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2. Overall Objectives
2.1. Presentation

Algorithmic number theory dates back to the dawn of mathematics itself, cf. Eratosthenes’s sieve to enumerate
consecutive prime numbers. With the arrival of computers, previously unsolvable problems have come into
reach, which has boosted the development of more or less practical algorithms for essentially all number
theoretic problems. The field is now mature enough for a more computer science driven approach, taking into
account the theoretical complexities and practical running times of the algorithms.

https://raweb.inria.fr/rapportsactivite/RA2018/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2018/static/keywords/OtherResearchTopicsandApplicationDomains.html
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Concerning the lower level multiprecision arithmetic, folklore has asserted for a long time that asymptotically
fast algorithms such as Schönhage–Strassen multiplication are impractical; nowadays, however, they are used
routinely. On a higher level, symbolic computation provides numerous asymptotically fast algorithms (such as
for the simultaneous evaluation of a polynomial in many arguments or linear algebra on sparse matrices),
which have only partially been exploited in computational number theory. Moreover, precise complexity
analyses do not always exist, nor do sound studies to choose between different algorithms (an exponential
algorithm may be preferable to a polynomial one for a large range of inputs); folklore cannot be trusted in a
fast moving area such as computer science.

Another problem is the reliability of the computations; many number theoretic algorithms err with a small
probability, depend on unknown constants or rely on a Riemann hypothesis. The correctness of their output
can either be ensured by a special design of the algorithm itself (slowing it down) or by an a posteriori
verification. Ideally, the algorithm outputs a certificate, providing an independent fast correctness proof. An
example is integer factorisation, where factors are hard to obtain but trivial to check; primality proofs have
initiated sophisticated generalisations.

One of the long term goals of the LFANT project team is to make an inventory of the major number theoretic
algorithms, with an emphasis on algebraic number theory and arithmetic geometry, and to carry out complexity
analyses. So far, most of these algorithms have been designed and tested over number fields of small degree
and scale badly. A complexity analysis should naturally lead to improvements by identifying bottlenecks,
systematically redesigning and incorporating modern asymptotically fast methods.

Reliability of the developed algorithms is a second long term goal of our project team. Short of proving the
Riemann hypothesis, this could be achieved through the design of specialised, slower algorithms not relying
on any unproven assumptions. We would prefer, however, to augment the fastest unproven algorithms with the
creation of independently verifiable certificates. Ideally, it should not take longer to check the certificate than
to generate it.

All theoretical results are complemented by concrete reference implementations in PARI/GP, which allow to
determine and tune the thresholds where the asymptotic complexity kicks in and help to evaluate practical
performances on problem instances provided by the research community. Another important source for
algorithmic problems treated by the LFANT project team is modern cryptology. Indeed, the security of all
practically relevant public key cryptosystems relies on the difficulty of some number theoretic problem; on the
other hand, implementing the systems and finding secure parameters require efficient algorithmic solutions to
number theoretic problems.

3. Research Program

3.1. Number fields, class groups and other invariants
Participants: Bill Allombert, Jared Guissmo Asuncion, Karim Belabas, Jean-Paul Cerri, Henri Cohen, Jean-
Marc Couveignes, Andreas Enge, Fredrik Johansson, Aurel Page.

Modern number theory has been introduced in the second half of the 19th century by Dedekind, Kummer,
Kronecker, Weber and others, motivated by Fermat’s conjecture: There is no non-trivial solution in integers
to the equation xn + yn = zn for n > 3. For recent textbooks, see [7]. Kummer’s idea for solving Fermat’s
problem was to rewrite the equation as (x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζn−1y) = zn for a primitive n-th
root of unity ζ, which seems to imply that each factor on the left hand side is an n-th power, from which a
contradiction can be derived.

The solution requires to augment the integers by algebraic numbers, that are roots of polynomials in Z[X].
For instance, ζ is a root of Xn − 1, 3

√
2 is a root of X3 − 2 and

√
3
5 is a root of 25X2 − 3. A number field

consists of the rationals to which have been added finitely many algebraic numbers together with their sums,
differences, products and quotients. It turns out that actually one generator suffices, and any number field K
is isomorphic to Q[X]/(f(X)), where f(X) is the minimal polynomial of the generator. Of special interest
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are algebraic integers, “numbers without denominators”, that are roots of a monic polynomial. For instance,
ζ and 3

√
2 are integers, while

√
3
5 is not. The ring of integers of K is denoted by OK ; it plays the same role in

K as Z in Q.

Unfortunately, elements in OK may factor in different ways, which invalidates Kummer’s argumentation.
Unique factorisation may be recovered by switching to ideals, subsets of OK that are closed under addition
and under multiplication by elements of OK . In Z, for instance, any ideal is principal, that is, generated by
one element, so that ideals and numbers are essentially the same. In particular, the unique factorisation of
ideals then implies the unique factorisation of numbers. In general, this is not the case, and the class group
ClK of ideals of OK modulo principal ideals and its class number hK = |ClK | measure how far OK is from
behaving like Z.

Using ideals introduces the additional difficulty of having to deal with units , the invertible elements of OK :
Even when hK = 1, a factorisation of ideals does not immediately yield a factorisation of numbers, since ideal
generators are only defined up to units. For instance, the ideal factorisation (6) = (2) · (3) corresponds to the
two factorisations 6 = 2 · 3 and 6 = (−2) · (−3). While in Z, the only units are 1 and −1, the unit structure
in general is that of a finitely generated Z-module, whose generators are the fundamental units. The regulator
RK measures the “size” of the fundamental units as the volume of an associated lattice.

One of the main concerns of algorithmic algebraic number theory is to explicitly compute these invariants
(ClK and hK , fundamental units and RK), as well as to provide the data allowing to efficiently compute with
numbers and ideals of OK ; see [38] for a recent account.

