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2. Overall Objectives

2.1. Programming securely with cryptography
In recent years, an increasing amount of sensitive data is being generated, manipulated, and accessed online,
from bank accounts to health records. Both national security and individual privacy have come to rely on
the security of web-based software applications. But even a single design flaw or implementation bug in an
application may be exploited by a malicious criminal to steal, modify, or forge the private records of innocent
users. Such attacks are becoming increasingly common and now affect millions of users every year.

The risks of deploying insecure software are too great to tolerate anything less than mathematical proof,
but applications have become too large for security experts to examine by hand, and automated verification
tools do not scale. Today, there is not a single widely-used web application for which we can give a proof
of security, even against a small class of attacks. In fact, design and implementation flaws are still found in
widely-distributed and thoroughly-vetted security libraries designed and implemented by experts.

Software security is in crisis. A focused research effort is needed if security programming and analysis tech-
niques are to keep up with the rapid development and deployment of security-critical distributed applications
based on new cryptographic protocols and secure hardware devices. The goal of our team PROSECCO is to
draw upon our expertise in cryptographic protocols and program verification to make decisive contributions in
this direction.

Our vision is that, over its lifetime, PROSECCO will contribute to making the use of formal techniques
when programming with cryptography as natural as the use of a software debugger. To this end, our
long-term goals are to design and implement programming language abstractions, cryptographic models,
verification tools, and verified security libraries that developers can use to deploy provably secure distributed
applications. Our target applications include cryptographic protocol implementations, hardware-based security
APIs, smartphone- and browser-based web applications, and cloud-based web services. In particular, we aim
to verify the full application: both the cryptographic core and the high-level application code. We aim to verify
implementations, not just models. We aim to account for computational cryptography, not just its symbolic
abstraction.

We identify five key focus areas for our research in the short- to medium term.

2.1.1. New programming languages for verified software
Building realistic verified applications requires new programming languages that enable the systematic
development of efficient software hand-in-hand with their proofs of correctness. Our current focus is on
designing and implementing the programming language F*, in collaboration with Microsoft Research. F*
(pronounced F star) is an ML-like functional programming language aimed at program verification. Its
type system includes polymorphism, dependent types, monadic effects, refinement types, and a weakest
precondition calculus. Together, these features allow expressing precise and compact specifications for
programs, including functional correctness and security properties. The F* type-checker aims to prove that
programs meet their specifications using a combination of SMT solving and manual proofs. Programs written
in F* can be translated to efficient OCaml, F#, or C for execution. The main ongoing use case of F* is
building a verified, drop-in replacement for the whole HTTPS stack in Project Everest (a larger collaboration
with Microsoft Research). This includes verified implementations of TLS 1.2 and 1.3 and of the underlying
cryptographic primitives.

2.1.2. Symbolic verification of cryptographic applications
We aim to develop our own security verification tools for models and implementations of cryptographic
protocols and security APIs using symbolic cryptography. Our starting point is the tools we have previously
developed: the specialized cryptographic prover ProVerif, the reverse engineering and formal test tool Tookan,
and the F* verification system. These tools are already used to verify industrial-strength cryptographic protocol
implementations and commercial cryptographic hardware. We plan to extend and combine these approaches
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to capture more sophisticated attacks on applications consisiting of protocols, software, and hardware, as well
as to prove symbolic security properties for such composite systems.

2.1.3. Computational verification of cryptographic applications
We aim to develop our own cryptographic application verification tools that use the computational model of
cryptography. The tools include the computational prover CryptoVerif, and the F* verification system. Working
together, we plan to extend these tools to analyze, for the first time, cryptographic protocols, security APIs, and
their implementations under fully precise cryptographic assumptions. We also plan to pursue links between
symbolic and computational verification, such as computational soundness results that enable computational
proofs by symbolic techniques.

2.1.4. Efficient formally secure compilers for tagged architectures
We aim to leverage emerging hardware capabilities for fine-grained protection to build the first, efficient secure
compilation chains for realistic low-level programming languages (the C language, and Low* a safe subset of
C embedded in F* for verification). These compilation chains will provide a secure semantics for all programs
and will ensure that high-level abstractions cannot be violated even when interacting with untrusted low-level
code. To achieve this level of security without sacrificing efficiency, our secure compilation chains target a
tagged architecture, which associates a metadata tag to each word and efficiently propagates and checks tags
according to software-defined rules.

2.1.5. Building provably secure web applications
We aim to develop analysis tools and verified libraries to help programmers build provably secure web
applications. The tools will include static and dynamic verification tools for client- and server-side JavaScript
web applications, their verified deployment within HTML5 websites and browser extensions, as well as type-
preserving compilers from high-level applications written in F* to JavaScript. In addition, we plan to model
new security APIs in browsers and smartphones and develop the first formal semantics for various HTML5 web
standards. We plan to combine these tools and models to analyze the security of multi-party web applications,
consisting of clients on browsers and smartphones, and servers in the cloud.

3. Research Program

3.1. Symbolic verification of cryptographic applications
Despite decades of experience, designing and implementing cryptographic applications remains dangerously
error-prone, even for experts. This is partly because cryptographic security is an inherently hard problem, and
partly because automated verification tools require carefully-crafted inputs and are not widely applicable.
To take just the example of TLS, a widely-deployed and well-studied cryptographic protocol designed,
implemented, and verified by security experts, the lack of a formal proof about all its details has regularly led to
the discovery of major attacks (including several in PROSECCO) on both the protocol and its implementations,
after many years of unsuspecting use.

As a result, the automated verification for cryptographic applications is an active area of research, with a wide
variety of tools being employed for verifying different kinds of applications.

In previous work, we have developed the following three approaches:

• ProVerif: a symbolic prover for cryptographic protocol models

• Tookan: an attack-finder for PKCS#11 hardware security devices

• F*: a new language that enables the verification of cryptographic applications
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3.1.1. Verifying cryptographic protocols with ProVerif
Given a model of a cryptographic protocol, the problem is to verify that an active attacker, possibly with
access to some cryptographic keys but unable to guess other secrets, cannot thwart security goals such
as authentication and secrecy [70]; it has motivated a serious research effort on the formal analysis of
cryptographic protocols, starting with [65] and eventually leading to effective verification tools, such as our
tool ProVerif.

To use ProVerif, one encodes a protocol model in a formal language, called the applied pi-calculus, and
ProVerif abstracts it to a set of generalized Horn clauses. This abstraction is a small approximation: it just
ignores the number of repetitions of each action, so ProVerif is still very precise, more precise than, say, tree
automata-based techniques. The price to pay for this precision is that ProVerif does not always terminate;
however, it terminates in most cases in practice, and it always terminates on the interesting class of tagged
protocols [60]. ProVerif can handle a wide variety of cryptographic primitives, defined by rewrite rules or by
some equations, and prove a wide variety of security properties: secrecy [58], [44], correspondences (including
authentication) [59], and observational equivalences [57]. Observational equivalence means that an adversary
cannot distinguish two processes (protocols); equivalences can be used to formalize a wide range of properties,
but they are particularly difficult to prove. Even if the class of equivalences that ProVerif can prove is limited
to equivalences between processes that differ only by the terms they contain, these equivalences are useful
in practice and ProVerif has long been the only tool that proves equivalences for an unbounded number of
sessions. (Maude-NPA in 2014 and Tamarin in 2015 adopted ProVerif’s approach to proving equivalences.)

Using ProVerif, it is now possible to verify large parts of industrial-strength protocols, such as TLS [52],
Signal [68], JFK [45], and Web Services Security [56], against powerful adversaries that can run an unlimited
number of protocol sessions, for strong security properties expressed as correspondence queries or equivalence
assertions. ProVerif is used by many teams at the international level, and has been used in more than 120
research papers (references available at http://proverif.inria.fr/proverif-users.html).

3.1.2. Verifying security APIs using Tookan
Security application programming interfaces (APIs) are interfaces that provide access to functionality while
also enforcing a security policy, so that even if a malicious program makes calls to the interface, certain security
properties will continue to hold. They are used, for example, by cryptographic devices such as smartcards and
Hardware Security Modules (HSMs) to manage keys and provide access to cryptographic functions whilst
keeping the keys secure. Like security protocols, their design is security critical and very difficult to get right.
Hence formal techniques have been adapted from security protocols to security APIs.

