanford University).

The spectrum of a network or graph G = (V,E) with adjacency matrix A , consists of the eigenvalues of
the normalized Laplacian L = I −D−1/2AD−1/2. This set of eigenvalues encapsulates many aspects of the
structure of the graph, including the extent to which the graph posses community structures at multiple scales.
We study the problem of approximating the spectrum, λ = (λ1, · · · , λ|V |), of G in the regime where the
graph is too large to explicitly calculate the spectrum. We present a sublinear time algorithm that, given
the ability to query a random node in the graph and select a random neighbor of a given node, computes
a succinct representation of an approximation λ̃ = (λ̃1, · · · , λ̃|V |), such that ‖λ̃−λ‖1 ≤ ε|V |. Our algorithm
has query complexity and running time exp(O(1/ε)), which is independent of the size of the graph, |V |. We
demonstrate the practical viability of our algorithm on synthetically generated graphs, and on 15 different
real-world graphs from the Stanford Large Network Dataset Collection, including social networks, academic
collaboration graphs, and road networks. For the smallest of these graphs, we are able to validate the accuracy
of our algorithm by explicitly calculating the true spectrum; for the larger graphs, such a calculation is
computationally prohibitive. The spectra of these real-world networks reveal insights into the structural
similarities and differences between them, illustrating the potential value of our algorithm for efficiently
approximating the spectrum of large networks [29].

7.1.10. Spectral Properties of Radial Kernels and Clustering in High Dimensions
Participants: David Cohen-Steiner, Alba Chiara de Vitis.

In this paper [40], we study the spectrum and the eigenvectors of radial kernels for mixtures of distributions
in Rn. Our approach focuses on high dimensions and relies solely on the concentration properties of the
components in the mixture. We give several results describing of the structure of kernel matrices for a sample
drawn from such a mixture. Based on these results, we analyze the ability of kernel PCA to cluster high
dimensional mixtures. In particular, we exhibit a specific kernel leading to a simple spectral algorithm for
clustering mixtures with possibly common means but different covariance matrices. This algorithm will
succeed if the angle between any two covariance matrices in the mixture (seen as vectors in Rn2

) is larger
than Ω(n−1/6 log5/3 n). In particular, the required angular separation tends to 0 as the dimension tends to
infinity. To the best of our knowledge, this is the first polynomial time algorithm for clustering such mixtures
beyond the Gaussian case.

7.1.11. Exact computation of the matching distance on 2-parameter persistence modules
Participant: Steve Oudot.

In collaboration with Michael Kerber (T.U. Graz) and Michael Lesnick (SUNY).
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The matching distance is a pseudometric on multi-parameter persistence modules, defined in terms of the
weighted bottleneck distance on the restriction of the modules to affine lines. It is known that this distance is
stable in a reasonable sense, and can be efficiently approximated, which makes it a promising tool for practical
applications. In [44] we show that in the 2-parameter setting, the matching distance can be computed exactly
in polynomial time. Our approach subdivides the space of affine lines into regions, via a line arrangement. In
each region, the matching distance restricts to a simple analytic function, whose maximum is easily computed.
As a byproduct, our analysis establishes that the matching distance is a rational number, if the bigrades of the
input modules are rational.

7.1.12. A Comparison Framework for Interleaved Persistence Modules
Participant: Miroslav Kramár.

In collaboration with Rachel Levanger (UPenn), Shaun Harker and Konstantin Mischaikow (Rutgers).

In [43], we present a generalization of the induced matching theorem of [1] and use it to prove a generalization
of the algebraic stability theorem for R-indexed pointwise finite-dimensional persistence modules. Via numer-
ous examples, we show how the generalized algebraic stability theorem enables the computation of rigorous
error bounds in the space of persistence diagrams that go beyond the typical formulation in terms of bottleneck
(or log bottleneck) distance.

7.1.13. Discrete Morse Theory for Computing Zigzag Persistence
Participant: Clément Maria.

In collaboration with Hannah Schreiber (Graz University of Technology, Austria)

We introduce a framework to simplify zigzag filtrations of general complexes using discrete Morse theory,
in order to accelerate the computation of zigzag persistence. Zigzag persistence is a powerful algebraic
generalization of persistent homology. However, its computation is much slower in practice, and the usual
optimization techniques cannot be used to compute it. Our approach is different in that it preprocesses the
filtration before computation. Using discrete Morse theory, we get a much smaller zigzag filtration with same
persistence. The new filtration contains general complexes. We introduce new update procedures to modify on
the fly the algebraic data (the zigzag persistence matrix) under the new combinatorial changes induced by the
Morse reduction. Our approach is significantly faster in practice [45].

7.2. Statistical aspects of topological and geometric data analysis
7.2.1. Robust Bregman Clustering

Participants: Claire Brécheteau, Clément Levrard.

In collaboration with Aurélie Fischer (Université Paris-Diderot).

Using a trimming approach, in [38], we investigate a k-means type method based on Bregman divergences
for clustering data possibly corrupted with clutter noise. The main interest of Bregman divergences is that
the standard Lloyd algorithm adapts to these distortion measures, and they are well-suited for clustering
data sampled according to mixture models from exponential families. We prove that there exists an optimal
codebook, and that an empirically optimal codebook converges a.s. to an optimal codebook in the distortion
sense. Moreover, we obtain the sub-Gaussian rate of convergence for k-means 1

√
n under mild tail

assumptions. Also, we derive a Lloyd-type algorithm with a trimming parameter that can be selected from
data according to some heuristic, and present some experimental results.

7.2.2. Statistical analysis and parameter selection for Mapper
Participants: Mathieu Carrière, Bertrand Michel, Steve Oudot.
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In [15] we study the question of the statistical convergence of the 1-dimensional Mapper to its continuous
analogue, the Reeb graph. We show that the Mapper is an optimal estimator of the Reeb graph, which gives, as
a byproduct, a method to automatically tune its parameters and compute confidence regions on its topological
features, such as its loops and flares. This allows to circumvent the issue of testing a large grid of parameters
and keeping the most stable ones in the brute-force setting, which is widely used in visualization, clustering
and feature selection with the Mapper.

