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2. Overall Objectives

2.1. Overall Objectives
Team Ecuador studies Algorithmic Differentiation (AD) of computer programs, blending :

• AD theory: We study software engineering techniques, to analyze and transform programs mechan-
ically. Algorithmic Differentiation (AD) transforms a program P that computes a function F , into a
program P’ that computes analytical derivatives of F . We put emphasis on the adjoint mode of AD,
a sophisticated transformation that yields gradients for optimization at a remarkably low cost.

• AD application to Scientific Computing: We adapt the strategies of Scientific Computing to take
full advantage of AD. We validate our work on real-size applications.

We want to produce AD code that can compete with hand-written sensitivity and adjoint programs used in the
industry. We implement our algorithms into the tool Tapenade, one of the most popular AD tools now.

Our research directions :

• Efficient adjoint AD of frequent dialects e.g. Fixed-Point loops.

• Development of the adjoint AD model towards Dynamic Memory Management.

• Evolution of the adjoint AD model to keep in pace with with modern programming languages
constructs.

• Optimal shape design and optimal control for steady and unsteady simulations. Higher-order
derivatives for uncertainty quantification.

• Adjoint-driven mesh adaptation.

3. Research Program

3.1. Algorithmic Differentiation
Participants: Laurent Hascoët, Valérie Pascual.

algorithmic differentiation (AD, aka Automatic Differentiation) Transformation of a program, that
returns a new program that computes derivatives of the initial program, i.e. some combination of
the partial derivatives of the program’s outputs with respect to its inputs.

adjoint Mathematical manipulation of the Partial Differential Equations that define a problem,
obtaining new differential equations that define the gradient of the original problem’s solution.

checkpointing General trade-off technique, used in adjoint AD, that trades duplicate execution of a
part of the program to save some memory space that was used to save intermediate results.

Algorithmic Differentiation (AD) differentiates programs. The input of AD is a source program P that, given
some X ∈ Rn, returns some Y = F (X) ∈ Rm, for a differentiable F . AD generates a new source program
P ′ that, given X , computes some derivatives of F [2].

Any execution of P amounts to a sequence of instructions, which is identified with a composition of vector
functions. Thus, if

P runs {I1; I2; · · · Ip; },
F then is fp ◦ fp−1 ◦ · · · ◦ f1,

(1)
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where each fk is the elementary function implemented by instruction Ik. AD applies the chain rule to obtain
derivatives of F . Calling Xk the values of all variables after instruction Ik, i.e. X0 = X and Xk = fk(Xk−1),
the Jacobian of F is

F ′(X) = f ′p(Xp−1) . f
′
p−1(Xp−2) . · · · . f ′1(X0) (2)

which can be mechanically written as a sequence of instructions I ′k. This can be generalized to higher
level derivatives, Taylor series, etc. Combining the I ′k with the control of P yields P ′, and therefore this
differentiation is piecewise.

The above computation of F ′(X), albeit simple and mechanical, can be prohibitively expensive on large codes.
In practice, many applications only need cheaper projections of F ′(X) such as:

• Sensitivities, defined for a given direction Ẋ in the input space as:

F ′(X).Ẋ = f ′p(Xp−1) . f
′
p−1(Xp−2) . · · · . f ′1(X0) . Ẋ . (3)

This expression is easily computed from right to left, interleaved with the original program instruc-
tions. This is the tangent mode of AD.

• Adjoints, defined after transposition (F ′∗), for a given weighting Y of the outputs as:

F ′∗(X).Y = f ′∗1 (X0).f
′∗
2 (X1). · · · .f ′∗p−1(Xp−2).f

′∗
p (Xp−1).Y . (4)

This expression is most efficiently computed from right to left, because matrix×vector products
are cheaper than matrix×matrix products. This is the adjoint mode of AD, most effective for
optimization, data assimilation [28], adjoint problems [21], or inverse problems.

Adjoint AD builds a very efficient program [24], which computes the gradient in a time independent from
the number of parameters n. In contrast, computing the same gradient with the tangent mode would require
running the tangent differentiated program n times.

However, the Xk are required in the inverse of their computation order. If the original program overwrites a
part of Xk, the differentiated program must restore Xk before it is used by f ′∗k+1(Xk). Therefore, the central
research problem of adjoint AD is to make the Xk available in reverse order at the cheapest cost, using
strategies that combine storage, repeated forward computation from available previous values, or even inverted
computation from available later values.