The most widely used standard for cryptographic APIs is RSA PKCS#11, ubiquitous in devices from
smartcards to HSMs. A 2003 paper highlighted possible flaws in PKCS#11 [62], results which were extended
by formal analysis work using a Dolev-Yao style model of the standard [63]. However at this point it was
not clear to what extent these flaws affected real commercial devices, since the standard is underspecified
and can be implemented in many different ways. The Tookan tool, developed by Steel in collaboration with
Bortolozzo, Centenaro and Focardi, was designed to address this problem. Tookan can reverse engineer the
particular configuration of PKCS#11 used by a device under test by sending a carefully designed series of
PKCS#11 commands and observing the return codes. These codes are used to instantiate a Dolev-Yao model
of the device’s API. This model can then be searched using a security protocol model checking tool to find
attacks. If an attack is found, Tookan converts the trace from the model checker into the sequence of PKCS#11
queries needed to make the attack and executes the commands directly on the device. Results obtained by
Tookan are remarkable: of 18 commercially available PKCS#11 devices tested, 10 were found to be susceptible
to at least one attack.

3.1.3. Verifying cryptographic applications using F*
Verifying the implementation of a protocol has traditionally been considered much harder than verifying its
model. This is mainly because implementations have to consider real-world details of the protocol, such as
message formats, that models typically ignore. This leads to a situation that a protocol may have been proved

http://proverif.inria.fr/proverif-users.html
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secure in theory, but its implementation may be buggy and insecure. However, with recent advances in both
program verification and symbolic protocol verification tools, it has become possible to verify fully functional
protocol implementations in the symbolic model. One approach is to extract a symbolic protocol model from
an implementation and then verify the model, say, using ProVerif. This approach has been quite successful,
yielding a verified implementation of TLS in F# [55]. However, the generated models are typically quite large
and whole-program symbolic verification does not scale very well.

An alternate approach is to develop a verification method directly for implementation code, using well-
known program verification techniques. Our current focus is on designing and implementing the programming
language F* [73], [49], in collaboration with Microsoft Research. F* (pronounced F star) is an ML-like
functional programming language aimed at program verification. Its type system includes polymorphism,
dependent types, monadic effects, refinement types, and a weakest precondition calculus. Together, these
features allow expressing precise and compact specifications for programs, including functional correctness
and security properties. The F* type-checker aims to prove that programs meet their specifications using a
combination of SMT solving and manual proofs. Programs written in F* can be translated to efficient OCaml,
F#, or C for execution [71]. The main ongoing use case of F* is building a verified, drop-in replacement for
the whole HTTPS stack in Project Everest [53] (a larger collaboration with Microsoft Research). This includes
a verified implementation of TLS 1.2 and 1.3 [54].

3.2. Computational verification of cryptographic applications
Proofs done by cryptographers in the computational model are mostly manual. Our goal is to provide computer
support to build or verify these proofs. In order to reach this goal, we have designed the automatic tool
CryptoVerif, which generates proofs by sequences of games. We already applied it to important protocols
such as TLS [52] and Signal [68] but more work is still needed in order to develop this approach, so that it
is easier to apply to more protocols. We also design and implement techniques for proving implementations
of protocols secure in the computational model. In particular, CryptoVerif can generate implementations from
CryptoVerif specifications that have been proved secure [61]. We plan to continue working on this approach.

A different approach is to directly verify cryptographic applications in the computational model by typing. A
recent work [66] shows how to use refinement typechecking in F7 to prove computational security for protocol
implementations. In this method, henceforth referred to as computational F7, typechecking is used as the main
step to justify a classic game-hopping proof of computational security. The correctness of this method is based
on a probabilistic semantics of F# programs and crucially relies on uses of type abstraction and parametricity
to establish strong security properties, such as indistinguishability.

In principle, the two approaches, typechecking and game-based proofs, are complementary. Understanding
how to combine these approaches remains an open and active topic of research.

An alternative to direct computation proofs is to identify the cryptographic assumptions under which symbolic
proofs, which are typically easier to derive automatically, can be mapped to computational proofs. This line
of research is sometimes called computational soundness and the extent of its applicability to real-world
cryptographic protocols is an active area of investigation.

3.3. F*: A Higher-Order Effectful Language for Program Verification
F* [73], [49] is a verification system for effectful programs developed collaboratively by Inria and Microsoft
Research. It puts together the automation of an SMT-backed deductive verification tool with the expressive
power of a proof assistant based on dependent types. After verification, F* programs can be extracted
to efficient OCaml, F#, or C code [71]. This enables verifying the functional correctness and security of
realistic applications. F*’s type system includes dependent types, monadic effects, refinement types, and a
weakest precondition calculus. Together, these features allow expressing precise and compact specifications
for programs, including functional correctness and security properties. The F* type-checker aims to prove
that programs meet their specifications using a combination of SMT solving and interactive proofs. The main
ongoing use case of F* is building a verified, drop-in replacement for the whole HTTPS stack in Project
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Everest. This includes verified implementations of TLS 1.2 and 1.3 [54] and of the underlying cryptographic
primitives [74].

3.4. Efficient Formally Secure Compilers to a Tagged Architecture
Severe low-level vulnerabilities abound in today’s computer systems, allowing cyber-attackers to remotely
gain full control. This happens in big part because our programming languages, compilers, and architectures
were designed in an era of scarce hardware resources and too often trade off security for efficiency. The
semantics of mainstream low-level languages like C is inherently insecure, and even for safer languages,
establishing security with respect to a high-level semantics does not guarantee the absence of low-level attacks.
Secure compilation using the coarse-grained protection mechanisms provided by mainstream hardware
architectures would be too inefficient for most practical scenarios.

We aim to leverage emerging hardware capabilities for fine-grained protection to build the first, efficient secure
compilation chains for realistic low-level programming languages (the C language, and Low* a safe subset
of C embedded in F* for verification [71]). These compilation chains will provide a secure semantics for all
programs and will ensure that high-level abstractions cannot be violated even when interacting with untrusted
low-level code. To achieve this level of security without sacrificing efficiency, our secure compilation chains
target a tagged architecture [50], which associates a metadata tag to each word and efficiently propagates and
checks tags according to software-defined rules. We hope to experimentally evaluate and carefully optimize the
efficiency of our secure compilation chains on realistic workloads and standard benchmark suites. We are also
using property-based testing and formal verification to provide high confidence that our compilation chains
are indeed secure. Formally, we are constructing machine-checked proofs of a new security criterion we call
robustly safe compilation, which is defined as the preservation of safety properties even against an adversarial
context [46], [47]. This strong criterion complements compiler correctness and ensures that no machine-code
attacker can do more harm to securely compiled components than a component already could with respect to
a secure source-level semantics.

3.5. Provably secure web applications
Web applications are fast becoming the dominant programming platform for new software, probably because
they offer a quick and easy way for developers to deploy and sell their apps to a large number of customers.
Third-party web-based apps for Facebook, Apple, and Google, already number in the hundreds of thousands
and are likely to grow in number. Many of these applications store and manage private user data, such as
health information, credit card data, and GPS locations. To protect this data, applications tend to use an ad
hoc combination of cryptographic primitives and protocols. Since designing cryptographic applications is
easy to get wrong even for experts, we believe this is an opportune moment to develop security libraries and
verification techniques to help web application programmers.

As a typical example, consider commercial password managers, such as LastPass, RoboForm, and 1Password.
They are implemented as browser-based web applications that, for a monthly fee, offer to store a user’s
passwords securely on the web and synchronize them across all of the user’s computers and smartphones. The
passwords are encrypted using a master password (known only to the user) and stored in the cloud. Hence,
no-one except the user should ever be able to read her passwords. When the user visits a web page that has
a login form, the password manager asks the user to decrypt her password for this website and automatically
fills in the login form. Hence, the user no longer has to remember passwords (except her master password) and
all her passwords are available on every computer she uses.