The analytic class number formula links the invariants hK andRK (unfortunately, only their product) to the ζ-
function of K, ζK(s) :=

∏
p prime ideal of OK

(1−N p−s)
−1, which is meaningful when R(s) > 1, but which

may be extended to arbitrary complex s 6= 1. Introducing characters on the class group yields a generalisation
of ζ- to L-functions. The generalised Riemann hypothesis (GRH), which remains unproved even over the
rationals, states that any such L-function does not vanish in the right half-plane R(s) > 1/2. The validity of
the GRH has a dramatic impact on the performance of number theoretic algorithms. For instance, under GRH,
the class group admits a system of generators of polynomial size; without GRH, only exponential bounds are
known. Consequently, an algorithm to compute ClK via generators and relations (currently the only viable
practical approach) either has to assume that GRH is true or immediately becomes exponential.

When hK = 1 the number fieldK may be norm-Euclidean, endowing OK with a Euclidean division algorithm.
This question leads to the notions of the Euclidean minimum and spectrum of K, and another task in
algorithmic number theory is to compute explicitly this minimum and the upper part of this spectrum, yielding
for instance generalised Euclidean gcd algorithms.

3.2. Function fields, algebraic curves and cryptology
Participants: Karim Belabas, Guilhem Castagnos, Jean-Marc Couveignes, Andreas Enge, Damien Robert,
Emmanouil Tzortzakis, Jean Kieffer.

Algebraic curves over finite fields are used to build the currently most competitive public key cryptosystems.
Such a curve is given by a bivariate equation C(X,Y ) = 0 with coefficients in a finite field Fq . The
main classes of curves that are interesting from a cryptographic perspective are elliptic curves of equation
C = Y 2 − (X3 + aX + b) and hyperelliptic curves of equation C = Y 2 − (X2g+1 + · · ·) with g > 2.

The cryptosystem is implemented in an associated finite abelian group, the Jacobian JacC. Using the language
of function fields exhibits a close analogy to the number fields discussed in the previous section. Let Fq(X)
(the analogue of Q) be the rational function field with subring Fq[X] (which is principal just as Z). The
function field of C is KC = Fq(X)[Y ]/(C); it contains the coordinate ring OC = Fq[X,Y ]/(C). Definitions
and properties carry over from the number field case K/Q to the function field extension KC/Fq(X).
The Jacobian JacC is the divisor class group of KC, which is an extension of (and for the curves used in
cryptography usually equals) the ideal class group of OC.
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The size of the Jacobian group, the main security parameter of the cryptosystem, is given by an L-
function. The GRH for function fields, which has been proved by Weil, yields the Hasse–Weil bound
(
√
q − 1)

2g 6 | JacC | 6 (
√
q + 1)

2g
, or | JacC | ≈qg , where the genus g is an invariant of the curve that cor-

relates with the degree of its equation. For instance, the genus of an elliptic curve is 1, that of a hyperelliptic
one is degX C−1

2 . An important algorithmic question is to compute the exact cardinality of the Jacobian.

The security of the cryptosystem requires more precisely that the discrete logarithm problem (DLP) be difficult
in the underlying group; that is, given elementsD1 andD2 = xD1 of JacC, it must be difficult to determine x.
Computing x corresponds in fact to computing JacC explicitly with an isomorphism to an abstract product of
finite cyclic groups; in this sense, the DLP amounts to computing the class group in the function field setting.

For any integer n, the Weil pairing en on C is a function that takes as input two elements of order n of JacC
and maps them into the multiplicative group of a finite field extension Fqk with k = k(n) depending on n. It
is bilinear in both its arguments, which allows to transport the DLP from a curve into a finite field, where it is
potentially easier to solve. The Tate-Lichtenbaum pairing, that is more difficult to define, but more efficient to
implement, has similar properties. From a constructive point of view, the last few years have seen a wealth of
cryptosystems with attractive novel properties relying on pairings.

For a random curve, the parameter k usually becomes so big that the result of a pairing cannot even be output
any more. One of the major algorithmic problems related to pairings is thus the construction of curves with a
given, smallish k.

3.3. Complex multiplication
Participants: Jared Guissmo Asuncion, Karim Belabas, Henri Cohen, Jean-Marc Couveignes, Andreas Enge,
Fredrik Johansson, Chloe Martindale, Damien Robert.

Complex multiplication provides a link between number fields and algebraic curves; for a concise introduction
in the elliptic curve case, see [41], for more background material, [40]. In fact, for most curves C over a finite
field, the endomorphism ring of JacC, which determines its L-function and thus its cardinality, is an order in
a special kind of number field K, called CM field. The CM field of an elliptic curve is an imaginary-quadratic
field Q(

√
D) with D < 0, that of a hyperelliptic curve of genus g is an imaginary-quadratic extension of a

totally real number field of degree g. Deuring’s lifting theorem ensures that C is the reduction modulo some
prime of a curve with the same endomorphism ring, but defined over the Hilbert class field HK of K.

Algebraically, HK is defined as the maximal unramified abelian extension of K; the Galois group of HK/K
is then precisely the class group ClK . A number field extension H/K is called Galois if H ' K[X]/(f) and
H contains all complex roots of f . For instance, Q(

√
2) is Galois since it contains not only

√
2, but also the

second root −
√

2 of X2 − 2, whereas Q( 3
√

2) is not Galois, since it does not contain the root e2πi/3 3
√

2 of
X3 − 2. The Galois group GalH/K is the group of automorphisms of H that fix K; it permutes the roots of f .
Finally, an abelian extension is a Galois extension with abelian Galois group.

Analytically, in the elliptic case HK may be obtained by adjoining to K the singular value j(τ) for a
complex valued, so-called modular function j in some τ ∈ OK ; the correspondence between GalH/K and ClK
allows to obtain the different roots of the minimal polynomial f of j(τ) and finally f itself. A similar, more
involved construction can be used for hyperelliptic curves. This direct application of complex multiplication
yields algebraic curves whose L-functions are known beforehand; in particular, it is the only possible way of
obtaining ordinary curves for pairing-based cryptosystems.

