
IN PARTNERSHIP WITH:
Institut Polytechnique de
Bordeaux

Université de Bordeaux

Activity Report 2018

Project-Team STORM

STatic Optimizations, Runtime Methods

IN COLLABORATION WITH: Laboratoire Bordelais de Recherche en Informatique (LaBRI)

RESEARCH CENTER
Bordeaux - Sud-Ouest

THEME
Distributed and High Performance
Computing

Table of contents

1. Team, Visitors, External Collaborators . 1
2. Overall Objectives . 2
3. Research Program . 4

3.1. Parallel Computing and Architectures 4
3.2. Scientific and Societal Stakes 5
3.3. Towards More Abstraction 5

4. Application Domains .6
4.1. Application domains benefiting from HPC 6
4.2. Application in High performance computing/Big Data 6

5. Highlights of the Year . 6
6. New Software and Platforms . 6

6.1. Chameleon 6
6.2. hwloc 8
6.3. KaStORS 8
6.4. KStar 8
6.5. MAQAO 9
6.6. StarPU 9
6.7. PARCOACH 11
6.8. AFF3CT 12
6.9. MORSE 12
6.10. SwLoc 12
6.11. VITE 12

7. New Results . 13
7.1. InKS Programming Model 13
7.2. Porting Chameleon on top of OpenMP 13
7.3. StarPU in Julia 13
7.4. Simulation and Validation of Error Correction Code Algorithms 13
7.5. Speeding-Up Error Correction Code Processing using a Portable SIMD Wrapper 14
7.6. Runtime System Interoperability with StarPU 14
7.7. Hierarchicals Tasks 14
7.8. Load Balancing Management in a Distributed Task-Based Programming Model 14
7.9. Task-based Execution Visualization 15
7.10. Interprocedural Collectives Verification 15
7.11. Profile-Guided Scope-Based Data Allocation Method 15
7.12. Lightweight Containerization of Computing Resources 15
7.13. Adaptive Partitioning for Iterated Sequences of Irregular OpenCL Kernels 15
7.14. A compiler front-end for OpenMP’s variants 16
7.15. Combining Task-based Parallelism and Adaptive Mesh Refinement Techniques in Molecular

Dynamics Simulations 16
8. Partnerships and Cooperations . 16

8.1. Regional Initiatives 16
8.2. National Initiatives 16

8.2.1. ANR 16
8.2.2. ADT - Inria Technological Development Actions 17
8.2.3. IPL - Inria Project Lab 18

8.3. European Initiatives 18
8.3.1. H2020 Projects 18
8.3.2. Collaborations in European Programs, Except FP7 & H2020 20

8.4. International Research Visitors 21

2 Activity Report INRIA 2018

9. Dissemination . 21
9.1. Promoting Scientific Activities 21

9.1.1. Scientific Events Organisation 21
9.1.2. Scientific Events Selection 21

9.1.2.1. Member of the Conference Program Committees 21
9.1.2.2. Reviewer 21

9.1.3. Journal 21
9.1.3.1. Member of the Editorial Boards 21
9.1.3.2. Reviewer - Reviewing Activities 21

9.1.4. Invited Talks 21
9.1.5. Scientific Expertise 22
9.1.6. Research Administration 22

9.2. Teaching - Supervision - Juries 22
9.2.1. Teaching 22
9.2.2. Supervision 23
9.2.3. Juries 23

9.3. Popularization 23
9.3.1. Interventions 23
9.3.2. Internal action 23

10. Bibliography .23

Project-Team STORM

Creation of the Team: 2015 January 01, updated into Project-Team: 2017 July 01

Keywords:

Computer Science and Digital Science:
A1.1.1. - Multicore, Manycore
A1.1.2. - Hardware accelerators (GPGPU, FPGA, etc.)
A1.1.3. - Memory models
A1.1.4. - High performance computing
A1.1.5. - Exascale
A2.1.7. - Distributed programming
A2.2.1. - Static analysis
A2.2.2. - Memory models
A2.2.4. - Parallel architectures
A2.2.5. - Run-time systems
A2.2.6. - GPGPU, FPGA...