Password managers are available as browser extensions for mainstream browsers such as Firefox, Chrome,
and Internet Explorer, and as downloadable apps for Android and Apple phones. So, seen as a distributed
application, each password manager application consists of a web service (written in PHP or Java), some
number of browser extensions (written in JavaScript), and some smartphone apps (written in Java or Objective
C). Each of these components uses a different cryptographic library to encrypt and decrypt password data.
How do we verify the correctness of all these components?
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We propose three approaches. For client-side web applications and browser extensions written in JavaScript,
we propose to build a static and dynamic program analysis framework to verify security invariants. To this end,
we have developed two security-oriented type systems for JavaScript, Defensive JavaScript [64] [64] and TS*
[72], and used them to guarantee security properties for a number of JavaScript applications. For Android
smartphone apps and web services written in Java, we propose to develop annotated JML cryptography
libraries that can be used with static analysis tools like ESC/Java to verify the security of application code. For
clients and web services written in F# for the .NET platform, we propose to use F* to verify their correctness.
We also propose to translate verified F* web applications to JavaScript via a verified compiler that preserves
the semantics of F* programs in JavaScript.

3.6. Design and Verification of next-generation protocols: identity,
blockchains, and messaging
Building on our work on verifying and re-designing pre-existing protocols like TLS and Web Security in
general, with the resources provided by the NEXTLEAP project, we are working on both designing and
verifying new protocols in rapidly emerging areas like identity, blockchains, and secure messaging. These
are all areas where existing protocols, such as the heavily used OAuth protocol, are in need of considerable
re-design in order to maintain privacy and security properties. Other emerging areas, such as blockchains
and secure messaging, can have modifications to existing pre-standard proposals or even a complete ’clean
slate’ design. As shown by Prosecco’s work, newer standards, such as IETF OAuth, W3C Web Crypto, and
W3C Web Authentication API, can have vulnerabilities fixed before standardization is complete and heavily
deployed. We hope that the tools used by Prosecco can shape the design of new protocols even before they are
shipped to standards bodies. We have seen considerable progress in identity with the UnlimitID design and
with messaging via the IETF MLS effort, with new work on blockchain technology underway.

4. Application Domains
4.1. Cryptographic Protocol Libraries

Cryptographic protocols such as TLS, SSH, IPSec, and Kerberos are the trusted base on which the security of
modern distributed systems is built. Our work enables the analysis and verification of such protocols, both in
their design and implementation. Hence, for example, we build and verify models and reference implementa-
tions for well-known protocols such as TLS and SSH, as well as analyze their popular implementations such
as OpenSSL.

4.2. Hardware-based security APIs
Cryptographic devices such as Hardware Security Modules (HSMs) and smartcards are used to protect long-
terms secrets in tamper-proof hardware, so that even attackers who gain physical access to the device cannot
obtain its secrets. These devices are used in a variety of scenarios ranging from bank servers to transportation
cards (e.g. Navigo). Our work investigates the security of commercial cryptographic hardware and evaluates
the APIs they seek to implement.

4.3. Web application security
Web applications use a variety of cryptographic techniques to securely store and exchange sensitive data for
their users. For example, a website may serve pages over HTTPS, authenticate users with a single sign-on
protocol such as OAuth, encrypt user files on the server-side using XML encryption, and deploy client-side
cryptographic mechanisms using a JavaScript cryptographic library. The security of these applications depends
on the public key infrastructure (X.509 certificates), web browsers’ implementation of HTTPS and the same
origin policy (SOP), the semantics of JavaScript, HTML5, and their various associated security standards, as
well as the correctness of the specific web application code of interest. We build analysis tools to find bugs
in all these artifacts and verification tools that can analyze commercial web applications and evaluate their
security against sophisticated web-based attacks.



Project-Team PROSECCO 9

5. Highlights of the Year

5.1. Highlights of the Year
• We published 20 papers at top-tier conferences and journals such as POPL (5), ICFP (2), PLDI (1),

OOPSLA (1), ACM CCS (1), IEEE S&P (1), IEEE CSF (1), TOPLAS (1), and JCS (1).

• The HACL* verified cryptographic library developed in our group was integrated by Linux (Wire-
Guard) and Tezos, and more verified crypto primitives were integrated in Mozilla Firefox.

• We organized a Dagstuhl Seminar on Secure Compilation (18201)

• Catalin Hritcu served as Program Chair for the Workshop on Principles of Secure Compilation at
POPL’18

6. New Software and Platforms

6.1. Cryptosense Analyzer
SCIENTIFIC DESCRIPTION: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool
for cryptographic devices such as smartcards, security tokens and Hardware Security Modules that support the
most widely-used industry standard interface, RSA PKCS#11. Each device implements PKCS#11 in a slightly
different way since the standard is quite open, but finding a subset of the standard that results in a secure device,
i.e. one where cryptographic keys cannot be revealed in clear, is actually rather tricky. Cryptosense Analyzer
analyses a device by first reverse engineering the exact implementation of PKCS#11 in use, then building a
logical model of this implementation for a model checker, calling a model checker to search for attacks, and in
the case where an attack is found, executing it directly on the device. It has been used to find at least a dozen
previously unknown flaws in commercially available devices.
FUNCTIONAL DESCRIPTION: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool
for cryptographic devices such as smartcards,

• Participants: Graham Steel and Romain Bardou

• Contact: Graham Steel

• URL: https://cryptosense.com/

6.2. CryptoVerif
Cryptographic protocol verifier in the computational model
KEYWORDS: Security - Verification - Cryptographic protocol
FUNCTIONAL DESCRIPTION: CryptoVerif is an automatic protocol prover sound in the computational model.
In this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing machine.
CryptoVerif can prove secrecy and correspondences, which include in particular authentication. It provides
a generic mechanism for specifying the security assumptions on cryptographic primitives, which can handle
in particular symmetric encryption, message authentication codes, public-key encryption, signatures, hash
functions, and Diffie-Hellman key agreements. It also provides an explicit formula that gives the probability
of breaking the protocol as a function of the probability of breaking each primitives, this is the exact security
framework.
NEWS OF THE YEAR: Bruno Blanchet modified ProVerif and CryptoVerif to improve the compatibility
between these two tools (see the section on ProVerif). This feature is released in CryptoVerif 2.00.

https://cryptosense.com/
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Bruno Blanchet implemented several extensions of CryptoVerif, in particular: 1) reworked the model of
Diffie-Hellman key agreements, in particular to account for the absence of public key validation in popular
Diffie-Hellman groups like Curve25519, which is used in many modern protocols, 2) support for the proof of
indistinguishability between two games given by the user, 3) facilitate the interactive proofs. Program points,
used for instance to insert case distinctions, can now be designated as the line that matches a regular expression,
instead of using a number. This is much more stable in case the protocol model is slightly modified. Groups
of variables can be designated as all variables that match a regular expression. These features are not released
yet.

• Participants: Bruno Blanchet and David Cadé

• Contact: Bruno Blanchet

• Publications: Composition Theorems for CryptoVerif and Application to TLS 1.3 - Composition
Theorems for CryptoVerif and Application to TLS 1.3 - Proved Implementations of Cryptographic
Protocols in the Computational Model - Proved Generation of Implementations from Computation-
ally Secure Protocol Specifications - Verified Models and Reference Implementations for the TLS
1.3 Standard Candidate - Verified Models and Reference Implementations for the TLS 1.3 Stan-
dard Candidate - Symbolic and Computational Mechanized Verification of the ARINC823 Avionic
Protocols - Automated Verification for Secure Messaging Protocols and Their Implementations: A
Symbolic and Computational Approach

• URL: http://cryptoverif.inria.fr/

6.3. F*
FStar
KEYWORDS: Programming language - Software Verification
FUNCTIONAL DESCRIPTION: F* is a new higher order, effectful programming language (like ML) designed
with program verification in mind. Its type system is based on a core that resembles System Fw (hence
the name), but is extended with dependent types, refined monadic effects, refinement types, and higher
kinds. Together, these features allow expressing precise and compact specifications for programs, including
functional correctness properties. The F* type-checker aims to prove that programs meet their specifications
using an automated theorem prover (usually Z3) behind the scenes to discharge proof obligations. Programs
written in F* can be translated to OCaml, F#, or JavaScript for execution.

