
Activity Report 2018

Project-Team SPECFUN

Symbolic Special Functions : Fast and
Certified

RESEARCH CENTER
Saclay - Île-de-France

THEME
Algorithmics, Computer Algebra and
Cryptology





Table of contents

1. Team, Visitors, External Collaborators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Overall Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1. Scientific challenges, expected impact 1
2.1.1. Use computer algebra but convince users beyond reasonable doubt 3
2.1.2. Make computer algebra and formal proofs help one another 3
2.1.3. Experimental mathematics with special functions 4

2.2. Research axes 4
2.2.1. Computer algebra certified by the Coq system 4

2.2.1.1. Libraries of formalized mathematics 4
2.2.1.2. Manipulation of large algebraic data in a proof assistant 4
2.2.1.3. Formal-proof-producing normalization algorithms 5

2.2.2. Better symbolic computations with special functions 5
2.2.2.1. Special-function integration and summation 5
2.2.2.2. Applications to experimental mathematics 5

2.2.3. Interactive and certified mathematical web sites 6
3. Research Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1. Studying special functions by computer algebra 6
3.1.1. Equations as a data structure 6
3.1.2. Algorithms combining functions 7
3.1.3. Solving functional equations 7
3.1.4. Multi-precision numerical evaluation 7
3.1.5. Guessing heuristics 7
3.1.6. Complexity-driven design of algorithms 7

3.2. Trusted computer-algebra calculations 8
3.2.1. Encyclopedias 8
3.2.2. Computer algebra and symbolic logic 8
3.2.3. Certifying systems for computer algebra 8
3.2.4. Semantics for computer algebra 8
3.2.5. Formal proofs for symbolic components of computer-algebra systems 8
3.2.6. Formal proofs for numerical components of computer-algebra systems 8

3.3. Machine-checked proofs of formalized mathematics 9
3.3.1. Logical foundations and proof assistants 9
3.3.2. Computations in formal proofs 9
3.3.3. Large-scale computations for proofs inside the Coq system 9
3.3.4. Relevant contributions from the Mathematical Component libraries 10
3.3.5. User interaction with the proof assistant 10

4. Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
5. Highlights of the Year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
6. New Software and Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.1. DynaMoW 11
6.2. ECS 11
6.3. DDMF 11
6.4. Mgfun 11
6.5. Ssreflect 12
6.6. Math-Components 12

7. New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.1. Computing solutions of linear Mahler equations 12
7.2. Becker’s conjecture on Mahler functions 13



2 Activity Report INRIA 2018

7.3. Generalized Hermite reduction, creative telescoping and definite integration of D-finite
functions 13

7.4. Bijections between Łukasiewicz walks and generalized tandem walks 13
7.5. Putting Fürer’s algorithm into practice with the BPAS library 13
7.6. Fast coefficient computation for algebraic power series in positive characteristic 14
7.7. Counting walks with large steps in an orthant 14
7.8. Subresultants of (x− α)

m and (x− β)
n, Jacobi polynomials and complexity 14

7.9. A numerical transcendental method in algebraic geometry 14
8. Partnerships and Cooperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9. Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

9.1. Promoting Scientific Activities 15
9.1.1. Scientific Events Organisation 15
9.1.2. Scientific Events Selection 15
9.1.3. Journal 16

9.1.3.1. Member of the Editorial Boards 16
9.1.3.2. Reviewer - Reviewing Activities 16

9.1.4. Invited Talks 16
9.1.5. Leadership within the Scientific Community 16

9.1.5.1. Regular Research Seminar 16
9.1.5.2. Research Working Group 16

9.1.6. Scientific Expertise 17
9.1.7. Research Administration 17

9.2. Teaching - Supervision - Juries 17
9.2.1. Teaching 17
9.2.2. Juries 17

9.3. Popularization 17
9.3.1. Interventions 17
9.3.2. Internal action 17

10. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17



Project-Team SPECFUN

Creation of the Team: 2012 November 01, updated into Project-Team: 2014 July 01

Keywords:

Computer Science and Digital Science:
A2.1.10. - Domain-specific languages
A2.1.11. - Proof languages
A2.4.3. - Proofs
A4.5. - Formal methods for security
A7.2. - Logic in Computer Science
A8.1. - Discrete mathematics, combinatorics
A8.3. - Geometry, Topology
A8.4. - Computer Algebra
A8.5. - Number theory

Other Research Topics and Application Domains:
B9.5.2. - Mathematics
B9.5.3. - Physics

1. Team, Visitors, External Collaborators
Research Scientists

Frédéric Chyzak [Team leader, Inria, Researcher, HDR]
Alin Bostan [Inria, Researcher, HDR]
Georges Gonthier [Inria, Senior Researcher]
Pierre Lairez [Inria, Researcher]

Post-Doctoral Fellow
Svyatoslav Covanov [Inria, from Oct 2018]

Intern
Jiadong Han [Inria, from Apr 2018 until Jul 2018]

Administrative Assistant
Stéphanie Aubin [Inria, until Sep 2018]

External Collaborators
Philippe Dumas [Ministère de l’Éducation Nationale (retired)]
Guy Fayolle [Inria, Senior Researcher (emeritus)]
Marc Mezzarobba [CNRS, Researcher]

2. Overall Objectives

2.1. Scientific challenges, expected impact
The general orientation of our team is described by the short name given to it: Special Functions, that
is, particular mathematical functions that have established names due to their importance in mathematical
analysis, physics, and other application domains. Indeed, we ambition to study special functions with the
computer, by combined means of computer algebra and formal methods.

https://raweb.inria.fr/rapportsactivite/RA2018/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2018/static/keywords/OtherResearchTopicsandApplicationDomains.html
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Computer-algebra systems have been advertised for decades as software for “doing mathematics by computer”
[60]. For instance, computer-algebra libraries can uniformly generate a corpus of mathematical properties
about special functions, so as to display them on an interactive website. This possibility was recently shown
by the computer-algebra component of the team [16]. Such an automated generation significantly increases the
reliability of the mathematical corpus, in comparison to the content of existing static authoritative handbooks.
The importance of the validity of these contents can be measured by the very wide audience that such
handbooks have had, to the point that a book like [11] remains one of the most cited mathematical publications
ever and has motivated the 10-year-long project of writing its successor [13]. However, can the mathematics
produced “by computer” be considered as true mathematics? More specifically, whereas it is nowadays well
established that the computer helps in discovering and observing new mathematical phenomenons, can the
mathematical statements produced with the aid of the computer and the mathematical results computed by it
be accepted as valid mathematics, that is, as having the status of mathematical proofs? Beyond the reported
weaknesses or controversial design choices of mainstream computer-algebra systems, the issue is more of
an epistemological nature. It will not find its solution even in the advent of the ultimate computer-algebra
system: the social process of peer-reviewing just falls short of evaluating the results produced by computers,
as reported by Th. Hales [39] after the publication of his proof of the Kepler Conjecture about sphere packing.

A natural answer to this deadlock is to move to an alternative kind of mathematical software and to use a proof
assistant to check the correctness of the desired properties or formulas. The success of large-scale formalization
projects, like the Four-Color Theorem of graph theory [34], the above-mentioned Kepler Conjecture [39], and
the Odd Order Theorem of group theory 1, have increased the understanding of the appropriate software-
engineering methods for this peculiar kind of programming. For computer algebra, this legitimates a move to
proof assistants now.