The same theory can be used to develop algorithms that, given an arbitrary curve over a finite field, compute
its L-function.

A generalisation is provided by ray class fields; these are still abelian, but allow for some well-controlled
ramification. The tools for explicitly constructing such class fields are similar to those used for Hilbert class
fields.
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4. Highlights of the Year

4.1. Highlights of the Year
Chloe Martindale defended her PhD thesis on Isogeny Graphs, Modular Polynomials, and Applications.

Antonin Riffaut defended his PhD thesis on Effective computation of special points.

A new release of PARI/GP, 2.11.0, has been published. This is a major stable release ending a development
cycle which started in November 2016; it includes among others an extensive new package for modular forms.

2018 was also a year with more workshops on PARI/GP than ever: Besides two general workshops uniting
developers and users, organised together with the universities of Besançon and Rome in the respective cities,
the team participated with lectures on PARI/GP at the École jeunes chercheurs en théorie des nombres à
Besançon (https://indico.math.cnrs.fr/event/2735/) and at the summer school ZETAS 2018 at Le Bourget du
Lac (https://etzetas2018.sciencesconf.org/).

5. New Software and Platforms

5.1. APIP
Another Pairing Implementation in PARI
KEYWORDS: Cryptography - Computational number theory
SCIENTIFIC DESCRIPTION: Apip , Another Pairing Implementation in PARI, is a library for computing
standard and optimised variants of most cryptographic pairings.

The following pairings are available: Weil, Tate, ate and twisted ate, optimised versions (à la Ver-
cauteren–Hess) of ate and twisted ate for selected curve families.

The following methods to compute the Miller part are implemented: standard Miller double-and-add method,
standard Miller using a non-adjacent form, Boxall et al. version, Boxall et al. version using a non-adjacent
form.

The final exponentiation part can be computed using one of the following variants: naive exponentiation,
interleaved method, Avanzi–Mihailescu’s method, Kato et al.’s method, Scott et al.’s method.

Part of the library has been included into Pari/Gp proper.
FUNCTIONAL DESCRIPTION: APIP is a library for computing standard and optimised variants of most
cryptographic pairings.

• Participant: Jérôme Milan

• Contact: Andreas Enge

• URL: http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml

5.2. AVIsogenies
Abelian Varieties and Isogenies
KEYWORDS: Computational number theory - Cryptography
FUNCTIONAL DESCRIPTION: AVIsogenies is a Magma package for working with abelian varieties, with a
particular emphasis on explicit isogeny computation.

Its prominent feature is the computation of (l,l)-isogenies between Jacobian varieties of genus-two hyperellip-
tic curves over finite fields of characteristic coprime to l, practical runs have used values of l in the hundreds.

https://indico.math.cnrs.fr/event/2735/
https://etzetas2018.sciencesconf.org/
http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml
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It can also be used to compute endomorphism rings of abelian surfaces, and find complete addition laws on
them.
• Participants: Damien Robert, Gaëtan Bisson and Romain Cosset
• Contact: Damien Robert
• URL: http://avisogenies.gforge.inria.fr/

5.3. CM
KEYWORD: Arithmetic
FUNCTIONAL DESCRIPTION: The Cm software implements the construction of ring class fields of imaginary
quadratic number fields and of elliptic curves with complex multiplication via floating point approximations. It
consists of libraries that can be called from within a C program and of executable command line applications.

RELEASE FUNCTIONAL DESCRIPTION: Features - Precisions beyond 300000 bits are now supported by an
addition chain of variable length for the -function. Dependencies - The minimal version number of Mpfr has
been increased to 3.0.0, that of Mpc to 1.0.0 and that of Pari to 2.7.0.
• Participant: Andreas Enge
• Contact: Andreas Enge
• URL: http://www.multiprecision.org/cm/home.html

5.4. CMH
Computation of Igusa Class Polynomials
KEYWORDS: Mathematics - Cryptography - Number theory
FUNCTIONAL DESCRIPTION: Cmh computes Igusa class polynomials, parameterising two-dimensional
abelian varieties (or, equivalently, Jacobians of hyperelliptic curves of genus 2) with given complex multi-
plication.
• Participants: Andreas Enge, Emmanuel Thomé and Regis Dupont
• Contact: Emmanuel Thomé
• URL: http://cmh.gforge.inria.fr

5.5. CUBIC
KEYWORD: Number theory
FUNCTIONAL DESCRIPTION: Cubic is a stand-alone program that prints out generating equations for cubic
fields of either signature and bounded discriminant. It depends on the Pari library. The algorithm has quasi-
linear time complexity in the size of the output.
• Participant: Karim Belabas
• Contact: Karim Belabas
• URL: http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.2.tgz

5.6. Euclid
KEYWORD: Number theory
FUNCTIONAL DESCRIPTION: Euclid is a program to compute the Euclidean minimum of a number field. It
is the practical implementation of the algorithm described in [38] . Some corresponding tables built with the
algorithm are also available. Euclid is a stand-alone program depending on the PARI library.
• Participants: Jean-Paul Cerri and Pierre Lezowski
• Contact: Jean-Paul Cerri
• URL: http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php

http://avisogenies.gforge.inria.fr/
http://www.multiprecision.org/cm/home.html
http://cmh.gforge.inria.fr
http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.2.tgz
http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php
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5.7. KleinianGroups
KEYWORDS: Computational geometry - Computational number theory
FUNCTIONAL DESCRIPTION: KleinianGroups is a Magma package that computes fundamental domains of
arithmetic Kleinian groups.

• Participant: Aurel Page

• Contact: Aurel Page

• URL: http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html

5.8. GNU MPC
KEYWORD: Arithmetic
FUNCTIONAL DESCRIPTION: Mpc is a C library for the arithmetic of complex numbers with arbitrarily high
precision and correct rounding of the result. It is built upon and follows the same principles as Mpfr. The
library is written by Andreas Enge, Philippe Théveny and Paul Zimmermann.