• Participants: Antoine Delignat-Lavaud, Catalin Hritcu, Cédric Fournet, Chantal Keller, Karthikeyan
Bhargavan and Pierre-Yves Strub

• Contact: Catalin Hritcu

• URL: https://www.fstar-lang.org/

6.4. miTLS
KEYWORDS: Cryptographic protocol - Software Verification
FUNCTIONAL DESCRIPTION: miTLS is a verified reference implementation of the TLS protocol. Our code
fully supports its wire formats, ciphersuites, sessions and connections, re-handshakes and resumptions, alerts
and errors, and data fragmentation, as prescribed in the RFCs, it interoperates with mainstream web browsers
and servers. At the same time, our code is carefully structured to enable its modular, automated verification,
from its main API down to computational assumptions on its cryptographic algorithms.

• Participants: Alfredo Pironti, Antoine Delignat-Lavaud, Cédric Fournet, Jean-Karim Zinzindohoué,
Karthikeyan Bhargavan, Pierre-Yves Strub and Santiago Zanella-Béguelin

• Contact: Karthikeyan Bhargavan

• URL: https://github.com/mitls/mitls-fstar

https://hal.inria.fr/hal-01947959
https://hal.inria.fr/hal-01764527
https://hal.inria.fr/hal-01764527
https://hal.inria.fr/tel-01112630
https://hal.inria.fr/tel-01112630
https://hal.inria.fr/hal-01102382
https://hal.inria.fr/hal-01102382
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01575923
http://cryptoverif.inria.fr/
https://www.fstar-lang.org/
https://github.com/mitls/mitls-fstar
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6.5. ProVerif
KEYWORDS: Security - Verification - Cryptographic protocol
FUNCTIONAL DESCRIPTION: ProVerif is an automatic security protocol verifier in the symbolic model (so
called Dolev-Yao model). In this model, cryptographic primitives are considered as black boxes. This protocol
verifier is based on an abstract representation of the protocol by Horn clauses. Its main features are:

It can verify various security properties (secrecy, authentication, process equivalences).

It can handle many different cryptographic primitives, specified as rewrite rules or as equations.

It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded message
space.
NEWS OF THE YEAR: Marc Sylvestre extended his interactive simulator of protocols modeled in ProVerif
to simulate the semantics of biprocesses, used to prove observational equivalence between two processes. He
also made minor improvements to this simulator and to the graphical display of attacks.

Bruno Blanchet modified ProVerif and CryptoVerif to improve the compatibility between these two tools.
It is now possible for simple examples to use the same input file with both tools, for instance to try to
find attacks in the symbolic model using ProVerif, and if no attack is found, then prove the protocol in the
computational model using CryptoVerif. For more complex examples, the differences between the files to
provide for each tool are considerably reduced. The cryptographic primitives are specified in distinct libraries,
one for ProVerif and one for CryptoVerif, because the assumptions on primitives are very different in the
symbolic and computational models. These features are released in ProVerif 2.00.

Vincent Cheval and Bruno Blanchet implemented several extensions of ProVerif: 1) support for integer
counters, with incrementation and inequality tests, 2) lemmas and axioms to give intermediate results to
ProVerif, which it exploits to help proving subsequent queries, by deriving additional information in the Horn
clauses that it uses to perform the proofs, 3) proofs by induction on the length of the trace, by giving as lemma
the property to prove, but obviously for strictly shorter traces. These features are not released yet.

• Participants: Bruno Blanchet, Marc Sylvestre and Vincent Cheval

• Contact: Bruno Blanchet

• Publications: Automated reasoning for equivalences in the applied pi calculus with barriers - Auto-
mated Reasoning for Equivalences in the Applied Pi Calculus with Barriers - Automated reasoning
for equivalences in the applied pi calculus with barriers - Modeling and Verifying Security Protocols
with the Applied Pi Calculus and ProVerif - Automatic Verification of Security Protocols in the Sym-
bolic Model: The Verifier ProVerif - Verified Models and Reference Implementations for the TLS
1.3 Standard Candidate - Verified Models and Reference Implementations for the TLS 1.3 Standard
Candidate - Automated Verification for Secure Messaging Protocols and Their Implementations: A
Symbolic and Computational Approach - Symbolic and Computational Mechanized Verification of
the ARINC823 Avionic Protocols - Symbolic and Computational Mechanized Verification of the
ARINC823 Avionic Protocols

• URL: http://proverif.inria.fr/

6.6. HACL*
High Assurance Cryptography Library
KEYWORDS: Cryptography - Software Verification
FUNCTIONAL DESCRIPTION: HACL* is a formally verified cryptographic library in F*, developed by the
Prosecco team at Inria Paris in collaboration with Microsoft Research, as part of Project Everest.

https://hal.inria.fr/hal-01947972
https://hal.inria.fr/hal-01423742
https://hal.inria.fr/hal-01423742
https://hal.inria.fr/hal-01306440
https://hal.inria.fr/hal-01306440
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01102136
https://hal.inria.fr/hal-01102136
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01527671
https://hal.inria.fr/hal-01527671
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575861
http://proverif.inria.fr/
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HACL stands for High-Assurance Cryptographic Library and its design is inspired by discussions at the
HACS series of workshops. The goal of this library is to develop verified C reference implementations for
popular cryptographic primitives and to verify them for memory safety, functional correctness, and secret
independence.

• Contact: Karthikeyan Bhargavan

• URL: https://github.com/mitls/hacl-star

7. New Results

7.1. Composition Theorems for CryptoVerif and Application to TLS 1.3
Participant: Bruno Blanchet.

We presented composition theorems for security protocols, to compose a key exchange protocol and a
symmetric-key protocol that uses the exchanged key. Our results rely on the computational model of cryp-
tography and are stated in the framework of the tool CryptoVerif. They support key exchange protocols that
guarantee injective or non-injective authentication. They also allow random oracles shared between the com-
posed protocols. To our knowledge, they are the first composition theorems for key exchange stated for a
computational protocol verification tool, and also the first to allow such flexibility.

As a case study, we applied our composition theorems to a proof of TLS 1.3 Draft-18. This work fills a gap in
our previous analysis of TLS 1.3 in CryptoVerif [52]. It appears in [31], [39].

7.2. Mechanised Cryptographic Proof of the WireGuard VPN Protocol
Participants: Benjamin Lipp, Bruno Blanchet, Karthikeyan Bhargavan.

WireGuard is a free and open source Virtual Private Network (VPN) that aims to replace IPsec and OpenVPN.
It is based on a new cryptographic protocol derived from the Noise Protocol Framework. We provide the first
mechanised cryptographic proof of the protocol underlying WireGuard, using the CryptoVerif proof assistant.

We analyse the entire WireGuard protocol as it is, including transport data messages, in an ACCE-style
model. We contribute proofs for correctness, message secrecy, forward secrecy, mutual authentication, session
uniqueness, and resistance against key compromise impersonation, identity mis-binding, and replay attacks.
We also discusse the strength of the identity hiding provided by WireGuard.

Our work also provides novel theoretical contributions that are reusable beyond WireGuard. First, we extend
CryptoVerif to account for the absence of public key validation in popular Diffie-Hellman groups like
Curve25519, which is used in many modern protocols including WireGuard. To our knowledge, this is the
first mechanised cryptographic proof for any protocol employing such a precise model. Second, we prove
several indifferentiability lemmas that are useful to simplify the proofs for sequences of key derivations. This
work is under submission.

7.3. Meta-F*: Proof automation with SMT, Tactics, and Metaprograms
Participants: Guido Martinez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis [Princeton University],
Chris Hawblitzel [Microsoft Research], Catalin Hritcu, Monal Narasimhamurthy [University of Colorado
Boulder], Zoe Paraskevopoulou [Princeton University], Clément Pit-Claudel [MIT], Jonathan Protzenko
[Microsoft Research], Tahina Ramananandro [Microsoft Research], Aseem Rastogi [Microsoft Research],
Nikhil Swamy [Microsoft Research].