7.2.3. A Fuzzy Clustering Algorithm for the Mode-Seeking Framework
Participants: Thomas Bonis, Steve Oudot.

In [13] we propose a new soft clustering algorithm based on the mode-seeking framework. Given a point cloud
in Rd, we define regions of high density that we call cluster cores, then we implement a random walk on a
neighborhood graph built on top of the data points. This random walk is designed in such a way that it is
attracted by high-density regions, the intensity of the attraction being controlled by a temperature parameter
β > 0. The membership of a point to a given cluster is then the probability for the random walk starting at
this point to hit the corresponding cluster core before any other. While many properties of random walks
(such as hitting times, commute distances, etc) are known to eventually encode purely local information when
the number of data points grows to infinity, the regularization introduced by the use of cluster cores allows
the output of our algorithm to converge to quantities involving the global structure of the underlying density
function. Empirically, we show how the choice of β influences the behavior of our algorithm: for small values
of β the result is really close to hard mode-seeking, while for values of β close to 1 the result is similar to the
output of the (soft) spectral clustering. We also demonstrate the scalability of our approach experimentally.

7.2.4. Large Scale computation of Means and Clusters for Persistence Diagrams using
Optimal Transport
Participants: Théo Lacombe, Steve Oudot.

In collaboration with Marco Cuturi (ENSAE).

Persistence diagrams (PDs) are at the core of topological data analysis. They provide succinct descriptors
encoding the underlying topology of sophisticated data. PDs are backed-up by strong theoretical results
regarding their stability and have been used in various learning contexts. However, they do not live in a space
naturally endowed with a Hilbert structure where natural metrics are not even differentiable, thus not suited
to optimization process. Therefore, basic statistical notions such as the barycenter of a finite sample of PDs
are not properly defined. In [30] we provide a theoretically good and computationally tractable framework to
estimate the barycenter of a set of persistence diagrams. This construction is based on the theory of Optimal
Transport (OT) and endows the space of PDs with a metric inspired from regularized Wasserstein distances.

7.2.5. The k-PDTM : a coreset for robust geometric inference
Participants: Claire Brécheteau, Clément Levrard.

Analyzing the sub-level sets of the distance to a compact sub-manifold of Rd is a common method in TDA
to understand its topology. The distance to measure (DTM) was introduced by Chazal, Cohen-Steiner and
Mérigot to face the non-robustness of the distance to a compact set to noise and outliers. This function makes
possible the inference of the topology of a compact subset of Rd from a noisy cloud of n points lying nearby
in the Wasserstein sense. In practice, these sub-level sets may be computed using approximations of the DTM
such as the q-witnessed distance or other power distance. These approaches lead eventually to compute the
homology of unions of n growing balls, that might become intractable whenever n is large. To simultaneously
face the two problems of large number of points and noise, we introduce in [39] the k-power distance to
measure (k-PDTM). This new approximation of the distance to measure may be thought of as a k-coreset
based approximation of the DTM. Its sublevel sets consist in union of k-balls, k << n, and this distance is
also proved robust to noise. We assess the quality of this approximation for k possibly dramatically smaller
than n, for instance k = n13 is proved to be optimal for 2-dimensional shapes. We also provide an algorithm
to compute this k-PDTM.
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7.2.6. The density of expected persistence diagrams and its kernel based estimation
Participants: Frédéric Chazal, Vincent Divol.

Persistence diagrams play a fundamental role in Topological Data Analysis where they are used as topological
descriptors of filtrations built on top of data. They consist in discrete multisets of points in the plane R2 that
can equivalently be seen as discrete measures in R2. When the data come as a random point cloud, these
discrete measures become random measures whose expectation is studied in this paper. In [28] we first show
that for a wide class of filtrations, including the Čech and Rips-Vietoris filtrations, the expected persistence
diagram, that is a deterministic measure on R2, has a density with respect to the Lebesgue measure. Second,
building on the previous result we show that the persistence surface recently introduced by Adams et al can
be seen as a kernel estimator of this density. We propose a cross-validation scheme for selecting an optimal
bandwidth, which is proven to be a consistent procedure to estimate the density.

7.2.7. On the choice of weight functions for linear representations of persistence diagrams
Participant: Vincent Divol.

In collaboration with Wolfgang Polonik (UC Davis)

Persistence diagrams are efficient descriptors of the topology of a point cloud. As they do not naturally belong
to a Hilbert space, standard statistical methods cannot be directly applied to them. Instead, feature maps (or
representations) are commonly used for the analysis. A large class of feature maps, which we call linear,
depends on some weight functions, the choice of which is a critical issue. An important criterion to choose a
weight function is to ensure stability of the feature maps with respect to Wasserstein distances on diagrams.
In [42], we improve known results on the stability of such maps, and extend it to general weight functions.
We also address the choice of the weight function by considering an asymptotic setting; assume that Xn is an
i.i.d. sample from a density on [0, 1]

d. For the Cech and Rips filtrations, we characterize the weight functions
for which the corresponding feature maps converge as n approaches infinity, and by doing so, we prove laws
of large numbers for the total persistence of such diagrams. Both approaches lead to the same simple heuristic
for tuning weight functions: if the data lies near a d-dimensional manifold, then a sensible choice of weight
function is the persistence to the power α with α ≥ d.

7.2.8. Estimating the Reach of a Manifold
Participants: Frédéric Chazal, Bertrand Michel.

In collaboration with E. Aamari (CNRS Paris 7), J.Kim, A. Rinaldo and L. Wasserman (Carnegie Mellon
University).

Various problems in manifold estimation make use of a quantity called the reach, denoted by τM , which is a
measure of the regularity of the manifold. [32] is the first investigation into the problem of how to estimate
the reach. First, we study the geometry of the reach through an approximation perspective. We derive new
geometric results on the reach for submanifolds without boundary. An estimator τ̂ of τM is proposed in a
framework where tangent spaces are known, and bounds assessing its efficiency are derived. In the case of
i.i.d. random point cloud Xn, τ(Xn) is showed to achieve uniform expected loss bounds over a C3-like model.
Finally, we obtain upper and lower bounds on the minimax rate for estimating the reach.

7.2.9. Robust Topological Inference: Distance To a Measure and Kernel Distance
Participants: Frédéric Chazal, Bertrand Michel.

