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2. Overall Objectives

2.1. Algebraic and geometric studies of functional systems
Systems of functional equations or simply functional systems are systems whose unknowns are functions, such
as systems of ordinary (OD) or partial differential (PD) equations, of differential time-delay equations, of
difference equations, of integro-differential equations, etc. [34], [35]. Functional systems play a fundamental
role in the mathematical modeling of physical phenomena studied in natural science such as physics, or in
engineering sciences such as mathematical systems theory control theory, signal processing, etc. [34], [35].
Numerical aspects of functional systems, especially OD and PD systems, have largely been studied in applied
mathematics due to the importance of numerical simulation issues.

https://raweb.inria.fr/rapportsactivite/RA2017/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2017/static/keywords/OtherResearchTopicsandApplicationDomains.html
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Complementary approaches, based on algebraic and differential or algebraic geometric methods, are usually
upstream or help the numerical simulation of systems of functional systems. These methods tackle questions
and problems such as algebraic preconditioning, elimination and simplification, completion to formal inte-
grability or involution, computation of integrability conditions or compatibility conditions, index reduction,
reduction of variables, choice of adapted coordinate systems based on symmetries, computation of first inte-
grals of motion, conservation laws, and Lax pairs, study of Liouville integrability or of the asymptotic behavior
of solutions at a singularity, etc. For more details, see [36], [41], [51], [67], [75], [76], [81], [85], [101], [104],
[109] and the references therein.

Let us state a few interests of an algebraic approach for the study of functional systems:

• Algebraic methods are clearly suitable for an algorithmic study, and thus for the development of
efficient algorithms implementable in computer algebra systems.

• It can be used to finely study the behavior of the solutions of a system with respect to unfixed
model parameters − which is usually a difficult numerical issue. Moreover, the boundaries of the
zones in the parameter space over which the behavior of the solution changes can be algorithmically
characterized by means of algebraic methods, which yields a safe use of numeric methods in each
regular zones (symbolic-numeric methods).

• The existence of closed-form solutions can highly simplify certain problems studied in applications
by avoiding the use of time-consuming optimization problems, and thus fits well with nowadays
real-time applications.

The GAIA team aims to develop algebraic and geometric methods for the study of functional systems.

2.2. Effective algebraic theories and their implementations in computer
algebra systems
Although not yet very popular in applied mathematics, algebraic and differential geometric approaches of
functional systems have lengthly been studied in foundamental mathematics. We can state a few names of
mathematical theories such as (differential) Galois theory, Lie groups, exterior differential systems, differential
algebra, algebraic analysis, etc. [36], [41], [51], [67], [75], [76], [81], [85], [101], [104], [109].

Over the past years, some of these algebraic theories for the study of functional systems have been investigated
in the computer algebra community within an algorithmic viewpoint, mostly driven by applications to
engineering sciences such as mathematical systems theory and control theory.

Gröbner or Janet bases [40], [102] for noncommutative polynomial rings of functional operators or differential
elimination techniques for differential systems [45], [46], [72], based on differential algebra [101], [76],
are remarkable examples of those effective algebraic methods. They are nowadays implemented in standard
computer algebra systems (e.g. Maple, Mathematica, Magma).

These effective algebraic approaches also form the algorithmic “engines” at the basis of the first developments
of effective versions of modern algebraic theories (algebraic geometry, differential algebra, module theory
and homological algebra over certain noncommutative polynomial rings of functional operators, algebraic
analysis, etc.).

The above-mentioned results are just the tip of the iceberg and much more effort must be made in the
future for making effective larger parts of fundamental mathematics and making them largely available in
standard computer algebra systems. This “democratization” process towards the accessibility of fundamental
mathematics is important, for instance, for educational issues where computers can be used to teach them to
students, scientists of other communities and engineerings, and for learning by doing and computing. Further
developing effective mathematics, making them accessible to a larger audience through dedicated software,
and demonstrating them through interesting engineering problems are at the core of the GAIA team. The latter
engineering problems are major sources of motivation for the development of effective algebraic theories and
their implementations in computer algebra systems as explained in the next section.
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2.3. A rich interplay between computer algebra and control theory
A major source of motivation for the development of the effective study of algebraic theories is represented by
control theory issues. Indeed, certain problems studied in control theory can be better understood and finely
studied by means of algebraic or geometric structures and techniques. The rich interplay between algebra,
computer algebra, and control theory has a long history.

The first main paper on Gröbner bases [50] written by their creators, Buchberger, was published in Bose’s
book [42] on control theory of multidimensional systems since they play a fundamental role in this theory.
They were the first main applications of Gröbner bases outside the field of algebraic geometry and they still
play a fundamental role in multidimensional systems theory [43].

The differential algebra approach to nonlinear control theory [58], [59], [63], [84] was a major motivation
for the effective study of differential algebra [101], [76] (differential elimination theory, triangular sets,
regular chains, etc.) [45], [46], [72] and its implementations in Maple. Within this effective differential
algebra approach to nonlinear control systems, observability, identifiability, parameter estimation, invertibility,
differential flatness, etc., have received appealing and checkable algebraic characterizations.

Linear control theory [73] and multidimensional systems theory [42], [43] have recently been profoundly
developed due to the so-called behavior approach [80], [83] and the module approach [64], [84]. Based on
ideas of algebraic analysis [75], system properties of those systems (e.g. controllability, parametrizability,
differential flatness) are intrinsically characterized by means of properties of certain algebraic structures
(namely finitely presented left modules over noncommutative polynomial rings of functional operators).
To effectively check the latter properties, the development of effective versions of two important algebraic
theories, namely module theory [79] and homological algebra [103], had to be iniated based on functional
elimination techniques (i.e. Gröbner or Janet basis techniques for noncommutative polynomial rings) [7], [8]
(see also [91]). Dedicated packages, written in Maple, Mathematica and GAP, are now available.