RELEASE FUNCTIONAL DESCRIPTION: Fixed mp\_pow, see http://lists.gforge.inria.fr/pipermail/mpc-
discuss/2014-October/001315.html - \#18257: Switched to libtool 2.4.5.

• Participants: Andreas Enge, Mickaël Gastineau, Paul Zimmermann and Philippe Théveny

• Contact: Andreas Enge

• URL: http://www.multiprecision.org/

5.9. MPFRCX
KEYWORD: Arithmetic
FUNCTIONAL DESCRIPTION: Mpfrcx is a library for the arithmetic of univariate polynomials over arbitrary
precision real (Mpfr ) or complex (Mpc ) numbers, without control on the rounding. For the time being, only
the few functions needed to implement the floating point approach to complex multiplication are implemented.
On the other hand, these comprise asymptotically fast multiplication routines such as Toom-Cook and the FFT.

RELEASE FUNCTIONAL DESCRIPTION: - new function produc\_an\_hecke - improved memory consump-
tion for unbalanced FFT multiplications

• Participant: Andreas Enge

• Contact: Andreas Enge

• URL: http://www.multiprecision.org/mpfrcx/home.html

5.10. PARI/GP
KEYWORD: Computational number theory
FUNCTIONAL DESCRIPTION: Pari/Gp is a widely used computer algebra system designed for fast computa-
tions in number theory (factorisation, algebraic number theory, elliptic curves, modular forms ...), but it also
contains a large number of other useful functions to compute with mathematical entities such as matrices,
polynomials, power series, algebraic numbers, etc., and many transcendental functions.

• Participants: Andreas Enge, Hamish Ivey-Law, Henri Cohen and Karim Belabas

• Partner: CNRS

• Contact: Karim Belabas

• URL: http://pari.math.u-bordeaux.fr/

http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html
http://lists.gforge.inria.fr/pipermail/mpc-discuss/2014-October/001315.html
http://lists.gforge.inria.fr/pipermail/mpc-discuss/2014-October/001315.html
http://www.multiprecision.org/
http://www.multiprecision.org/mpfrcx/home.html
http://pari.math.u-bordeaux.fr/
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6. New Results
6.1. Cryptographic Protocols

Participants: Guilhem Castagnos, Ida Tucker.

In [24], G. Castagnos, F. Laguillaumie and I. Tucker revisit a recent cryptographic primitive called Functional
encryption for inner products (FE4IP).

Functional encryption (FE) is an advanced cryptographic primitive which allows, for a single encrypted
message, to finely control how much information on the encrypted data each receiver can recover. To this
end many functional secret keys are derived from a master secret key. Each functional secret key allows, for a
ciphertext encrypted under the associated public key, to recover a specific function of the underlying plaintext.

Since constructions for general FE that appear in the past five years are far from practical, the problem arose
of building efficient FE schemes for restricted classes of functions; and in particular for linear functions, (i.e.
the inner product functionality). Such constructions yield many practical applications, while developing our
understanding of FE.

Though such schemes had already been conceived in the past three years (Abdalla et al. 2015, Agrawal et al.
2016), they all suffered of practical drawbacks. Namely the computation of inner products modulo a prime are
restricted, in that they require that the resulting inner product be small for decryption to be efficient. The only
existing scheme that overcame this constraint suffered of poor efficiency due in part to very large ciphertexts.
This work overcomes these limitations and we build the first FE schemes for inner products modulo a prime
that are both efficient and recover the result whatever its size.

To this end, Castagnos et al. introduce two new cryptographic assumptions. These are variants of the
assumptions used for the Castagnos-Laguillaumie encryption of 2015. This supposes the existence of a cyclic
group G where the decision Diffie-Hellman assumption holds together with a subgroup F of G where the
discrete logarithm problem is easy. This setting allows to encode information in the exponent of the subgroup
F , which can be efficiently recovered whatever its size.

From these assumptions Castagnos et al. construct generic, linearly homomorphic encryption schemes over
a field of prime order which are semantically secure under chosen plaintext attacks. They then use the
homomorphic properties of the above schemes to construct generic inner product FE schemes over the integers
and over fields of prime order. They thereby provide constructions for inner product FE modulo a prime p that
do not restrict the size of the inputs or of the resulting inner product, which are the most efficient such schemes
to date.

This paper was presented at the ASIACRYPT Conference 2018, and is part of the ALAMBIC project.

6.2. Computation of Euclidean minima in totally definite quaternion fields
Participant: Jean-Paul Cerri.

In collaboration with Pierre Lezowski, Jean-Paul Cerri has studied norm-Euclidean properties of totally
definite quaternion fields over number fields. Building on their previous work about number fields, they have
proved that the Euclidean minimum and the inhomogeneous minimum of orders in such quaternion fields are
always equal. Besides, they are rational under the hypothesis that the base number field is not quadratic. This
single remaning open case corresponds to the similar open case remaining for real number fields.

They also have extended Cerri’s algorithm for the computation of the upper part of the norm-Euclidean
spectrum of a number field to this noncommutative context. This algorithm has allowed to compute the exact
value of the norm-Euclidean minimum of orders in totally definite quaternion fields over a quadratic number
field. This has provided the first known values of this minimum when the base number field has degree strictly
greater than 1.

Consequently, both theoretical and practical milestones set in the previous quadrennial report were reached.
These results are presented in [19], due to appear in International Journal of Number Theory.
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6.3. Can you hear the homology of 3-dimensional drums?
Participant: Aurel Page.

In [16], A. Bartel and A. Page describe all possible actions of groups of automorphisms on the homology
of 3-manifolds, and prove that for every prime p, there are 3-dimensional drums that sound the same but
have different p-torsion in their homology. This completes previous work [42] by proving that the behaviour
observed by computer experimentation was indeed a general phenomenon.