The Dynamic Dictionary of Mathematical Functions 2 (DDMF) [16] is an online computer-generated hand-
book of mathematical functions that ambitions to serve as a reference for a broad range of applications. This
software was developed by the computer-algebra component of the team as a project 3 of the MSR–INRIA
Joint Centre. It bases on a library for the computer-algebra system Maple, Algolib 4, whose development
started 20 years ago in ÃPI Algorithms 5. As suggested by the constant questioning of certainty by new poten-
tial users, DDMF deserves a formal guarantee of correctness of its content, on a level that proof assistants can
provide. Fortunately, the maturity of special-functions algorithms in Algolib makes DDMF a stepping stone
for such a formalization: it provides a well-understood and unified algorithmic treatment, without which a
formal certification would simply be unreachable.

The formal-proofs component of the team emanates from another project of the MSR–INRIA Joint Centre,
namely the Mathematical Components project (MathComp) 6. Since 2006, the MathComp group has endeav-
oured to develop computer-checked libraries of formalized mathematics, using the Coq proof assistant [56].
The methodological aim of the project was to understand the design methods leading to successful large-scale
formalizations. The work culminated in 2012 with the completion of a formal proof of the Odd Order The-
orem, resulting in the largest corpus of algebraic theories ever machine-checked with a proof assistant and a
whole methodology to effectively combine these components in order to tackle complex formalizations. In
particular, these libraries provide a good number of the many algebraic objects needed to reason about spe-
cial functions and their properties, like rational numbers, iterated sums, polynomials, and a rich hierarchy of
algebraic structures.

The present team takes benefit from these recent advances to explore the formal certification of the results
collected in DDMF. The aim of this project is to concentrate the formalization effort on this delimited area,
building on DDMF and the Algolib library, as well as on the Coq system [56] and on the libraries developed
by the MathComp project.

1http://www.msr-inria.inria.fr/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012/
2http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
3http://www.msr-inria.inria.fr/projects/dynamic-dictionary-of-mathematical-functions/
4http://algo.inria.fr/libraries/
5http://algo.inria.fr/
6http://www.msr-inria.fr/projects/mathematical-components/

http://www.msr-inria.inria.fr/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012/
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
http://www.msr-inria.inria.fr/projects/dynamic-dictionary-of-mathematical-functions/
http://algo.inria.fr/libraries/
http://algo.inria.fr/
http://www.msr-inria.fr/projects/mathematical-components/
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2.1.1. Use computer algebra but convince users beyond reasonable doubt
The following few opinions on computer algebra are, we believe, typical of computer-algebra users’ doubts
and difficulties when using computer-algebra systems:

• Fredrik Johansson, expert in the multi-precision numerical evaluation of special functions and in
fast computer-algebra algorithms, writes on his blog [45]: Mathematica is great for cross-checking
numerical values, but it’s not unusual to run into bugs, so triple checking is a good habit. One answer
in the discussion is: We can claim that Mathematica has [...] an impossible to understand semantics:
If Mathematica’s output is wrong then change the input. If you don’t like the answer, change the
question. That seems to be the philosophy behind.

• A professor’s advice to students [52] on using Maple: You may wish to use Maple to check your
homework answers. If you do then keep in mind that Maple sometimes gives the wrong answer,
usually because you asked incorrectly, or because of niceties of analytic continuation. You may
even be bitten by an occasional Maple bug, though that has become fairly unlikely. Even with as
powerful a tool as Maple you will still have to devise your own checks and you will still have to
think.

• Jacques Carette, former head of the maths group at Maplesoft, about a bug [12] when asking Maple
to take the limit limit(f(n) * exp(-n), n = infinity) for an undetermined function f: The
problem is that there is an implicit assumption in the implementation that unknown functions do not
‘grow too fast’.

As explained by the expert views above, complaints by computer-algebra users are often due to their
misunderstanding of what a computer-algebra systems is, namely a purely syntactic tool for calculations, that
the user must complement with a semantics. Still, robustness and consistency of computer-algebra systems
are not ensured as of today, and, whatever Zeilberger may provocatively say in his Opinion 94 [61], a firmer
logical foundation is necessary. Indeed, the fact is that many bugs in a computer-algebra system cannot be
fixed by just the usual debugging method of tracking down the faulty lines in the code. It is sort of by design:
assumptions that too often remain implicit are really needed by the design of symbolic algorithms and cannot
easily be expressed in the programming languages used in computer algebra. A similar certification initiative
has already been undertaken in the domain of numerical computing, in a successful manner [43], [19]. It is
natural to undertake a similar approach for computer algebra.

2.1.2. Make computer algebra and formal proofs help one another
Some of the mathematical objects that interest our team are still totally untouched by formalization. When
implementing them and their theory inside a proof assistant, we have to deal with the pervasive discrepancy
between the published literature and the actual implementation of computer-algebra algorithms. Interestingly,
this forces us to clarify our computer-algebraic view on them, and possibly make us discover holes lurking
in published (human) proofs. We are therefore convinced that the close interaction of researchers from both
fields, which is what we strive to maintain in this team, is a strong asset.

For a concrete example, the core of Zeilberger’s creative telescoping manipulates rational functions up
to simplifications. In summation applications, checking that these simplifications do not hide problematic
divisions by 0 is most often left to the reader. In the same vein, in the case of integrals, the published algorithms
do not check the convergence of all integrals, especially in intermediate calculations. Such checks are again
left to the readers. In general, we expect to revisit the existing algorithms to ensure that they are meaningful
for genuine mathematical sequences or functions, and not only for algebraic idealizations.

Another big challenge in this project originates in the scientific difference between computer algebra and
formal proofs. Computer algebra seeks speed of calculation on concrete instances of algebraic data structures
(polynomials, matrices, etc). For their part, formal proofs manipulate symbolic expressions in terms of abstract
variables understood to represent generic elements of algebraic data structures. In view of this, a continuous
challenge is to develop the right, hybrid thinking attitude that is able to effectively manage concrete and
abstract values simultaneously, alternatively computing and proving with them.
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2.1.3. Experimental mathematics with special functions
Applications in combinatorics and mathematical physics frequently involve equations of so high orders and
so large sizes, that computing or even storing all their coefficients is impossible on existing computers.
Making this tractable is an extraordinary challenge. The approach we believe in is to design algorithms of
good—ideally quasi-optimal—complexity in order to extract precisely the required data from the equations,
while avoiding the computationally intractable task of completely expanding them into an explicit representa-
tion.

Typical applications with expected high impact are the automatic discovery and algorithmic proof of results in
combinatorics and mathematical physics for which human proofs are currently unattainable.