Another research issue is to make the AD model cope with the constant evolution of modern language
constructs. From the old days of Fortran77, novelties include pointers and dynamic allocation, modularity,
structured data types, objects, vectorial notation and parallel programming. We keep developing our models
and tools to handle these new constructs.
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3.2. Static Analysis and Transformation of programs
Participants: Laurent Hascoët, Valérie Pascual.

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses, or
separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known as
basic blocks, each contain a sequence of instructions and whose arrows represent all possible
control jumps that can occur at run-time.

abstract interpretation Model that describes program static analysis as a special sort of execution,
in which all branches of control switches are taken concurrently, and where computed values are
replaced by abstract values from a given semantic domain. Each particular analysis gives birth
to a specific semantic domain.

data flow analysis Program analysis that studies how a given property of variables evolves with
execution of the program. Data Flow analysis is static, therefore studying all possible run-time
behaviors and making conservative approximations. A typical data-flow analysis is to detect, at
any location in the source program, whether a variable is initialized or not.

The most obvious example of a program transformation tool is certainly a compiler. Other examples are
program translators, that go from one language or formalism to another, or optimizers, that transform a
program to make it run better. AD is just one such transformation. These tools share the technological basis that
lets them implement the sophisticated analyses [14] required. In particular there are common mathematical
models to specify these analyses and analyze their properties.

An important principle is abstraction: the core of a compiler should not bother about syntactic details of the
compiled program. The optimization and code generation phases must be independent from the particular input
programming language. This is generally achieved using language-specific front-ends, language-independent
middle-ends, and target-specific back-ends. In the middle-end, analysis can concentrate on the semantics of a
reduced set of constructs. This analysis operates on an abstract representation of programs made of one call
graph, whose nodes are themselves flow graphs whose nodes (basic blocks) contain abstract syntax trees for
the individual atomic instructions. To each level are attached symbol tables, nested to capture scoping.

Static program analysis can be defined on this internal representation, which is largely language independent.
The simplest analyses on trees can be specified with inference rules [17], [25], [15]. But many data-flow
analyses are more complex, and better defined on graphs than on trees. Since both call graphs and flow graphs
may be cyclic, these global analyses will be solved iteratively. Abstract Interpretation [18] is a theoretical
framework to study complexity and termination of these analyses.

Data flow analyses must be carefully designed to avoid or control combinatorial explosion. At the call graph
level, they can run bottom-up or top-down, and they yield more accurate results when they take into account
the different call sites of each procedure, which is called context sensitivity. At the flow graph level, they can
run forwards or backwards, and yield more accurate results when they take into account only the possible
execution flows resulting from possible control, which is called flow sensitivity.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge of
actual run-time values. Far before reaching the very theoretical limit of undecidability, one reaches practical
limitations to how much information one can infer from programs that use arrays [31], [19] or pointers.
Therefore, conservative over-approximations must be made, leading to derivative code less efficient than ideal.

3.3. Algorithmic Differentiation and Scientific Computing
Participants: Alain Dervieux, Laurent Hascoët, Bruno Koobus, Eléonore Gauci, Emmanuelle Itam, Olivier
Allain, Stephen Wornom.
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linearization In Scientific Computing, the mathematical model often consists of Partial Differential
Equations, that are discretized and then solved by a computer program. Linearization of these
equations, or alternatively linearization of the computer program, predict the behavior of the
model when small perturbations are applied. This is useful when the perturbations are effectively
small, as in acoustics, or when one wants the sensitivity of the system with respect to one
parameter, as in optimization.

adjoint state Consider a system of Partial Differential Equations that define some characteristics
of a system with respect to some parameters. Consider one particular scalar characteristic. Its
sensitivity (or gradient) with respect to the parameters can be defined by means of adjoint
equations, deduced from the original equations through linearization and transposition. The
solution of the adjoint equations is known as the adjoint state.

Scientific Computing provides reliable simulations of complex systems. For example it is possible to simulate
the steady or unsteady 3D air flow around a plane that captures the physical phenomena of shocks and
turbulence. Next comes optimization, one degree higher in complexity because it repeatedly simulates and
applies gradient-based optimization steps until an optimum is reached. The next sophistication is robustness,
that detects undesirable solutions which, although maybe optimal, are very sensitive to uncertainty on
design parameters or on manufacturing tolerances. This makes second derivative come into play. Similarly
Uncertainty Quantification can use second derivatives to evaluate how uncertainty on the simulation inputs
imply uncertainty on its outputs.

