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2. Overall Objectives

2.1. Overall Objectives
OURAGAN proposes to focus on the transfer of computational algebraic methods to some related fields
(computational geometry, topology, number theory, etc.) and some carefully chosen application domains
(robotics, control theory, evaluation of the security of cryptographic systems, etc.), which implies working
equally on the use (modeling, know - how) and on the development of new algorithms. The latest breakthrough
developments and applications where algebraic methods are currently decisive remain few and very targeted.
We wish to contribute to increase the impact of these methods but also the number of domains where the use of
computational algebraic methods represent a significant added value. This transfer-oriented positioning does
not imply to stop working on the algorithms, it simply sets the priorities.

An original aspect of the OURAGAN proposal is to blend into an environment of fundamental mathematics,
at the Institut de Mathématiques de Jussieu – Paris Rive Gauche (IMJ-PRG CNRS 7586), and to be cross-
functional to several teams (Algebraic Analysis, Complex Analysis and Geometry, Number Theory to name
only the main ones), which will be our first source of transfer of computational know-how. The success of this
coupling allows to maintain a strong theoretical basis and to measure objectively our transfer activity in the
direction of mathematicians (in geometry, topology, number theory, etc.) and to consolidate the presence of
Inria in scientific areas among the most theoretical.

We propose two general directions with four particular targets:

• Number Theory

– Algorithmic Number Theory

• Topology in small dimension

– Character varieties

– Knot theory

– Computational geometry

These actions come, of course, in addition to the study and development of a common set of core elements of

• Basic theory and algorithms in algebra and geometry [Led by Antoine Joux and Fabrice Rouillier].

This core activity is the invention and study of fundamental algebraic algorithms and objects that can be
grouped into 2 categories: algorithms designed to operate on finite fields and algorithms running on fields of
characteristic 0; with 2 types of computational strategies: the exactness and the use of approximate arithmetic
(but with exact results). This mix also installs joint studies between the various axes and is an originality of
the project-team. For example many kinds of arithmetic tools around algebraic numbers have to face to similar
theoretical problems such as finding a good representation for a number field; almost all problems related to
the resolution of algebraic systems will reduce to the study of varieties in small dimension and in particular,
most of the time, to the effective computation of the topology of curves and surfaces, or the certified drawing
of non algebraic function over an algebraic variety.

The tools and objects developed for research on algorithmic number theory as well as in computational
geometry apply quite directly on some selected connected challenging subjects:

• Security of cryptographic systems

• Control theory

• Robotics

These applications will serve for the evaluation of the general tools we develop when used in a different
context, in particular their capability to tackle state of the art problems.
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2.2. Scientific ground
2.2.1. Basic computable objects and algorithms

The basic computable objects and algorithms we study, use, optimize or develop are among the most classical
ones in computer algebra and are studied by many people around the world: they mainly focus on basic
computer arithmetic, linear algebra, lattices and polynomial system solving.

Our approach for tackling these basic problems, whose solution is important for the work of the whole team,
is three-fold. First, for some selected problems, we do propose and develop general algorithms (isolation of
real roots of univariate polynomials, parametrizations of solutions of zero-dimensional polynomial systems,
solutions of parametric equations, etc.). Second, for a selection of well-known problems, we propose different
computational strategies (for example the use of approximate arithmetic to speed up LLL algorithm or root
isolators, still certifying the final result). Last, we propose specialized variants of known algorithms optimized
for a given problem (for example, dedicated solvers for degenerated bivariate polynomials to be used in the
computation of the topology of plane curves).

In the context of OURAGAN, it is important to avoid reinventing the wheel and to re-use wherever possible
existing objects and algorithms. The main effort being focused on finding good formulations/modelizations
for an efficient use. However, on demand, we will propose implementations at many different levels. For
example, for our ongoing work on hybrid strategies for LLL, mixing interval arithmetics and basic linear
algebra operations, we have replaced our general reliable multiprecision interval artihmetic package (MPFI 1)
by a dedicated one and managed to save an important factor.

In the activity of OURAGAN, many key objects or algorithms around the resolution of algebraic systems are
developed within the team, such as the resolution of polynomials in one variable with real coefficients [77],
[66], rational parameterizations of solutions of zero-dimensional systems with rational coefficients [76], [34]
or discriminant varieties for solving systems depending on parameters [73].

For our studies in number theory and applications to the security of cryptographic systems, our team works on
three categories of basic algorithms: discrete logarithm computations [64] (for example to make progress on
the computation of class groups in number fields [56]), network reductions by means of LLL variants [45]
and obviously various computations in linear algebra, for example dedicated to almost sparse matrices [65].

These two directions of development are linked at several levels. For example, working with number fields,
in particular finding good representations of number fields, lead to the same computational problems as
working with roots of polynomial systems by means of triangular systems (towers of number fields) or
rational parameterizations (unique number field). Making any progress in one direction will probably have
direct consequences for almost all the problems we want to tackle.

Several strategies are also shared between these directions such as the use of approximate arithmetic to speed
up certified computations. Sometimes these can also lead to improvement for a different purpose (for example
computations over the rationals, deeply used in geometry can often be parallelized combining computations
in finite fields together with fast Chinese remaindering and modular evaluations).

As single highlighted example of this sharing of tools and strategies, the use of approximate arithmetic [75] is
common to the work on LLL [45] (use in the evaluation of the security of cryptographic systems), resolutions
of real-world algebraic systems [66] (used in our applications in robotics and control theory), computations of
signs of trigonometric expressions used in knot theory [12] or to certified evaluations of dilogarithm functions
on an algebraic variety for the computation of volumes of representations in our work in topology [52].

2.2.2. Algorithmic Number Theory
The frontiers between computable objects, algorithms (above section), computational number theory and
applications to security of cryptographic systems are very porous. This union of research fields is mainly
driven by the algorithmic improvement to solve presumably hard problems relevant to cryptography, such as
computation of discrete logarithms, resolution of hard subset-sum problems, decoding of random binary codes

1https://gforge.inria.fr/projects/mpfi/

https://gforge.inria.fr/projects/mpfi/
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and search for close and short vectors in lattices. While factorization and discrete logarithm problems have a
long history in cryptography, the recent post-quantum cryptosystems introduce a new variety of presumably
hard problems/objects/algorithms with cryptographic relevance: the shortest vector problem (SVP), the closest
vector problem (CVP) or the computation of isogenies between elliptic curves, especially in the supersingular
case.