2.2. Research axes
The implementation of certified symbolic computations on special functions in the Coq proof assistant
requires both investigating new formalization techniques and renewing the traditional computer-algebra
viewpoint on these standard objects. Large mathematical objects typical of computer algebra occur during
formalization, which also requires us to improve the efficiency and ergonomics of Coq. In order to feed this
interdisciplinary activity with new motivating problems, we additionally pursue a research activity oriented
towards experimental mathematics in application domains that involve special functions. We expect these
applications to pose new algorithmic challenges to computer algebra, which in turn will deserve a formal-
certification effort. Finally, DDMF is the motivation and the showcase of our progress on the certification
of these computations. While striving to provide a formal guarantee of the correctness of the information
it displays, we remain keen on enriching its mathematical content by developing new computer-algebra
algorithms.

2.2.1. Computer algebra certified by the Coq system
Our formalization effort consists in organizing a cooperation between a computer-algebra system and a proof
assistant. The computer-algebra system is used to produce efficiently algebraic data, which are later processed
by the proof assistant. The success of this cooperation relies on the design of appropriate libraries of formalized
mathematics, including certified implementations of certain computer-algebra algorithms. On the other side,
we expect that scrutinizing the implementation and the output of computer-algebra algorithms will shed a new
light on their semantics and on their correctness proofs, and help clarifying their documentation.

2.2.1.1. Libraries of formalized mathematics

The appropriate framework for the study of efficient algorithms for special functions is algebraic. Representing
algebraic theories as Coq formal libraries takes benefit from the methodology emerging from the success of
ambitious projects like the formal proof of a major classification result in finite-group theory (the Odd Order
Theorem) [32].

Yet, a number of the objects we need to formalize in the present context has never been investigated using any
interactive proof assistant, despite being considered as commonplaces in computer algebra. For instance there
is up to our knowledge no available formalization of the theory of non-commutative rings, of the algorithmic
theory of special-functions closures, or of the asymptotic study of special functions. We expect our future
formal libraries to prove broadly reusable in later formalizations of seemingly unrelated theories.

2.2.1.2. Manipulation of large algebraic data in a proof assistant

Another peculiarity of the mathematical objects we are going to manipulate with the Coq system is their size.
In order to provide a formal guarantee on the data displayed by DDMF, two related axes of research have
to be pursued. First, efficient algorithms dealing with these large objects have to be programmed and run
in Coq. Recent evolutions of the Coq system to improve the efficiency of its internal computations [14], [17]
make this objective reachable. Still, how to combine the aforementioned formalization methodology with these
cutting-edge evolutions of Coq remains one of the prospective aspects of our project. A second need is to help
users interactively manipulate large expressions occurring in their conjectures, an objective for which little
has been done so far. To address this need, we work on improving the ergonomics of the system in two ways:
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first, ameliorating the reactivity of Coq in its interaction with the user; second, designing and implementing
extensions of its interface to ease our formalization activity. We expect the outcome of these lines of research
to be useful to a wider audience, interested in manipulating large formulas on topics possibly unrelated to
special functions.

2.2.1.3. Formal-proof-producing normalization algorithms

Our algorithm certifications inside Coq intend to simulate well-identified components of our Maple packages,
possibly by reproducing them in Coq. It would however not have been judicious to re-implement them inside
Coq in a systematic way. Indeed for a number of its components, the output of the algorithm is more easily
checked than found, like for instance the solving of a linear system. Rather, we delegate the discovery of the
solutions to an external, untrusted oracle like Maple. Trusted computations inside Coq then formally validate
the correctness of the a priori untrusted output. More often than not, this validation consists in implementing
and executing normalization procedures inside Coq. A challenge of this automation is to make sure they go
to scale while remaining efficient, which requires a Coq version of non-trivial computer-algebra algorithms.
A first, archetypal example we expect to work on is a non-commutative generalization of the normalization
procedure for elements of rings [38].

2.2.2. Better symbolic computations with special functions
Generally speaking, we design algorithms for manipulating special functions symbolically, whether univariate
or with parameters, and for extracting algorithmically any kind of algebraic and analytic information from
them, notably asymptotic properties. Beyond this, the heart of our research is concerned with parametrised
definite summations and integrations. These very expressive operations have far-ranging applications, for
instance, to the computation of integral transforms (Laplace, Fourier) or to the solution of combinatorial
problems expressed via integrals (coefficient extractions, diagonals). The algorithms that we design for them
need to really operate on the level of linear functional systems, differential and of recurrence. In all cases, we
strive to design our algorithms with the constant goal of good theoretical complexity, and we observe that our
algorithms are also fast in practice.

2.2.2.1. Special-function integration and summation

Our long-term goal is to design fast algorithms for a general method for special-function integration (creative
telescoping), and make them applicable to general special-function inputs. Still, our strategy is to proceed with
simpler, more specific classes first (rational functions, then algebraic functions, hyperexponential functions,
D-finite functions, non-D-finite functions; two variables, then many variables); as well, we isolate analytic
questions by first considering types of integration with a more purely algebraic flavor (constant terms, algebraic
residues, diagonals of combinatorics). In particular, we expect to extend our recent approach [22] to more
general classes (algebraic with nested radicals, for example): the idea is to speed up calculations by making use
of an analogue of Hermite reduction that avoids considering certificates. Homologous problems for summation
will be addressed as well.

2.2.2.2. Applications to experimental mathematics

As a consequence of our complexity-driven approach to algorithms design, the algorithms mentioned in the
previous paragraph are of good complexity. Therefore, they naturally help us deal with applications that
involve equations of high orders and large sizes.

With regard to combinatorics, we expect to advance the algorithmic classification of combinatorial classes
like walks and urns. Here, the goal is to determine if enumerative generating functions are rational, algebraic,
or D-finite, for example. Physical problems whose modelling involves special-function integrals comprise the
study of models of statistical mechanics, like the Ising model for ferro-magnetism, or questions related to
Hamiltonian systems.

Number theory is another promising domain of applications. Here, we attempt an experimental approach to the
automated certification of integrality of the coefficients of mirror maps for Calabi–Yau manifolds. This could
also involve the discovery of new Calabi–Yau operators and the certification of the existing ones. We also plan
to algorithmically discover and certify new recurrences yielding good approximants needed in irrationality
proofs.
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It is to be noted that in all of these application domains, we would so far use general algorithms, as was done
in earlier works of ours [21], [25], [24]. To push the scale of applications further, we plan to consider in each
case the specifics of the application domain to tailor our algorithms.

2.2.3. Interactive and certified mathematical web sites
In continuation of our past project of an encyclopedia at http://ddmf.msr-inria.inria.fr/1.9.1/ddmf, we ambition
to both enrich and certify the formulas about the special functions that we provide online. For each function,
our website shows its essential properties and the mathematical objects attached to it, which are often infinite
in nature (numerical evaluations, asymptotic expansions). An interactive presentation has the advantage of
allowing for adaption to the user’s needs. More advanced content will broaden the encyclopedia:
• the algorithmic discussion of equations with parameters, leading to certified automatic case analysis

based on arithmetic properties of the parameters;
• lists of summation and integral formulas involving special functions, including validity conditions

on the parameters;
• guaranteed large-precision numerical evaluations.

3. Research Program
3.1. Studying special functions by computer algebra

Computer algebra manipulates symbolic representations of exact mathematical objects in a computer, in order
to perform computations and operations like simplifying expressions and solving equations for “closed-form
expressions”. The manipulations are often fundamentally of algebraic nature, even when the ultimate goal is
analytic. The issue of efficiency is a particular one in computer algebra, owing to the extreme swell of the
intermediate values during calculations.