In collaboration with B. Fasy (Univ. Montana) and F. Lecci, A. Rinaldo and L. Wasserman (Carnegie Mellon
University).
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Let P be a distribution with support S. The salient features of S can be quantified with persistent homology,
which summarizes topological features of the sublevel sets of the distance function (the distance of any point x
to S). Given a sample from P we can infer the persistent homology using an empirical version of the distance
function. However, the empirical distance function is highly non-robust to noise and outliers. Even one outlier
is deadly. The distance-to-a-measure (DTM), introduced by Chazal et al. (2011), and the kernel distance,
introduced by Phillips et al. (2014), are smooth functions that provide useful topological information but are
robust to noise and outliers. Chazal et al. (2015) derived concentration bounds for DTM. Building on these
results, in [16], we derive limiting distributions and confidence sets, and we propose a method for choosing
tuning parameters.

7.3. Topological approach for multimodal data processing
7.3.1. Barcode Embeddings for Metric Graphs

Participants: Steve Oudot, Yitchzak Solomon.

Stable topological invariants are a cornerstone of persistence theory and applied topology, but their discrimi-
native properties are often poorly-understood. In [46] we study a rich homology-based invariant first defined
by Dey, Shi, and Wang, which we think of as embedding a metric graph in the barcode space. We prove that
this invariant is locally injective on the space of metric graphs and globally injective on a GH-dense subset.
Moreover, we define a new topology on MGraphs, which we call the fibered topology, for which the barcode
transform is injective on a generic (open and dense) subset.

7.3.2. Inverse Problems in Topological Persistence: a Survey
Participants: Steve Oudot, Yitchzak Solomon.

In [47] we review the literature on inverse problems in topological persistence theory. The first half of the
survey is concerned with the question of surjectivity, i.e. the existence of right inverses, and the second half
focuses on injectivity, i.e. left inverses. Throughout, we highlight the tools and theorems that underlie these
advances, and direct the reader’s attention to open problems, both theoretical and applied.

7.4. Experimental research and software development
7.4.1. Activity recognition from stride detection: a machine learning approach based on

geometric patterns and trajectory reconstruction.
Participants: Bertrand Beaufils, Frédéric Chazal, Bertrand Michel.

In collaboration with M. Grelet (Sysnav).

In [23] algorithm for activity recognition is proposed using inertial sensors worn on the ankle. This innovative
approach based on geometric patterns uses a stride detector that can detect both normal walking strides and
atypical strides such as small steps, side steps and backward walking that existing methods struggle to detect.
It is also robust in critical situations, when for example the wearer is sitting and moving the ankle, while most
algorithms in the literature would wrongly detect strides. A technique inspired by Zero Velocity Update is
used on the stride detection to compute the trajectory of the device. It allows to compute relevant features
for the activity recognition learning task. Compared to most algorithms in the literature, this method does not
use fixed-size sliding window that could be too short to provide enough information or too long and leads to
overlapping issue when the window covers two different activities.

7.4.2. Dynamics of silo deformation under granular discharge
Participant: Miroslav Kramár.

In collaboration with Claudia Colonnello.
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In [17], we use Topological Data Analysis to study the post buckling behavior of laboratory scale cylindrical
silos under gravity driven granular discharges. Thin walled silos buckle during the discharge if the initial
height of the granular column is large enough. The deformation of the silo is reversible as long as the filling
height does not exceed a critical value, Lc. Beyond this threshold the deformation becomes permanent and
the silo often collapses. We study the dynamics of reversible and irreversible deformation processes, varying
the initial filling height around Lc. We find that all reversible processes exhibit striking similarities and they
alternate between regimes of slow and fast dynamics. The patterns that occur at the beginning of irreversible
deformation processes are topologically very similar to those that arise during reversible processes. However,
the dynamics of reversible and irreversible processes is significantly different. In particular, the evolution of
irreversible processes is much faster. This allows us to make an early prediction of the collapse of the silo
based solely on observations of the deformation patterns.

7.4.3. Characterizing Granular Networks Using Topological Metrics
Participant: Miroslav Kramár.

In collaboration with Joshua Dijksman (Duke Physics), Lenka Kovalcinova and Lou Kondic (NJIT), Jie Ren
(Merck Research Lab), Robert Behringer (Duke), and Konstantin Mischaikow (Rutgers).

In [18], we carry out a direct comparison of experimental and numerical realizations of the exact same granular
system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the
experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range
form microscopic, through mesoscopic to system-wide characteristics of the system. Topological properties
of the mesoscopic force networks provide a key link between mi-cro and macro scales. We report two main
findings: the number of particles in the packing that have at least two contacts is a good predictor for the
mechanical state of the system, regardless of strain history and packing density. All measures explored in
both experiments and numerics, including stress tensor derived measures and contact numbers depend in
a universal manner on the fraction of non-rattler particles, fNR. The force network topology also tends to
show this universality, yet the shape of the master curve depends much more on the details of the numerical
simulations. In particular we show that adding force noise to the numerical data set can significantly alter the
topological features in the data. We conclude that both fNR and topological metrics are useful measures to
consider when quantifying the state of a granular system.

7.5. Miscellaneous
7.5.1. On Order Types of Random Point Sets

Participant: Marc Glisse.

In collaboration with Olivier Devillers and Xavier Goaoc (Inria team Gamble) and Philippe Duchon (LaBRI,
Université de Bordeaux).

Let P be a set of n random points chosen uniformly in the unit square. In this paper [41], we examine the
typical resolution of the order type of P . First, we show that with high probability, P can be rounded to the
grid of step 1

n3+ε without changing its order type. Second, we study algorithms for determining the order type
of a point set in terms of the number of coordinate bits they require to know. We give an algorithm that requires
on average 4n log2 n+O(n) bits to determine the order type of P , and show that any algorithm requires at
least 4n log2 n−O(n log log n) bits. Both results extend to more general models of random point sets.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
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• Collaboration with Sysnav, a French SME with world leading expertise in navigation and geopo-
sitioning in extreme environments, on TDA, geometric approaches and machine learning for the
analysis of movements of pedestrians and patients equipped with inetial sensors (CIFRE PhD of
Bertrand Beaufils).

• Research collaboration with Fujitsu on the development of new TDA methods and tools for Machine
learning and Artificial Intelligence (started in Dec 2017).

8.2. Bilateral Grants with Industry
• DATASHAPE and Sysnav have been selected for the ANR/DGA Challenge MALIN (funding: 700

kEuros) on pedestrian motion reconstruction in severe environments (without GPS access).

9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. ANR
9.1.1.1. ANR ASPAG

Participant: Marc Glisse.

- Acronym : ASPAG.