Solving the discrete logarithm problem in finite fields is a key question for the security of Diffie-Hellman
based crypto and was the focus of a lot of academic research over the past 40 years. It is one of the expertise
domain in the OURAGAN team.

Members of OURAGAN started working on the topic of discrete logarithms around 1998, with several
computation records that were announced on the NMBRTHRY mailing list. In large characteristic, especially
for the case of prime fields, the best current method is the number field sieve (NFS) algorithm. In particular,
they published the first NFS based record computation [63]. Despite huge practical improvements, the prime
field case algorithm hasn’t really changed since that first record. Around the same time, we also presented
small characteristic computation record based on simplifications of the Function Field Sieve (FFS) algorithm
[62].

In 2006, important changes occurred concerning the FFS and NFS algorithms, indeed, while the algorithms
only covered the extreme case of constant characteristic and constant extension degree, two papers extended
their ranges of applicability to all finite fields. At the same time, this permitted a big simplification of the FFS,
removing the need for function fields.

Starting from 2012, new results appeared in small characteristic. Initially based on a simplification of the
2006 result, they quickly blossomed into the Frobenial representation methods, with quasi-polynomial time
complexity [28], [64], [57]. Recent progress were also made in larger characteristic [30], [29], [27], [26].

An interesting side-effect of this research was the need to revisit the key sizes of pairing-based cryptography.
This type of cryptography is also a topic of interest for OURAGAN. In particular, it was introduced in 2000
[61]. Recent re-evaluation of the necessary key size [26], making use of the overview of the possible discrete
logarithm constructions are discussed [25].

The computations of class groups in number fields has strong links with the computations of discrete
logarithms or factorizations using the NFS (number field sieve) strategy which as the name suggests is
based on the use of number fields. Roughly speaking, the NFS algorithm uses two number fields and the
strategy consists in choosing number fields with small sized coefficients in their definition polynomials. On
the contrary, in class group computations, there is a single number field, which is clearly a simplification, but
this field is given as input by some fixed definition polynomial. Obviously, the degree of this polynomial as
well as the size of its coefficients are both influencing the complexity of the computations so that finding other
polynomials representing the same class group but with a better characterization (degree or coefficient’s sizes)
is a mathematical problem with direct practical consequences. We proposed a method to address the problem
in [56], but many issues remain open.

Computing generators of principal ideals of cyclotomic fields is also strongly related to the computation
of class groups in number fields. Ideals in cyclotomic fields are used in a number of recent public-key
cryptosystems. Among the difficult problems that ensure the safety of these systems, there is one that consists
in finding a small generator, if it exists, of an ideal. The case of cyclotomic fields is considered in [33].

We also use the computations of class numbers to search for examples and counter-examples for mathematical
conjectures. For example a study of cyclic cubic fields [26] allowed to progress in the study of Greenberg’s
conjecture 2.

Another consecrated problem in algorithmic number theory is smoothness testing, i.e. given an integer, decide
if all its prime factors are smaller than a given bound. The only subexponential algorithm for this is H. Lenstra’s
elliptic curve method. Many of the families of elliptic curves here were found (according to the authors) by

2R. Greenberg, « On the Iwasawa invariants of totally real number fields », American J. of Math., vol. 98, 1976, p. 263-284.
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ad-hoc methods. We introduced a new point of view which allows to make rapidly a finite list of families
which are guaranteed to contain the good families for the elliptic curve method of factorization [31].

2.2.3. Topology in small dimension
2.2.3.1. Character varieties

There is a tradition of using computations and software to study and understand the topology of small
dimensional manifolds, going back at least to Thurston’s works (and before him, Riley’s pionering work). The
underlying philosophy of these tools is to build combinatorial models of manifolds (for example, the torus is
often described as a square with an identification of the sides). For dimension 2, 3, 4, this approach is relevant
and effective. In the team OURAGAN, we focus on the dimension 3, where the manifolds are modelized
by a finite numbers of tetrahedra with identification of the faces. The software SnapPy 3 implements this
strategy and is regularly used as a starting point in our work. Along the same philosophy of implementation,
we can also cite Regina 4. A specific trait of SnapPy is that it focuses on hyperbolic structures on the 3-
dimensional manifolds. This setting is the object of a huge amount of theoretical work that were used to speed
up computations. For example, some Newton methods were implemented without certification for solving a
system of equations, but the theoretical knowledge of the uniqueness of the solution made this implementation
efficient enough for the target applications. In recent years, in part under the influence of our team 5, more
attention has been given to certified computations and now this is implemented in SnapPy.

This philosophy (modelization of manifolds by quite simple combinatoric models to compute such compli-
cated objects as representations of the fundamental group) was applied in a pioneering work of Falbel[5] when
he begins to look for another type of geometry on 3-dimensional manifolds (called CR-spherical geometry).
From a computational point of view, this change of objectives was a jump in the unknown: the theoretical
justification for the computations were missing, and the number of variables of the systems were multiplied
by four. So instead of a relatively small system that could be tackled by Newton methods and numerical ap-
proximations, we had to deal with/study (were in front of) relatively big systems (the smallest example being
8 variables of degree 6) with no a priori description of the solutions. This input from OURAGAN was needed
and proved to be useful.

Still, the computable objects that appear from the theoretical study are very often outside the reach of
automated computations and are to be handled case by case. A few experts around the world have been
tackling this kind of computations (Dunfield, Goerner, Heusener, Porti, Tillman, Zickert) and the main current
achievement is the Ptolemy module 6 for SnapPy.