Our view on the domain is that research on the algorithmic manipulation of special functions is anchored
between two paradigms:
• adopting linear differential equations as the right data structure for special functions,
• designing efficient algorithms in a complexity-driven way.

It aims at four kinds of algorithmic goals:
• algorithms combining functions,
• functional equations solving,
• multi-precision numerical evaluations,
• guessing heuristics.

This interacts with three domains of research:
• computer algebra, meant as the search for quasi-optimal algorithms for exact algebraic objects,
• symbolic analysis/algebraic analysis;
• experimental mathematics (combinatorics, mathematical physics, ...).

This view is made explicit in the present section.

3.1.1. Equations as a data structure
Numerous special functions satisfy linear differential and/or recurrence equations. Under a mild technical
condition, the existence of such equations induces a finiteness property that makes the main properties of the
functions decidable. We thus speak of D-finite functions. For example, 60 % of the chapters in the handbook
[11] describe D-finite functions. In addition, the class is closed under a rich set of algebraic operations. This
makes linear functional equations just the right data structure to encode and manipulate special functions. The
power of this representation was observed in the early 1990s [62], leading to the design of many algorithms in
computer algebra. Both on the theoretical and algorithmic sides, the study of D-finite functions shares much
with neighbouring mathematical domains: differential algebra, D-module theory, differential Galois theory, as
well as their counterparts for recurrence equations.

http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
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3.1.2. Algorithms combining functions
Differential/recurrence equations that define special functions can be recombined [62] to define: additions
and products of special functions; compositions of special functions; integrals and sums involving special
functions. Zeilberger’s fast algorithm for obtaining recurrences satisfied by parametrised binomial sums was
developed in the early 1990s already [63]. It is the basis of all modern definite summation and integration
algorithms. The theory was made fully rigorous and algorithmic in later works, mostly by a group in RISC
(Linz, Austria) and by members of the team [51], [59], [28], [26], [27], [46]. The past ÉPI Algorithms
contributed several implementations (gfun [54], Mgfun [28]).

3.1.3. Solving functional equations
Encoding special functions as defining linear functional equations postpones some of the difficulty of the
problems to a delayed solving of equations. But at the same time, solving (for special classes of functions)
is a sub-task of many algorithms on special functions, especially so when solving in terms of polynomial or
rational functions. A lot of work has been done in this direction in the 1990s; more intensively since the 2000s,
solving differential and recurrence equations in terms of special functions has also been investigated.

3.1.4. Multi-precision numerical evaluation
A major conceptual and algorithmic difference exists for numerical calculations between data structures
that fit on a machine word and data structures of arbitrary length, that is, multi-precision arithmetic. When
multi-precision floating-point numbers became available, early works on the evaluation of special functions
were just promising that “most” digits in the output were correct, and performed by heuristically increasing
precision during intermediate calculations, without intended rigour. The original theory has evolved in a
twofold way since the 1990s: by making computable all constants hidden in asymptotic approximations, it
became possible to guarantee a prescribed absolute precision; by employing state-of-the-art algorithms on
polynomials, matrices, etc, it became possible to have evaluation algorithms in a time complexity that is linear
in the output size, with a constant that is not more than a few units. On the implementation side, several original
works exist, one of which (NumGfun [50]) is used in our DDMF.

3.1.5. Guessing heuristics
“Differential approximation”, or “Guessing”, is an operation to get an ODE likely to be satisfied by a given
approximate series expansion of an unknown function. This has been used at least since the 1970s and is a key
stone in spectacular applications in experimental mathematics [25]. All this is based on subtle algorithms for
Hermite–Padé approximants [15]. Moreover, guessing can at times be complemented by proven quantitative
results that turn the heuristics into an algorithm [23]. This is a promising algorithmic approach that deserves
more attention than it has received so far.

3.1.6. Complexity-driven design of algorithms
The main concern of computer algebra has long been to prove the feasibility of a given problem, that is, to
show the existence of an algorithmic solution for it. However, with the advent of faster and faster computers,
complexity results have ceased to be of theoretical interest only. Nowadays, a large track of works in computer
algebra is interested in developing fast algorithms, with time complexity as close as possible to linear in
their output size. After most of the more pervasive objects like integers, polynomials, and matrices have been
endowed with fast algorithms for the main operations on them [33], the community, including ourselves,
started to turn its attention to differential and recurrence objects in the 2000s. The subject is still not as
developed as in the commutative case, and a major challenge remains to understand the combinatorics behind
summation and integration. On the methodological side, several paradigms occur repeatedly in fast algorithms:
“divide and conquer” to balance calculations, “evaluation and interpolation” to avoid intermediate swell of
data, etc. [20].
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3.2. Trusted computer-algebra calculations
3.2.1. Encyclopedias

Handbooks collecting mathematical properties aim at serving as reference, therefore trusted, documents. The
decision of several authors or maintainers of such knowledge bases to move from paper books [11], [13], [55]
to websites and wikis 7 allows for a more collaborative effort in proof reading. Another step toward further
confidence is to manage to generate the content of an encyclopedia by computer-algebra programs, as is the
case with the Wolfram Functions Site 8 or DDMF 9. Yet, due to the lingering doubts about computer-algebra
systems, some encyclopedias propose both cross-checking by different systems and handwritten companion
paper proofs of their content. As of today, there is no encyclopedia certified with formal proofs.

3.2.2. Computer algebra and symbolic logic
Several attempts have been made in order to extend existing computer-algebra systems with symbolic
manipulations of logical formulas. Yet, these works are more about extending the expressivity of computer-
algebra systems than about improving the standards of correctness and semantics of the systems. Conversely,
several projects have addressed the communication of a proof system with a computer-algebra system,
resulting in an increased automation available in the proof system, to the price of the uncertainty of the
computations performed by this oracle.

3.2.3. Certifying systems for computer algebra
More ambitious projects have tried to design a new computer-algebra system providing an environment where
the user could both program efficiently and elaborate formal and machine-checked proofs of correctness, by
calling a general-purpose proof assistant like the Coq system. This approach requires a huge manpower and a
daunting effort in order to re-implement a complete computer-algebra system, as well as the libraries of formal
mathematics required by such formal proofs.

3.2.4. Semantics for computer algebra
The move to machine-checked proofs of the mathematical correctness of the output of computer-algebra
implementations demands a prior clarification about the often implicit assumptions on which the presumably
correctly implemented algorithms rely. Interestingly, this preliminary work, which could be considered as
independent from a formal certification project, is seldom precise or even available in the literature.

3.2.5. Formal proofs for symbolic components of computer-algebra systems
A number of authors have investigated ways to organize the communication of a chosen computer-algebra
system with a chosen proof assistant in order to certify specific components of the computer-algebra systems,
experimenting various combinations of systems and various formats for mathematical exchanges. Another line
of research consists in the implementation and certification of computer-algebra algorithms inside the logic
[58], [38], [47] or as a proof-automation strategy. Normalization algorithms are of special interest when they
allow to check results possibly obtained by an external computer-algebra oracle [31]. A discussion about the
systematic separation of the search for a solution and the checking of the solution is already clearly outlined
in [44].