The GAIA team wants to further develop its expertise in this direction by considering new classes of functional
systems (e.g. differential varying/distributed delay systems, ordinary integro-differential systems) interesting
in control theory and in signal processing.

2.4. Main objectives of the GAIA team
The first goal of the GAIA team is to study classes of functional systems which are interesting in
practice (e.g. differential systems, differential constant/varying/distributed delay systems, ordinary
integro-differential systems) by means of algebraic and geometric methods (algebraic analysis, alge-
braic/differential/noncommutative geometry, etc.), computer algebra (e.g. algorithmic, symbolic and
symbolic-numeric methods, librairies), and mathematical systems theory. The systems to be investigated can
be linear, nonlinear, continuous, discrete, or originated from real life applications.

The second goal of the GAIA team is to study important problems coming from:

• control theory (e.g. parametric robust control, stability and stabilization of multidimensional systems
or of differential constant/distributed/time-varying delay systems)

• signal processing (e.g. parameter estimation problem, metric multidimensional unfolding, autocali-
bration)

• multidisciplinary domains (e.g. marine bivalves behavior, human-machine interaction, chemical
reaction networks, ionic activities in neuroscience)

The third goal of the GAIA team is to develop (Maple, Mathematica, C/C++) packages and librairies
dedicated to functional systems and to their applications, and in parallel, eventual industry transfer (e.g. Safran
Electronics & Defense, Safran Tech, Maplesoft).
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3. Research Program

3.1. Effective algebra
To develop a computational study of problems coming from control theory, signal processing, and multi-
disciplinary domains, parts of algebraic theories must be studied within an effective approach: methods and
theoretical results must be made algorithmic based on computer algebra techniques appropriated for efficient
implementations in computer algebra systems.

3.1.1. Polydisc Nullstellensatz & effective version of a theorem of Deligne
The works on stability and stabilization problems of multidimensional systems, developed in the former
ANR MSDOS (2014–2018), have shown the importance for developing an effective version of the module
theory over the ring of rational functions without poles in the closed unit polydisc of Cn [90], [47]. The
stabilizability (resp. the existence of a doubly coprime factorization) of a multidimensional system is related
to a module-theoretical property (projectivity, resp. freeness) that has to be algorithmically verified prior to
compute stabilizing controllers (resp. the standard Youla-Kučera parametrization of all stabilizing controllers).
Based on the works [89], [90], in [47], we have recently proved that the stabilizability condition is related to
the development of an algorithmic proof of the so-called Polydisc Nullstellensatz [49], a natural extension of
Hilbert’s Nullstellensatz for the above-mentioned ring (see e.g. [40]). In addition, the existence of a doubly
coprime factorization is related to a theorem obtained by (the Fields medalist) Deligne with a non-constructive
proof [90]. This theorem can be seen as an extension of the famous Quillen-Suslin theorem (Serre’s conjecture)
[77]. Based on our experience of the first implementation of the Quillen-Suslin theorem in the computer
algebra system (Maple) [62], we aim to develop this effective framework as well as a dedicated Maple

package.

3.1.2. Effective version of Spencer’s theory of formal integrability of PD systems
A differential geometric counterpart of differential algebra and differential elimination theory [101], [76] is
the so-called Spencer’s theory of formal integrability and involutive PD systems [85], [104]. For linear PD
systems, this theory can be seen as an intrinsic approach to Janet or Gröbner bases for noncommutatibe
polynomial rings of PD operators. No complete algorithmic study of Spencer’s theory has been developed yet.
We aim to develop it as well as to implement it. The understanding of the connections between the different
differential elimination theories (Janet [102] or Gröbner bases [40], Thomas decomposition [102], differential
algebra [101], [76], Spencer’s theory [85], exterior differential systems [51], etc.) will also be investigated.
On a longer term, applications of Spencer’s theory to Lie pseudogroups and their applications in mathematical
physics (e.g. variational formulations based on Lie (pseudo)groups) [86] will be investigated and implemented.

3.1.3. Rings of integro-differential operators & integro-differential algebra
The main contribution of this axis is the development of effective elimination theories for both linear and
nonlinear systems of integro-differential equations.

3.1.3.1. Linear systems of integro-differential equations

The rings of integro-differential operators are more complex than the purely differential case [96], [97] due to
the existence of zero-divisors or the fact of having a coherent ring instead of a Noetherian ring [39]. We want to
develop an algorithmic study of these rings. Following the direction initiated in [95] for the computation of zero
divisors, we first want to develop algorithms for the computation of left/right kernels and left/right/generalized
inverses of matrices with entries in such rings, and to use them to develop a module-theoretic approach to linear
systems of integro-differential equations. Following [95], standard questions addressed within the computer
algebra community such as the computation of rational/exponential/hyperexponential/etc. solutions will also
be addressed. Moreover, famous Stafford’s results [105], algorithmically studied in [96], [97] for rings of PD
operators, are known to still hold for rings of integro-differential operators [39]. Their algorithmic extensions
will be investigated and our corresponding implementation will be extended accordingly. Finally, following
[93], [95], an algorithmically study of rings of integro-differential-delay operators will be further developed as
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well as their applications to the equivalence problem of differential constant/varying/distributed delay systems
(e.g. Artstein’s reduction, Fiagbedzi-Pearson’s transformation) and their applications to control theory.