From these early computational needs, topology in small dimension has historically been the source of collab-
oration with the IMJ-PRG laboratory. At the beginning, the goal was essentially to provide computational tools
for finding geometric structures in triangulated 3-dimensional varieties. Triangulated varieties can be topolog-
ically encoded by a collection of tetrahedra with gluing constraints (this can be called a triangulation or mesh,
but it is not an approximation of the variety by simple structures, rather a combinatorial model). Imposing a
geometric structure on this combinatorial object defines a number of constraints that we can translate into an
algebraic system that we then have to solve to study geometric structures of the initial variety, for example
in relying on solutions to study representations of the fundamental group of the variety. For these studies, a
large part of the computable objects or algorithms we develop are required, from the algorithms for univariate
polynomials to systems depending on parameters. It should be noted that most of the computational work lies
in the modeling of problems [32] (see [4]) that have strictly no chance to be solved by blindly running the most
powerful black boxes: we usually deal here with systems that have 24 to 64 variables, depend on 4 to 8 pa-
rameters and with degrees exceeding 10 in each variable. With an ANR 7 funding on the subject, the progress
that we did [48](see [4]) were (much) more significant than expected. In particular, we have introduced new

3https://www.math.uic.edu/t3m/SnapPy/
4https://regina-normal.github.io
5as part of the CURVE project
6https://www.math.uic.edu/t3m/SnapPy/ptolemy.html
7ANR project Structures Géométriques et Triangulations

https://www.math.uic.edu/t3m/SnapPy/
https://regina-normal.github.io
http://curve.unhyperbolic.org
https://www.math.uic.edu/t3m/SnapPy/ptolemy.html
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computable objects with an immediate theoretical meaning (let us say rather with a theoretical link established
with the usual objects of the domain), namely, the so-called deformation variety.

Recent developments around Mahler measure [24] lead to the study of new computable objects at a cross-road
between geometry and number theory.

2.2.3.2. Knot theory

Knot theory is a wide area of mathematics. We are interested in polynomial representations of long knots,
that is to say polynomial embeddings R→ R3 ⊂ S3. Every knot admits a polynomial representation and
a natural question is to determine explicit parameterizations, minimal degree parameterizations. On the other
hand we are interested to determine what is the knot of a given polynomial smooth embedding R→ R3. These
questions involve real algebraic curves. Two-bridge knots (or rational knots) are particularly studied because
they are much easier to study. The first 26 knots (except 85) are two-bridge knots. It is proved that every knot
is a Chebyshev knot [67], that is to say can be parameterized by a Chebyshev curve (Ta(t), Tb(t), Tc(t+ ϕ))
where Tn(t) = cos (n arccos t) is the n-th Chebyshev polynomial of the first kind. Chebyshev knots are
polynomial analogues of Lissajous knots that have been studied by Jones, Hoste, Lamm...

Our activity in Knot theory is a bridge between our work in computational geometry (topology and drawing of
real space curves) and our work on topology in small dimensions (varieties defined as a knot complement). It
was first established that any knot can be parameterized by Chebyshev polynomials, then we have studied the
properties of harmonic nodes [69] which then opened the way to effective computations. We were able to give
an exhaustive, minimal and certified list of Chebyshev parameterizations of the first rational knots, using blind
computations [70]. On the other hand, we propose the identification of Chebyshev knot diagrams ([12]) by
developing new certified algorithms for computing trigonometric expressions [71], which was also the subject
of Tran Cuong’s PhD thesis at UPMC [78]. These works share many tools with our action in visualization and
computational geometry.

We made use of Chebyshev polynomials so as Fibonacci polynomials which are families of orthogonal
polynomials. Considering the Alexander-Conway polynomials as continuant polynomials in the Fibonacci
basis, we were able to give a partial answer to Hoste’s conjecture on the roots of Alexander polynomials of
alternating knots [68].

We study the lexicographic degree of the two-bridge knots, that is to say the minimal (multi)degree of
a polynomial representation of a N -crossing two-bridge knot. We show that this degree is (3, b, c) with
b+ c = 3N . We have determined the lexicographic degree of the first 362 first two-bridge knots with 12
crossings or fewer [39].Minimal degrees are available 8. These results make use of the braid theoretical
approach developped by Y. Orevkov to study real plane curves and the use of real pseudoholomorphic curves
([2]), the slide isotopies on trigonal diagrams, namely those that never increase the number of crossings [38].

2.2.3.3. Visualization and Computational Geometry

The drawing of algebraic curves and surfaces is a critical action in OURAGAN since it is a key ingredient in
numerous developments. For example, a certified plot of a discriminant variety could be the only admissible
answer that can be proposed for engineering problems that need the resolution of parametric algebraic systems:
this variety (and the connected components of its counter part) defines a partition of the parameter’s space in
regions above which the solutions are numerically stable and topologically simple.

For our action in Algorithmic Geometry, we are associated with the GAMBLE EPI (Inria Nancy Grand Est)
with the aim of developing computational techniques for the study, plotting and topology of real algebraic
curves and surfaces. The work involves the development of effective methods of resolution of algebraic
systems with 2 or 3 variables (see [1] for example) which are basic engines for computing the topology [74],
[43] / or plotting.

8https://webusers.imj-prg.fr/~pierre-vincent.koseleff/knots/2bk-lexdeg.html

https://webusers.imj-prg.fr/~pierre-vincent.koseleff/knots/2bk-lexdeg.html
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3. Research Program

3.1. Basic computable objects and algorithms
The development of basic computable objects is somehow on demand and depends on all the other directions.
However, some critical computations are already known to be bottlenecks and are sources of constant efforts.

Computations with algebraic numbers appear in almost all our activities: when working with number fields
in our work in algorithmic number theory as well as in all the computations that involve the use of
solutions of zero-dimensional systems of polynomial equations. Among the identified problems: finding good
representations for single number fields (optimizing the size and degree of the defining polynomials), finding
good representations for towers or products of number fields (typically working with a tower or finding a
unique good extension), efficiently computing in practice with number fields (using certified approximation
vs working with the formal description based on polynomial arithmetics). Strong efforts are currently done
in the understanding of the various strategies by means of tight theoretical complexity studies [43], [72],
[35] and many other efforts will be required to find the right representation for the right problem in practice.
For example, for isolating critical points of plane algebraic curves, it is still unclear (at least the theoretical
complexity cannot help) that an intermediate formal parameterization is more efficient than a triangular
decomposition of the system and it is still unclear that these intermediate computations could be dominated in
time by the certified final approximation of the roots.

3.2. Algorithmic Number Theory
Concerning algorithmic number theory, the main problems we will be considering in the coming years are the
following:

• Number fields. We will continue working on the problems of class groups and generators. In
particular, the existence and accessibility of good defining polynomials for a fixed number field
remain very largely open. The impact of better polynomials on the algorithmic performance is a
very important parameter, which makes this problem essential.