3.2.6. Formal proofs for numerical components of computer-algebra systems
Significant progress has been made in the certification of numerical applications by formal proofs. Libraries
formalizing and implementing floating-point arithmetic as well as large numbers and arbitrary-precision
arithmetic are available. These libraries are used to certify floating-point programs, implementations of
mathematical functions and for applications like hybrid systems.

7for instance http://dlmf.nist.gov/ for special functions or http://oeis.org/ for integer sequences
8http://functions.wolfram.com/
9http://ddmf.msr-inria.inria.fr/1.9.1/ddmf

http://dlmf.nist.gov/
http://oeis.org/
http://functions.wolfram.com/
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
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3.3. Machine-checked proofs of formalized mathematics
To be checked by a machine, a proof needs to be expressed in a constrained, relatively simple formal language.
Proof assistants provide facilities to write proofs in such languages. But, as merely writing, even in a formal
language, does not constitute a formal proof just per se, proof assistants also provide a proof checker: a small
and well-understood piece of software in charge of verifying the correctness of arbitrarily large proofs. The
gap between the low-level formal language a machine can check and the sophistication of an average page of
mathematics is conspicuous and unavoidable. Proof assistants try to bridge this gap by offering facilities, like
notations or automation, to support convenient formalization methodologies. Indeed, many aspects, from the
logical foundation to the user interface, play an important role in the feasibility of formalized mathematics
inside a proof assistant.

3.3.1. Logical foundations and proof assistants
While many logical foundations for mathematics have been proposed, studied, and implemented, type theory
is the one that has been more successfully employed to formalize mathematics, to the notable exception of the
Mizar system [48], which is based on set theory. In particular, the calculus of construction (CoC) [29] and its
extension with inductive types (CIC) [30], have been studied for more than 20 years and been implemented
by several independent tools (like Lego, Matita, and Agda). Its reference implementation, Coq [56], has been
used for several large-scale formalizations projects (formal certification of a compiler back-end; four-color
theorem). Improving the type theory underlying the Coq system remains an active area of research. Other
systems based on different type theories do exist and, whilst being more oriented toward software verification,
have been also used to verify results of mainstream mathematics (prime-number theorem; Kepler conjecture).

3.3.2. Computations in formal proofs
The most distinguishing feature of CoC is that computation is promoted to the status of rigorous logical
argument. Moreover, in its extension CIC, we can recognize the key ingredients of a functional programming
language like inductive types, pattern matching, and recursive functions. Indeed, one can program effectively
inside tools based on CIC like Coq. This possibility has paved the way to many effective formalization
techniques that were essential to the most impressive formalizations made in CIC.

Another milestone in the promotion of the computations-as-proofs feature of Coq has been the integration of
compilation techniques in the system to speed up evaluation. Coq can now run realistic programs in the logic,
and hence easily incorporates calculations into proofs that demand heavy computational steps.

Because of their different choice for the underlying logic, other proof assistants have to simulate computations
outside the formal system, and indeed fewer attempts to formalize mathematical proofs involving heavy
calculations have been made in these tools. The only notable exception, which was finished in 2014, the
Kepler conjecture, required a significant work to optimize the rewriting engine that simulates evaluation in
Isabelle/HOL.

3.3.3. Large-scale computations for proofs inside the Coq system
Programs run and proved correct inside the logic are especially useful for the conception of automated decision
procedures. To this end, inductive types are used as an internal language for the description of mathematical
objects by their syntax, thus enabling programs to reason and compute by case analysis and recursion on
symbolic expressions.

The output of complex and optimized programs external to the proof assistant can also be stamped with a
formal proof of correctness when their result is easier to check than to find. In that case one can benefit from
their efficiency without compromising the level of confidence on their output at the price of writing and certify
a checker inside the logic. This approach, which has been successfully used in various contexts, is very relevant
to the present research project.
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3.3.4. Relevant contributions from the Mathematical Component libraries
Representing abstract algebra in a proof assistant has been studied for long. The libraries developed by
the MathComp project for the proof of the Odd Order Theorem provide a rather comprehensive hierarchy
of structures; however, they originally feature a large number of instances of structures that they need to
organize. On the methodological side, this hierarchy is an incarnation of an original work [32] based on various
mechanisms, primarily type inference, typically employed in the area of programming languages. A large
amount of information that is implicit in handwritten proofs, and that must become explicit at formalization
time, can be systematically recovered following this methodology.

Small-scale reflection [35] is another methodology promoted by the MathComp project. Its ultimate goal is
to ease formal proofs by systematically dealing with as many bureaucratic steps as possible, by automated
computation. For instance, as opposed to the style advocated by Coq’s standard library, decidable predicates
are systematically represented using computable boolean functions: comparison on integers is expressed as
program, and to state that a ≤ b one compares the output of this program run on a and b with true. In many
cases, for example when a and b are values, one can prove or disprove the inequality by pure computation.

The MathComp library was consistently designed after uniform principles of software engineering. These
principles range from simple ones, like naming conventions, to more advanced ones, like generic program-
ming, resulting in a robust and reusable collection of formal mathematical components. This large body of
formalized mathematics covers a broad panel of algebraic theories, including of course advanced topics of
finite group theory, but also linear algebra, commutative algebra, Galois theory, and representation theory. We
refer the interested reader to the online documentation of these libraries [57], which represent about 150,000
lines of code and include roughly 4,000 definitions and 13,000 theorems.

Topics not addressed by these libraries and that might be relevant to the present project include real analysis
and differential equations. The most advanced work of formalization on these domains is available in the HOL-
Light system [40], [41], [42], although some existing developments of interest [18], [49] are also available
for Coq. Another aspect of the MathComp libraries that needs improvement, owing to the size of the data
we manipulate, is the connection with efficient data structures and implementations, which only starts to be
explored.

3.3.5. User interaction with the proof assistant
The user of a proof assistant describes the proof he wants to formalize in the system using a textual language.
Depending on the peculiarities of the formal system and the applicative domain, different proof languages
have been developed. Some proof assistants promote the use of a declarative language, when the Coq and
Matita systems are more oriented toward a procedural style.

The development of the large, consistent body of MathComp libraries has prompted the need to design an
alternative and coherent language extension for the Coq proof assistant [37], [36], enforcing the robustness
of proof scripts to the numerous changes induced by code refactoring and enhancing the support for the
methodology of small-scale reflection.

The development of large libraries is quite a novelty for the Coq system. In particular any long-term
development process requires the iteration of many refactoring steps and very little support is provided by
most proof assistants, with the notable exception of Mizar [53]. For the Coq system, this is an active area of
research.

4. Application Domains

4.1. Computer Algebra in Mathematics
Our expertise in computer algebra and complexity-driven design of algebraic algorithms has applications in
various domains, including:
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• combinatorics, especially the study of combinatorial walks,
• theoretical computer science, like by the study of automatic sequences,
• number theory, by the analysis of the nature of so-called periods.

5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Awards

Georges Gonthier, Martìn Abadi and Cédric Fournet receiver the 20 year test-of-time award for their LICS
1998 paper Secure Implementation of Channel Abstractions, during LICS 2018 in Oxford.