3.1.3.2. Nonlinear systems of integro-differential equations

Integro-differential algebra is an extension of Ritt-Kolchin’s differential algebra [101], [76] that also includes
integral operators. This extension is now attracting more attention in mathematics, computer algebras, and
control theory. This new type of algebras will be algorithmically studied for integro-differential nonlinear
systems. To do that, concepts such as integro-differential ideals and varieties have to be introduced and studied
for developing an integro-differential elimination theory which extends the current differential elimination
theory [45], [46], [72]. A Maple prototype will first be developed and then a C library when experience will
be gained.

3.2. Computer algebra
We aim to further reinforce our expertise in the computer algebra aspects of functional systems and algebraic
curves by attacking remaining technical obstacles and by considering new classes of functional systems,
notably those coming from interesting applications in engineering sciences and particularly in control theory.

3.2.1. Efficient algorithms for the study of singularities of algebraic curve and its applications
On an algorithmic viewpoint, there are mainly four different approaches for the study of the singularities of
plane algebraic curves. Let us shortly list them:

• The well-known Newton-Puiseux algorithm, initiated by Cramer and Puiseux, which follows an idea
due to Newton. This approach has successively been improved in [61], [88], [9], [10].

• The Extended Hensel Construction, developed in [74] and recently improved in [82].

• The work [68] concentrates on the factorisation of polynomials defined over valued fields (the local
study of a plane algebraic curve enters in this approach).

• The work [33] introduces the concept of anapproximate root.

The first two methods are based on Puiseux series computations. They use techniques which are equivalent to
the standard blowing-up of a singularity of an algebraic curve, which has the drawback to be bottlenecks in
terms of complexity and practical efficiency. Nevertheless, the recent work [88] provides the best complexity
currently known. The last two methods study singularities without computing Puiseux series. They both use
the concept of an extended evaluation.

A recent very efficient algorithm for the factorisation of a univariate polynomial based on its Newton polygon
has recently been obtained in [52]. The key ingredient of this algorithm is to work on the given polynomial
and not after changes of variables as usually done in the literature.

To improve the complexity results of [68], [38], we want to combine the above different approaches using
approximate roots and a generalization of the results of [52] to the context of [68].

The method proposed above is important in practice since it is based on well-known and efficiently imple-
mented algorithms (mainly Newton iteration and gcd computations). Nevertheless, these algorithms involve
technical difficulties on the computer science side: the main one is the need to improve the accuracy of com-
putations due to truncations. These issues, including also run-time compilation, are well-studied in the BPAS

library 1 based on specific data structures to deal with power series computation (a power series is represented
by terms that have been computed and a program that enables to compute more terms when required).

Another part of the code development concerns issues on certified numerical computations for univariate
polynomials (with algebraic coefficients) that will be used for the development of certified symbolic-numeric
algorithms making effective the strategy proposed in [87].

1http://www.bpaslib.org/index.html

http://www.bpaslib.org/index.html
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3.2.2. Differential algebra
A major bottleneck of computational differential algebra methods is the computation of greatest common
divisors of multivariate commutative polynomials. Any algorithmic progress in this direction would highly
improve the efficiency of differential algebra software such as, for instance, the C library BLAD [44]. Moreover,
numerous computer algebra problems and related implementations could also highly profit from any success
in this direction.

A major application of the effective differential algebra approach developed by GAIA’s members [45], [46] is
the possibility to reduce a nonlinear (implicit) differential system, particularly differential algebraic equations,
to so-called regular chains of differentiation index 0, i.e. to systems which do not need differentiation of
their equations to be rewritten as pure differential systems [69]. Based on our expertise on differential
techniques, we want to study the consistent initialization problem and develop numerical integrators for
nonlinear differential algebraic systems, and used them in the study of coupled algebraic and differential
systems, interconnected systems, or networks [69].

3.2.3. A Maple package and a C/C++ open source library for integro-differential algebra
A package dedicated to nonlinear integro-differential equations will be developed in a Maple prototype and
then in a standalone C/C++ open source library (as it was already done for the diffalg and Differen-

tialAlgebra packages). General purpose solvers such as Maple dsolve or pdesolve may call differential
elimination methods for computing essential singular solutions of differential equations, for computing sys-
tems of polynomial differential equations admitting a given function as a solution, etc. On the long run, one
may foresee enhanced general purpose solvers able to handle integro-differential equations processed through
integro-differential elimination methods. It will rely on a sub-package dedicated to the problem of effectively
handling integro-differential expressions.

These packages will rely on existing software such as BLAD, DifferentialAlgebra, and MABSys. It is worth
pointing out that proof-of-concept methods are already available. See [29] and [2]. The collaboration with
modelers will also enhance the software user-interface for a better usability.

The study of numerical integration of integro-differential equations (a necessary component of software
dedicated to the parameter estimation problem) will also be further studied following the direction initiated in
[29], leading to the Maple/C library BLINEIDE. This software has currently no widely available challenger.

The Maple prototype software dedicated to nonlinear integro-differential equations will also be implemented
in a standalone C/C++ open source library, leading to software easier to integrate in modeling platforms such
as OpenModelica. The GAIA team has quite some expertise in releasing software satisfying industrial
standards: its C open source BLAD libraries, dedicated to differential elimination, are currently integrated
in Maple and called through the Maple package DifferentialAlgebra. The Modelica programming
language, which emphasizes programming with equations and permits to call external code, can integrate
software dedicated to integro-differential equations developed in the GAIA team.