• Lattice reduction. Despite a great amount of work in the past 35 years on the LLL algorithm and its
successors, many open problems remain. We will continue the study of the use of interval arithmetic
in this field and the analysis of variants of LLL along the lines of the Potential-LLL which provides
improved reduction comparable to BKZ with a small block size but has better performance.

• Elliptic curves and Drinfeld modules. The study of elliptic curves is a very fruitful area of number
theory with many applications in crypto and algorithms. Drinfeld modules are “cousins” of elliptic
curves which have been less explored in the algorithm context. However, some recent advances
[44] have used them to provide some fast sophisticated factoring algorithms. As a consequence, it is
natural to include these objects in our research directions.

3.3. Topology in small dimension
3.3.1. Character varieties

The brute force approach to computable objects from topology of small dimension will not allow any
significant progress. As explained above, the systems that arise from these problems are simply outside the
range of doable computations. We still continue the work in this direction by a four-fold approach, with all
three directions deeply inter-related. First, we focus on a couple of especially meaningful (for the applications)
cases, in particular the 3-dimensional manifold called Whitehead link complement. At this point, we are
able to make steps in the computation and describe part of the solutions [48], [55]; we hope to be able
to complete the computation using every piece of information to simplify the system. Second, we continue
the theoretical work to understand more properties of these systems [46]. These properties may prove how
useful for the mathematical understanding is the resolution of such systems - or at least the extraction of
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meaningful information. This approach is for example carried on by Falbel and his work on configuration of
flags [49], [51]. Third, we position ourselves as experts in the know-how of this kind of computations and
natural interlocutors for colleagues coming up with a question on such a computable object [53], [55]. This
also allows us to push forward the kind of computation we actually do and make progress in the direction of
the second point. We are credible interlocutors because our team has the blend of theoretical knowledge and
computational capabilities that grants effective resolutions of the problems we are presented. And last, we use
the knowledge already acquired to pursue our theoretical study of the CR-spherical geometry [42], [50], [47].

Another direction of work is the help to the community in experimental mathematics on new objects. It
involves downsizing the system we are looking at (for example by going back to systems coming from
hyperbolic geometry and not CR-spherical geometry) and get the most out of what we can compute, by
studying new objects. An example of this research direction is the work of Guilloux around the volume
function on deformation varieties. This is a real-analytic function defined on the varieties we specialized
in computing. Being able to do effective computations with this function led first to a conjecture [52]. Then,
theoretical discussions around this conjecture led to a paper on a new approach to the Mahler measure of some
2-variables polynomials [54]. In turn, this last paper gave a formula for the Mahler measure in terms of a
function akin to the volume function applied at points in an algebraic variety whose moduli of coordinates are
1. The OURAGAN team has the expertise to compute all the objects appearing in this formula, opening the
way to another area of application. This area is deeply linked with number theory as well as topology of small
dimension. It requires all the tools at disposition within OURAGAN.

3.3.2. Knot theory
We will carry on the exhaustive search for the lexicographic degrees for the rational knots. They correspond
to trigonal space curves: computations in the braid group B3, explicit parametrization of trigonal curves
corresponding to "dessins d’enfants", etc. The problem seems much more harder when looking for more
general knots.

On the other hand, a natural direction would be: given an explicit polynomial space curve, determine the
under/over nature of the crossings when projecting, draw it and determine the known knot 9 it is isotopic to.

3.3.3. Vizualisation and Computational Geometry
As mentioned above, the drawing of algebraic curves and surfaces is a critical action in OURAGAN since
it is a key ingredient in numerous developments. In some cases, one will need a fully certified study of the
variety for deciding existence of solutions (for example a region in a robot’s parameter’s space with solutions
to the DKP above or deciding if some variety crosses the unit polydisk for some stability problems in control-
theory), in some other cases just a partial but certified approximation of a surface (path planning in robotics,
evaluation of non algebraic functions over an algebraic variety for volumes of knot complements in the study
of character varieties).

On the one hand, we will contribute to general tools like ISOTOP 10 under the supervision of the GAMBLE
project-team and, on the other hand, we will propose ad-hoc solutions by gluing some of our basic tools
(problems of high degrees in robust control theory). The priority is to provide a first software that implements
methods that fit as most as possible the very last complexity results we got on several (theoretical) algorithms
for the computation of the topology of plane curves.

A particular effort will be devoted to the resolution of overconstraint bivariate systems which are useful for
the studies of singular points and to polynomials systems in 3 variables in the same spirit : avoid the use
of Gröbner basis and propose a new algorithm with a state-of-the-art complexity and with a good practical
behavior.

9for example the first rational knots are listed at https://team.inria.fr/ouragan/knots
10https://isotop.gamble.loria.fr

https://team.inria.fr/ouragan/knots
https://isotop.gamble.loria.fr
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In parallel, one will have to carefully study the drawing of graphs of non algebraic functions over algebraic
complex surfaces for providing several tools which are useful for mathematicians working on topology in
small dimension (a well known example is the drawing of amoebia, a way of representing a complex curve on
a sheet of paper).

4. Application Domains

4.1. Security of cryptographic systems
The study of the security of asymmetric cryptographic systems comes as an application of the work carried out
in algorithmic number theory and revolves around the development and the use of a small number of general
purpose algorithms (lattice reduction, class groups in number fields, discrete logarithms in finite fields, ...).
For example, the computation of generators of principal ideals of cyclotomic fields can be seen as one of these
applications since these are used in a number of recent public key cryptosystems.

The cryptographic community is currently very actively assessing the threat coming for the development
of quantum computers. Indeed, such computers would permit tremendous progresses on many number
theoretic problems such as factoring or discrete logarithm computations and would put the security of current
cryptosystem under a major risk. For this reason, there is a large global research effort dedicated to finding
alternative methods of securing data. In particular, the US standardization agency called NIST has recently
launched a standardization process around this issue. In this context, OURAGAN is part of the competition and
has submitted a candidate, also published in [13]. This method is based on number-theoretic ideas involving
a new presumably difficult problem concerning the Hamming distance of integers modulo large numbers of
Mersenne.