Other Research Topics and Application Domains:
B2.2.1. - Cardiovascular and respiratory diseases
B3.2. - Climate and meteorology
B3.3.1. - Earth and subsoil
B3.4.1. - Natural risks
B4.2. - Nuclear Energy Production
B5.2.3. - Aviation
B5.2.4. - Aerospace
B6.2.2. - Radio technology
B6.2.3. - Satellite technology
B6.2.4. - Optic technology

1. Team, Visitors, External Collaborators
Research Scientists

Olivier Aumage [Inria, Researcher]
Emmanuelle Saillard [Inria, Researcher]

Faculty Members
Denis Barthou [Institut National Polytechnique de Bordeaux, Professor, Team leader, HDR]
Marie-Christine Counilh [Univ de Bordeaux, Associate Professor]
Raymond Namyst [Univ de Bordeaux, Professor, HDR]
Samuel Thibault [Univ de Bordeaux, Associate Professor, HDR]
Pierre Andre Wacrenier [Univ de Bordeaux, Associate Professor]

Post-Doctoral Fellow
Philippe Virouleau [Inria, from Jul 2018]

PhD Students
Hugo Brunie [CEA]

https://raweb.inria.fr/rapportsactivite/RA2018/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2018/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2018

Adrien Cassagne [Inria]
Idriss Daoudi [Inria, from Oct 2018]
Pierre Huchant [Univ de Bordeaux]
Romain Lion [Inria, from Oct 2018]
Arthur Loussert [CEA]
Raphaël Prat [CEA]
Leo Villeveygoux [Univ de Bordeaux]
Philippe Virouleau [Inria, from Apr 2018 until Jun 2018]

Technical staff
Nathalie Furmento [CNRS]
Yanis Khorsi [Inria, until Sep 2018]
Chiheb Sakka [Inria, until Mar 2018]
Corentin Salingue [Inria]

Interns
François Audoy [Inria, from May 2018 until Jul 2018]
Loïc Jouans [Ecole Normale Supérieure Lyon, from Jun 2018 until Aug 2018]
Alexis Juven [Inria, from Jun 2018 until Sep 2018]
Maël Keryell [Inria, from Oct 2018]
Antoine Tirel [Inria, from Jun 2018 until Sep 2018]

Administrative Assistant
Sabrina Blondel-Duthil [Inria]

Visiting Scientists
Dana Akhmetova [KTH, Sweden, from Feb 2018 until Mar 2018]
Costin Iancu [Lawrence Berkeley National Lab, Oct 2018]

External Collaborators
Terry Cojean [Univ de Bordeaux, until Aug 2018]
Jean-Marie Couteyen [Airbus]

2. Overall Objectives

2.1. Overall Objectives
A successful approach to deal with the complexity of modern architectures is centered around the use of
runtime systems, to manage tasks dynamically, these runtime systems being either generic or specific to
an application. Similarly, on the compiler side, optimizations and analyses are more aggressive in iterative
compilation frameworks, fit for library generations, or DSL, in particular for linear algebra methods. To go
beyond this state of the art and alleviate the difficulties for programming these machines, we believe it is
necessary to provide inputs with richer semantics to runtime and compiler alike, and in particular by combining
both approaches.

This general objective is declined into two sub-objectives, the first concerning the expression of parallelism
itself, the second the optimization and adaptation of this parallelism by compilers and runtimes.

• Expressing parallelism: As shown in the following figure, we propose to work on parallelism
expression through Domain Specific Languages, able to capture the essence of the algorithms used
through usual parallel languages such as OpenCL, OpenMP and through high performance libraries.
The DSLs will be driven by applications, with the idea to capture at the algorithmic level the
parallelism of the problem and perform dynamic data layout adaptation, parallel and algorithmic
optimizations. The principle here is to capture a higher level of semantics, enabling users to express
not only parallelism but also different algorithms.

Project-Team STORM 3

Figure 1. STORM Big Picture

4 Activity Report INRIA 2018

• Optimizing and adapting parallelism: The goal here is to leverage the necessary adaptation to
evolving hardware, by providing mechanisms allowing users to run the same code on different
architectures. This implies to adapt parallelism, in particular the granularity of the work, to the
architecture. This relies on the use of existing parallel libraries and their composition, and more
generally the separation of concern between the description of tasks, that represent semantic units of
work, and the tasks to be executed by the different processing units. Splitting or coarsening moldable
tasks, generating code for these tasks and scheduling them is part of this work.