- Type : ANR blanc.

- Title : Analysis and Probabilistic Simulations of Geometric Algorithms.

- Coordinator : Olivier Devillers (équipe Inria Gamble).

- Duration : 4 years from January 2018 to December 2021.

- Others Partners: Inria Gamble, LPSM, LABRI, Université de Rouen, IECL, Université du Littoral Côte
d’Opale, Telecom ParisTech, Université Paris X (Modal’X), LAMA, Université de Poitiers, Université de
Bourgogne.

- Abstract:

The analysis and processing of geometric data has become routine in a variety of human activities ranging
from computer-aided design in manufacturing to the tracking of animal trajectories in ecology or geographic
information systems in GPS navigation devices. Geometric algorithms and probabilistic geometric models are
crucial to the treatment of all this geometric data, yet the current available knowledge is in various ways much
too limited: many models are far from matching real data, and the analyses are not always relevant in practical
contexts. One of the reasons for this state of affairs is that the breadth of expertise required is spread among
different scientific communities (computational geometry, analysis of algorithms and stochastic geometry)
that historically had very little interaction. The Aspag project brings together experts of these communities to
address the problem of geometric data. We will more specifically work on the following three interdependent
directions.

(1) Dependent point sets: One of the main issues of most models is the core assumption that the data points
are independent and follow the same underlying distribution. Although this may be relevant in some contexts,
the independence assumption is too strong for many applications.

(2) Simulation of geometric structures: The phenomena studied in (1) involve intricate random geometric
structures subject to new models or constraints. A natural first step would be to build up our understanding and
identify plausible conjectures through simulation. Perhaps surprisingly, the tools for an effective simulation of
such complex geometric systems still need to be developed.
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(3) Understanding geometric algorithms: the analysis of algorithm is an essential step in assessing the strengths
and weaknesses of algorithmic principles, and is crucial to guide the choices made when designing a complex
data processing pipeline. Any analysis must strike a balance between realism and tractability; the current
analyses of many geometric algorithms are notoriously unrealistic. Aside from the purely scientific objectives,
one of the main goals of Aspag is to bring the communities closer in the long term. As a consequence, the
funding of the project is crucial to ensure that the members of the consortium will be able to interact on a very
regular basis, a necessary condition for significant progress on the above challenges.

- See also: https://members.loria.fr/Olivier.Devillers/aspag/

9.2. European Initiatives
9.2.1. FP7 & H2020 Projects
9.2.1.1. GUDHI

Title: Algorithmic Foundations of Geometry Understanding in Higher Dimensions

Programm: FP7

Type: ERC

Duration: February 2014 - January 2019

Coordinator: Inria

Inria contact: Jean-Daniel Boissonnat.

The central goal of this proposal is to settle the algorithmic foundations of geometry understanding
in dimensions higher than 3. We coin the term geometry understanding to encompass a collection
of tasks including the computer representation and the approximation of geometric structures, and
the inference of geometric or topological properties of sampled shapes. The need to understand
geometric structures is ubiquitous in science and has become an essential part of scientific computing
and data analysis. Geometry understanding is by no means limited to three dimensions. Many
applications in physics, biology, and engineering require a keen understanding of the geometry of
a variety of higher dimensional spaces to capture concise information from the underlying often
highly nonlinear structure of data. Our approach is complementary to manifold learning techniques
and aims at developing an effective theory for geometric and topological data analysis. To reach
these objectives, the guiding principle will be to foster a symbiotic relationship between theory
and practice, and to address fundamental research issues along three parallel advancing fronts. We
will simultaneously develop mathematical approaches providing theoretical guarantees, effective
algorithms that are amenable to theoretical analysis and rigorous experimental validation, and
perennial software development. We will undertake the development of a high-quality open source
software platform to implement the most important geometric data structures and algorithms at the
heart of geometry understanding in higher dimensions. The platform will be a unique vehicle towards
researchers from other fields and will serve as a basis for groundbreaking advances in scientific
computing and data analysis.

9.3. International Research Visitors
9.3.1. Visits of International Scientists

• Wolfgang Polonik, UC Davis, California. Sept. and Oct. 2018. Statistical aspects of persistent
homology.

• Arijit Ghosh, Indian Statistical Institute, Kolkata, India (December 2018)

• Ramsay Dyer, Berkeley Publishing (December 2018)

9.3.1.1. Internships

• Shreya Arya, BITS Pilani University, India, August-July 2018.

https://members.loria.fr/Olivier.Devillers/aspag/
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10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. Member of Organizing Committees

• F. Chazal co-organised the Tutorial “Machine Learning on Evolutionary Computation” at the IEEE
World Congress on Computational Intelligence (WCCI), Rio de Janeiro, July 2018.

• J-D. Boissonnat was a member of the organization committee of the International Conference on
Curves and Surfaces, Arcachon, July 2018.

• S. Oudot organized the mini-symposium on topological data analysis and learning at the Interna-
tional Conference on Curves and Surfaces, Arcachon, July 2018.

10.1.2. Scientific Events Selection
10.1.2.1. Member of the Conference Program Committees

• S. Oudot was a PC member of the International Symposium on Computational Geometry (SoCG),
Budapest, Hungary, June 2018.

• David Cohen-Steiner was a PC member of the Symposium on Geometry Processing (SGP), Paris,
France, July 2018, and of Shape Modeling International (SMI), Lisbon, Portugal, June 2018.

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

Jean-Daniel Boissonnat is a member of the Editorial Board of Journal of the ACM, Discrete and
Computational Geometry, International Journal on Computational Geometry and Applications.
Frédéric Chazal is a member of the Editorial Board of SIAM Journal on Imaging Sciences, Discrete
and Computational Geometry (Springer), Graphical Models (Elsevier), and Journal of Applied and
Computational Topology (Springer).
Steve Oudot is a member of the Editorial Board of Journal of Computational Geometry.