4.2. Robotics
Algebraic computations have tremendously been used in Robotics, especially in kinematics, since the last
quarter of the 20th century. For example, one can cite different proofs for the 40 possible solutions to the direct
kinematics problem for steward platforms and companion experiments based on Gröbner basis computations.
On the one hand, hard general kinematics problems involve too many variables for pure algebraic methods
to be used in place of existing numerical or semi-numerical methods everywhere and everytime, and on the
other hand, for some quite large classes, global algebraic studies allow to propose exhaustive classifications
that cannot be reached by other methods.

Robotics is a long-standing collaborative work with LS2N (Laboratory of Numerical Sciences of Nantes).
Work has recently focused on the offline study of mechanisms, mostly parallel, their singularities or at least
some types of singularities (cuspidals robots: cusps in the workspace).

For most parallel or serial manipulators, pose variables and joints variables are linked by algebraic equations
and thus lie an algebraic variety. The two-kinematics problems (the direct kinematics problem - DKP- and
the inverse kinematics problem - IKP) consist in studying the preimage of the projection of this algebraic
variety onto a subset of unknowns. Solving the DKP remains to computing the possible positions for a given
set of joint variables values while solving the IKP remains to computing the possible joints variables values
for a given position. Algebraic methods have been deeply used in several situations for studying parallel and
serial mechanisms, but finally their use stays quite confidential in the design process. Cylindrical Algebraic
Decomposition coupled with variable’s eliminations by means of Gröbner based computations can be used to
model the workspace, the joint space and the computation of singularities. On the one hand, such methods
suffer immediately when increasing the number of parameters or when working with imprecise data. On the
other hand, when the problem can be handled, they might provide full and exhaustive classifications. The
tools we use in that context [41] [40] ( [58], [60], [59]) depend mainly on the resolution of parameter-based
systems and therefore of study-dependent curves or flat algebraic surfaces (2 or 3 parameters), thus joining
our thematic Algorithmic Geometry.
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4.3. Control theory
Many problems in control theory have been studied using general exact polynomial solvers in the past. One
can cite the famous Routh-Hurwitz criterion (late 19th century) for the stability of a linear time invariant
(LTI) control system and its relation with Sturm sequences and Cauchy index. However most of the strategies
used were involving mostly tools for univariate polynomials and then tried to tackle multivariate problems
recursively with respect to the variables. More recent work are using a mix of symbolic/numeric strategies,
using semi-definite programming for classes of optimization problems or homotopy methods for some
algebraic problems, but still very few practical experiments are currently involving certified algebraic using
general solvers for polynomial equations.

Our work in control theory is a recent activity and it is done in collaboration with a group of specialists,
the GAIA team, Inria Lille-Nord Europe. We started with a well-known problem, the study of the stability
of differential delay systems and multidimensional systems with an important observation: with a correct
modelization, some recent algebraic methods, derived from our work in algorithmic geometry and shared
with applications in robotics, now allow some previously impossible computations and lead to a better
understanding of the problems to be solved [37], [36]. The field is porous to computer algebra since one
finds for a long time algebraic criteria of all kinds but the technology seems blocked on a recursive use of
one-variable methods, whereas our approach involves the direct processing of problems into a larger number
of variables or variants.

The structural stability of n-D discrete linear systems (with n ≥ 2) is a good source of problems of several
kinds ranging from solving univariate polynomials to studying algebraic systems depending on parameters.
For example, we have shown that the standard characterization of the structural stability of a multivariate
rational transfer function (namely, the denominator of the transfer function does not have solutions in the
unit polydisc of Cn) is equivalent to deciding whether or not a certain system of polynomial equations has
real solutions. The use state-of-the-art computer algebra algorithms to check this last condition, and thus the
structural stability of multidimensional systems has been validated in several situations from toy examples
with parameters to state-of-the-art examples involving the resolution of bivariate systems.

5. Highlights of the Year
5.1. Highlights of the Year

• In [24], Antonin Guilloux and Julien Marché propose a closed formula for the Mahler measure
of a class of bivariate polynomials with rational coefficients (exact polynomials). This class of
polynomials contains A-polynomials of knot complements and the authors express the Mahler
Measure of a volume function defined on the vanishing set of the polynomial.

As computing Mahler measures is a well known challenge in number theory and as computing
volumes of knots complements is a critical objective for our research on character varieties, this
result make an original bridge between our two main research directions.

• A key encapsulation message named Mersenne-756839 has been submitted at the NIST call for
standard on Post-Quantum Cryptography. This submission is a complement to the article [13]
presented in three invited lectures by Antoine Joux (JFLI (UMI CNRS) / Tokyo university , Nanyang
Technological University, LATtice Crypto and Algorithms conference).

• Our agreement with WATERLOO MAPLE INC. has been reviewed for a two years term in 2018.
Out next objective is the diffusion of our new solver for univariate polynomials with real coefficients.

6. New Software and Platforms
6.1. ISOTOP

Topology and geometry of planar algebraic curves
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KEYWORDS: Topology - Curve plotting - Geometric computing
FUNCTIONAL DESCRIPTION: Isotop is a Maple software for computing the topology of an algebraic plane
curve, that is, for computing an arrangement of polylines isotopic to the input curve. This problem is a
necessary key step for computing arrangements of algebraic curves and has also applications for curve plotting.
This software has been developed since 2007 in collaboration with F. Rouillier from Inria Paris - Rocquencourt.
NEWS OF THE YEAR: In 2018, an engineer from Inria Nancy (Benjamin Dexheimer) finished the implemen-
tation of the web server to improve the diffusion of our software.
• Participants: Luis Penaranda, Marc Pouget and Sylvain Lazard
• Contact: Marc Pouget
• Publications: Rational Univariate Representations of Bivariate Systems and Applications - Separat-

ing Linear Forms for Bivariate Systems - On The Topology of Planar Algebraic Curves - New bivari-
ate system solver and topology of algebraic curves - Improved algorithm for computing separating
linear forms for bivariate systems - Solving bivariate systems using Rational Univariate Representa-
tions - On the topology of planar algebraic curves - On the topology of real algebraic plane curves
- Bivariate triangular decompositions in the presence of asymptotes - Separating linear forms and
Rational Univariate Representations of bivariate systems