More precisely: if M is a manifold with an action of a group G, then the homology group H1(M,Q)
is naturally a Q[G]-module, where Q[G] denotes the rational group ring. Bartel and Page prove that for
every finite group G, and for every Q[G]-module V , there exists a closed hyperbolic 3-manifold M with a
free G-action such that the Q[G]-module H1(M,Q) is isomorphic to V . They give an application to spectral
geometry: for every finite set P of prime numbers, there exist hyperbolic 3-manifolds N and N ′ that are
strongly isospectral such that for all p ∈ P , the p-power torsion subgroups of H1(N,Z) and of H1(N ′,Z)
have different orders. They also show that, in a certain precise sense, the rational homology of oriented
Riemannian 3-manifolds with a G-action "knows" nothing about the fixed point structure under G, in contrast
to the 2-dimensional case. The main geometric techniques are Dehn surgery and, for the spectral application,
the Cheeger-Müller formula, but they also make use of tools from different branches of algebra, most notably
of regulator constants, a representation theoretic tool that was originally developed in the context of elliptic
curves.

6.4. Error-correcting codes based on non-commutative algebras
Participant: Aurel Page.

In [36], C. Maire and A. Page revisit a construction due to Lenstra and Guruswami by generalising them to
unit groups of division algebras.

Lenstra and Guruswami described number field analogues of the algebraic geometry codes of Goppa. Recently,
Maire and Oggier generalised these constructions to other arithmetic groups: unit groups in number fields and
orders in division algebras; they suggested to use unit groups in quaternion algebras but could not completely
analyse the resulting codes. Maire and Page prove that the noncommutative unit group construction yields
asymptotically good families of codes for division algebras of any degree, and estimate the smallest possible
size of the alphabet in terms of the degree of the algebra.

6.5. Towards practical key exchange from ordinary isogeny graphs
Participant: Jean Kieffer.

In [25], L. De Feo, J. Kieffer and B. Smith revisit the ordinary isogeny-graph based cryptosystems of
Couveignes and Rostovtsev–Stolbunov, long dismissed as impractical.

De Feo, Kieffer and Smith give algorithmic improvements that accelerate key exchange in this framework,
and explore the problem of generating suitable system parameters for contemporary pre-and post-quantum
security that take advantage of these new algorithms. They prove the session-key security of this key exchange
in the Canetti-Krawczyk model, and the IND-CPA security of the related public-key encryption scheme,
under reasonable assumptions on the hardness of computing isogeny walks. This system admits efficient key-
validation techniques that yield CCA-secure encryption, thus providing an important step towards efficient
post-quantum non-interactive key exchange (NIKE).

6.6. Optimal addition sequences for theta functions
Participants: Andreas Enge, Fredrik Johansson.
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In [20], A. Enge, F. Johansson and their coauthor W. Hart consider the problem of numerically evaluating
one-dimensional θ-functions and the elliptic η-function. They construct short addition sequences reaching an
optimal number of N + o(N) multiplications for evaluating the function as a sparse series with N terms. The
proof relies on the representability of specific quadratic progressions of integers as sums of smaller numbers
of the same kind. For example, they show that every generalised pentagonal number c > 5 can be written
as c = 2a+ b, where a, b are smaller generalised pentagonal numbers. They then give a baby-step giant-
step algorithm that breaks through the theoretical barrier achievable with addition sequences, and which uses
only O(N/(logN)

r
) multiplications for any r > 0. These theoretical improvements also lead to an interesting

speed-up in practice, and they have been integrated into the CM and the ARB software.

6.7. Reed–Solomon-Gabidulin Codes
Participant: Xavier Caruso.

In [31], X. Caruso and A. Durand define a new family of linear codes which is a common generalization
of Reed–Solomon codes on the one hand and Gabidulin codes on the other hand. Their construction works
over an arbitrary field (not necessarily finite) equipped with an automorphism of finite order and a twisted
derivation whose subfield of constants is sufficiently large. This setting allows for example the base field to be
Fq(t) equipped with its natural derivation and then provides a new large family of interesting codes. Caruso
and Durand then compute the minimal distance of their codes and design an efficient algorithm for decoding
up to the half of the minimal distance.

6.8. Computing Stieltjes constants using complex integration
Participant: Fredrik Johansson.

In [32], F. Johansson and I. Blagouchine devise an efficient algorithm to compute the generalized Stieltjes
constants γn(a) to arbitrary precision with rigorous error bounds, for the first time achieving this with low
complexity with respect to the order n. The algorithm consists of locating an approximate steepest descent
contour and then evaluating the integral numerically in ball arithmetic using the Petras algorithm with a Taylor
expansion for bounds near the saddle point. An implementation is provided in the Arb library.

6.9. Numerical Evaluation of Elliptic Functions, Elliptic Integrals and
Modular Forms
Participant: Fredrik Johansson.

In [33], F. Johansson describes algorithms to compute elliptic functions and their relatives (Jacobi theta
functions, modular forms, elliptic integrals, and the arithmetic-geometric mean) numerically to arbitrary
precision with rigorous error bounds for arbitrary complex variables. Implementations in ball arithmetic
are available in the Arb library. This overview article discusses the standard algorithms from a concrete
implementation point of view, and also presents some improvements.

6.10. Numerical integration in arbitrary-precision ball arithmetic
Participant: Fredrik Johansson.

In [26], F. Johansson describes an implementation of arbitrary-precision numerical integration with rigorous
error bounds in the Arb library. Rapid convergence is ensured for piecewise complex analytic integrals by use
of the Petras algorithm, which combines adaptive bisection with adaptive Gaussian quadrature where error
bounds are determined via complex magnitudes without evaluating derivatives. The code is general, easy to
use, and efficient, often outperforming existing non-rigorous software.