10.1.4. Invited Talks
Frédéric Chazal, Abel Symposium, Geiranger, Norway, June 2018.
Frédéric Chazal, Colloquium de Mathématiques, Math Dept. Amiens, October 2018.
Frédéric Chazal, AI Research Center at National Cheng-Kung University, Taiwan, May 2018.
Frédéric Chazal, National Center for High-performance Computing, Taiwan, May 2018.
Jean-Daniel Boissonnat, Hamilton Mathematics Institute, Trinity College, Dublin, Ireland, June
2018.
Steve Oudot, Workshop “Topological Data Analysis meets Symplectic Topology”, Tel Aviv, Israel,
May 2018.
Steve Oudot, Abel Symposium, Geiranger, Norway, June 2018.
Steve Oudot, Banff workshop on multiparameter persistence, Oaxaca, Mexico, August 2018.
Steve Oudot, ICERM, Brown University, Providence, USA, August 2018.
Steve Oudot, workshop on structural inference in high-dimensional models, Moscow, Russia,
September 2018.
Clément Maria, Einstein workshop on Geometric and Topological Combinatorics, Freie Universität,
Berlin, Germany, October 2018.

10.1.5. Leadership within the Scientific Community
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Frédéric Chazal is co-responsible, with S. Arlot (Paris-Sud Univ.), of the “programme Maths-STIC”
of the Labex Fondation Mathématique Jacques Hadamard (FMJH).
Frédéric Chazal has been a member of the Scientific council of the french “Agence pour les
Mathematiques en Interaction avec l’Entreprise et la Societe (AMIES)” until Dec. 2018.
Frédéric Chazal is a member of the “Comité de pilotage” of the SIGMA group at SMAI.
Steve Oudot is co-organizing the monthly seminar on combinatorial and computational geometry at
Institut Henri Poincaré.
Steve Oudot is co-head (with Luca Castelli-Aleardi) of the GT Géométrie Algorithmique within the
GdR Informatique Mathématique.
Steve Oudot is a member of the program committee of the DataIA convergence institute.

10.1.6. Scientific Expertise
• Consulting collaboration for IFPEN to explore potential applications of TDA (from February 2018

to Dec. 2018).

10.1.7. Research Administration
Frédéric Chazal is a member of the Équipe de Direction at Inria Saclay.
Marc Glisse, responsable Raweb pour DataShape
Steve Oudot is vice-president of the Commission Scientifique at Inria Saclay.
Clément Maria is a member of the CDT at Inria Sophia Antipolis-Méditerranée.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master: Frédéric Chazal and Quentin Mérigot, Analyse Topologique des Données, 30h eq-TD,
Université Paris-Sud, France.
Master: Jean-Daniel Boissonnat and Marc Glisse, Computational Geometry Learning, 36h eq-TD,
M2, MPRI, France.
Master: Frédéric Cazals and Frédéric Chazal, Geometric Methods for Data Analysis, 30h eq-TD,
M1, École Centrale Paris, France.
Master: Frédéric Chazal and Julien Tierny, Topological Data Analysis, 38h eq-TD, M2, Mathéma-
tiques, Vision, Apprentissage (MVA), ENS Paris-Saclay, France.
Master: Steve Oudot, Topological data analysis, 45h eq-TD, M1, École polytechnique, France.
Master: Steve Oudot, Data Analysis: geometry and topology in arbitrary dimensions, 24h eq-TD,
M2, graduate program in Artificial Intelligence & Advanced Visual Computing, École polytech-
nique, France.
Undergrad-Master: Steve Oudot, preparatory course for international programming contests, 54h
eq-TD, L3/M1, École polytechnique, France.
Summer School on topological data analysis and persistent homology: Steve Oudot, advanced topics,
6h eq-TD, Trento, Italy, June 2018.
Summer School on geometric data: Frédéric Chazal and Marc Glisse, Introduction to Topological
Data Analysis, 9h eq-TD, Fréjus, Sept. 2018.
Winter School on Computational Geometry, Amirkabir University of Technology, Tehran, Iran.
Course on Delaunay Triangulation of Manifolds, March 2018.

10.2.2. Supervision
PhD : Claire Brécheteau, Statistical aspects of distance-like functions , Defended on September
2018, Frédéric Chazal (co-advised by Pascal Massart).
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PhD in progress: Bertrand Beaufils, Méthodes topologiques et apprentissage statistique pour
l’actimétrie du piéton à partir de données de mouvement, started November 2016, Frédéric Chazal
(co-advised by Bertrand Michel).
PhD: Jérémy Cochoy, Decomposition and stability of multidimensional persistence modules, De-
fended on December 10, 2018, Steve Oudot.
PhD in progress: Yitchzak Solomon, Inverse problems in topological data analysis, started Septem-
ber 1st, 2016, Steve Oudot (co-advised by Jeff Brock, Brown University).
PhD in progress: Nicolas Berkouk, Categorification of topological graph structures, started Novem-
ber 1st, 2016, Steve Oudot.
PhD in progress: Théo Lacombe, Statistics for persistence diagrams using optimal transport, started
October 1st, 2017, Steve Oudot.
PhD in progress: Alba Chiara de Vitis, Concentration of measure and clustering, Jean-Daniel
Boissonnat and David Cohen-Steiner.
PhD in progress: Siargey Kachanovich, Manifold reconstruction in higher dimensions, Jean-Daniel
Boissonnat.
PhD in progress: Siddharth Pritam, Approximation algorithms in Computational Topology, Jean-
Daniel Boissonnat.
PhD in progress: Raphaël Tinarrage, Persistence and stability of nerves in measured metric spaces
for Topological Data Analysis, started September 1st, 2017, Frédéric Chazal and Marc Glisse.
PhD in progress: Vincent Divol, statistical aspects of TDA, started September 1st, 2017, Frédéric
Chazal (co-advised by Pascal Massart).
PhD in progress: Owen Rouillé, September 2018, co-advised by C. Maria and J-D. Boissonnat.

10.2.3. Juries
J-D. Boissonnat was a member of the committee for the HDR defense of Aurélien Alvarez (Univer-
sité d’Orléans).
F. Chazal was a member of the PhD defense committee of Jisu Kim (Carnegie Mellon University,
advisors: A. Rinaldo and L. Wasserman), Claire Brécheteau (Université Paris-Saclay, advisors:
F. Chazal and P. Massart), Hariprasad Kannan (Centrale-Supelec, advisor: N. Paragios), Dorian
Nognen (Ecole Polytechnique, advisor: M. Ovsjanikov).
S. Oudot was a member of the Ph.D. defence committee of Tim Ophelders (T.U. Eindhoven,
advisors: Bettina Speckmann and Kevin Buchin).

10.3. Popularization
10.3.1. Interventions

• Frédéric Chazal: Fujitsu Forum, “Topological Data Analysis: from academic success to industrial
innovation”, Tokyo, Japan, May 2018.