Finally, the abstraction we advocate for requires to propose a feed back loop. This feed back has
two objectives: To make users better understand their application and how to change the expression
of parallelism if necessary, but also to propose an abstracted model for the machine. This allows to
develop and formalize the compiling, scheduling techniques on a model, not too far from the real
machine. Here, simulation techniques are a way to abstract the complexity of the architecture while
preserving essential metrics.

3. Research Program

3.1. Parallel Computing and Architectures
Following the current trends of the evolution of HPC systems architectures, it is expected that future
Exascale systems (i.e. Sustaining 1018 flops) will have millions of cores. Although the exact architectural
details and trade-offs of such systems are still unclear, it is anticipated that an overall concurrency level of
O(109) threads/tasks will probably be required to feed all computing units while hiding memory latencies. It
will obviously be a challenge for many applications to scale to that level, making the underlying system sound
like “embarrassingly parallel hardware.”

From the programming point of view, it becomes a matter of being able to expose extreme parallelism within
applications to feed the underlying computing units. However, this increase in the number of cores also comes
with architectural constraints that actual hardware evolution prefigures: computing units will feature extra-
wide SIMD and SIMT units that will require aggressive code vectorization or “SIMDization”, systems will
become hybrid by mixing traditional CPUs and accelerators units, possibly on the same chip as the AMD
APU solution, the amount of memory per computing unit is constantly decreasing, new levels of memory will
appear, with explicit or implicit consistency management, etc. As a result, upcoming extreme-scale system
will not only require unprecedented amount of parallelism to be efficiently exploited, but they will also require
that applications generate adaptive parallelism capable to map tasks over heterogeneous computing units.

The current situation is already alarming, since European HPC end-users are forced to invest in a difficult and
time-consuming process of tuning and optimizing their applications to reach most of current supercomputers’
performance. It will go even worse at horizon 2020 with the emergence of new parallel architectures (tightly
integrated accelerators and cores, high vectorization capabilities, etc.) featuring unprecedented degree of
parallelism that only too few experts will be able to exploit efficiently. As highlighted by the ETP4HPC
initiative, existing programming models and tools won’t be able to cope with such a level of heterogeneity,
complexity and number of computing units, which may prevent many new application opportunities and new
science advances to emerge.

The same conclusion arises from a non-HPC perspective, for single node embedded parallel architectures,
combining heterogeneous multicores, such as the ARM big.LITTLE processor and accelerators such as GPUs
or DSPs. The need and difficulty to write programs able to run on various parallel heterogeneous architectures
has led to initiatives such as HSA, focusing on making it easier to program heterogeneous computing devices.
The growing complexity of hardware is a limiting factor to the emergence of new usages relying on new
technology.

Project-Team STORM 5

3.2. Scientific and Societal Stakes
In the HPC context, simulation is already considered as a third pillar of science with experiments and theory.
Additional computing power means more scientific results, and the possibility to open new fields of simulation
requiring more performance, such as multi-scale, multi-physics simulations. Many scientific domains able to
take advantage of Exascale computers, these “Grand Challenges” cover large panels of science, from seismic,
climate, molecular dynamics, theoretical and astrophysics physics... Besides, embedded applications are also
able to take advantage of these performance increase. There is still an on-going trend where dedicated hardware
is progressively replaced by off-the-shelf components, adding more adaptability and lowering the cost of
devices. For instance, Error Correcting Codes in cell phones are still hardware chips, but with the forthcoming
5G protocol, new software and adaptative solutions relying on low power multicores are also explored. New
usages are also appearing, relying on the fact that large computing capacities are becoming more affordable
and widespread. This is the case for instance with Deep Neural Networks where the training phase can be done
on supercomputers and then used in embedded mobile systems. The same consideration applies for big data
problems, of internet of things, where small sensors provide large amount of data that need to be processed
in short amount of time. Even though the computing capacities required for such applications are in general
a different scale from HPC infrastructures, there is still a need in the future for high performance computing
applications.

However, the outcome of new scientific results and the development of new usages for mobile, embedded
systems will be hindered by the complexity and high level of expertise required to tap the performance offered
by future parallel heterogeneous architectures.

3.3. Towards More Abstraction
As emphasized by initiatives such as the European Exascale Software Initiative (EESI), the European Tech-
nology Platform for High Performance Computing (ETP4HPC), or the International Exascale Software Initia-
tive (IESP), the HPC community needs new programming APIs and languages for expressing heterogeneous
massive parallelism in a way that provides an abstraction of the system architecture and promotes high perfor-
mance and efficiency. The same conclusion holds for mobile, embedded applications that require performance
on heterogeneous systems.