We introduced Meta-F* [69], a tactics and metaprogramming framework for the F* program verifier. The
main novelty of Meta-F* is allowing to use tactics and metaprogramming to discharge assertions not solvable
by SMT, or to just simplify them into well-behaved SMT fragments. Plus, Meta-F* can be used to generate
verified code automatically.

https://github.com/mitls/hacl-star
https://www.wireguard.com/
http://noiseprotocol.org/
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Meta-F* is implemented as an F* effect, which, given the powerful effect system of F*, heavily increases
code reuse and even enables the lightweight verification of metaprograms. Metaprograms can be either
interpreted, or compiled to efficient native code that can be dynamically loaded into the F* type-checker
and can interoperate with interpreted code. Evaluation on realistic case studies shows that Meta-F* provides
substantial gains in proof development, efficiency, and robustness.

7.4. When Good Components Go Bad: Formally Secure Compilation Despite
Dynamic Compromise
Participants: Carmine Abate, Arthur Azevedo de Amorim [CMU], Roberto Blanco, Ana Nora Evans
[University of Virginia], Guglielmo Fachini [Nozomi Networks], Catalin Hritcu, Théo Laurent, Benjamin
C. Pierce [University of Pennsylvania], Marco Stronati [Nomadic Labs], Andrew Tolmach [Portland State
University].

We proposed a new formal criterion [47] for evaluating secure compilation schemes for unsafe languages,
expressing end-to-end security guarantees for software components that may become compromised after
encountering undefined behavior—for example, by accessing an array out of bounds.

Our criterion is the first to model dynamic compromise in a system of mutually distrustful components with
clearly specified privileges. It articulates how each component should be protected from all the others—in
particular, from components that have encountered undefined behavior and become compromised. Each
component receives secure compilation guarantees—in particular, its internal invariants are protected from
compromised components—up to the point when this component itself becomes compromised, after which we
assume an attacker can take complete control and use this component’s privileges to attack other components.
More precisely, a secure compilation chain must ensure that a dynamically compromised component cannot
break the safety properties of the system at the target level any more than an arbitrary attacker-controlled
component (with the same interface and privileges, but without undefined behaviors) already could at the
source level.

To illustrate the model, we construct a secure compilation chain for a small unsafe language with buffers,
procedures, and components, targeting a simple abstract machine with built-in compartmentalization. We give
a careful proof (mostly machine-checked in Coq) that this compiler satisfies our secure compilation criterion.
Finally, we show that the protection guarantees offered by the compartmentalized abstract machine can be
achieved at the machine-code level using either software fault isolation or a tag-based reference monitor.

7.5. The Meaning of Memory Safety
Participants: Arthur Azevedo de Amorim [CMU], Catalin Hritcu, Benjamin C. Pierce [University of Penn-
sylvania].

We give a rigorous characterization of what it means for a programming language to be memory safe [51],
capturing the intuition that memory safety supports local reasoning about state. We formalize this principle in
two ways. First, we show how a small memory-safe language validates a noninterference property: a program
can neither affect nor be affected by unreachable parts of the state. Second, we extend separation logic, a proof
system for heap-manipulating programs, with a memory-safe variant of its frame rule. The new rule is stronger
because it applies even when parts of the program are buggy or malicious, but also weaker because it demands
a stricter form of separation between parts of the program state. We also consider a number of pragmatically
motivated variations on memory safety and the reasoning principles they support. As an application of our
characterization, we evaluate the security of a previously proposed dynamic monitor for memory safety of
heap-allocated data.

7.6. Recalling a Witness: Foundations and Applications of Monotonic State
Participants: Danel Ahman, Cédric Fournet [Microsoft Research], Catalin Hritcu, Kenji Maillard, Aseem
Rastogi [Microsoft Research], Nikhil Swamy [Microsoft Research].
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We provide a way to ease the verification of programs whose state evolves monotonically [48]. The main idea
is that a property witnessed in a prior state can be soundly recalled in the current state, provided (1) state
evolves according to a given preorder, and (2) the property is preserved by this preorder. In many scenarios,
such monotonic reasoning yields concise modular proofs, saving the need for explicit program invariants. We
distill our approach into the monotonic-state monad, a general yet compact interface for Hoare-style reasoning
about monotonic state in a dependently typed language. We prove the soundness of the monotonic-state monad
and use it as a unified foundation for reasoning about monotonic state in the F* verification system. Based on
this foundation, we build libraries for various mutable data structures like monotonic references and apply
these libraries at scale to the verification of several distributed applications.

7.7. A Monadic Framework for Relational Verification: Applied to
Information Security, Program Equivalence, and Optimizations
Participants: Niklas Grimm [Vienna University of Technology], Kenji Maillard, Cédric Fournet [Microsoft
Research], Catalin Hritcu, Matteo Maffei [Vienna University of Technology], Jonathan Protzenko [Microsoft
Research], Tahina Ramananandro [Microsoft Research], Aseem Rastogi [Microsoft Research], Nikhil Swamy
[Microsoft Research], Santiago Zanella-Béguelin [Microsoft Research].

Relational properties describe multiple runs of one or more programs. They characterize many useful notions
of security, program refinement, and equivalence for programs with diverse computational effects, and they
have received much attention in the recent literature. Rather than developing separate tools for special
classes of effects and relational properties, we advocate using a general purpose proof assistant as a unifying
framework for the relational verification of effectful programs. The essence of our approach is to model
effectful computations using monads and to prove relational properties on their monadic representations,
making the most of existing support for reasoning about pure programs [67].

We apply this method in F* and evaluate it by encoding a variety of relational program analyses, including
information flow control, program equivalence and refinement at higher order, correctness of program
optimizations and game-based cryptographic security. By relying on SMT-based automation, unary weakest
preconditions, user-defined effects, and monadic reification, we show that, compared to unary properties,
verifying relational properties requires little additional effort from the F* programmer.

7.8. A Formal Treatment of Accountable Proxying over TLS
Participants: Karthikeyan Bhargavan, Ioana Boureanu [University of Surrey], Antoine Delignat-Lavaud
[Microsoft Research], Pierre-Alain Fouque [University of Rennes], Cristina Onete [University of Limoges].

Much of Internet traffic nowadays passes through active proxies, whose role is to inspect, filter, cache, or
transform data exchanged between two endpoints. To perform their tasks, such proxies modify channel-
securing protocols, like TLS, resulting in serious vulnerabilities. Such problems are exacerbated by the fact
that middleboxes are often invisible to one or both endpoints, leading to a lack of accountability. A recent
protocol, called mcTLS, pioneered accountability for proxies, which are authorized by the endpoints and
given limited read/write permissions to application traffic.

Unfortunately, we show that mcTLS is insecure: the protocol modifies the TLS protocol, exposing it to a new
class of middlebox-confusion attacks. Such attacks went unnoticed mainly because mcTLS lacked a formal
analysis and security proofs. Hence, our second contribution is to formalize the goal of accountable proxying
over secure channels. Third, we propose a provably-secure alternative to soon-to-be-standardized mcTLS: a
generic and modular protocol-design that carefully composes generic secure channel-establishment protocols,
which we prove secure. Finally, we present a proof-of-concept implementation of our design, instantiated with
unmodified TLS 1.3 draft 23, and evaluate its overheads [29].

7.9. hacspec: towards verifiable crypto standards
Participants: Karthikeyan Bhargavan, Franziskus Kiefer [Mozilla], Pierre-Yves Strub [Ecole Polytechnique].
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We designed and published hacspec, a formal specification language for cryptographic primitives. Specifi-
cations (specs) written in hacspec are succinct, easy to read and implement, and lend themselves to formal
verification using a variety of existing tools. The syntax of hacspec is similar to the pseudocode used in cryp-
tographic standards but is equipped with a static type system and syntax checking tools that can find errors.
Specs written in hacspec are executable and can hence be tested against test vectors taken from standards and
specified in a common format. Finally, hacspec is designed to be compilable to other formal specification lan-
guages like F*, EasyCrypt, Coq, and cryptol, so that it can be used as the basis for formal proofs of functional
correctness and cryptographic security using various verification frameworks.