6. New Software and Platforms

6.1. DynaMoW
Dynamic Mathematics on the Web
FUNCTIONAL DESCRIPTION: Programming tool for controlling the generation of mathematical websites that
embed dynamical mathematical contents generated by computer-algebra calculations. Implemented in OCaml.
• Participants: Alexis Darrasse, Frédéric Chyzak and Maxence Guesdon
• Contact: Frédéric Chyzak
• URL: http://ddmf.msr-inria.inria.fr/DynaMoW/

6.2. ECS
Encyclopedia of Combinatorial Structures
FUNCTIONAL DESCRIPTION: On-line mathematical encyclopedia with an emphasis on sequences that arise
in the context of decomposable combinatorial structures, with the possibility to search by the first terms in the
sequence, keyword, generating function, or closed form.
• Participants: Alexis Darrasse, Frédéric Chyzak, Maxence Guesdon and Stéphanie Petit
• Contact: Frédéric Chyzak
• URL: http://ecs.inria.fr/

6.3. DDMF
Dynamic Dictionary of Mathematical Functions
FUNCTIONAL DESCRIPTION: Web site consisting of interactive tables of mathematical formulas on elemen-
tary and special functions. The formulas are automatically generated by OCaml and computer-algebra routines.
Users can ask for more terms of the expansions, more digits of the numerical values, proofs of some of the
formulas, etc.
• Participants: Alexandre Benoit, Alexis Darrasse, Bruno Salvy, Christoph Koutschan, Frédéric

Chyzak, Marc Mezzarobba, Maxence Guesdon, Stefan Gerhold and Thomas Gregoire
• Contact: Frédéric Chyzak
• URL: http://ddmf.msr-inria.inria.fr/1.9.1/ddmf

6.4. Mgfun
multivariate generating functions package

http://ddmf.msr-inria.inria.fr/DynaMoW/
http://ecs.inria.fr/
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
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FUNCTIONAL DESCRIPTION: The Mgfun Project is a collection of packages for the computer algebra system
Maple, and is intended for the symbolic manipulation of a large class of special functions and combinatorial
sequences (in one or several variables and indices) that appear in many branches of mathematics, mathematical
physics, and engineering sciences. Members of the class satisfy a crucial finiteness property which makes the
class amenable to computer algebra methods and enjoy numerous algorithmic closure properties, including
algorithmic closures under integration and summation.

• Contact: Frédéric Chyzak

• URL: http://specfun.inria.fr/chyzak/mgfun.html

6.5. Ssreflect
FUNCTIONAL DESCRIPTION: Ssreflect is a tactic language extension to the Coq system, developed by the
Mathematical Components team.

• Participants: Assia Mahboubi, Cyril Cohen, Enrico Tassi, Georges Gonthier, Laurence Rideau,
Laurent Théry and Yves Bertot

• Contact: Yves Bertot

• URL: http://math-comp.github.io/math-comp/

6.6. Math-Components
Mathematical Components library
FUNCTIONAL DESCRIPTION: The Mathematical Components library is a set of Coq libraries that cover the
mechanization of the proof of the Odd Order Theorem.

RELEASE FUNCTIONAL DESCRIPTION: The library includes 16 more theory files, covering in particular field
and Galois theory, advanced character theory, and a construction of algebraic numbers.

• Participants: Alexey Solovyev, Andrea Asperti, Assia Mahboubi, Cyril Cohen, Enrico Tassi,
François Garillot, Georges Gonthier, Ioana Pasca, Jeremy Avigad, Laurence Rideau, Laurent Théry,
Russell O’Connor, Sidi Ould Biha, Stéphane Le Roux and Yves Bertot

• Contact: Assia Mahboubi

• URL: http://math-comp.github.io/math-comp/

7. New Results

7.1. Computing solutions of linear Mahler equations
Mahler equations relate evaluations of the same function f at iterated bth powers of the variable. They
arise in particular in the study of automatic sequences and in the complexity analysis of divide-and-conquer
algorithms. Recently, the problem of solving Mahler equations in closed form has occurred in connection
with number-theoretic questions. A difficulty in the manipulation of Mahler equations is the exponential
blow-up of degrees when applying a Mahler operator to a polynomial. In [3], Frédéric Chyzak and Philippe
Dumas, together with Thomas Dreyfus (IRMA, Université de Strasbourg) and Marc Mezzarobba (external
collaborator from Sorbonne Université), have presented algorithms for solving linear Mahler equations for
series, polynomials, and rational functions, and have obtained polynomial-time complexity under a mild
assumption. The article was formally accepted and published this year.

http://specfun.inria.fr/chyzak/mgfun.html
http://math-comp.github.io/math-comp/
http://math-comp.github.io/math-comp/
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7.2. Becker’s conjecture on Mahler functions
In 1994, Becker conjectured that if F (z) is a k-regular power series, then there exists a k-regular rational
function R(z) such that F (z)/R(z) satisfies a Mahler-type functional equation with polynomial coefficients
where the initial coefficient satisfies a0(z) = 1. In [1], Frédéric Chyzak and Philippe Dumas, together with
Jason P. Bell (University of Waterloo, Canada) and Michael Coons (University of Newcastle, Australia) have
proved Becker’s conjecture in the best-possible form: they have shown that the rational function R(z) can be
taken to be a polynomial zγQ(z) for some explicit non-negative integer γ and such that 1/Q(z) is k-regular.
The article was formally accepted this year.

7.3. Generalized Hermite reduction, creative telescoping and definite
integration of D-finite functions
Hermite reduction is a classical algorithmic tool in symbolic integration. It is used to decompose a given
rational function as a sum of a function with simple poles and the derivative of another rational function. Alin
Bostan, Frédéric Chyzak, and Pierre Lairez, together with Bruno Salvy (project-team AriC) have extended
Hermite reduction to arbitrary linear differential operators instead of the pure derivative. They have also
developped efficient algorithms for this reduction, and then applied the generalized Hermite reduction to the
computation of linear operators satisfied by single definite integrals of D-finite functions of several continuous
or discrete parameters. The resulting algorithm is a generalization of reduction-based methods for creative
telescoping. Their article [6] was published at the ISSAC conference.

7.4. Bijections between Łukasiewicz walks and generalized tandem walks
In [9], Frédéric Chyzak, together with Karen Yeats (University of Waterloo, Canada), have studied the
enumeration by length of several walk models on the square lattice. They have obtained bijections between
walks in the upper half-plane returning to the x-axis and walks in the quarter plane. An ongoing work by
Bostan, Chyzak, and Mahboubi has given a bijection for models using small north, west, and south-east steps.
The work in [9] has adapted and generalized it to a bijection between half-plane walks using those three steps
in two colours and a quarter-plane model over the symmetrized step set consisting of north, north-west, west,
south, south-east, and east. They have then generalized their bijections to certain models with large steps: for
given p ≥ 1, a bijection has been given between the half-plane and quarter-plane models obtained by keeping
the small south-east step and replacing the two steps north and west of length 1 by the p+ 1 steps of length p
in directions between north and west. An article was submitted this year.