3.3. Applications to control theory and signal processing
3.3.1. Robust stability analysis and stabilization problems for functional systems

Our expertise in the computer algebra aspects to stability and stabilization problems for multidimensional
systems and for differential constant/distributed/varying delay systems [5], [6], [48], [47] will further be
developed.

3.3.1.1. Computation of Lyapunov functions for homogeneous dynamical systems

We shall investigate the possibility to develop a computer algebra package for the design of Lyapunov
functions for homogeneous dynamical systems based on an effective study of the differential algebra of
generalized forms, i.e. of Puiseux polynomials in signed powers [106], [107].
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3.3.1.2. Robust stability analysis of differential time-delay systems

The symbolic-numeric study of the robust stability of a differential constant time-delay system with respect
to the delay h, via the variation of the zero locus of the associated quasipolynomial p(s, e−h s) [70] in the
stability (resp. unstability) region C− = {s ∈ C | R(s) < 0} (resp. C− = Cr C+) of C, initiated in [5], will
be further developed. This problem is another motivation for the development of a fast numerical algorithm
for the computation of Netwon-Puiseux series and its implementation in a C library. They will be used to study
how the different branches of a quasipolynomial at a critical pair (namely (hI, ωI) ∈ R>0 × R such that

p(i ωI, e
−i h ωI) = 0) vary in C− and in C+ with respect to h. See [5] and the references therein.

Moreover, in collaboration with Mouze (Centrale Lille, France), we want to develop an effective study of
the ring E = R(s)[e−h s] ∩ E, where E is the ring of entire functions. The ring E plays an important role
for differential time-delay systems [66], [78]. Effective computation of Smith normal forms for matrices with
entries in E and its implementation in a symbolic-numeric package will have many applications for synthesis
problems of differential time-delay systems.

3.3.1.3. Stabilization problems for functional systems

We want to use the results developed on the module-theoretic aspects of the ring of multivariate rational
functions without poles in the closed unit polydisc of Cn to effectively compute stabilizing controllers of
multidimensional systems, as well as the Youla-Kučera parametrization of all the stabilizing controllers [90].
This last parametrization can be used to transform standardH∞-optimal control problems, which are nonlinear
by nature, into affine, and thus convex optimal problems. See [37], [90] and the references therein. Applications
addressed in the former ANR MSDOS (2014–2018) will be developed in collaboration with Bachelier (U.
Poitiers). The algorithms obtained in this direction will be unified in a unique Maple package.

Finally, the noncommutative geometric approach to robust problems for infinite-dimensional linear systems
(e.g. differential time-delay or PD systems) [54], initiated in [92], will be further studied based on the
mathematical concepts and methods introduced by (the Fields medalist) Connes [53]. We particularly want
to investigate generalizations of Nyquist’s theorem to infinite-dimensional systems based on index theory
(pairing of K-theory and K-homology), model reduction based on Connes’ interpretation of infinitesimal
operators, robustness metrics particularly the ν-gap metric, etc. The quantized differential calculus [53], based
on Hankel operators, as well as the connections and curvatures on stabilizable systems will be further studied
[92]. We aim to exploit these noncommutative differential geometric structures on the systems to get new
inside in both the topology and geometry aspects of the H∞-control theory for infinite-dimensional systems
[54].

3.3.2. Parameter estimation for linear & nonlinear functional systems
3.3.2.1. Linear functional systems

Our expertise on algebraic parameter estimation problem, coming from the former NON-A project-team, will
be further developed. Following [65], this problem consists in estimating a set θ of parameters of a signal
x(θ, t) − which satisfies a certain dynamics − when the signal y(t) = x(θ, t) + γ(t) +$(t) is observed,
where γ denotes a structured perturbation and $ a noise. For instance, x can be a multi-sinusoidal waveform
signal and θ phases, frequencies, or amplitudes [13]. Based on a combination of algebraic analysis techniques
(rings of differential operators), differential elimination theory (computation of annihilators), and operational
calculus (Laplace transform, convolution), [65] shows how θ can sometimes be explicitly determined by means
of closed-form expressions using iterated integrals of y. These integrals usually help to filter the effect of the
noise $ on the estimation of the parameters θ.

A first aim in this direction is to develop to a greater extent our recent work [108] that shows how the
above approach can cover wider classes of signals such as holonomic signals (e.g. signals decomposed into
orthogonal polynomial bases, special functions, possibly wavelets).
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Moreover, [94] explains how larger classes of structured perturbations γ can be considered when the approach
developed in [65], [108], based on computation of annihilators, is replaced by a new approach based on the
more general algebraic concept of syzygies [103]. This general approach to the algebraic parameter estimation
problem will be developed. Following the ideas of [94], an effective version of this general approach will also
be done based on differential elimination techniques, i.e. Gröbner basis techniques for rings of differential
operators. It will be implemented in a dedicated Maple package which will extend the current prototype NonA
package [94].

Furthermore, as an alternative to passing forth and backwards from the time domain to the operational
(Laplace/frequency) domain by means of Laplace transform and its inverse as done in the standard algebraic
parameter estimation method [65], [108], we aim to develop a direct time domain approach based on calculus
on rings of integro-differential operators as described by the following picture (L denotes the Laplace
transform):

temporal domain frequency domain L(z) = ẑ

z(t) = x(t, θ) + γ(t) =⇒ ẑ(s) = x̂(s, θ) + γ̂(s)

integro− diff . calculus ⇓ ⇓
closed-form expressions differential algebraic calculus

θ = g
(∫ i

z(t)
)

⇐= θ = f(s−i ẑ(s))

The direct computation will be handled by means of the effective methods of rings of integro-differential
operators described in the above sections.