This crucial challenge given by the evolution of parallel architectures therefore comes from this need to
make high performance accessible to the largest number of developpers, abstracting away architectural details
providing some kind of performance portability. Disruptive uses of the new technology and groundbreaking
new scientific results will not come from code optimization or task scheduling, but they require the design of
new algorithms that require the technology to be tamed in order to reach unprecedented levels of performance.

Runtime systems and numerical libraries are part of the answer, since they may be seen as building blocks
optimized by experts and used as-is by application developers. The first purpose of runtime systems is indeed to
provide abstraction. Runtime systems offer a uniform programming interface for a specific subset of hardware
(e.g., OpenGL or DirectX are well-established examples of runtime systems dedicated to hardware-accelerated
graphics) or low-level software entities (e.g., POSIX-thread implementations). They are designed as thin
user-level software layers that complement the basic, general purpose functions provided by the operating
system calls. Applications then target these uniform programming interfaces in a portable manner. Low-
level, hardware dependent details are hidden inside runtime systems. The adaptation of runtime systems is
commonly handled through drivers. The abstraction provided by runtime systems thus enables portability.
Abstraction alone is however not enough to provide portability of performance, as it does nothing to leverage
low-level-specific features to get increased performance. Consequently, the second role of runtime systems is
to optimize abstract application requests by dynamically mapping them onto low-level requests and resources
as efficiently as possible. This mapping process makes use of scheduling algorithms and heuristics to decide
the best actions to take for a given metric and the application state at a given point in its execution time.
This allows applications to readily benefit from available underlying low-level capabilities to their full extent
without breaking their portability. Thus, optimization together with abstraction allows runtime systems to offer

6 Activity Report INRIA 2018

portability of performance. Numerical libraries provide sets of highly optimized kernels for a given field (dense
or sparse linear algebra, FFT, etc.) either in an autonomous fashion or using an underlying runtime system.

Application domains cannot resort to libraries for all codes however, computation patterns such as stencils are a
representative example of such difficulty. The compiler technology plays here a central role, in managing high
level semantics, either through templates, domain specific languages or annotations. Compiler optimizations,
and the same applies for runtime optimizations, are limited by the level of semantics they manage. Providing
part of the algorithmic knowledge of an application, for instance knowing that it computes a 5-point stencil
and then performs a dot product, would lead to more opportunities to adapt parallelism, memory structures,
and is a way to leverage the evolving hardware.

Compilers and runtime play a crucial role in the future of high performance applications, by defining the input
language for users, and optimizing/transforming it into high performance code. The objective of STORM is to
propose better interactions between compiler and runtime and more semantics for both approaches. The results
of the team on-going research in 2018 reflect this focus. Results presented in Sections 7.1, 7.2, 7.3, 7.4, 7.5
correspond to efforts for higher abstractions through DSL or libraries, and decouple algorithmics from parallel
optimizations. The work described in Sections 7.6, 7.7, 7.8 focus in particular on StarPU and its development
in order to better abstract architecture and optimizations. The results described in Sections 7.9, 7.10, 7.11
provide feed-back information, through visualization, deadlock detection and memory allocation optimization
for parallel executions. The results in Sections 7.13, 7.14 correspond to efforts on parallelism expression
and again abstraction, starting from standard parallel programming languages. Finally, Section 7.15 presents
an on-going effort, applying state-of-the-art parallelizing/vectorizing methods on a real molecular dynamics
code.

4. Application Domains
4.1. Application domains benefiting from HPC

The application domains of this research are the following:
• Molecular dynamics (see ExaStamp 7.15),
• Bioinformatics (see ADT Gordon 8.2.2)
• Environment, in particular CO2 capture (see Exa2PRO, 8.3.1)
• Health and hearth disease analysis (see EXACARD, 8.2.1)
• Software infrastructures for Telecommunications (see AFF3CT, 7.4, 8.2.2)
• Aéronautique (collaboration avec Airbus, J.-M. Couteyen)

4.2. Application in High performance computing/Big Data
Most of the research of the team has application in the domain of software infrastructure for HPC and BigData
(see HPC Cloud Computing project 8.1, ANR SOLHAR 8.2.1, Inria ADT SwLoc, Gordon8.2.2, IPL HAC-
SPECIS and BigData 8.2.3, PIA project ELCI 8.2, FP7 projects INTERTWinE and Exa2Pro 8.3.1 and PRACE
project PRACE5IP 8.3.2).