7.5. Putting Fürer’s algorithm into practice with the BPAS library
Fast algorithms for integer and polynomial multiplication play an important role in scientific computing
as well as in other disciplines. In 1971, Schönhage and Strassen designed an algorithm that improved the
multiplication time for two integers of at most n bits to O(log n log log n). Martin Fürer presented a new
algorithm that runs in O(n log n · 2O(log∗ n)), where log∗ n is the iterated logarithm of n. In a submitted
article, Svyatoslav Covanov, together with Davood Mohajerani, Marc Moreno Maza and Lin-Xiao Wang,
have explained how one can put Fürer’s ideas into practice for multiplying polynomials over a prime field
Z/pZ, for which p is a Generalized Fermat prime of the form p = rk + 1 where k is a power of 2 and r is of
machine word size. When k is at least 8, they have shown that multiplication inside such a prime field can be
efficiently implemented via Fast Fourier Transform (FFT). Taking advantage of Cooley-Tukey tensor formula
and the fact that r is a 2k-th primitive root of unity in Z/pZ, they have obtained an efficient implementation of
FFT over Z/pZ. This implementation outperforms comparable implementations either using other encodings
of Z/pZ or other ways to perform multiplication in Z/pZ.
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7.6. Fast coefficient computation for algebraic power series in positive
characteristic
In [5], Alin Bostan and Philippe Dumas, together with Xavier Caruso (CNRS, Rennes) and Gilles Christol
(IMJ, Paris) have studied the algorithmic question of coefficient computation of algebraic power series in
positive characteristic. They revisited Christol’s theorem on algebraic power series in positive characteristic
and proposed another proof for it. Their new proof combines several ingredients and advantages of existing
proofs, which make it very well-suited for algorithmic purposes. The construction used in the new proof was
then applied to the design of a new efficient algorithm for computing the N th coefficient of a given algebraic
power series over a perfect field of characteristic p. This algorithm has several nice features: it is more general,
more natural and more efficient than previous algorithms. Not only the arithmetic complexity of the new
algorithm is linear in logN and quasi-linear in p, but its dependency with respect to the degree of the input
is much smaller than in the previously best algorithm. Moreover, when the ground field is finite, the new
approach yields an even faster algorithm, whose bit complexity is linear in logN and quasi-linear in

√
p.

7.7. Counting walks with large steps in an orthant
In the past fifteen years, the enumeration of lattice walks with steps taken in a prescribed set and confined to
a given cone, especially the first quadrant of the plane, has been intensely studied. As a result, the generating
functions of quadrant walks are now well-understood, provided the allowed steps are small. In particular,
having small steps is crucial for the definition of a certain group of bi-rational transformations of the plane. It
has been proved that this group is finite if and only if the corresponding generating function is D-finite. This
group is also the key to the uniform solution of 19 of the 23 small step models possessing a finite group. In
contrast, almost nothing was known for walks with arbitrary steps. In [7], Alin Bostan together with Mireille
Bousquet-Mélou (CNRS, Bordeaux) and Stephen Melczer (U. Pennsylvania, Philadelphia, USA), extended
the definition of the group, or rather of the associated orbit, to this general case, and generalized the above
uniform solution of small step models. When this approach works, it invariably yields a D-finite generating
function. They applied it to many quadrant problems, including some infinite families. After developing the
general theory, the authors of [7] considered the 13 110 two-dimensional models with steps in {−2,−1, 0, 1}2
having at least one−2 coordinate. They proved that only 240 of them have a finite orbit, and solve 231 of them
with our method. The 9 remaining models are the counterparts of the 4 models of the small step case that resist
the uniform solution method (and which are known to have an algebraic generating function). They conjecture
D-finiteness for their generating functions (but only two of them are likely to be algebraic!), and proved non-
D-finiteness for the 12 870 models with an infinite orbit, except for 16 of them.

7.8. Subresultants of (x− α)m and (x− β)n, Jacobi polynomials and
complexity
A previous article in 2017 described explicit expressions for the coefficients of the order-d poly-
nomial subresultant of (x− α)

m and (x− β)
n with respect to Bernstein’s set of polynomials

{(x− α)
j
(x− β)

d−j
, 0 ≤ j ≤ d}, for 0 ≤ d < min{m,n}. In [8], Alin Bostan, together with T. Krick,

M. Valdettaro (U. Buenos Aires, Argentina) and A. Szanto (U. North Carolina, Raleigh, USA) further
developed the study of these structured polynomials and showed that the coefficients of the subresultants of
(x− α)

m and (x− β)
n with respect to the monomial basis can be computed in linear arithmetic complexity,

which is faster than for arbitrary polynomials. The result is obtained as a consequence of the amazing though
seemingly unnoticed fact that these subresultants are scalar multiples of Jacobi polynomials up to an affine
change of variables.

7.9. A numerical transcendental method in algebraic geometry
In “A transcendental method in algebraic geometry”, Griffiths emphasized the role of certain multivariate
integrals, known as periods, “to construct a continuous invariant of arbitrary smooth projective varieties”.
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Periods often determine the projective variety completely and therefore its algebraic invariants. Translating
periods into discrete algebraic invariants is a difficult problem, exemplified by the long standing Hodge
conjecture which describes how periods determine the algebraic cycles within a projective variety.

Recent progress in computer algebra makes it possible to compute periods with high precision and put
transcendental methods into practice. In [10], Pierre Lairez and Emre Sertöz focus on algebraic surfaces and
give a numerical method to compute Picard groups. As an application, they count smooth rational curves on
quartic surfaces using the Picard group. It is the first time that this kind of computation is performed.

8. Partnerships and Cooperations

8.1. International Research Visitors
8.1.1. Internships

• Jiadong Han did a Master internship from March to August. Under the supervision of Pierre
Lairez, he studied the computation of adaptive grid to improve the computation of the homology
of semialgebraic sets.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific Events Organisation

• Alin Bostan is part of the Scientific advisory board of the conference series Effective Methods in
Algebraic Geometry (MEGA).

• Alin Bostan was a member of the Scientific advisory board of the conference Algèbre, arithmétique
et combinatoire des équations différentielles et aux différences, CIRM (Luminy, France); ∼ 60
participants.

• Alin Bostan is part of the scientific committee of the GDR EFI (“Functional Equations and
Interactions”) dependent on the mathematical institute (INSMI) of the CNRS. The goal of this GDR
is to bring together various research communities in France working on functional equations in fields
of computer science and mathematics.

• Frédéric Chyzak is member of the steering committee of the Journées Nationales de Calcul Formel
(JNCF), the annual meeting of the French computer algebra community.

• Frédéric Chyzak is elected member (and current chair) of the steering committee of the International
Symposium on Symbolic and Algebraic Computation (ISSAC, 3-year term, 2016–2018).

• Georges Gonthier is a member of the steering committee of the Certified Programs and Proofs
Conference (CPP).

9.1.1.1. Member of the Organizing Committees

• Alin Bostan co-organizes, with Lucia Di Vizio, the Séminaire Différentiel between U. Versailles and
Inria Saclay, with a bi-annual frequency (∼ 30 participants per event).