• Frédéric Chazal: “TDA and AI for biomedical applications”, Kaohsiung MEdical Technology Expo,
Taiwan, May 2018.

11. Bibliography
Major publications by the team in recent years

[1] D. ATTALI, U. BAUER, O. DEVILLERS, M. GLISSE, A. LIEUTIER. Homological Reconstruction and
Simplification in R3, in "Computational Geometry", 2014 [DOI : 10.1016/J.COMGEO.2014.08.010], https://
hal.archives-ouvertes.fr/hal-01132440

https://hal.archives-ouvertes.fr/hal-01132440
https://hal.archives-ouvertes.fr/hal-01132440


Project-Team DATASHAPE 19

[2] J.-D. BOISSONNAT, R. DYER, A. GHOSH. Delaunay Triangulation of Manifolds, in "Foundations of Com-
putational Mathematics", 2017, vol. 45, 38 p. [DOI : 10.1007/S10208-017-9344-1], https://hal.inria.fr/
hal-01509888

[3] J.-D. BOISSONNAT, R. DYER, A. GHOSH, S. Y. OUDOT. Only distances are required to reconstruct subman-
ifolds, in "Computational Geometry", 2017, vol. 66, pp. 32 - 67 [DOI : 10.1016/J.COMGEO.2017.08.001],
https://hal.inria.fr/hal-01583086

[4] J.-D. BOISSONNAT, K. C. SRIKANTA, S. TAVENAS. Building Efficient and Compact Data Structures for
Simplicial Complexe, in "Algorithmica", September 2016 [DOI : 10.1007/S00453-016-0207-Y], https://
hal.inria.fr/hal-01364648

[5] F. CHAZAL, D. COHEN-STEINER, A. LIEUTIER. A Sampling Theory for Compact Sets in Euclidean Space, in
"Discrete Comput. Geom.", 2009, vol. 41, no 3, pp. 461–479, http://dx.doi.org/10.1007/s00454-009-9144-8

[6] F. CHAZAL, D. COHEN-STEINER, Q. MÉRIGOT. Geometric Inference for Measures based on Distance
Functions, in "Foundations of Computational Mathematics", 2011, vol. 11, no 6, pp. 733-751, RR-6930
[DOI : 10.1007/S10208-011-9098-0], http://hal.inria.fr/inria-00383685

[7] F. CHAZAL, S. Y. OUDOT, M. GLISSE, V. DE SILVA. The Structure and Stability of Persistence Modules,
SpringerBriefs in Mathematics, Springer Verlag, 2016, VII, 116 p. , https://hal.inria.fr/hal-01330678

[8] L. J. GUIBAS, S. Y. OUDOT, P. SKRABA, F. CHAZAL. Persistence-Based Clustering in Riemannian Manifolds,
in "Journal of the ACM", November 2013, vol. 60, no 6, 38 p. , http://hal.archives-ouvertes.fr/hal-00923563

[9] M. MANDAD, D. COHEN-STEINER, L. KOBBELT, P. ALLIEZ, M. DESBRUN. Variance-Minimizing
Transport Plans for Inter-surface Mapping, in "ACM Transactions on Graphics", 2017, vol. 36, 14 p.
[DOI : 10.1145/3072959.3073671], https://hal.inria.fr/hal-01519006

[10] S. Y. OUDOT. Persistence Theory: From Quiver Representations to Data Analysis, Mathematical Surveys and
Monographs, American Mathematical Society, 2015, no 209, 218 p. , https://hal.inria.fr/hal-01247501

Publications of the year
Articles in International Peer-Reviewed Journals

[11] S. ARYA, G. DA FONSECA, D. MOUNT. Approximate Polytope Membership Queries, in "SIAM Journal on
Computing", January 2018, vol. 47, no 1, pp. 1 - 51 [DOI : 10.1137/16M1061096], https://hal.archives-
ouvertes.fr/hal-01890054

[12] J.-D. BOISSONNAT, C. KARTHIK. An Efficient Representation for Filtrations of Simplicial Complexes, in
"ACM Transactions on Algorithms", September 2018, vol. 14, https://hal.inria.fr/hal-01883836

[13] T. BONIS, S. OUDOT. A Fuzzy Clustering Algorithm for the Mode-Seeking Framework, in "Pattern
Recognition Letters", 2018, https://arxiv.org/abs/1406.7130 - Submitted to Pattern Recognition Letters
[DOI : 10.1016/J.PATREC.2017.11.019], https://hal.inria.fr/hal-01111854

[14] D. BREMNER, O. DEVILLERS, M. GLISSE, S. LAZARD, G. LIOTTA, T. MCHEDLIDZE, G. MOROZ, S.
WHITESIDES, S. WISMATH. Monotone Simultaneous Paths Embeddings in Rd, in "Discrete Mathematics

https://hal.inria.fr/hal-01509888
https://hal.inria.fr/hal-01509888
https://hal.inria.fr/hal-01583086
https://hal.inria.fr/hal-01364648
https://hal.inria.fr/hal-01364648
http://dx.doi.org/10.1007/s00454-009-9144-8
http://hal.inria.fr/inria-00383685
https://hal.inria.fr/hal-01330678
http://hal.archives-ouvertes.fr/hal-00923563
https://hal.inria.fr/hal-01519006
https://hal.inria.fr/hal-01247501
https://hal.archives-ouvertes.fr/hal-01890054
https://hal.archives-ouvertes.fr/hal-01890054
https://hal.inria.fr/hal-01883836
https://arxiv.org/abs/1406.7130
https://hal.inria.fr/hal-01111854


20 Activity Report INRIA 2018

and Theoretical Computer Science", January 2018, vol. 20, no 1, pp. 1-11 [DOI : 10.23638/DMTCS-20-1-
1], https://hal.inria.fr/hal-01529154

[15] M. CARRIERE, B. MICHEL, S. Y. OUDOT. Statistical analysis and parameter selection for Mapper, in
"Journal of Machine Learning Research", 2018, https://hal.archives-ouvertes.fr/hal-01633106

[16] F. CHAZAL, B. FASY, F. LECCI, B. MICHEL, A. RINALDO, L. WASSERMAN. Robust Topological Inference:
Distance To a Measure and Kernel Distance, in "Journal of Machine Learning Research", 2018, vol. 18, no