We published a paper presenting the syntax, design, and tool architecture of hacspec. We demonstrated the
use of the language to specify popular cryptographic algorithms, and developed preliminary compilers from
hacspec to F* and to EasyCrypt. Our eventual goal is to invite authors of cryptographic standards to write their
pseudocode in hacspec and to help the formal verification community develop the language and tools that
are needed to promote high-assurance cryptographic sofware backed by mathematical proofs. All our code is
released publicly on GitHub.

7.10. Largest-scale user study of secure messaging and API usage
Participants: Francesca Musiani [CNRS], Ksenia Ermoshina [CNRS], Harry Halpin, Iness Ben Guirat
[INSAT].

As part of the NEXTLEAP EC project, we engaged in the largest ever user study of secure messaging
applications, focusing on typical users as well as “high-risk” users in the Middle East and Ukraine, as well as
developers.[41]. This work has been shared with standardization efforts such as the IETF Message Layer
Security (MLS) effort in which Inria is participating, as well as W3C standardization of the W3C Web
Authentication API. This work helped influence the formal verification of the privacy properties of hardware-
based cryptographic authentication, which is a feature needed by many at risk users whose accounts are often
the focus of hacks. This work has also led a fundamental inquiry into the social governance of standards and
the role of formal verification in the future of standards.[42] As this work is highly interdisciplinary, it has
featured collaboration with sociologists at CNRS and interns from INSAT in Tunisia, as well as a lecture
series hosted at Centre Pompidou under the direction of Bernard Stiegler and Harry Halpin.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR
8.1.1.1. AnaStaSec

Title: Static Analysis for Security Properties (ANR générique 2014.)
Other partners: Inria Paris/EPI Antique, Inria Rennes/EPI Celtique, Airbus Operations SAS,
AMOSSYS, CEA-LIST, TrustInSoft
Duration: January 2015 - September 2019.
Coordinator: Jérôme Féret, EPI Antique, Inria Paris (France)
Participant: Bruno Blanchet
Abstract: The project aims at using automated static analysis techniques for verifying security and
confidentiality properties of critical avionics software.

8.1.1.2. AJACS
Title: AJACS: Analyses of JavaScript Applications: Certification and Security
Other partners: Inria-Rennes/Celtique, Inria-Saclay/Toccata, Inria-Sophia Antipolis/INDES, Impe-
rial College London
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Duration: October 2014 - March 2019.

Coordinator: Alan Schmitt, Inria (France)

Participants: Karthikeyan Bhargavan, Bruno Blanchet, Nadim Kobeissi

Abstract: The goal of the AJACS project is to provide strong security and privacy guarantees for web
application scripts. To this end, we propose to define a mechanized semantics of the full JavaScript
language, the most widely used language for the Web, to develop and prove correct analyses for
JavaScript programs, and to design and certify security and privacy enforcement mechanisms.

8.1.1.3. SafeTLS

Title: SafeTLS: La sécurisation de l’Internet du futur avec TLS 1.

Other partners: Université Rennes 1, IRMAR, Inria Sophia Antipolis, SGDSN/ANSSI

Duration: October 2016 - September 2020

Coordinator: Pierre-Alain Fouque, Université de Rennes 1 (France)

Participants: Karthikeyan Bhargavan

Abstract: Our project, SafeTLS, addresses the security of both TLS 1.3 and of TLS 1.2 as they are
(expected to be) used, in three important ways: (1) A better understanding: We will provide a better
understanding of how TLS 1.2 and 1.3 are used in real-world applications; (2) Empowering clients:
By developing a tool that will show clients the quality of their TLS connection and inform them of
potential security and privacy risks; (3) Analyzing implementations: We will analyze the soundness
of current TLS 1.2 implementations and use automated verification to provide a backbone of a secure
TLS 1.3 implementation.

8.1.1.4. TECAP

Title: TECAP: Protocol Analysis - Combining Existing Tools (ANR générique 2017.)

Other partners: Inria Nancy/EPI PESTO, Inria Sophia Antipolis/EPI MARELLE, IRISA, LIX, LSV
- ENS Cachan.

Duration: January 2018 - December 20

Coordinator: Vincent Cheval, EPI PESTO, Inria Nancy (France)

Participants: Bruno Blanchet, Benjamin Lipp

Abstract: A large variety of automated verification tools have been developed to prove or find attacks
on security protocols. These tools differ in their scope, degree of automation, and attacker models.
The aim of this project is to get the best of all these tools, meaning, on the one hand, to improve
the theory and implementations of each individual tool towards the strengths of the others and, on
the other hand, build bridges that allow the cooperations of the methods/tools. We will focus in this
project on the tools CryptoVerif, EasyCrypt, Scary, ProVerif, Tamarin, AKiSs and APTE.

8.2. European Initiatives
8.2.1. FP7 & H2020 Projects
8.2.1.1. ERC Consolidator Grant: CIRCUS

Title: CIRCUS: An end-to-end verification architecture for building Certified Implementations of
Robust, Cryptographically Secure web applications

Duration: April 2016 - March 2021

Coordinator: Karthikeyan Bhargavan, Inria
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The security of modern web applications depends on a variety of critical components including
cryptographic libraries, Transport Layer Security (TLS), browser security mechanisms, and single
sign-on protocols. Although these components are widely used, their security guarantees remain
poorly understood, leading to subtle bugs and frequent attacks. Rather than fixing one attack at a
time, we advocate the use of formal security verification to identify and eliminate entire classes of
vulnerabilities in one go.

CIRCUS proposes to take on this challenge, by verifying the end-to-end security of web applications
running in mainstream software. The key idea is to identify the core security components of web
browsers and servers and replace them by rigorously verified components that offer the same
functionality but with robust security guarantees.

8.2.1.2. ERC Starting Grant: SECOMP
Title: SECOMP: Efficient Formally Secure Compilers to a Tagged Architecture
Duration: Jan 2017 - December 2021
Coordinator: Catalin Hritcu, Inria
Abstract: The SECOMP project is aimed at leveraging emerging hardware capabilities for fine-
grained protection to build the first, efficient secure compilation chains for realistic low-level
programming languages (the C language, and Low* a safe subset of C embedded in F* for
verification). These compilation chains will provide a secure semantics for all programs and will
ensure that high-level abstractions cannot be violated even when interacting with untrusted low-level
code. To achieve this level of security without sacrificing efficiency, our secure compilation chains
target a tagged architecture, which associates a metadata tag to each word and efficiently propagates
and checks tags according to software-defined rules. We will use property-based testing and formal
verification to provide high confidence that our compilers are indeed secure.

8.2.1.3. NEXTLEAP
Title: NEXTLEAP: NEXT generation Legal Encryption And Privacy
Programm: H2020
Duration: January 2016 - December 2018
Coordinator: Harry Halpin, Inria
Other partners: IMDEA, University College London, CNRS, IRI, and Merlinux
Abstract: NEXTLEAP aims to create, validate, and deploy protocols that can serve as pillars for a
secure, trust-worthy, and privacy-respecting Internet. For this purpose NEXTLEAP will develop an
interdisciplinary study of decentralisation that provides the basis on which these protocols cann
be designed, working with sociologists to understand user needs. The modular specification of
decentralized protocols, implemented as verified open-source software modules, will be done for
both privacy-preserving secure federated identity as well as decentralized secure messaging services
that hide metadata (e.g., who, when, how often, etc.).