• URL: https://isotop.gamble.loria.fr/

6.2. RS
FUNCTIONAL DESCRIPTION: Real Roots isolation for algebraic systems with rational coefficients with a
finite number of Complex Roots
• Participant: Fabrice Rouillier
• Contact: Fabrice Rouillier
• URL: https://team.inria.fr/ouragan/software/

6.3. A NewDsc
A New Descartes
KEYWORD: Scientific computing
FUNCTIONAL DESCRIPTION: Computations of the real roots of univariate polynomials with rational coeffi-
cients.
• Authors: Fabrice Rouillier, Alexander Kobel and Michael Sagraloff
• Partner: Max Planck Institute for Software Systems
• Contact: Fabrice Rouillier
• URL: https://anewdsc.mpi-inf.mpg.de

6.4. SIROPA
KEYWORDS: Robotics - Kinematics
FUNCTIONAL DESCRIPTION: Library of functions for certified computations of the properties of articulated
mechanisms, particularly the study of their singularities
• Authors: Damien Chablat, Fabrice Rouillier, Guillaume Moroz and Philippe Wenger
• Partner: LS2N
• Contact: Guillaume Moroz
• URL: http://siropa.gforge.inria.fr/

6.5. MPFI
KEYWORD: Arithmetic

https://hal.inria.fr/hal-00809430
https://hal.inria.fr/hal-00809425
https://hal.inria.fr/hal-00809425
https://hal.inria.fr/inria-00329754
https://hal.inria.fr/inria-00580431
https://hal.inria.fr/inria-00580431
https://hal.inria.fr/hal-00992634
https://hal.inria.fr/hal-00992634
https://hal.inria.fr/hal-01342211
https://hal.inria.fr/hal-01342211
https://hal.inria.fr/inria-00425383
https://hal.inria.fr/inria-00517175
https://hal.inria.fr/hal-01468796
https://hal.inria.fr/hal-00977671
https://hal.inria.fr/hal-00977671
https://isotop.gamble.loria.fr/
https://team.inria.fr/ouragan/software/
https://anewdsc.mpi-inf.mpg.de
http://siropa.gforge.inria.fr/
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FUNCTIONAL DESCRIPTION: MPFI is a C library based on MPFR and GMP for multi precision floating point
arithmetic.

• Contact: Fabrice Rouillier

• URL: http://mpfi.gforge.inria.fr

7. New Results

7.1. On SL(3,C)-representations of the Whitehead link group
In [9], we describe a family of representations in SL(3,C) of the fundamental group π of the Whitehead
link complement. These representations are obtained by considering pairs of regular order three elements
in SL(3,C) and can be seen as factorising through a quotient of π defined by a certain exceptional Dehn
surgery on the Whitehead link. Our main result is that these representations form an algebraic component of
the SL(3,C)-character variety of π.

7.2. A simplified approach to rigorous degree 2 elimination in discrete
logarithm algorithms
In [10], we revisit the ZigZag strategy of Granger, Kleinjung and Zumbrägel. In particular, we provide a new
algorithm and proof for the so-called degree 2 elimination step. This allows us to provide a stronger theorem
concerning discrete logarithm computations in small characteristic fields Fqk0k with k close to q and k0 a small
integer. As in the aforementioned paper, we rely on the existence of two polynomials h0 and h1 of degree 2
providing a convenient representation of the finite field Fqk0k .

7.3. Computing Chebyshev knot diagrams
A Chebyshev curve C(a, b, c, φ) has a parametrization of the form x(t) = Ta(t); y(t) = Tb(t);
z(t) = Tc(t+ φ), where a, b, c are integers, Tn(t) is the Chebyshev polynomial of degree n and φ ∈ R. When
C(a, b, c, φ) is nonsingular, it defines a polynomial knot. In [12], we determine all possible knot diagrams
when φ varies. Let a, b, c be integers, a is odd, (a, b) = 1, we show that one can list all possible knots
C(a, b, c, φ) in O(n2) bit operations, with n = abc.

7.4. Programmable projective measurement with linear optics
In [8] present a scheme for a universal device which can be programmed by quantum states to perform a chosen
projective measurement, and its implementation in linear optics. In particular, our scheme takes a single input
system (the input register), and M-1 systems all in a state psi (the program registers), whose role is to encode
the measurement direction, and approximates the projective measurement with respect to the state psi on the
input system. Importantly the scheme is entirely independent of the measurement basis choice psi. This is
done optimally in M, if we demand the input state psi always returns the appropriate outcome, and limits to
the ideal projective measurement with M. The size of the linear optical circuit we propose scales as M log M
, and requires O(M log M) classical side processing. Our scheme can be viewed as an extension of the swap
test to the instance where one state is supplied many times.

7.5. Updating key size estimations for pairings
Recent progress on NFS imposed a new estimation of the security of pairings. In [6], we study the best attacks
against some of the most popular pairings. It allows us to propose new pairing-friendly curves of 128 bits and
192 bits of security.

http://mpfi.gforge.inria.fr
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7.6. How to Securely Compute with Noisy Leakage in Quasilinear Complexity
Since their introduction in the late 90’s, side-channel attacks have been considered as a major threat against
cryptographic implementations. This threat has raised the need for formal leakage models in which the security
of implementations can be proved. At Eurocrypt 2013, Prouff and Rivain introduced the noisy leakage model
which has been argued to soundly capture the physical reality of power and electromagnetic leakages. In their
work, they also provide the first formal security proof for a masking scheme in the noisy leakage model.
However their work has two important limitations: (i) the security proof relies on the existence of a leak-free
component, (ii) the tolerated amount of information in the leakage (aka leakage rate) is of O(1/n) where n
is the number of shares in the underlying masking scheme. The first limitation was nicely tackled by Duc,
Dziembowski and Faust one year later (Eurocrypt 2014). Their main contribution was to show a security
reduction from the noisy leakage model to the conceptually simpler random- probing model. They were then
able to prove the security of the well-known Ishai-Sahai-Wagner scheme (Crypto 2003) in the noisy leakage
model. The second limitation was addressed last year in a paper by Andrychowicz, Dziembowski and Faust
(Eurocrypt 2016). The proposed construction achieves security in the strong adaptive probing model with a
leakage rate of O(1/logn) at the cost of a O(n2logn) complexity. we argue that their result can be translated
into the noisy leakage model with a leakage rate of O(1) by using secret sharing based on algebraic geometric
codes. They further argue that the efficiency of their construction can be improved by a linear factor using
packed secret sharing but no details are provided.