6.11. Fast and rigorous arbitrary-precision computation of Gauss-Legendre
quadrature nodes and weights
Participant: Fredrik Johansson.
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In [26], F. Johansson and M. Mezzarobba describe a strategy for rigorous arbitrary-precision evaluation of
Legendre polynomials on the unit interval and its application in the generation of Gauss-Legendre quadrature
rules. The focus is on making the evaluation practical for a wide range of realistic parameters, corresponding to
the requirements of numerical integration to an accuracy of about 100 to 100 000 bits. The algorithm combines
the summation by rectangular splitting of several types of expansions in terms of hypergeometric series with
a fixed-point implementation of Bonnet’s three-term recurrence relation. Rigorous enclosures of the Gauss-
Legendre nodes and weights are then computed using the interval Newton method. The work provides rigorous
error bounds for all steps of the algorithm. The approach is validated by an implementation in the Arb library,
which achieves order-of-magnitude speedups over previous code for computing Gauss-Legendre rules with
simultaneous high degree and precision.

6.12. On a two-valued sequence and related continued fractions in power
series fields
Participant: Bill Allombert.

In [15], Bill Allombert with Nicolas Brisebarre and Alain Lasjaunias describe a noteworthy transcendental
continued fraction in the field of power series over Q, having irrationality measure equal to 3. This article has
been published in The Ramanujan Journal.

6.13. Moduli space
Participant: Nicolas Mascot.

The article [22] by Nicolas Mascot, on the Certification of modular Galois representations has been published
in Mathematics of Computation.

6.14. Modular forms
Participants: Karim Belabas, Henri Cohen, Bill Allombert.

In [18], K. Belabas and H. Cohen give theoretical and practical information on the Pari/GP modular forms
package, using the formalism of trace formulas. This huge package (about 70 exported public functions)
handles standard operations on classical modular forms in Mk(Γ0(N), χ), also in weight 1 and non-integral
weight (which are not cohomological, hence not directly handled by trace formulas). It is the first publicly
available package which can compute Fourier expansions at any cusps, evaluate modular forms near the real
axis, evaluate L-functions of non-eigenforms, and compute general Petersson scalar products.

In [39], H. Cohen explained how to compute Fourier expansions at all cusps of any modular form of integral
or half-integral weight.

A complementary package using modular symbols is used in [17] by Karim Belabas, Dominique Bernardi and
Bernadette Perrin-Riou to compute Manin’s constant and the modular degree of elliptic curves defined over
Q.

6.15. L-functions
Participant: Henri Cohen.

In [29], H. Cohen gives an overview of Computational Number Theory in Relation with L-Functions, both in
the local case (counting points on varieties over finite fields, involving in particular a detailed study of Gauss
and Jacobi sums), and in the global case (for instance Dirichlet L-functions, involving in particular the study of
inverse Mellin transforms). He also gives a number of little-known but very useful numerical methods, usually
but not always related to the computation of L-functions.

6.16. Number fields
Participant: Henri Cohen.
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In https://hal.inria.fr/hal-01379473/, H. Cohen and F. Thorne give explicit formulas for the Dirichlet series
generating function of D`-extensions of odd prime degree ` with given quadratic resolvent.

7. Partnerships and Cooperations

7.1. National Initiatives
7.1.1. ANR Alambic – AppLicAtions of MalleaBIlity in Cryptography

Participant: Guilhem Castagnos.

https://crypto.di.ens.fr/projects:alambic:main

The ALAMBIC project is a research project formed by members of the Inria Project-Team CASCADE of ENS
Paris, members of the AriC Inria project-team of ENS Lyon, and members of the CRYPTIS of the university
of Limoges. G. Castagnos is an external member of the team of Lyon for this project.

Non-malleability is a security notion for public key cryptographic encryption schemes that ensures that it
is infeasible for an adversary to modify ciphertexts into other ciphertexts of messages which are related to
the decryption of the first ones. On the other hand, it has been realized that, in specific settings, malleability
in cryptographic protocols can actually be a very useful feature. For example, the notion of homomorphic
encryption allows specific types of computations to be carried out on ciphertexts and generate an encrypted
result which, when decrypted, matches the result of operations performed on the plaintexts. The homomorphic
property can be used to create secure voting systems, collision-resistant hash functions, private information
retrieval schemes, and for fully homomorphic encryption enables widespread use of cloud computing by
ensuring the confidentiality of processed data.

The aim of the ALAMBIC project to investigate further theoretical and practical applications of malleability in
cryptography. More precisely, this project focuses on three different aspects: secure computation outsourcing
and server-aided cryptography, homomorphic encryption and applications and << paradoxical >> applications
of malleability.

7.1.2. ANR CLap–CLap – The p-adic Langlands correspondence: a constructive and
algorithmical approach
Participant: Xavier Caruso.

The p-adic Langlands correspondence has become nowadays one of the deepest and the most stimulating
research programs in number theory. It was initiated in France in the early 2000’s by Breuil and aims at
understanding the relationships between the p-adic representations of p-adic absolute Galois groups on the
one hand and the p-adic representations of p-adic reductive groups on the other hand. Beyond the case of
GL2(Qp) which is now well established, the p-adic Langlands correspondence remains quite obscure and
mysterious new phenomena enter the scene; for instance, on the GLn(F )-side one encounters a vast zoology
of representations which seems extremely difficult to organize.

The CLap–CLap ANR project aims at accelerating the expansion of the p-adic Langlands program beyond the
well-established case of GL2(Qp). Its main originality consists in its very constructive approach mostly based
on algorithmics and calculations with computers at all stages of the research process. We shall pursue three
different objectives closely related to our general aim:

1. draw a conjectural picture of the (still hypothetical) p-adic Langlands correspondence in the case of
GLn,

2. compute many deformation spaces of Galois representations and make the bridge with deformation
spaces of representations of reductive groups,

3. design new algorithms for computations with Hilbert and Siegel modular forms and their associated
Galois representations.

https://hal.inria.fr/hal-01379473/
https://crypto.di.ens.fr/projects:alambic:main
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This project will also be the opportunity to contribute to the development of the mathematical software
SAGEMATH and to the expansion of computational methodologies.