8.3. International Initiatives
8.3.1. Inria International Partners
8.3.1.1. Informal International Partners

We have a range of long- and short-term collaborations with various universities and research labs. We
summarize them by project:

• TLS analysis: Microsoft Research (Cambridge), Mozilla, University of Rennes
• F*: Microsoft Research (Redmond, Cambridge, Bangalore), MSR-Inria, CMU, MIT, University of

Ljubljana, Nomadic Labs, Zen Protocol, Princeton University
• SECOMP: MPI-SWS, CISPA, Stanford University, CMU, University of Pennsylvania, Portland

State University, University of Virginia, University of Iai
• Micro-Policies: University of Pennsylvania, Portland State University, MIT, Draper Labs, Dover

Microsystems
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8.3.2. Participation in Other International Programs
8.3.2.1. SSITH/HOPE

Title: Advanced New Hardware Optimized for Policy Enforcement, A New HOPE

Program: DARPA SSITH

Duration: December 2017 - February 2021

Coordinator: Charles Stark Draper Laboratory

Other Participants: Inria Paris, University of Pennsylvania, MIT, Portland State University, Dover
Microsystems, DornerWorks

Participants from Inria Prosecco: Catalin Hritcu, Roberto Blanco, Jérémy Thibault

Abstract: A New HOPE builds on results from the Inherently Secure Processor (ISP) project that has
been internally funded at Draper. Recent architectural improvements decouple the tagged architec-
ture from the processor pipeline to improve performance and flexibility for new processors. HOPE
securely maintains metadata for each word in application memory and checks every instruction
against a set of installed security policies. The HOPE security architecture exposes tunable param-
eters that support Performance, Power, Area, Software compatibility and Security (PPASS) search
space exploration. Flexible software-defined security policies cover all 7 SSITH CWE vulnerability
classes, and policies can be tuned to meet PPASS requirements; for example, one can trade granular-
ity of security checks against performance using different policy configurations. HOPE will design
and formalize a new high-level domain-specific language (DSL) for defining security policies, based
on previous research and on extensive experience with previous policy languages. HOPE will for-
mally verify that installed security policies satisfy system-wide security requirements. A secure boot
process enables policies to be securely updated on deployed HOPE systems. Security policies can
adapt based on previously detected attacks. Over the multi-year, multi-million dollar Draper ISP
project, the tagged security architecture approach has evolved from early prototypes based on results
from the DARPA CRASH program towards easier integration with external designs, and is better
able to scale from micro to server class implementations. A New HOPE team is led by Draper and
includes faculty from University of Pennsylvania (Penn), Portland State University (PSU), Inria, and
MIT, as well as industry collaborators from DornerWorks and Dover Microsystems. In addition to
Draper’s in-house expertise in hardware design, cyber-security (defensive and offensive, hardware
and software) and formal methods, the HOPE team includes experts from all domains relevant to
SSITH, including (a) computer architecture: DeHon (Penn), Shrobe (MIT); (b) formal methods in-
cluding programming languages and security: Pierce (Penn), Tolmach (PSU), Hritcu (Inria); and (c)
operating system integration (DornerWorks). Dover Microsystems is a spin-out from Draper that
will commercialize concepts from the Draper ISP project.

8.3.2.2. Everest Expedition

Program: Microsoft Expedition and MSR-Inria Collaborative Research Project

Expedition Participants: Microsoft Research (Cambridge, Redmond, Bangalore), Inria, MSR-Inria,
CMU, University of Edinburgh

Duration of current MSR-Inria Project: October 2017 – October 2020

Participants from Inria Prosecco: Karthikeyan Bhargavan, Catalin Hritcu, Danel Ahman, Benjamin
Beurdouche, Victor Dumitrescu, Nadim Kobeissi, Théo Laurent, Guido Martínez, Denis Merigoux,
Marina Polubelova, Jean-Karim Zinzindohoué

Participants from other Inria teams: David Pichardie (Celtique), Jean-Pierre Talpin (TEA)

Abstract: The HTTPS ecosystem (HTTPS and TLS protocols, X.509 public key infrastructure,
crypto algorithms) is the foundation on which Internet security is built. Unfortunately, this ecosystem
is brittle, with headline-grabbing attacks such as FREAK and LogJam and emergency patches many
times a year.
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Project Everest addresses this problem by constructing a high-performance, standards-compliant,
formally verified implementation of components in HTTPS ecosystem, including TLS, the main
protocol at the heart of HTTPS, as well as the main underlying cryptographic algorithms such as
AES, SHA2 or X25519.

At the TLS level, for instance, we are developing new implementations of existing and forthcoming
protocol standards and formally proving, by reduction to cryptographic assumptions on their core
algorithms, that our implementations provide a secure-channel abstraction between the communi-
cating endpoints. Implementations of the core algorithms themselves are also verified, producing
performant portable C code or highly optimized assembly language.

We aim for our verified components to be drop-in replacements suitable for use in mainstream web
browsers, servers, and other popular tools and are actively working with the community at large to
improve the ecosystem.

https://project-everest.github.io

8.4. International Research Visitors
8.4.1. Visits of International Scientists

• Amal Ahmed (Northeastern University, USA) joined Inria as a Visiting Professor from September
2017 to July 2018; she gave a seminar on “Compositional Compiler Verification for a Multi-
Language World”.

• Aaron Weiss (Northeastern University, USA) joined Inria as a Visiting Scientist from September
2017 to July 2018; he gave a seminar on “Rust Distilled: An Expressive Tower of Languages”

• Justin Hsu (University of Wisconsin–Madison, USA) visited Prosecco on 26 January 2018 and gave
a talk entitled “From Couplings to Probabilistic Relational Program Logics”

• Deepak Garg (MPI-SWS, Germany) visited Prosecco on 21 February and 6 December 2018

• Marco Patrignani (CISPA, Germany) visited Prosecco on 21 February 2018

• Arthur Azevedo de Amorim (CMU) visited Prosecco on 10–13 April 2018 and gave a seminar on
“The Meaning of Memory Safety”

• Prasad Naldurg (IBM Research, India) joined Prosecco as a Visiting Researcher from May 2018; he
gave a Prosecco seminar on “Encrypted Analytics: Computing directly on encrypted databases”

• Vincent Gramoli (NICTA/Data61-CSIRO and University of Sydney, Australia) visited Prosecco on
27 June 2018 and gave a seminar on “The Red Belly Blockchain: Speed, Security, Scalability”

• Éric Tanter (University of Chile) joined Prosecco as Visiting Professor from July 2018 to February
2019; he gave a Prosecco seminar on “Gradual Parametricity, Revisited” and many other talks

• Andrew Tolmach (Portland State University, USA) visited Prosecco on 2–4 July 2018

• Ilya Sergey (University College London, UK) visited Prosecco on 5 September 2018 and gave a
seminar on “Deductive Synthesis of Programs that Alter Data Structures”

• Jonathan Aldrich (CMU, USA) visited Prosecco on 22–26 November 2018 and gave a seminar on
“Object Capabilities, Effects, and Abstraction”

• tefan Ciobâcă (University of Iai, Romania) visited Prosecco on 3–7 December 2018

• Amin Timany (KU Leuven, Belgium) visited Prosecco on 3–7 December 2018

• Cédric Fournet (Microsoft Research, UK) has visited Prosecco on various occasions

• Jonathan Protzenko (Microsoft Research, USA) has visited Prosecco on various occasions

8.4.1.1. Internships

• Benjamin Lipp (Karlsruhe Institute of Technology, Germany): from Dec 2017 to May 2018 – advised
by Bruno Blanchet and Karthik Bhargavan

https://project-everest.github.io


20 Activity Report INRIA 2018

• Carmine Abate (University of Trento, Italy): from Dec 2017 to May 2018 – advised by Catalin
Hritcu

• Jérémy Thibault (ENS Rennes, France): from Feb to Jul 2018 – advised by Catalin Hritcu
• Florian Groult (University of Orleans, France): from Apr to Oct 2018 – advised by Catalin Hritcu
• Guido Martinez (CIFASIS-CONICET Rosario, Argentina): from Sep to December 2018 – advised

by Catalin Hritcu
• Elizabeth Labrada Deniz (University of Chile): from Oct 2018 to January 2019 – advised by Éric

Tanter and Catalin Hritcu
• Iness Ben Guirat (INSAT): from August 2018 to January 2019 – advised by Harry Halpin

8.4.2. Visits to International Teams
• Catalin Hritcu, Danel Ahman, and Victor Dumitrescu visited Microsoft Research (Redmond, USA)

on 5–25 March 2018
• Catalin Hritcu, Carmine Abate, and Jérémy Thibault visited the MPI-SWS (Saarbrücken, Germany)

on 27–28 March 2018
• Catalin Hritcu visited Draper Labs (Cambridge, MA, USA) on 30 May 2018
• Karthikeyan Bhargavan, Catalin Hritcu, Danel Ahman, Benjamin Beurdouche, Victor Dumitrescu,

Guido Martínez, Denis Merigoux, and Marina Polubelova visited Microsoft Research (Cambridge,
UK) for Everest “All-Hands” meeting

• Harry Halpin visited the NEXTLEAP team meeting (Lausanne, Switzerland) on 15–17th of January.
• Harry Halpin visited the NEXTLEAP team meeting (Freibourg, Germany) on 21–22nd of Novem-

ber.
• Harry Halpin visited the final PANORAMIX team meeting (Athens, Greece) on 24–25th of Septem-

ber.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific Events Organisation
9.1.1.1. General Chair, Scientific Chair

• Catalin Hritcu and Amal Ahmed co-organized a Dagstuhl Seminar on Secure Compilation (18201)
• Harry Halpin and Bart Preneel co-organized the ECRYPT-CSA workshop on Crypto Policies (22-23

January 2018) in Brussels, Belgium.