159, 40 p. , https://arxiv.org/abs/1412.7197v1 - To appear, forthcoming, https://hal.inria.fr/hal-01232217

[17] C. COLONNELLO, M. KRAMÁR. Dynamics of silo deformation under granular discharge, in "pre physical
review E", 2018, https://hal.inria.fr/hal-01849279

[18] J. DIJKSMAN, L. KOVALCINOVA, J. REN, R. BEHRINGER, M. KRAMÁR, K. MISCHAIKOW, L. KONDIC.
Characterizing Granular Networks Using Topological Metrics, in "Physical Review E ", 2018, vol. 97, 042903
p. , https://hal.inria.fr/hal-01757079

[19] P. DLOTKO, T. WANNER. Rigorous cubical approximation and persistent homology of continuous func-
tions, in "Computers and Mathematics with Applications", March 2018, https://hal.archives-ouvertes.fr/hal-
01706695

[20] L. KANARI, P. DLOTKO, M. SCOLAMIERO, R. LEVI, J. SHILLCOCK, K. HESS, H. MARKRAM. Quantifying
topological invariants of neuronal morphologies, in "Neuroinformatics", January 2018, https://arxiv.org/abs/
1603.08432 - 10 pages, 5 figures, conference or other essential info, https://hal.archives-ouvertes.fr/hal-
01706793

[21] C. SORZANO, A. JIMÉNEZ, J. MOTA, J. VILAS, D. MALUENDA, M. MARTÍNEZ, E. RAMÍREZ-APORTELA,
T. MAJTNER, J. SEGURA, R. SÁNCHEZ-GARCÍA, Y. RANCEL, L. DEL CAÑO, P. CONESA, R. MELERO, S.
JONIC, J. VARGAS, F. CAZALS, Z. FREYBERG, J. KRIEGER, I. BAHAR, R. MARABINI, J. CARAZO. Survey
of the analysis of continuous conformational variability of biological macromolecules by electron microscopy,
in "Acta crystallographica. Section F, Structural biology communications", January 2019, vol. 75, no 1, pp.
19-32, https://hal.inria.fr/hal-01968170

International Conferences with Proceedings

[22] S. ARYA, G. D. DA FONSECA, D. M. MOUNT. Approximate Convex Intersection Detection with Applications
to Width and Minkowski Sums, in "ESA 2018 - European Symposium on Algorithms", Helsinki, Finland, 26th
Annual European Symposium on Algorithms proceedings, August 2018, https://arxiv.org/abs/1807.00484
[DOI : 10.4230/LIPICS.ESA.2018.3], https://hal.archives-ouvertes.fr/hal-01890039

[23] B. BEAUFILS, F. CHAZAL, M. GRELET, B. MICHEL. Activity recognition from stride detection: a machine
learning approach based on geometric patterns and trajectory reconstruction, in "IPIN 2018 - 9th International
Conference on Indoor Positioning and Indoor Navigation", Nantes, France, Proceedings IPIN 2018 - 9th
International Conference on Indoor Positioning and Indoor Navigation, September 2018, https://hal.archives-
ouvertes.fr/hal-01864467

[24] J.-D. BOISSONNAT, K. DUTTA, A. GHOSH, S. KOLAY. Tight Kernels for Covering and Hitting: Point
Hyperplane Cover and Polynomial Point Hitting Set, in "LATIN 2018 - 13th Latin American Theoretical
INformatics Symposium", Buenos Aires, Argentina, April 2018, https://hal.inria.fr/hal-01669884

https://hal.inria.fr/hal-01529154
https://hal.archives-ouvertes.fr/hal-01633106
https://arxiv.org/abs/1412.7197v1
https://hal.inria.fr/hal-01232217
https://hal.inria.fr/hal-01849279
https://hal.inria.fr/hal-01757079
https://hal.archives-ouvertes.fr/hal-01706695
https://hal.archives-ouvertes.fr/hal-01706695
https://arxiv.org/abs/1603.08432
https://arxiv.org/abs/1603.08432
https://hal.archives-ouvertes.fr/hal-01706793
https://hal.archives-ouvertes.fr/hal-01706793
https://hal.inria.fr/hal-01968170
https://arxiv.org/abs/1807.00484
https://hal.archives-ouvertes.fr/hal-01890039
https://hal.archives-ouvertes.fr/hal-01864467
https://hal.archives-ouvertes.fr/hal-01864467
https://hal.inria.fr/hal-01669884


Project-Team DATASHAPE 21

[25] J.-D. BOISSONNAT, R. DYER, A. GHOSH, M. WINTRAECKEN. Local Criteria for Triangulation of
Manifolds, in "International Symposium on Computational Geometry", Budapest, Hungary, June 2018
[DOI : 10.4230/LIPICS.SOCG.2018.9], https://hal.inria.fr/hal-01801616

[26] J.-D. BOISSONNAT, A. LIEUTIER, M. WINTRAECKEN. The reach, metric distortion, geodesic convexity
and the variation of tangent spaces , in "SoCG 2018 - 34th International Symposium on Computational
Geometry", Budapest, Hungary, June 2018, pp. 1-14 [DOI : 10.4230/LIPICS.SOCG.2018], https://hal.inria.
fr/hal-01801667

[27] J.-D. BOISSONNAT, S. PRITAM, D. PAREEK. Strong Collapse for Persistence, in "ESA 2018 -
26th Annual European Symposium on Algorithms", Helsinki, Finland, August 2018, pp. 67:1–67:13
[DOI : 10.4230/LIPICS], https://hal.inria.fr/hal-01886165

[28] F. CHAZAL, V. DIVOL. The density of expected persistence diagrams and its kernel based estimation, in
"Symposium of Computational Geometry (SoCG 2018)", Budapest, Hungary, June 2018, Extended version of
a paper to appear in the proceedings of the Symposium of Computational Geometry 2018, https://hal.archives-
ouvertes.fr/hal-01716181

[29] D. COHEN-STEINER, W. KONG, C. SOHLER, G. VALIANT. Approximating the Spectrum of a Graph, in
"KDD 2018 - Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining", London, United Kingdom, August 2018, https://arxiv.org/abs/1712.01725 , https://hal.inria.fr/
hal-01661199

[30] T. LACOMBE, M. CUTURI, S. OUDOT. Large Scale computation of Means and Clusters for Persistence
Diagrams using Optimal Transport, in "NIPS", Montreal, Canada, 2018, https://hal.inria.fr/hal-01966674