In [14], we show how to compute in the presence of noisy leakage with a leakage rate up to Õ(1) in complexity
Õ(n). They use a polynomial encoding allowing quasilinear multiplication based on the fast Number Theoretic
Transform (NTT). They first show that the scheme is secure in the random-probing model with leakage rate
O(1/logn). Using the reduction by Duc et al. this result can be translated in the noisy leakage model with a
O(1/|F |2logn) leakage rate. However, as in the work of Andrychowicz et al. , our construction also requires
|F | = O(n). In order to bypass this issue, we refine the granularity of our computation by considering the
noisy leakage model on logical instructions that work on constant-size machine words. we provide a generic
security reduction from the noisy leakage model at the logical-instruction level to the random-probing model
at the arithmetic level. This reduction allows to prove the security of the construction in the noisy leakage
model with leakage rate Õ(1)).

7.7. A New Public-Key Cryptosystem via Mersenne Numbers
In [13], we propose a new public-key cryptosystem whose security is based on the computational intractability
of the following problem: Given a Mersenne number p = 2n − 1 where n is a prime, a positive integer h , and
two n -bit integers T,R , find two n -bit integers F,G each of Hamming weight at most h such that T = F ·R+G
modulo p , under the promise that they exist.

7.8. Workspace, Joint space and Singularities of a family of Delta-Like Robot
In [11], we describe the workspace, the joint space and the singularities of a family of delta-like parallel robots
by using algebraic tools. The different func- tions of SIROPA library are introduced, which is used to induce
an estimation about the complexity in representing the singularities in the workspace and the joint space. A
Gröbner based elimination is used to compute the singularities of the manipulator and a Cylindrical Algebraic
Decomposition algorithm is used to study the workspace and the joint space. From these algebraic objects,
they propose some certified three-dimensional plotting describing the shape of works- pace and of the joint
space which will help the engineers or researchers to decide the most suited configuration of the manipulator
they should use for a given task. Also, the different parameters associated with the complexity of the serial
and parallel singularities are tabulated, which further enhance the selection of the different configuration of
the manipulator by comparing the complexity of the singularity equations.
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7.9. Certified Non-conservative Tests for the Structural Stability of Discrete
Multidimensional Systems
In [7], we present new computer algebra based methods for testing the structural stability of n-D discrete linear
systems (with n ≥ 2). More precisely, they show that the standard characterization of the structural stability
of a multivariate rational transfer function (namely, the denominator of the transfer function does not have
solutions in the unit polydisc of Cn) is equivalent to the fact that a certain system of polynomials does not
have real solutions. We then use state-of-the-art computer algebra algorithms to check this last condition, and
thus the structural stability of multidimensional systems.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
The objective of our Agrement with WATERLOO MAPLE INC. is to promote software developments to
which we actively contribute.

On the one hand, WMI provides man power, software licenses, technical support (development, documentation
and testing) for an inclusion of our developments in their commercial products. On the other hand, OURAGAN
offers perpetual licenses for the use of the concerned source code.

As past results of this agreement one can cite our C-Library RS for the computations of the real solutions
zero-dimensional systems or also our collaborative development around the Maple package DV for solving
parametric systems of equations.

For this term, the agreement covers algorithms developed in areas including but not limited to: 1) solving of
systems of polynomial equations, 2) validated numerical polynomial root finding, 3) computational geometry,
4) curves and surfaces topology, 5) parametric algebraic systems, 6) cylindrical algebraic decompositions, 7)
robotics applications.

In particular, it covers our collaborative work with some of our partners, especially the Gamble Project-Team
- Inria Nancy Grand Est.

9. Partnerships and Cooperations

9.1. European Initiatives
9.1.1. FP7 & H2020 Projects

Program:H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
Project acronym: Almacrypt
Project title: Algorithmic and Mathematical Cryptology
Duration: 01/2016 - 12/2010
Coordinator: Antoine Joux
Abstract: Cryptology is a foundation of information security in the digital world. Today’s internet is
protected by a form of cryptography based on complexity theoretic hardness assumptions. Ideally,
they should be strong to ensure security and versatile to offer a wide range of functionalities
and allow efficient implementations. However, these assumptions are largely untested and internet
security could be built on sand. The main ambition of Almacrypt is to remedy this issue by
challenging the assumptions through an advanced algorithmic analysis. In particular, this proposal
questions the two pillars of public-key encryption: factoring and discrete logarithms. Recently, the
PI contributed to show that in some cases, the discrete logarithm problem is considerably weaker
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than previously assumed. A main objective is to ponder the security of other cases of the discrete
logarithm problem, including elliptic curves, and of factoring. We will study the generalization of
the recent techniques and search for new algorithmic options with comparable or better efficiency.
We will also study hardness assumptions based on codes and subset-sum, two candidates for post-
quantum cryptography. We will consider the applicability of recent algorithmic and mathematical
techniques to the resolution of the corresponding putative hard problems, refine the analysis of the
algorithms and design new algorithm tools. Cryptology is not limited to the above assumptions:
other hard problems have been proposed to aim at post-quantum security and/or to offer extra
functionalities. Should the security of these other assumptions become critical, they would be added
to Almacrypt’s scope. They could also serve to demonstrate other applications of our algorithmic
progress. In addition to its scientific goal, Almacrypt also aims at seeding a strengthened research
community dedicated to algorithmic and mathematical cryptology.