3.3.2.2. Nonlinear functional systems

For nonlinear control systems, the approach to the parameter estimation problem, recently proposed in [3] and
based on the computation of integro-differential input-output equations, will be further developed based on
the integration of fractions [2]. Such a representation better suits a numerical estimation of the parameters as
shown in [3].

In [29], we have recently initiated an extension of the results developed in [3] to handle integro-differential
equations such as Volterra-Kostitzin’s equation. This general approach, based on an extension of the input-
output ideal method for ordinary differential equations to the integro-differential ones, will be further
developed based on the effective elimination theory for systems of integro-differential equations. An important
advantage of this approach is that not only it solves the identifiability theoretical question but it also prepares
a further parameter estimation step [57].

4. Application Domains

4.1. Adaptive & parametric robust control − collaboration with Safran
Electronics & Defense
We have developed a collaboration with Safran Electronics & Defense (Massy Palaiseau) and Rouillier
(OURAGAN, Inria Paris) on a parametric robust control theory based on computer algebra methods (symbolic-
numeric methods), as well as its applications to the robust stabilization of certain mechanical systems (e.g.
gyrostabilized systems, two mass-spring-damper system, stabilized mirrors).
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For low-dimensional systems of ODEs, this approach aims to determine closed-form solutions for robust
controllers and for the robustness margins in terms of the model parameters (e.g. mass, length, inertia, mode)
[12], [98], [100]. The main applications of these results are twofold: the feasibility of an industrial project
can be simplified by speeding up the computation of robust controllers and robust margins for systems
with rapidly changing architecture parameters, and avoiding usual time-consuming optimization techniques.
Secondly, adaptive and embeddable schemes for robust controllers can be proposed and tested while coupling
our approach with real-time parameter estimation methods such as the ones developed in the GAIA team. For
more details, see [12].

Preliminary works in the direction have opened a great variety of questions such as the explicit search for
positive definite solutions of algebraic or differential Riccati equations (i.e. polynomial or differential systems)
with model parameters, the reduction of these equations, and of the parameters based on symmetries, the
development, of efficient tools for plotting high degree curves and surfaces showing the robustness margins
in terms of the model parameters (collaboration with Moroz (GAMBLE, Inria Nancy)), the use of a certified
numeric Newton-Puiseux algorithm for the design of robust controllers, etc. [12], [98], [100]. These results
require the use of a large spectrum of computer algebra methods such as linear algebra with parameters,
polynomial systems with parameters, ordinary differential systems with parameters, symmetries and reduction,
rational parametrizations, discriminant varieties, semi-algebraic sets, critical point methods, real root isolation
methods, etc. We shall further develop the parametric robust control in collaboration with Safran Electronics
& Defense.

In connection with the above results, parameter estimation methods will be studied to develop adaptive robust
controllers for gyrostabilized systems. Indeed, combining explicit characterizations of robust controllers in
terms of the model parameters with time-to-time estimations of these model parameters (which can change
with the system production, the heat, the wear, etc.), the robust controllers can then be automatically tuned to
conserve their robustness performances [12], [99].

Finally, as explained in [11], [99], constant and distributed delays naturally appear in Safran E & D systems
(e.g. gyrostabilized systems using visual trackers, stabilized mirror models). Extensions of the above problems
and results will be studied for differential time-delay systems based on robust control techniques for infinite-
dimensional systems (see, e.g., [54] and the references therein) and its algebraic extension to include model
parameters.

4.2. Self calibration problem & Gear fault diagnosis − collaboration with
Safran Tech

4.2.1. Self calibration problem
Due to numerous applications (e.g. sensor network, mobile robots), sources and sensors localization has
intensively been studied in the literature of signal processing. The anchor position self calibration problem, a
well-known problem in signal processing, consists in estimating the positions of both the moving sources and
a set of fixed sensors (anchors) when only the distance information between the points from the two different
sets is available. The position self-calibration problem is a particular case of the Multidimensional Unfolding
(MDU) problem for the Euclidean space of dimension 3.

Based on computer algebra methods for polynomial systems, we have recently proposed a new approach for
the MDU problem which yields closed-form solutions and an efficient algorithm for the estimation of the
positions [56] only based on linear algebra techniques. This first result, obtained in collaboration with Dagher
(Research Engineer, Inria Chile) and Zheng (DEFROST, Inria Lille - Nord Europe), yields a recent patent [55].
Real tests are now carried out. Our first results will be further developed, improved, tested, and demonstrated.

The MDU problem is just one instance of localization problems: more problems can be addressed for which
a computer algebra expertise can brought new interesting results, especially in finding closed-form solutions,
yielding new estimation techniques which avoid the use of optimization algorithms as commonly done in the
signal processing literature. The main differences between these localization problems can essentially be read
on a certain matrix of distance called the Euclidean distance matrix [56].



10 Activity Report INRIA 2018

4.2.2. Gear fault diagnosis
We have a collaboration with Barau (Safran Tech) and Hubert (Safran Tech), and Dagher (Research Engineer,
Inria Chile) on the symbolic-numeric study of the new multi-carrier demodulation method developed in [71].
Gear fault diagnosis is an important issue in aeronautics industry since a damage in a gearbox, which is not
detected in time, can have dramatic effects on the safety of a plane.