5. Highlights of the Year
5.1. Highlights of the Year

• “Habilitation à diriger les recherches” (HDR) of Samuel Thibault, Dec.2018.

6. New Software and Platforms
6.1. Chameleon

KEYWORDS: Runtime system - Task-based algorithm - Dense linear algebra - HPC - Task scheduling

Project-Team STORM 7

SCIENTIFIC DESCRIPTION: Chameleon is part of the MORSE (Matrices Over Runtime Systems @ Exascale)
project. The overall objective is to develop robust linear algebra libraries relying on innovative runtime systems
that can fully benefit from the potential of those future large-scale complex machines.

We expect advances in three directions based first on strong and closed interactions between the runtime and
numerical linear algebra communities. This initial activity will then naturally expand to more focused but still
joint research in both fields.

1. Fine interaction between linear algebra and runtime systems. On parallel machines, HPC applications need
to take care of data movement and consistency, which can be either explicitly managed at the level of the
application itself or delegated to a runtime system. We adopt the latter approach in order to better keep up with
hardware trends whose complexity is growing exponentially. One major task in this project is to define a proper
interface between HPC applications and runtime systems in order to maximize productivity and expressivity.
As mentioned in the next section, a widely used approach consists in abstracting the application as a DAG that
the runtime system is in charge of scheduling. Scheduling such a DAG over a set of heterogeneous processing
units introduces a lot of new challenges, such as predicting accurately the execution time of each type of task
over each kind of unit, minimizing data transfers between memory banks, performing data prefetching, etc.
Expected advances: In a nutshell, a new runtime system API will be designed to allow applications to provide
scheduling hints to the runtime system and to get real-time feedback about the consequences of scheduling
decisions.

2. Runtime systems. A runtime environment is an intermediate layer between the system and the application.
It provides low-level functionality not provided by the system (such as scheduling or management of the
heterogeneity) and high-level features (such as performance portability). In the framework of this proposal,
we will work on the scalability of runtime environment. To achieve scalability it is required to avoid all
centralization. Here, the main problem is the scheduling of the tasks. In many task-based runtime environments
the scheduler is centralized and becomes a bottleneck as soon as too many cores are involved. It is therefore
required to distribute the scheduling decision or to compute a data distribution that impose the mapping of
task using, for instance the so-called “owner-compute” rule. Expected advances: We will design runtime
systems that enable an efficient and scalable use of thousands of distributed multicore nodes enhanced with
accelerators.

3. Linear algebra. Because of its central position in HPC and of the well understood structure of its algorithms,
dense linear algebra has often pioneered new challenges that HPC had to face. Again, dense linear algebra
has been in the vanguard of the new era of petascale computing with the design of new algorithms that can
efficiently run on a multicore node with GPU accelerators. These algorithms are called “communication-
avoiding” since they have been redesigned to limit the amount of communication between processing
units (and between the different levels of memory hierarchy). They are expressed through Direct Acyclic
Graphs (DAG) of fine-grained tasks that are dynamically scheduled. Expected advances: First, we plan to
investigate the impact of these principles in the case of sparse applications (whose algorithms are slightly more
complicated but often rely on dense kernels). Furthermore, both in the dense and sparse cases, the scalability
on thousands of nodes is still limited, new numerical approaches need to be found. We will specifically design
sparse hybrid direct/iterative methods that represent a promising approach.

Overall end point. The overall goal of the MORSE associate team is to enable advanced numerical algorithms
to be executed on a scalable unified runtime system for exploiting the full potential of future exascale machines.
FUNCTIONAL DESCRIPTION: Chameleon is a dense linear algebra software relying on sequential task-based
algorithms where sub-tasks of the overall algorithms are submitted to a Runtime system. A Runtime system
such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs,
distributed nodes). This kind of implementation paradigm allows to design high performing linear algebra
algorithms on very different type of architecture: laptop, many-core nodes, CPUs-GPUs, multiple nodes. For
example, Chameleon is able to perform a Cholesky factorization (double-precision) at 80 TFlop/s on a dense
matrix of order 400 000 (e.i. 4 min).