9.1.1.2. Member of the Organizing Committees
• Catalin Hritcu and Amal Ahmed were organizers for PriSC 2018 and the upcoming PriSC 2019

9.1.2. Scientific Events Selection
9.1.2.1. Chair of Conference Program Committees

• Catalin Hritcu was the PC chair for the 2nd Workshop on Principles of Secure Compilation (PriSC)
at POPL 2018

• Harry Halpin was General Chair of the 1st Workshop on the Decentralization of Governance at
INSCI 2018

9.1.2.2. Member of the Conference Program Committees
• Bruno Blanchet was PC member of RESSI 2018 (Rendez-vous de la Recherche et de l’Enseignement

de la Sécurité des Systèmes d’Information).
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• Catalin Hritcu was PC member of EuroS&P 2018, ESOP 2018, and CCS 2018

• Karthikeyan Bhargavan was PC member of IEEE S&P 2018, ACM CCS 2018, and POST 2018

• Harry Halpin was PC Member of SSR 2018, ACM WWW 2018, and ISWC 2018.

9.1.2.3. Reviewer

• Catalin Hritcu served as a reviewer for the Journal of Automated Reasoning (JAR)

9.1.3. Journal
9.1.3.1. Member of the Editorial Boards

Associate Editor

– of the International Journal of Applied Cryptography (IJACT) – Inderscience Publishers:
Bruno Blanchet

9.1.4. Invited Talks
• Catalin Hritcu gave an Invited Keynote talk at the Working Formal Methods Symposium (FROM)

in June 2018

• Catalin Hritcu gave invited talks at Nomadic Labs (Tezos), IRIF Verification Seminar (Paris 7), and
SoSySec seminar (IRISA Rennes)

• Karthikeyan Bhargavan gave invited talks at Security Standardization Research (SSR 2018), Formal
Methods and Tools for Security (FMATS 2018), Crypto Welcomes TLS 1.3 (CWTLS), and the
annual GDR Securité meeting.

• Harry Halpin gave invited talks at the EPFL Summer Research Institute in July 2018, the Web 3.0
Summit in October 2018, and Binance Labs in December 2018.

9.1.5. Leadership within the Scientific Community
• Catalin Hritcu served as the Artifact Evaluation Co-Chair for POPL 2018 and POPL 2019

9.1.6. Scientific Expertise
• Bruno Blanchet is a member of the specialized temporary scientific committee of ANSM (Agence

nationale de sécurité du médicament et des produits de santé), on the cybersecurity of software
medical devices.

• Bruno Blanchet participated to a review of the code of the Tezos blockchain by the Inria Foundation
(March–May 2018).

• Harry Halpin participated as a member of the advisory board to the PANORAMIX EC H2020 project
(2018).

9.1.7. Research Administration
• Bruno Blanchet was co-president of the Inria hiring committee for PhD, post-docs, and délégations

(Commision des Emplois Scientifiques, CES).

• Bruno Blanchet was representative of Inria Paris at the DIM RFSI (Domaine d’Intérêt Majeur,
Réseau Francilien en Sciences Informatiques).

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

• Master: Bruno Blanchet, Cryptographic protocols: formal and computational proofs, 18h equivalent
TD, master M2 MPRI, université Paris VII, France

• Master: Karthikeyan Bhargavan, Cryptographic protocols: formal and computational proofs, 18h
equivalent TD, master M2 MPRI, université Paris VII, France



22 Activity Report INRIA 2018

• Master: Karthikeyan Bhargavan, Network Protocol Safety and Security, 18h equivalent TD, ACN
master, Telecom ParisTech

• PhD: Formally Secure Compartmentalizing Compilation course at International School on Founda-
tions of Security Analysis and Design (FOSAD), 27-28 August, 2018, Bertinoro, Italy

• PhD: Program Verification with F* course at EPIT 2018 Software Verification Spring School, 7-11
May, 2018, Aussois, France

• PhD: Attacks and Automated Tools, BIU winter school on cryptography, 11-15 February, 2018, Tel
Aviv, Israel

• PhD: Crypto standards for the Internet and Web. ECRYPT-CSA School on Societal Aspects of
Cryptology and on Business and Innovation in Crypto. 7-9 January. Zurich, Switzerland.

• PhD: Mix networking, ECRYPT Summer School, ECRYPT-NET School on Integrating Advanced
Cryptography with Applications, 16-21 September 2018, Kos, Greece.

9.2.2. Supervision
• PhD: Jean Karim Zinzindohoue, Secure, Fast and Verified Cryptographic Applications: A Scalable

Approach [13], ENS Paris, defended on July 3, 2018, supervised by Karthikeyan Bhargavan.

• PhD: Nadim Kobeissi, Formal Verification for Real-World Cryptographic Protocols and
Implementations [12], ENS Paris, defended on December 10, 2018, supervised by Karthikeyan
Bhargavan and Bruno Blanchet.

• PhD in progress: Benjamin Beurdouche, on verified cryptographic protocol implementations, ENS
Paris, since October 2016, supervised by Karthikeyan Bhargavan.

• PhD in progress: Marina Polubelova, on verified post-quantum cryptography, PSL Paris, since
October 2017, supervised by Karthikeyan Bhargavan.

• PhD in progress: Natalia Kulatova, on verified secure hardware APIs, PSL Paris, since October 2017,
supervised by Karthikeyan Bhargavan.

• PhD in progress: Denis Merigoux, on verified RUST applications, PSL Paris, since November 2017,
supervised by Karthikeyan Bhargavan.

• PhD in progress: Benjamin Lipp, On Mechanised Cryptographic Proofs of Protocols and their Link
with Verified Implementations, ENS Paris, since October 2018, supervised by Bruno Blanchet and
Karthikeyan Bhargavan.

• PhD in progress: Kenji Maillard, on Semantic Foundations for F*, started January 2017, supervised
by Catalin Hritcu and Karthikeyan Bhargavan

• PhD in progress: Carmine Abate, The Formal Foundations of Secure Compilation, since June 2018,
advised by Catalin Hritcu and Bruno Blanchet

• PhD in progress: Jérémy Thibault, Secure Compartmentalizing Compilation to a Tagged Architec-
ture, from August 2018, advised by Catalin Hritcu and Bruno Blanchet

• PhD in progress: Guido Martínez (CIFASIS-CONICET Rosario), Metatheory for Semi-Automatic
Verification of Effectful Programs, from April 2017, advised by Mauro Jaskelioff (CIFASIS-
CONICET Rosario) and Catalin Hritcu

9.2.3. Juries
• Karthikeyan Bhargavan participated in the PhD jury of Daniel Fett at University of Stuttgart.

• Harry Halpin participated in the PhD jury of Joseph Raad at University Paris-Saclay.

9.3. Popularization
9.3.1. Internal or external Inria responsibilities
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• Bruno Blanchet was co-president of the Inria hiring committee for PhD, post-docs, and délégations
(Commision des Emplois Scientifiques, CES).

• Bruno Blanchet was representative of Inria Paris at the DIM RFSI (Domaine d’Intérêt Majeur,
Réseau Francilien en Sciences Informatiques).

9.3.2. Interventions
• Karthikeyan Bhargavan was a panelist at the Cloudflare Internet Summit in London, June 14, 2018.
• Harry Halpin was a panelist at the World Digital Asset Summit in San Fransisco, USA, December

10, 2018.
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