Since the vibrations of a spur gear can be modeled as a product of two periodic functions related to the
gearbox kinematic, [71] has proposed to recover each function from the global signal by means of an optimal
reconstruction problem which, by means of Fourier analysis, can be rewritten as

argminu∈Cn,v1,v2∈Cm‖M − u vI
1 −DuvI

2 ‖F ,

whereM ∈ Cn×m (resp.D ∈ Cn×n) is a given (resp. diagonal) matrix with a special shape, ‖ · ‖F denotes the
Frobenius norm, and vI the Hermitian transpose of v. Based on closed-form solutions of the exact problem−
which are defined by a system of polynomial equations in the unknowns−we have recently proposed efficient
numerical algorithms to numerically solve the problem. The first results are interesting and they will be further
developed and tested on different data sets. Finally, we shall continue to study the extremal solutions of the
corresponding polynomial problem by means of symbolic and numeric methods, etc.

4.3. Applications of the parameter estimation problem to multidisciplinary
domains − collaboration with an INSERM team (Rouen University)
For linear systems, the closed-form expressions of the parameters obtained by means of the algebraic
parameter estimation problem will continue to provide robust estimates in our multidisciplinary collaborations,
in marine biology and human-machine interactions, as it is already the case of existing NON-A results (in
collaboration with LOKI, Inria Lille - Nord Europe).

For nonlinear systems, a collaboration with biologists and modelers has been developed for a few years already
[29]. Our partners are a team from the Applied Mathematical Department of Le Havre University (modelers)
and an INSERM team at Rouen University (neurobiologists). The targeted biological problem is the cortical
spreading depression, a brain disease likely to occur after cerebrovascular accidents [60]. We seek− ultimately
− a mathematical integro-differential model permitting to predict the triggering of this disease for patients
arising in the emergency services of hospitals. The key phenomenon to reproduce is a slow depolarization wave
of neurons. Our approach is original because it focuses on the role calcium fluxes in neurons and astrocytes.

5. Highlights of the Year

5.1. Highlights of the Year
Computer Algebra in Scientific Computing
The GAIA team organized the conference Computer Algebra in Scientific Computing (CASC), University of
Lille, 17–21 September 2018.

6. New Software and Platforms

6.1. ADHOMFI
Adaptive Homogeneous Filtering
KEYWORDS: Automatic differentiation - Filtering
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FUNCTIONAL DESCRIPTION: allows to reconstruct a signal based on derivatives estimation and to filter high
amplitude and wide frequencies spectrum perturbations.

• Contact: Denis Efimov

6.2. Platforms
6.2.1. BLINEIDE library

We have released the first version of the BLINEIDE library. BLINEIDE stands for Bibliothèques Lilloises
dédiées à l’Intégration Numérique des Équations Intégro-Différentielles. It is an open source C library
dedicated to the numerical integration of systems of integro-differential equations. for more details, see https://
pro.univ-lille.fr/francois-boulier/logiciels/blineide.

7. New Results

7.1. Regular (differential) chains
[17] provides new equivalence theorems for regular chains and regular differential chains, which are general-
izations of Ritt’s characteristic sets. These theorems focus on regularity properties of elements of residue class
rings defined by these chains, which are revealed by resultant computations. New corollaries to these theorems
have quite simple formulations.

[30] contains a description of the management of the parameters in theMaple DifferentialAlgebra

package and, in particular, in the RosenfeldGroebner function.

7.2. Systems of integro-differential equations
[28], [29] present a proof of concept for symbolic and numeric methods dedicated to the parameter estimation
problem for models formulated by means of nonlinear integro-differential equations. In particular, we address
the computation of the model input-output equation and the numerical integration of integro-differential
systems (the BLINEIDE library).

7.3. Certified non-conservative tests for the structural stability of discrete
multidimensional systems
In collaboration with Fabrice Rouillier (Inria Paris, Ouragan), in [18], we propose a new approach for testing
the stability of nD systems. We first show that the standard characterization of the structural stability of a
multivariate rational transfer function (namely, the denominator of the transfer function does not have solutions
in the unit polydisc of Cn ) is equivalent to the fact that a certain system of polynomials does not have real
solutions. We then use state-of-the-art computer algebra algorithms to check this last condition, and thus the
structural stability of multidimensional systems. Our results have been implemented in a Maple prototype.

7.4. Using symbolic computation to solve algebraic Riccati equations arising in
invariant filtering
In this joint work with Axel Barrau from Safran Tech [23], we propose a new step in the development of
invariant observers. In the past, this theory led to impressive simplifications of the error equations encountered
in estimation problems, especially those related to navigation. This was used to reduce computation load or
derive new theoretical properties. Here, we leverage this advantage to obtain closed-form solutions of the
underlying algebraic Riccati equations through advanced symbolic computation methods.

https://pro.univ-lille.fr/francois-boulier/logiciels/blineide
https://pro.univ-lille.fr/francois-boulier/logiciels/blineide
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7.5. Parametric sub-optimal H∞ controllers for an optro-mechanical system
In collaboration with Safran Electronics & Defense, in [15], we studied the robust stabilization of the line
of sight of a stabilized mirror system. This system can be modeled by a single-input single- output time-
delay system. Due to large model uncertainties, non-parametric methods are usually too conservative. Hence,
we consider here unfixed model parameters. Using an additive decomposition, we show how to compute
parametric H∞ controllers of the time-delay model. Such a symbolic approach is interesting in the context of
adaptive control and is illustrated throughout a simulation with an ideal parameter estimator.