We investigate several approaches to obtain the gradient, between two extremes:
• One can write an adjoint system of mathematical equations, then discretize it and program it by hand.

This is time consuming. Although this looks mathematically sound [21], this does not provide the
gradient of the discretized function itself, thus degrading the final convergence of gradient-descent
optimization.

• One can apply adjoint AD (cf 3.1) on the program that discretizes and solves the direct system. This
gives exactly the adjoint of the discrete function computed by the program. Theoretical results [20]
guarantee convergence of these derivatives when the direct program converges. This approach is
highly mechanizable, but leads to massive use of storage and may require code transformation by
hand [26], [29] to reduce memory usage.

If for instance the model is steady, or when the computation uses a Fixed-Point iteration, tradeoffs exist
between these two extremes [22], [16] that combine low storage consumption with possible automated adjoint
generation. We advocate incorporating them into the AD model and into the AD tools.

4. Application Domains
4.1. Algorithmic Differentiation

Algorithmic Differentiation of programs gives sensitivities or gradients, useful for instance for :
• optimum shape design under constraints, multidisciplinary optimization, and more generally any

algorithm based on local linearization,
• inverse problems, such as parameter estimation and in particular 4Dvar data assimilation in climate

sciences (meteorology, oceanography),
• first-order linearization of complex systems, or higher-order simulations, yielding reduced models

for simulation of complex systems around a given state,
• adaption of parameters for classification tools such as Machine Learning systems, in which Adjoint

Differentiation is also known as backpropagation.
• mesh adaptation and mesh optimization with gradients or adjoints,
• equation solving with the Newton method,
• sensitivity analysis, propagation of truncation errors.



6 Activity Report INRIA 2018

4.2. Multidisciplinary optimization
A CFD program computes the flow around a shape, starting from a number of inputs that define the shape and
other parameters. On this flow one can define optimization criteria e.g. the lift of an aircraft. To optimize
a criterion by a gradient descent, one needs the gradient of the criterion with respect to all inputs, and
possibly additional gradients when there are constraints. Adjoint AD is the most efficient way to compute
these gradients.

4.3. Inverse problems and Data Assimilation
Inverse problems aim at estimating the value of hidden parameters from other measurable values, that depend
on the hidden parameters through a system of equations. For example, the hidden parameter might be the
shape of the ocean floor, and the measurable values of the altitude and velocities of the surface. Figure 1
shows an example of an inverse problem using the glaciology code ALIF (a pure C version of ISSM [27]) and
its AD-adjoint produced by Tapenade.
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Figure 1. Assimilation of the basal friction under Pine Island glacier, West Antarctica. The final simulated surface
velocity (b) is made to match the observed surface velocity (c), by estimation of the basal friction (e). A reference

basal friction (f) is obtained by another data assimilation using the hand=written adjoint of ISSM

One particular case of inverse problems is data assimilation [28] in weather forecasting or in oceanography.
The quality of the initial state of the simulation conditions the quality of the prediction. But this initial state
is not well known. Only some measurements at arbitrary places and times are available. A good initial state
is found by solving a least squares problem between the measurements and a guessed initial state which itself
must verify the equations of meteorology. This boils down to solving an adjoint problem, which can be done
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though AD [30]. The special case of 4Dvar data assimilation is particularly challenging. The 4th dimension
in “4D” is time, as available measurements are distributed over a given assimilation period. Therefore the least
squares mechanism must be applied to a simulation over time that follows the time evolution model. This
process gives a much better estimation of the initial state, because both position and time of measurements
are taken into account. On the other hand, the adjoint problem involved is more complex, because it must
run (backwards) over many time steps. This demanding application of AD justifies our efforts in reducing the
runtime and memory costs of AD adjoint codes.