• Alin Bostan co-organizes, with Lucia Di Vizio, the working group Marches dans le quart de plan, at
Institut Henri Poincaré (Paris), with a bi-monthly frequency (∼ 15 participants per event).

9.1.2. Scientific Events Selection
9.1.2.1. Reviewer

• Frédéric Chyzak has served as reviewer for the selection of the international conference ISSAC 2018.

https://conferences.cirm-math.fr/1761.html
https://conferences.cirm-math.fr/1761.html
https://www-fourier.ujf-grenoble.fr/gdrefi/
http://divizio.joomla.com/seminaires-et-gdt/8-seminaire-differentiel
http://divizio.joomla.com/seminaires-et-gdt/11-groupe-de-travail-autour-des-marches-dans-le-quart-de-plan
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9.1.3. Journal
9.1.3.1. Member of the Editorial Boards

• Alin Bostan is on the editorial board of the Journal of Symbolic Computation.

• Georges Gonthier is on the editorial board of the Journal of Formalized Reasoning.

9.1.3.2. Reviewer - Reviewing Activities

• Alin Bostan has served as a reviewer for the journals: Journal of Symbolic Computation, Journal of
Combinatorial Theory, Series A, Applicable Algebra in Engineering Communications and Comput-
ing, Minnesota Journal of Undergraduate Mathematics.

• Frédéric Chyzak has served multiple times as a reviewer for the Journal of Symbolic Computation.

• Pierre Lairez has served as a reviewer for the Journal of Symbolic Computation, Journal of the ACM
and Journal of Physics A.

9.1.4. Invited Talks
• Alin Bostan has been invited to give a talk at the Workshop on algebraic and analytic aspects of

power series, Universidade Lisboa, Lisbonne, Portugal, Jan. 2018.

• Alin Bostan has been invited to give a talk at the conference Algebra, Arithmetic and Combinatorics
of Differential and Difference Equations, CIRM (Luminy), France, May 2018.

• Alin Bostan has been invited to give a talk at the conference Grands réseaux aléatoires et marches
contraintes, in honor of the 75th birthday of Guy Fayolle, Dijon, France, Aug. 2018.

• Alin Bostan has been invited to give a talk at the conference Combinatorics and Arithmetic for
Physics: special days, IHES, Bures-sur-Yvette, France, Oct. 2018.

• Frédéric Chyzak was invited invited speaker at the conference Rencontres Arithmétiques du GDR
Informatique Mathématique (RAIM 2018), Gif-sur-Yvette, France, Nov. 2018.

• Georges Gonthier was a plenary keynote speaker at the Federated Logic Conference (FLoC 2018) in
Oxford, July 2018.

• Georges Gonthier was invited speaker at the Workshop on Modular Knowledge (Tetrapod) during
FLoC 2018, Oxford, July 2018.

• Georges Gonthier ws the keynote speaker of the Future of Mathematical Proofs workshop at the
Heidelberg Laureate Forum, September 2018.

9.1.5. Leadership within the Scientific Community
9.1.5.1. Regular Research Seminar

The team organizes a regular seminar, with roughly 15–20 talks a year. The topics reflect the team’s interests:
computer algebra, combinatorics, number theory, formal proofs, and related domains. This year, we reduced
a bit the number of talks in our seminar, as we have invested much time in setting up a working group with a
talk every second week (see 9.1.5.2).

9.1.5.2. Research Working Group

This year we have set up a working group Marches dans le quart de plan around the study of walks in the
quarter plan, a very active research topic in probability theory and enumerative combinatorics in recent years.
The working group is organized at Institut Henri Poincaré, with a regularity of two sessions per month. The
original purpose was to read the article “On the Nature of the Generating Series of Walks in the Quarter
Plane” by T. Dreyfus, C. Hardouin, J. Roques, M. Singer, published in Invent. Math. this year. But the reality
exceeded expectations: the working group attracted a dozen of people, working either in computer science or
pure mathematics, who began to interact and a very good dynamic was created. Altogether, sixteen sessions
have taken place so far, and we have decided to continue in 2019. From the team, Alin Bostan, Frédéric
Chyzak, Guy Fayolle, and Pierre Lairez have given a total of 9 talks to this working group.

http://www.xxyyzz.cc
http://www.xxyyzz.cc
http://conferences.cirm-math.fr/1761.html
http://conferences.cirm-math.fr/1761.html
http://www.lmpt.univ-tours.fr/ConferenceGuyFayolle75/
http://www.lmpt.univ-tours.fr/ConferenceGuyFayolle75/
https://lipn.univ-paris13.fr/~duchamp/Conferences/CAP5_2018.html
https://lipn.univ-paris13.fr/~duchamp/Conferences/CAP5_2018.html
https://raim2018.sciencesconf.org/
https://raim2018.sciencesconf.org/
https://specfun.inria.fr/seminar/
http://divizio.joomla.com/seminaires-et-gdt/11-groupe-de-travail-autour-des-marches-dans-le-quart-de-plan
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9.1.6. Scientific Expertise
• Georges Gonthier participated in a review of the software and algorithms of the Tezos blockchain

conducted by the Inria Foundation during Spring 2018.

9.1.7. Research Administration
• Georges Gonthier serves on the Conseil de l’École Doctorale de Mathématiques Hadamard.

9.2. Teaching - Supervision - Juries
• Alin Bostan has served as a jury member of the French Agrégation de Mathématiques – épreuve de

modélisation, option C.

9.2.1. Teaching
Licence:

Pierre Lairez, Introduction à l’informatique (INF311), TD, 40h, L3, École polytechnique,
France.

Master:
Frédéric Chyzak, Algorithmes efficaces en calcul formel, 18h, M2, MPRI, France.
Alin Bostan, Algorithmes efficaces en calcul formel, 40.5h, M2, MPRI, France.
Pierre Lairez, Algorithmique avancée (INF550), TD, 18h, M2, École polytechnique,
France.
Pierre Lairez, Les bases de la programmation et de l’algorithmique (INF411), TD, 40h,
M1, École polytechnique, France.

9.2.2. Juries
• Frédéric Chyzak has been a member of the hiring jury at Inria (Concours CRCN 2018).
• Alin Bostan has served as a referee in the PhD jury of Timothée Pecatte, Bornes inférieures et

algorithmes de reconstruction pour des sommes de puissances affines, ENS Lyon, July 11, 2018.
• Alin Bostan has served as an examiner in the PhD jury of Boris Djalal, Formalisations en Coq pour

la décision de problèmes en géométrie algébrique réelle, Inria Sophia Antipolis, December 3, 2018.
• Alin Bostan has served as a member of the monitoring PhD committee of Youssef Abdelaziz, Univ.

Paris 6.
• Alin Bostan has served as a member of the monitoring PhD committee of Manon Bertin, Univ.

Rouen.

9.3. Popularization
9.3.1. Interventions

• Georges Gonthier testified before the Mission d’information commune sur les blockchains of the
Assemblée Nationale in March.

• Georges Gonthier gave a public lecture and debate on blockchains at the Institut Diderot in
September, jointly with M. Odonnat (Banque de France).

9.3.2. Internal action
• Georges Gonthier gave a presentation at the Journées Scientifiques Inria 2018 in Bordeaux.
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