Scientific Books (or Scientific Book chapters)

[31] J.-D. BOISSONNAT, F. CHAZAL, M. YVINEC. Geometric and Topological Inference, Cambridge University
Press, 2018, Cambridge Texts in Applied Mathematics, https://hal.inria.fr/hal-01615863

Other Publications

[32] E. AAMARI, J. KIM, F. CHAZAL, B. MICHEL, A. RINALDO, L. WASSERMAN. Estimating the Reach of
a Manifold, January 2018, https://arxiv.org/abs/1705.04565 - working paper or preprint, https://hal.archives-
ouvertes.fr/hal-01521955

[33] H. ANAI, F. CHAZAL, M. GLISSE, Y. IKE, H. INAKOSHI, R. TINARRAGE, Y. UMEDA. DTM-based
filtrations, November 2018, https://arxiv.org/abs/1811.04757 - working paper or preprint, https://hal.archives-
ouvertes.fr/hal-01919562

[34] S. ARYA, J.-D. BOISSONNAT, K. DUTTA. Persistent Homology with Dimensionality Reduction: k-Distance
vs Gaussian Kernels, December 2018, working paper or preprint, https://hal.inria.fr/hal-01950051

[35] J.-D. BOISSONNAT, O. DEVILLERS, K. DUTTA, M. GLISSE. Randomized incremental construction of
Delaunay triangulations of nice point sets, December 2018, working paper or preprint, https://hal.inria.fr/
hal-01950119

https://hal.inria.fr/hal-01801616
https://hal.inria.fr/hal-01801667
https://hal.inria.fr/hal-01801667
https://hal.inria.fr/hal-01886165
https://hal.archives-ouvertes.fr/hal-01716181
https://hal.archives-ouvertes.fr/hal-01716181
https://arxiv.org/abs/1712.01725
https://hal.inria.fr/hal-01661199
https://hal.inria.fr/hal-01661199
https://hal.inria.fr/hal-01966674
https://hal.inria.fr/hal-01615863
https://arxiv.org/abs/1705.04565
https://hal.archives-ouvertes.fr/hal-01521955
https://hal.archives-ouvertes.fr/hal-01521955
https://arxiv.org/abs/1811.04757
https://hal.archives-ouvertes.fr/hal-01919562
https://hal.archives-ouvertes.fr/hal-01919562
https://hal.inria.fr/hal-01950051
https://hal.inria.fr/hal-01950119
https://hal.inria.fr/hal-01950119


22 Activity Report INRIA 2018

[36] J.-D. BOISSONNAT, S. KACHANOVICH, M. WINTRAECKEN. Triangulating submanifolds: An elementary
and quantified version of Whitney’s method, December 2018, working paper or preprint, https://hal.inria.fr/
hal-01950149

[37] J.-D. BOISSONNAT, S. PRITAM. Computing Persistent Homology of Flag Complexes via Strong Collapses,
December 2018, working paper or preprint, https://hal.inria.fr/hal-01950074

[38] C. BRÉCHETEAU, A. FISCHER, C. LEVRARD. Robust Bregman Clustering, December 2018, https://arxiv.
org/abs/1812.04356 - working paper or preprint, https://hal.archives-ouvertes.fr/hal-01948051

[39] C. BRÉCHETEAU, C. LEVRARD. The k-PDTM : a coreset for robust geometric inference, January 2018,
https://arxiv.org/abs/1801.10346 - working paper or preprint, https://hal.archives-ouvertes.fr/hal-01694542

[40] D. COHEN-STEINER, A. C. DE VITIS. Spectral Properties of Radial Kernels and Clustering in High
Dimensions, January 2019, working paper or preprint, https://hal.inria.fr/hal-01969956

[41] O. DEVILLERS, P. DUCHON, M. GLISSE, X. GOAOC. On Order Types of Random Point Sets, December
2018, working paper or preprint, https://hal.inria.fr/hal-01962093

[42] V. DIVOL, W. POLONIK. On the choice of weight functions for linear representations of persistence diagrams,
July 2018, https://arxiv.org/abs/1807.03678 - working paper or preprint, https://hal.inria.fr/hal-01833660

[43] S. HARKER, M. KRAMÁR, R. LEVANGER, K. MISCHAIKOW. A Comparison Framework for Interleaved
Persistence Modules, April 2018, working paper or preprint, https://hal.inria.fr/hal-01757092

[44] M. KERBER, M. LESNICK, S. OUDOT. Exact computation of the matching distance on 2-parameter
persistence modules, 2018, working paper or preprint, https://hal.inria.fr/hal-01966666

[45] C. MARIA, H. SCHREIBER. Discrete Morse Theory for Computing Zigzag Persistence, January 2019, https://
arxiv.org/abs/1807.05172 - working paper or preprint, https://hal.inria.fr/hal-01971682

[46] S. OUDOT, E. SOLOMON. Barcode Embeddings for Metric Graphs, February 2018, https://arxiv.org/abs/
1712.03630 - working paper or preprint, https://hal.inria.fr/hal-01708780

[47] S. OUDOT, E. SOLOMON. Inverse Problems in Topological Persistence: a Survey, 2018, https://arxiv.org/
abs/1810.10813 - working paper or preprint, https://hal.inria.fr/hal-01966676

https://hal.inria.fr/hal-01950149
https://hal.inria.fr/hal-01950149
https://hal.inria.fr/hal-01950074
https://arxiv.org/abs/1812.04356
https://arxiv.org/abs/1812.04356
https://hal.archives-ouvertes.fr/hal-01948051
https://arxiv.org/abs/1801.10346
https://hal.archives-ouvertes.fr/hal-01694542
https://hal.inria.fr/hal-01969956
https://hal.inria.fr/hal-01962093
https://arxiv.org/abs/1807.03678
https://hal.inria.fr/hal-01833660
https://hal.inria.fr/hal-01757092
https://hal.inria.fr/hal-01966666
https://arxiv.org/abs/1807.05172
https://arxiv.org/abs/1807.05172
https://hal.inria.fr/hal-01971682
https://arxiv.org/abs/1712.03630
https://arxiv.org/abs/1712.03630
https://hal.inria.fr/hal-01708780
https://arxiv.org/abs/1810.10813
https://arxiv.org/abs/1810.10813
https://hal.inria.fr/hal-01966676