4.4. Linearization
Simulating a complex system often requires solving a system of Partial Differential Equations. This can be too
expensive, in particular for real-time simulations. When one wants to simulate the reaction of this complex
system to small perturbations around a fixed set of parameters, there is an efficient approximation: just suppose
that the system is linear in a small neighborhood of the current set of parameters. The reaction of the system
is thus approximated by a simple product of the variation of the parameters with the Jacobian matrix of the
system. This Jacobian matrix can be obtained by AD. This is especially cheap when the Jacobian matrix
is sparse. The simulation can be improved further by introducing higher-order derivatives, such as Taylor
expansions, which can also be computed through AD. The result is often called a reduced model.

4.5. Mesh adaptation
Some approximation errors can be expressed by an adjoint state. Mesh adaptation can benefit from this. The
classical optimization step can give an optimization direction not only for the control parameters, but also for
the approximation parameters, and in particular the mesh geometry. The ultimate goal is to obtain optimal
control parameters up to a precision prescribed in advance.

5. New Software and Platforms

5.1. AIRONUM
KEYWORDS: Computational Fluid Dynamics - Turbulence
FUNCTIONAL DESCRIPTION: Aironum is an experimental software that solves the unsteady compressible
Navier-Stokes equations with k-epsilon, LES-VMS and hybrid turbulence modelling on parallel platforms,
using MPI. The mesh model is unstructured tetrahedrization, with possible mesh motion.

• Participant: Alain Dervieux

• Contact: Alain Dervieux

• URL: http://www-sop.inria.fr/tropics/aironum

5.2. TAPENADE
KEYWORDS: Static analysis - Optimization - Compilation - Gradients
SCIENTIFIC DESCRIPTION: Tapenade implements the results of our research about models and static analyses
for AD. Tapenade can be downloaded and installed on most architectures. Alternatively, it can be used as a
web server. Higher-order derivatives can be obtained through repeated application.

Tapenade performs sophisticated data-flow analysis, flow-sensitive and context-sensitive, on the complete
source program to produce an efficient differentiated code. Analyses include Type-Checking, Read-Write
analysis, and Pointer analysis. AD-specific analyses include:

Activity analysis: Detects variables whose derivative is either null or useless, to reduce the number of derivative
instructions.

Adjoint Liveness analysis: Detects the source statements that are dead code for the computation of derivatives.

http://www-sop.inria.fr/tropics/aironum
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TBR analysis: In adjoint-mode AD, reduces the set of source variables that need to be recovered.
FUNCTIONAL DESCRIPTION: Tapenade is an Algorithmic Differentiation tool that transforms an original
program into a new program that computes derivatives of the original program. Algorithmic Differentiation
produces analytical derivatives, that are exact up to machine precision. Adjoint-mode AD can compute
gradients at a cost which is independent from the number of input variables. Tapenade accepts source programs
written in Fortran77, Fortran90, or C. It provides differentiation in the following modes: tangent, vector
tangent, adjoint, and vector adjoint.
NEWS OF THE YEAR: - Continued development of multi-language capacity: AD of codes mixing Fortran
and C - Continued front-end for C++ based on Clang - Experimental support for building Abs-Normal Form
tangent of non-smooth codes
• Participants: Laurent Hascoët and Valérie Pascual
• Contact: Laurent Hascoët
• URL: http://www-sop.inria.fr/tropics/tapenade.html

6. New Results

6.1. Towards Algorithmic Differentiation of C++
Participants: Laurent Hascoët, Valérie Pascual, Frederic Cazals [ABS team, Inria Sophia-Antipolis].

We made progress towards the extension of Tapenade for C++. Last year, an external parser for C++ was built
on top of Clang-LLVM https://clang.llvm.org/ and connected to the input formalism “IL” of Tapenade, but the
internals of Tapenade were not able to handle the new constructs present in this input. This year, integration of
C++ was pushed further by taking into account many of the new constructs (namespaces, classes, constructors
and destructors) in the Internal Representation(IR) of Tapenade. Not surprisingly, this implied deep changes
in several areas of Tapenade code. The IR of Tapenade now contains classes, constructors and destructors, and
also has a faithful representation for namespaces. The textual nested structure and the control-flow parts of the
IR are correct. The symbol tables and the representation for memory locations are still under development.

As a result, Tapenade is now able to input its first C++ files and is able to output them, but without
transformation. Although not advertised nor documented, the functionality is present in the latest release 3.14.
Data-Flow analysis and code transformation (e.g. AD) will not be possible until we have a correct IR about
variables and their memory locations. This work is going on.