7.2. European Initiatives
7.2.1. H2020 Projects

Title: OpenDreamKit

Program: H2020

Duration: January 2016 - December 2020

Coordinator: Nicolas Thiéry

Inria contact: Karim Belabas

Description http://cordis.europa.eu/project/rcn/198334_en.html, http://opendreamkit.org

OpenDreamKit is a Horizon 2020 European Research Infrastructure project (#676541) that will
run for four years, starting from September 2015. It provides substantial funding to the open
source computational mathematics ecosystem, and in particular popular tools such as LinBox,
MPIR, SageMath, GAP, Pari/GP, LMFDB, Singular, MathHub, and the IPython/Jupyter interactive
computing environment.

7.3. International Initiatives
7.3.1. Inria International Labs

International Laboratory for Research in Computer Science and Applied Mathematics
Associate Team involved in the International Lab:

7.3.1.1. FAST

Title: (Harder Better) FAster STronger cryptography

International Partner

Université des Sciences et Techniques de Masuku (Gabon) - Tony Ezome and the PRMAIS
project

Start year: 2017

See also: https://www.inria.fr/en/associate-team/fast

The project aims to develop better algorithms for elliptic curve cryptography with prospect of the
two challenges ahead: - securing the internet of things - preparing towards quantum computers.

Elliptic curves are currently the fastest public-key cryptosystem (with a key size that can fit on
embeded devices) while still through a different mode of operation beeing (possibly) able to resist
quantum based computers.

Activities for this year involved:

• Tony Ezome organised a Cimpa school on Courbes algébriques pour une arithmétique
efficace des corps finis from 17/11/2018 - 30/11/2018 in Ziguinchor (Sénégal), Institution
Université Assane Seck de Ziguinchor.

• Abdoul Asiz Ciss and Damien Robert represented the team at the Journées du Lirima.
One of the suggestion was to find industrial collaborations in Africa, especially in Senegal.
Ongoing work is done by the team to find such a collaboration, especially on the new
challenges of post-quantum cryptography.

• Abdoulaye Maiga visited in Bordeaux to work with Damien Robert from 22/10/2018 to
18/01/2019. Tony Ezome and Mohamadou Sall visited from 08/12/2018 to 22/12/2018.

http://cordis.europa.eu/project/rcn/198334_en.html
http://opendreamkit.org
https://www.inria.fr/en/associate-team/fast
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Activities for this year involved the funding of Luca De Feo to speak at the EMA “Mathématiques
pour la Cryptographie Post-quantique et Mathématiques pour le Traitement du Signal”, organised by
Djiby Sow and Abdoul Asiz Ciss organised an EMA at the École Polytechnique de Thiès (Sénégal)
from May 10 to May 23, about “Cryptographie à base d’isogénies”; the visit of Abdoulaye Maiga to
the LFANT team where he worked with Damien Robert to find absolute invariants of good reduction
modulo 2 for abelian surfaces; and the organisation by Damien Robert of a workshop in Bordeaux
with most of the team members from September 04 to September 08. The slides or proceedings are
available at https://lfant.math.u-bordeaux.fr/index.php?category=seminar&page=2017.

7.3.2. Inria International Partners
7.3.2.1. Informal International Partners

The team is used to collaborate with Leiden University through the ALGANT program for PhD joint
supervision.

Eduardo Friedman (U. of Chile), long term collaborator of K. Belabas and H. Cohen is a regular visitor in
Bordeaux (about 1 month every year).

7.4. International Research Visitors
7.4.1. Visits of International Scientists

• Nicolas Mascot (American University of Beirut, Lebanon) visited the team for a week (8-
12/01/2018).

• Alex Bartel (University of Glasgow, UK) visited the team for two weeks (27/03/2018 to
07/04/2018).

• Takashi Fukuda (Nihon University, Japan) visited the team for two months (20/01/2018 to
25/03/2018)

• Tony Ezome (Université des Sciences et Techniques de Masuku) and Mohamadou Sall (Dakar)
visited the team for two weeks in December. Abdoul Aziz (Dakar) visited the team for one week
in September.

• Abdoulaye Maiga visited the team for three months, from October to January 2019.

Researchers visiting the team to give a talk to the team seminar include Elie Eid (Université de Rennes),
Jean-François Biasse (University of South Florida), Francesco Battistoni (University of Milan), Alex Bartel
(Glasgow University), Tristan Vaccon (Université de Limoges), and Takashi Fukuda (Nihon University).

7.4.2. Visits to International Teams
A. Page visited Alex Bartel (University of Glasgow, UK) for two weeks (16-27/07/2018) and Michael
Lipnowski (McGill University, Montreal, Canada) for two weeks (10-23/11/2018).

A. Page and Alex Bartel did a research stay in Oberwolfach (Allemagne) with the Research In Pairs programme
for three weeks (14/10/2018-3/11/2018).

8. Dissemination

8.1. Promoting Scientific Activities
8.1.1. Scientific Events Organisation
8.1.1.1. Member of the Editorial Boards

K. Belabas acts on the editorial board of Journal de Théorie des Nombres de Bordeaux since 2005 and of
Archiv der Mathematik since 2006.

https://lfant.math.u-bordeaux.fr/index.php?category=seminar&page=2017
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X. Caruso is an editor and one of the founder of the journal Annales Henri Lebesgue.

H. Cohen is an editor for the Springer book series Algorithms and Computations in Mathematics (ACM).

J.-M. Couveignes is a member of the editorial board (scientific committee) of the Publications mathématiques
de Besançon since 2010.

From January 2015 to September 2018 J.-M. Couveignes was a member of the scientific council of the
Fondation Mathématique de Paris.

A. Enge is an editor of Designs, Codes and Cryptography since 2004.

8.1.2. Invited Talks
A. Page: Algorithms for the cohomology of compact arithmetic manifolds and Hecke operators in the Simons
collaboration conference Arithmetic Geometry, Number Theory, and Computation, MIT (Boston, US), August
20-24, 2018.

8.1.3. Scientific Expertise
K. Belabas is a member of the ’conseil scientifique’ of the Société Mathématique de France

8.1.4. Research Administration
Since January 2017, A. Enge is “délégué scientifique” of the Inria research centre Bordeaux–Sud-Ouest. As
such, he is also a designated member of the “commission d’évaluation” of Inria.