7.6. A symbolic approach for signal demodulation and application to gearbox
vibration analysis
This work is made in collaboration with Axel Barrau and Elisa Hubert (Safran Tech), and Roudy Dagher
(Research Engineer, Inria Chile). The problem under study, which reduces to a certain signal factorization
problem, was shown by Barrau et. al. to be equivalent to a Frobenius norm minimization problem. Starting
from this optimization problem, we investigate the use of computer algebra methods to compute explicit
solutions for the original problem. Along the way, we exhibit interesting algebraic and geometric properties
of the underlying polynomial system. A paper is currently in development to summarize these results.

7.7. Curve analysis for the stability of time-delay systems
This work aims to design a new symbolic-numerical Puiseux-free approach for the study of the stability of
differential time-delay systems. The idea behind is to replace the costly computations of Puiseux developpe-
ments around the critical pairs of the characteristic function by the numerical analysis of the branches of a
well chosen 3D curve. The preliminary results show that this approach is easier to implement and turns out to
be more efficient in practice. This ongoing work will be the subject of a future publication.

8. Bilateral Contracts and Grants with Industry
8.1. Safran Electronics & Defense

Within the CIFRE PhD thesis (2014-2018) [15], we have studied new robust stabilization techniques for
gyrostabilized systems with unfixed model parameters (e.g. modes, masses, stiffness of springs, damper
magnitudes). Parameters of their models indeed slowly change with the temperature, fatigue, etc., yielding
time-consuming re-computations of robust controllers. Moreover, the possibility to quickly know robustness
indicators (e.g. margins) and explicit robust controllers in terms of the model parameters can highly speed
up the design of a project. Finally, closed-form solutions for robust controllers in terms of the model
parameters are the first steps towards the development of adaptive robust controllers which can be embedded
in gyrostabilized platforms since no optimization algorithms are then required for a real-time implementation
and only the parameters have to be estimated from time to time to re-compute the robust controller (based
on a basic arithmetic). To do that, we have introduced algebraic methods and computer algebra techniques to
initiate a new approach entitled parametric robust control. For mor details, see [15] and [98], [100], [99]. This
new approach will be further developed in the future since it opens both theoretical and practical interesting
questions. In particular, the new PhD thesis of Grace in GAIA aims to study the underlying mathematical
problem from both a theoretical and an implementation perspectives.

8.2. Ellcie Healthy
A new collaboration with Ellcie Healthy, a company based in Nice began in October 2017. It involves the
analyze of signals coming from optical sensors installed in glasses. With Denis Efimov, the first studies
obtained were very promising. This collaboration was formalized with the signature of a first contract in
March 2018. The first objective of this project was to design algorithms for intelligent filtering of data coming
from infrared sensors, especially for light-related disturbances. Discussions are currently underway for the
submission of new joint projects.
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9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. ANR

• ANR project MSDOS (Multidimensional System: Digression on Stability, coordinator: Nima Yegane-
far (Poitiers University), 2014-2018) aimed at studying stability and stabilization problems for mul-
tidimensional systems by means of both analytic and algebraic methods. For more information, see
https://www.lias-lab.fr/msdos/doku.php.

• ANR TurboTouch (High-performance touch interactions, coordinator: G. Casiez (MJOLNIR team,
Inria), 2014–2019) develops methods and tools on transfer functions to allow high performance
tactile interactions (e.g. high precision and low latency) adapted to the user and to the task. This
research project is developed in collaboration with the Loki team, Inria Lille – Nord Europe (project
leader). For more information, seehttp://mjolnir.lille.inria.fr/turbotouch/.

• ANR WaQMoS (Coastal waters Quality surveillance using bivalve Mollusk-based Sensors, coordina-
tor: D. Efimov (Non-A Post, Inria), 2015–2020) develops a biosensor, based on measurements and
interpretation of bi- valves mollusks behavior, for remote online detection of coastal water pollu-
tion and cli- mate change consequences. This research project is developed in collaboration with the
Valse team, Inria Lille – Nord Europe (project leader). For more information, see https://team.inria.
fr/non-a/anr-waqmos/.

9.2. European Initiatives
9.2.1. Collaborations with Major European Organizations

Mohamed Barakat: University of Siegen (Germany)

Effective module theory, effective homological algebra, algebraic analysis, computer algebra, imple-
mentation.

Georg Regensburger: Institute for Algebra, Johannes Kepler University Linz (Austria)

Rings of integro-differential-delay operators, computer algebra, implementation.

Daniel Robertz: University of Plymouth (United Kingdom)

Effective algebraic analysis, mathematical systems theory, computer algebra, implementation.

9.3. International Initiatives
9.3.1. Inria Associate Teams Not Involved in an Inria International Labs

WeCare, Inria Northern European Associate Team with the team of A. Medvedev from Uppsala University on
effective algorithms for estimation and control in wearable devices for health and care, 2018–2020.

We participate in HoTSMoCE, an Inria Associated team with Non-A Post and the team of L. Fridman (UNAM,
Mexico), on the development of algebraic and homogeneous tools for sliding mode control and estimation.

https://www.lias-lab.fr/msdos/doku.php
http://mjolnir.lille.inria.fr/turbotouch/
https://team.inria.fr/non-a/anr-waqmos/
https://team.inria.fr/non-a/anr-waqmos/
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9.4. International Research Visitors
9.4.1. Visits of International Scientists

• Thomas Cluzeau, XLIM, University of Limoges, May 2018.