9.2. International Initiatives
9.2.1. Inria International Labs
9.2.1.1. Informal International Partners

• CQT Singapour (UMI CNRS Majulab)
• UFPA - Para -Brésil (José Miguel Veloso)
• Institut Joseph Fourier - Université Grenoble Alpes (Martin Deraux, V. Vitse et Pierre Will)
• Max-Planck-Institut für Informatik - Saarbrücken - Germany (Michael Sagraloff)
• Holon Institute of Technology, Israel (Jeremy Kaminsky)

9.3. International Research Visitors
9.3.1. Visits of International Scientists

• Jeremy Kaminsky (Holon Institute of Technology, Israel). 3-months visitor in Ouragan and École
Polytechnique (MAX) and École des Mines. Chateaubriand Fellow. Subjects: Control Theory,
Algebraic Geometry and Computer Vision.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events Organisation
10.1.1.1. Member of the Organizing Committees

• Antonin Guilloux is a Co-organizer of the International conference Dynamics of Groups Actions
(Cetraro, may 2019) 11

• Antoine Joux co-organized the Sprint Summer School Post-Scryptum 12

• Antoine-Joux co-organized Crypto in the quantum age (STIAS) 13

10.1.2. Scientific Events Selection
10.1.2.1. Chair of Conference Program Committees

• Antoine Joux was Program Chair of Africacrypt 14

11http://dynamicsgroupactions.imj-prg.fr/fr/68-2/
12https://postscryptum.lip6.fr
13http://stias.ac.za/events/workshop-on-cryptography-in-the-quantum-age
14http://africacrypt2018.aui.ma/commitees.php

http://dynamicsgroupactions.imj-prg.fr/fr/68-2/
https://postscryptum.lip6.fr
http://stias.ac.za/events/workshop-on-cryptography-in-the-quantum-age
http://africacrypt2018.aui.ma/commitees.php
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10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

• Elisha Falbel is a member of the editorial board of São Paulo Journal of Mathematical Sciences -
Springer

• Antoine Joux is a member of the editorial board of Designs, Codes and Cryptography
• Fabrice Rouillier is a member of the editorial board of Journal of Symbolic Computation

10.1.3.2. Reviewer - Reviewing Activities
• Antonin Guilloux is reviewer in several journals, including Duke Math Journal.
• Razvan Barbulescu is reviewer for several cryptology conferences including Eurocrypt and WAIFI.

10.1.4. Invited Talks
• Razvan Barbulescu, Cryptography and algorithmic number theory, june 2018, Caen
• Elisha Falbel, Colloquium Heidelberg, June 2018 -Heidelberg -Alemagne
• Elisha Falbel, Representation varieties and geometric structures in low dimensions , July 2018 -

Warwick-UK
• Elisha Falbel, Modern Trends in Differential Geometry, July 2018, Sao Paulo- Brazil
• Antonin Guilloux, Computation in Geometric Topology, December 2017 - Warwick - UK.
• Antonin Guilloux, Mahler Measure and values of L-functions, August 2018 - Copenhagen - Den-

mark.
• Antoine Joux, JFLI (UMI CNRS) / Tokyo university, May 2018, Tokyo https://jfliwp.prod.lamp.

cnrs.fr/2018/04/13/jfli-seminar-on-the-mersenne-cryptosystem/
• Antoine Joux, Invited Lecture at the conference Lattice crypto and algorithms, May 2018, Bertinoro,

Italy
• Antoine Joux, The Mersenne Cryptosystem, Nanyang University, June 2018, Singapore

10.1.5. Research Administration
• Fabrice Rouillier is a member of the scientific commitee of the Indo French Centre for Applied

Mathematics

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Elisha Falbel : courses in Algebra and Analysis, L1 , Sorbonne Université.
Elisha Falbel : Course in Probabiltés, L3, Polytech
Elisha Falbel : Introduction aux surfaces de Riemann, M1, Sorbonne Université.
Antonin Guilloux: Courses in General Mathematics, L1, Sorbonne Université.
Antonin Guilloux: Chair of the Mathematics in L1 at Sorbonne Université; Lead of the renewing of
the mathematical courses in L1 at Sorbonne Université for 2019.
Antonin Guilloux: Course in Hyperbolic geometry and character varieties, M2, Sorbonne Université.
Antoine Joux : Course on Techniques in Cryptography and Cryptanalysis, M2, Parisian Master of
Research in Computer Science.
Pierre-Vincent Koseleff : Course on Applied Algebra, L3 for undergraduate students (6th semester),
Sorbonne Université.
Pierre-Vincent Koseleff : Préparation à l’agrégation de Mathématiques, M2. General Chair and
teacher. Sorbonne Université.
Fabrice Rouillier : Course in Algebraic Computations, M1, 24h, Sorbonne Université.

 https://jfliwp.prod.lamp.cnrs.fr/2018/04/13/jfli-seminar-on-the-mersenne-cryptosystem/
 https://jfliwp.prod.lamp.cnrs.fr/2018/04/13/jfli-seminar-on-the-mersenne-cryptosystem/
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Fabrice Rouillier : Course in "Agrégation Option - C", M2, 31 heures,Sorbonne Université.
Razvan Barbulescu : part of the Course at MPRI Arithmetic algorithms for cryptology 6h
Razvan Barbulescu : 3 projects of cryptology in Python
Razvan Barbulescu : exercice sessions for Algorithmic and complexity 30h

10.2.2. Supervision
PhD in progress : Thomas Espitau, 09/2016, directed by Antoine Joux
PhD in progress : Natalia Kharchenko, 09/2016, directed by Antoine Joux
PhD in progress : Mahya Mehrabdollahei, 09/2018, directed by Antonin Guilloux and Fabrice
Rouillier
PhD in progress : Sudarshan Shinde, 09/2016, directed by Razvan Barbulescu and Pierre-Vincent
Koseleff
PhD in progress : Robin Timsit, 09/2015, directed by Elisha Falbel

10.2.3. Juries
• Fabrice Rouillier was reviewer of the PhD of Ruben Becker (Universität des Saarlandes)
• Antonin Guilloux, jury of the PhD thesis of Alexandre Bellis - Etude Topologique du Flot Horocy-

clique Le cas des surfaces Géométriquement Infnies - Supervisor: Françoise Dal’Bo.

10.3. Popularization
10.3.1. Internal or external Inria responsibilities

• Razvan Barbulescu is chargé médiation at IMJ-PRG
• Razvan Barbulescu is a member of the steering commitee of the association Animath 15

• Fabrice Rouillier is chargé de mission médiation at Inria Paris
• Fabrice Rouillier is a member of the editorial board of Interstices
• Fabrice Rouillier is the president of the association Animath

10.3.2. Interventions
• Razvan Barbulescu co-organizes the Alkindi 16 competition on crytography (50000 participants)
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