This work benefited from the expertise in C++ of Frederic Cazals (Inria ABS team). The ABS team provided
a large test application code (SBL, https://sbl.inria.fr/) for Molecular Dynamics, which will be our first C++
target.

6.2. AD of mixed-language codes
Participants: Valérie Pascual, Laurent Hascoët.

Last year Tapenade was extended to differentiate codes that mix different languages, beginning with the
tangent mode of AD. Our motivating application here is Calculix, a 3-D Structural Finite Element code that
mixes Fortran and C. This year, we continued development towards Adjoint Differentiation. Although more
complete testing is needed, we now have a first correct adjoint of Calculix.

Tapenade can now routinely differentiate Fortran+C codes, and accepts and takes advantage of the interoper-
ability directives provided by the Fortran 2003 standard. It can handle not only procedure parameters corre-
spondence, but also interoperability between C struct and Fortran COMMON blocks. Laurent Hascoët presented
the advancement of this work at the ISMP 2018 congress in Bordeaux https://ismp2018.sciencesconf.org/.

C files (aka “translation units”) and Fortran modules are two instances of the more general notion of “package”
for which we are looking for a unified representation in Tapenade. It appears that this common representation
could also handle C++ namespaces.

http://www-sop.inria.fr/tropics/tapenade.html
https://clang.llvm.org/
https://sbl.inria.fr/
https://ismp2018.sciencesconf.org/
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6.3. Differentiation of non-smooth programs
Participants: Laurent Hascoët, Sri Hari Krishna Narayanan [Argonne National Lab. (Illinois, USA)].

Algorithmic Differentiation can be used to derive tangent models that cope with a certain class of non-
smoothness, through the use of the so-called Abs-Normal Form (ANF) [23]. These tangent models incorporate
some knowledge of the nearby discontinuities of the derivatives. These models bring some additional power
to processes that use tangent approximations, such as simulation, optimization, or solution of differential
equations.

The mechanics to derive these special tangent models can be built as an extension of standard tangent linear
Algorithmic Differentiation. This has been first demonstrated by the AD tool AdolC which, being based on
Operator Overloading, is more flexible and seems a natural choice for implementation. Together with Krishna
Narayanan, we recently tried a similar adaption on Source-Transformation AD tools. It appears that very little
development is needed in the AD-tool. Specifically for Tapenade, it appears that no development at all is
needed in the tool itself. Any end-user can already produce ANF tangent without needing any access to the
tool source. All it requires is a customized derivative of the absolute-value function (ABS), which is currently
less than 40 lines of code.

Building the ANF of a given program introduces one new variable per run-time execution of the ABS function.
As the number of rows and columns of the constructed extended Jacobian both grow like the number of
variables, it may become unreasonably large for large codes. To overcome this issue, we explore the possibility
of finding at run-time the "important" ABS calls that deserve this treatment, and those that don’t. We base this
decision on a notion of distance to the kink induced by this ABS call as illustrated by Figure 2. We presented
these experiments at a Shonan meeting on this question (Shonan, Japan, June 25-29) and at a workshop of
ISMP 2018 (Bordeaux, July 2-6)
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Figure 2. Abs-Normal Form of a non-smooth function: purple:original function, green ANF computed at (30,30).
The ANF is linearized around the point of interest, and at the same time captures the non-smooth behavior. Notice
the ANF divergence from the original function on the left, due to neglecting the leftmost kink which was decided

“far” enough from the point of interest. The ANF divergence on the right is the natural effect of linearization

6.4. AD-adjoints and C dynamic memory management
Participants: Laurent Hascoët, Sri Hari Krishna Narayanan [Argonne National Lab. (Illinois, USA)].
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One of the current frontiers of AD research is the definition of an adjoint AD model that can cope with
dynamic memory management. This research is central to provide reliable adjoint differentiation of C, and
for our distant goal of AD of C++. This research is conducted in collaboration with the MCS department of
Argonne National Lab. Our partnership is formalized by joint participation in the Inria joint lab JLESC, and
partly funded by the Partner University Fund (PUF) of the French embassy in the USA.