• Marc Moreno Maza, University of Western Ontario, London, Ontario, Canada, September 2018.

• Alexander Medvedev, University of Uppsala (03–05/10/2018).

• Fredrik Olsson, University of Uppsala (26–30/11/2018).

• Elisa Hubert (Safran Tech) visited us twice (23–24/07/2018, 12–13/09/2018) to work on the problem
of gear fault diagnostic based on algebraic and symbolic approaches.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation

The GAIA team organized the 2018 edition of the Computer Algebra in Scientific Computing (CASC)
international workshops series (17–21 September 2018). For more details, see http://www.casc.cs.uni-bonn.
de/2018/.

10.1.1.1. General Chair, Scientific Chair

• Since 2018, François Boulier is a General Chair of CASC. See http://www.casc-conference.org/.

• A. Quadrat is a member of the IFAC Technical Committee “Linear Control Systems”, International
Federation of Automatic Control, TC2.2.

10.1.1.2. Member of the Organizing Committees

The GAIA team organized the Computer Algebra in Scientific Computing (CASC), University of Lille, 17–21
September 2018.

A. Quadrat is a member of the organization committee of the Journées Nationales de Calcul Formel (JNCF),
Luminy, France, 22–26/01/2018.

10.1.2. Scientific Events Selection
10.1.2.1. Member of the Conference Program Committees

F. Lemaire was Poster Chair of the International Symposium on Symbolic and Algebraic Computation
(ISSAC’2018) Poster Session, New York, 16–19/05/2018.

10.1.2.2. Reviewer

• Y. Bouzidi reviewed a publication for ISSAC 2018 and for TDS 2018.

• F. Lemaire reviewed a publication for CASC 2018.

• A. Quadrat reviewed two publications for ISSAC 2018.

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

A. Quadrat is associate editor of Multidimensional Systems and Signal Processing.

10.1.3.2. Reviewer - Reviewing Activities

A. Quadrat reviewed papers for the journal Multidimensional Systems and Signal Processing.

http://www.casc.cs.uni-bonn.de/2018/
http://www.casc.cs.uni-bonn.de/2018/
http://www.casc-conference.org/
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10.1.4. Invited Talks
Y. Bouzidi gave the following talks:

• A Symbolic Approach for Solving Algebraic Riccati Equations, Journées Nationales de Calcul
Formel (JNCF), CIRM, Marseille - January 22th 2018.

• Parametric study of the critical pairs of linear differential systems with commensurate delays, Inria
DISCO team-project, Paris - April 30th 2018.

• Using symbolic computation to solve algebraic Riccati equations arising in invariant filtering,
European Control Conference, Limassol - June 15th 2018.

• A symbolic approach for a parametric H∞ control problem, visualization group, ISCD, Paris -
Novembre 30th 2018.

10.1.5. Leadership within the Scientific Community
A. Quadrat co-organized with N. Yeganefar (University of Poitiers) the invited session New Results in
Multidimensional Systems Theory at the 2018 European Control Conference, Cyprus, June 12-15, 2018.

R. Ushirobira was co-responsible with Denis Efimov (Non-A Post, Inria) and Gilberto Pin (Electrolux Italia)
of a special issue Finite-time estimation, diagnosis and synchronization of uncertain systems for the European
Journal of Control.

10.1.6. Scientific Expertise
A. Quadrat is a member of the Bureau du Comité des Equipes-Projets (BCEP) and of the Commission des
Emplois de Recherche, Inria Lille - Nord Europe.

A. Quadrat wrote a comparative report for the position “Algorithmische Algebra” (W2), University of Siegen,
Germany.

10.1.7. Research Administration
• F. Boulier has been Head of the Spécialité GIS at Polytech Lille since June 2018.

• A. Quadrat is in charge with C. Jamroz of the RaWeb 2018 for Inria Lille – Nord Europe.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Rosane Ushirobira taught around 90h at Polytech Lille and University of Lille (Linear algebra, analysis and
logic).

10.2.2. Supervision
PhD: Guillaume Rance, “Commande H∞ paramétrique et application aux viseurs gyrostabilisés”,
University Paris - Saclay, 09/07/2018, Alban Quadrat & Arnaud Quadrat & Hugues Mounier.

PhD in progress: Grace Younes, “Calcul de multiplicités de racines de polynoômes et de quasi-
polynoômes”, 01 /10/2018, Alban Quadrat & Yacine Bouzidi & Adrien Poteaux.

Master: Ambroise Fleury (Licence 3 ème année training), “Computation of gcd using AVX”, F.
Lemaire.

Master: Guillaume Maitrot (Master 2 training), “Improving the BLINEIDE library with OpenMP”,
F. Lemaire.

10.2.3. Juries
F. Boulier was referee of the PhD thesis of G. Rance, University Paris Orsay, 09/07/2018.

A. Quadrat was a jury member of the CRCN Inria 2018 competition for the Lille – Nord Europe center.



16 Activity Report INRIA 2018

10.3. Popularization
10.3.1. Internal or external Inria responsibilities

Since December 2103, R. Ushirobira organize the cycle “30 minutes of science”, a rotating monthly seminar
for all researchers at Inria LIlle. On average, 40 people participate in this seminar.

10.3.2. Education
In 2017/2018, Rosane Ushirobira was a referent researcher for the Math en Jean program at Arthur Rimbaud
College (Villeneuve d’Ascq).

10.3.3. Internal action
Y. Bouzidi, Symbolic-numeric method for a parametric control problem, presentation in the 30 minutes of
science Inria event, Lille - January 10th 2018.
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