Since January 2015, K. Belabas is vice-head of the Math Institute (IMB). He also leads the computer science
support service (“cellule informatique”) of IMB and coordinates the participation of the institute in the regional
computation cluster PlaFRIM.

He is an elected member of “commission de la recherche” in the academic senate of Bordeaux University.

He is a member of the “Conseil National des Université” (25th section, pure mathematics).

J.-P. Cerri is an elected member of the scientific council of the Mathematics Institute of Bordeaux (IMB) and
responsible for the bachelor programme in mathematics and informatics.

From January 2015 until January 2019, J.-M. Couveignes was the head of the Math Institute (IMB). He is
head of the Scientific Committee of the Albatros (ALliance Bordeaux universities And Thales Research in
AviOnicS) long term cooperation between Inria, Bordeaux-INP, Université de Bordeaux and CNRS.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Master : G. Castagnos, Cryptanalyse, 60h, M2, University of Bordeaux, France;
Master : G. Castagnos, Cryptologie avancée, 30h, M2, University of Bordeaux, France;
Master : G. Castagnos, Courbes elliptiques, 60h, M2, University of Bordeaux, France;
Master : D. Robert, Courbes elliptiques, 60h, M2, University of Bordeaux, France;
Master : K. Belabas, Computer Algebra, 91h, M2, University of Bordeaux, France;
Master : J.-M. Couveignes, Algorithmic Arithmetic, 30h, M2, University of Bordeaux, France;
Master : J.-M. Couveignes, Modules, espaces quadratiques, 30h, M1, University of Bordeaux,
France;
Licence : Jean-Paul Cerri, Algèbre linéaire 2, 51h TD, L2, Université de Bordeaux, France
Licence : Jean-Paul Cerri, Arithmétique et Cryptologie, 24h TD, L3, Université de Bordeaux, France
Licence : Jean-Paul Cerri, Structures algébriques 2, 35h TD, L3, Université de Bordeaux, France
Master : Jean-Paul Cerri, Cryptologie, 60h TD, M1, Université de Bordeaux, France
Master : Jean-Paul Cerri, 3 TER, Université de Bordeaux, France
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Licence : Jean Kieffer, Mathématiques pour la biologie, 64h TD, L1, Université de Bordeaux, France

8.2.2. Supervision
PhD: Chloe Martindale, Isogeny graphs, modular polynomials, and applications, defended in 2018,
supervised by A. Enge and Marco Streng (Universiteit Leiden).

PhD: Antonin Riffaut Calcul effectif de points spéciaux, defended in 2018, supervised by Y. Bilu
and K. Belabas.

PhD in progress : Ida Tucker, Design of new advanced cryptosystems from homomorphic building
blocks, since October 2017, supervised by Guilhem Castagnos and Fabien Laguillaumie

PhD in progress: Abdoulaye Maiga, Computing canonical lift of genus 2 hyperelliptic curves,
University Dakar, supervised by Djiby Sow, Abdoul Aziz Ciss and D. Robert.

PhD in progress: Jared Asuncion, Class fields of complex multiplication fields, since September
2017, supervised by A. Enge and Marco Streng (Universiteit Leiden).

PhD in progress: Emmanouil Tzortzakis Algorithms for Q-curves, supervised by K. Belabas, P. Bruin
and B. Edixhoven.

PhD in progress: Pavel Solomatin Topics on L-functions, supervised by B. de Smit and K. Belabas.

PhD in progress: Jean Kieffer Isogénies et endomorphismes de variétés abéliennes, supervised by
D. Robert and A. Page.

Master thesis: Amandine Malonguemfo Teagho Algorithms for isometries of lattices, supervised by
A. Page.

Master thesis: William Dallaporta Bhargava’s theory and parametrization of algebraic structures,
supervised by K. Belabas.

8.2.3. Juries
X. Caruso has written a report for the doctoral dissertation by Robin Bartlett, King’s College in
London: On the reductions of some crystalline representations.

A. Enge has written a report for the doctoral dissertation by Benjamin Wesolowski, École polytech-
nique fédérale de Lausanne: Arithmetic & Geometric Structures in Cryptography.

A. Enge has written a report for the professorial dissertation by Luca De Feo, Université de
Versailles–Saint Quentin: Exploring Isogeny Graphs.

8.3. Popularization
8.3.1. Articles and contents

• X. Caruso published an article entitled Polynômes tordus in the journal Au fil des maths de la
maternelle à l’université... edited by APMEP.

• H. Cohen wrote in [28] an introduction to Modular forms, which has been published in the book
Notes from the International School on Computational Number Theory.

8.3.2. Education
D. Robert is a member of the jury of Agregations de Mathematiques. He is also the codirector with Alain
Couvreur of the option “calcul formel” of the Modelisation part of the oral examination.
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8.3.3. Interventions
• 24/02/2018 in Olot (Spain), A. Page, with the other participants of Sage Days 93: one day for 20

local high school students to explore mathematical problems.

• 24/05/2018, A. Page: Unithé ou café on the mathematics of wireless communications: Méthodes
algébriques et géométriques pour les communications sans fil : comment l’espace hyperbolique
peut-il améliorer vos appels téléphoniques ?

• 30/05/2018, A. Page: in Poitiers half a day meeting with junior school students who took part in the
Al-Kindi competition; introduction to cryptography.

• 27/09/2018 D. Robert and A. Page: demonstration stand on graph-based cryptography at the Inria
BSO Party Day.

• 9-11/10/201 A. Page: Fête de la Science at Inria Bordeaux, activity on cryptography (7 groups of
students).

• 13/10/2018 D. Robert and A. Page: demonstration stand on graph-based cryptography at the Inria
BSO Open Day.

• 11/12/2018 A. Page: talk at the Inria BSO Comité des Projets Variations arithmétiques et algorith-
miques sur le thème << Peut-on entendre la forme d’un tambour? >>
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