Adjoint AD must reproduce in reverse order the control decisions of the original code. In languages such as
C, allocation of dynamic memory and pointer management form a significant part of these control decisions.
Reproducing memory allocation in reverse means reallocating memory, possibly receiving a different memory
chunk. Reproducing pointer addresses in reverse thus requires to convert addresses in the former memory
chunks into equivalent addresses in the new reallocated chunks. Together with Krishna Narayanan from
Argonne, we experiment on real applications to find the most efficient solution to this address conversion
problem. We jointly develop a library (called ADMM, ADjoint Memory Management) whose primitives are
used in AD adjoint code to handle this address conversion. Both our AD tool Tapenade and Argonne’s tool
OpenAD use ADMM in the adjoint code they produce.

This year, trying to prove correctness of our current address conversion, we discovered some limitations that
indeed made the proof impossible. To solve these issues, it seems necessary to assign at run-time a unique
identifier to each chunk of memory used by the code, and to carry this identifier along with every pointer. This
results in a code transformation which, although more complex than expected, can still be described by a small
set of rewrite rules. Moreover, this alternative method should reduce the run-time overhead that we observed
previously. Implementation and measurements are still under way. We presented this recent research in the
form of a catalogue of alternatives for Data-Flow reversal of memory addresses, at the 21st EuroAD workshop
(Jena, Germany, November 19-20).

6.5. Application to large industrial codes
Participants: Valérie Pascual, Laurent Hascoët, Bruno Maugars [ONERA], Sébastien Bourasseau [ONERA],
Bérenger Berthoul [ONERA].

We support industrial users with their first experiments of Algorithmic Differentiation of large in-house codes.

This year’s main application is with ONERA on their ElsA CFD platform (Fortran 90). Both tangent and
adjoint models of the kernel of ElsA were built successfully by Tapenade. It is worth noticing that this
application was performed inside ONERA by ONERA engineers (Bruno Maugars, Sébastien Bourasseau,
Bérenger Berthoul) with no need for installation of ElsA inside Inria. We take this as a sign of maturity of
Tapenade. Apart from a few minor corrections, our contributon was essentially during development meetings,
to point out some strategies and tool options to obtain efficient differentiated code. One emphasis was on
adjoint of vectorized code, which was produced as vectorized code too by means of a seldom-used Tapenade
option that stores intermediate values statically, i.e. not on a global stack. Sébastien Bourasseau presented the
first results at the 21st EuroAD workshop (Jena, Germany, November 19-20), with convincing performance
on industrial-size test cases. A joint article is in preparation.

6.6. Multirate methods
Participants: Alain Dervieux, Bruno Koobus, Emmanuelle Itam, Stephen Wornom.

This study is performed in collaboration with IMAG-Montpellier. It addresses an important complexity issue in
unsteady mesh adaptation and took place in the work done in the ANR Maidesc (ended 2017). Unsteady high-
Reynolds computations are strongly penalized by the very small time step imposed by accuracy requirements
on regions involving small space-time scales. Unfortunately, this is also true for sophisticated unsteady mesh
adaptive calculations. This small time step is an important computational penalty for mesh adaptive methods of
AMR type. This is also the case for the Unsteady Fixed-Point mesh adaptive methods developed by Ecuador
in cooperation with the Gamma3 team of Inria-Saclay. In the latter method, the loss of efficiency is even
more crucial when the anisotropic mesh is locally strongly stretched since only very few cells are in the
regions of small time-step constraint. This loss is evaluated as limiting the numerical convergence order for
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discontinuities to 8/5 instead of second-order convergence. An obvious remedy is to design time-consistent
methods using different time steps on different parts of the mesh, as far as they are efficient and not too
complex. The family of time-advancing methods in which unsteady phenomena are computed with different
time steps in different regions is referred to as the multirate methods. In our collaboration with university
of Montpellier, a novel multirate method using cell agglomeration has been designed and developed in our
AIRONUM CFD platform. A series of large-scale test cases show that the new method is much more efficient
than an explicit method, while retaining a similar time accuracy over the whole computational domain. A
novel analysis shows that the proposed multirate algorithm indeed solves the unsteady mesh adaptation barrier
identified in previous works. This work is being published in a journal [13].

6.7. Control of approximation errors
Participants: Eléonore Gauci, Alain Dervieux, Adrien Loseille [Gamma3 team, Inria-Rocquencourt],
Frédéric Alauzet [Gamma3 team, Inria-Rocquencourt], Anca Belme [university of Paris 6], Gautier Brèthes
[university of Montreal], Alexandre Carabias [Lemma].

Reducing approximation errors as much as possible is a particular kind of optimal control problem. We
formulate it exactly this way when we look for the optimal metric of the mesh, which minimizes a user-
specified functional (goal-oriented mesh adaptation). In that case, the usual methods of optimal control apply,
using adjoint states that can be produced by Algorithmic Differentiation.

This year, two conference papers were written on the methods of the team, including new analyses in [11],[10],
a work on correctors in CFD in an AIAA paper. A detailed study of adjoint-based mesh adaptation for Navier-
Stokes flows has been completed and published in a journal [9].

Following participation of Gamma3 and Ecuador to the European project UMRIDA (ended 2017), we
wrote chapters 20, 21, 45, and 48 of the book “Uncertainty Management for Robust Industrial Design in
Aeronautics”, edited by C. Hirsch et al. in the Springer series Notes on Numerical Fluid Mechanics and
Multidisciplinary Design (2019).

6.8. Turbulence models
Participants: Alain Dervieux, Bruno Koobus, Stephen Wornom, Maria-Vittoria Salvetti [University of Pisa].

Modeling turbulence is an essential aspect of CFD. The purpose of our work in hybrid RANS/LES (Reynolds
Averaged Navier-Stokes / Large Eddy Simulation) is to develop new approaches for industrial applications of
LES-based analyses. In the applications targetted (aeronautics, hydraulics), the Reynolds number can be as
high as several tens of millions, far too high for pure LES models. However, certain regions in the flow can
be predicted better with LES than with usual statistical RANS (Reynolds averaged Navier-Stokes) models.
These are mainly vortical separated regions as assumed in one of the most popular hybrid models, the hybrid
Detached Eddy Simulation model. Here, “hybrid” means that a blending is applied between LES and RANS.
An important difference between a real life flow and a wind tunnel or basin is that the turbulence of the flow
upstream of each body is not well known.

The development of hybrid models, in particular DES in the litterature, has raised the question of the domain
of validity of these models. According to theory, these models should not be applied to flow involving laminar
boundary layers (BL). But industrial flows are complex flows and often present regions of laminar BL, regions
of fully developed turbulent BL and regions of non-equilibrium vortical BL. It is then mandatory for industrial
use that the new hybrid models give a reasonable prediction for all these types of flow. We concentrated on
evaluating the behavior of hybrid models for laminar BL and for vortical wakes. While less predictive than pure
LES on laminar BL, some hybrid models still give reasonable predictions for rather low Reynolds numbers.

This year, we have developed a new model relying on the hybridation of a DDES model based on a k-ε closure
with our dynamic VMS model. This model shows improvement in most situations and in particular for laminar
flows.
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We have also addressed this year a challenging test case, the flow around tandem cylinders with a distance
between the cylinders of 12 diameters. The accurate capture of the vortices traveling along this path of 12
diameters requires that the LES filter does not accumulate any dissipation along this trajactory. This is a
noticeable property or our DVMS model. Further, the numerics need be as accurate as possible. We use a
superconvergent approximation, up to fifth order accurate on Cartesian regions of the computational domain.
This combination allowed for an accurate prediction of the drag of the second cylinder. This result has been
presented at the workshop ETMM12 [12]

7. Bilateral Contracts and Grants with Industry
7.1. Bilateral Contracts with Industry

• Ecuador and Lemma have a bilateral contract to share the results of Stephen Wornom, Lemma
engineer provided to Inria and hosted by Inria under a Inria-Lemma contract.

8. Partnerships and Cooperations
8.1. International Initiatives
8.1.1. Inria International Labs

Ecuador participates in the Joint Laboratory for Exascale Computing (JLESC) together with colleagues at
Argonne National Laboratory.

9. Dissemination
9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. Member of the organizing committees

Laurent Hascoët is on the organizing commitee of the EuroAD Workshops on Algorithmic Differentiation
(http://www.autodiff.org).

9.1.2. Scientific Expertise
Alain Dervieux is Scientific Director for the LEMMA company.

9.2. Teaching - Supervision - Juries
9.2.1. Supervision

PhD : Éléonore Gauci, “Goal-oriented metric-based mesh adaptation for unsteady CFD simulations
involving moving geometries”, defended december 12, co-advisor A. Dervieux
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