RELEASE FUNCTIONAL DESCRIPTION: Chameleon includes the following features:

8 Activity Report INRIA 2018

- BLAS 3, LAPACK one-sided and LAPACK norms tile algorithms - Support QUARK and StarPU runtime
systems and PaRSEC since 2018 - Exploitation of homogeneous and heterogeneous platforms through the
use of BLAS/LAPACK CPU kernels and cuBLAS/MAGMA CUDA kernels - Exploitation of clusters of
interconnected nodes with distributed memory (using OpenMPI)

• Participants: Cédric Castagnede, Samuel Thibault, Emmanuel Agullo, Florent Pruvost and Mathieu
Faverge

• Partners: Innovative Computing Laboratory (ICL) - King Abdullha University of Science and
Technology - University of Colorado Denver

• Contact: Emmanuel Agullo

• URL: https://gitlab.inria.fr/solverstack/chameleon

6.2. hwloc
Hardware Locality
KEYWORDS: NUMA - Multicore - GPU - Affinities - Open MPI - Topology - HPC - Locality
FUNCTIONAL DESCRIPTION: Hardware Locality (hwloc) is a library and set of tools aiming at discovering
and exposing the topology of machines, including processors, cores, threads, shared caches, NUMA memory
nodes and I/O devices. It builds a widely-portable abstraction of these resources and exposes it to applications
so as to help them adapt their behavior to the hardware characteristics. They may consult the hierarchy of
resources, their attributes, and bind task or memory on them.

hwloc targets many types of high-performance computing applications, from thread scheduling to placement
of MPI processes. Most existing MPI implementations, several resource managers and task schedulers, and
multiple other parallel libraries already use hwloc.

• Participants: Brice Goglin and Samuel Thibault

• Partners: Open MPI consortium - Intel - AMD

• Contact: Brice Goglin

• Publications: hwloc: a Generic Framework for Managing Hardware Affinities in HPC Applications
- Managing the Topology of Heterogeneous Cluster Nodes with Hardware Locality (hwloc) - A
Topology-Aware Performance Monitoring Tool for Shared Resource Management in Multicore
Systems - Exposing the Locality of Heterogeneous Memory Architectures to HPC Applications -
Towards the Structural Modeling of the Topology of next-generation heterogeneous cluster Nodes
with hwloc - On the Overhead of Topology Discovery for Locality-aware Scheduling in HPC

• URL: http://www.open-mpi.org/projects/hwloc/

6.3. KaStORS
The KaStORS OpenMP Benchmark Suite
KEYWORDS: Benchmarking - HPC - Task-based algorithm - Task scheduling - OpenMP - Data parallelism
FUNCTIONAL DESCRIPTION: The KaStORS benchmarks suite has been designed to evaluate implementations
of the OpenMP dependent task paradigm, introduced as part of the OpenMP 4.0 specification.

• Participants: François Broquedis, Nathalie Furmento, Olivier Aumage, Philippe Virouleau, Pierrick
Brunet, Samuel Thibault and Thierry Gautier

• Contact: Thierry Gautier

• URL: http://kastors.gforge.inria.fr/#!index.md

6.4. KStar
The KStar OpenMP Compiler
KEYWORDS: Source-to-source compiler - OpenMP - Task scheduling - Compilers - Data parallelism

https://gitlab.inria.fr/solverstack/chameleon
https://hal.inria.fr/inria-00429889
https://hal.inria.fr/hal-00985096
https://hal.inria.fr/hal-01183083
https://hal.inria.fr/hal-01183083
https://hal.inria.fr/hal-01183083
https://hal.inria.fr/hal-01330194
https://hal.inria.fr/hal-01400264
https://hal.inria.fr/hal-01400264
https://hal.inria.fr/hal-01402755
http://www.open-mpi.org/projects/hwloc/
http://kastors.gforge.inria.fr/#!index.md

Project-Team STORM 9

FUNCTIONAL DESCRIPTION: The KStar software is a source-to-source OpenMP compiler for languages C
and C++. The KStar compiler translates OpenMP directives and constructs into API calls from the StarPU
runtime system or the XKaapi runtime system. The KStar compiler is virtually fully compliant with OpenMP
3.0 constructs. The KStar compiler supports OpenMP 4.0 dependent tasks and accelerated targets.

• Participants: Nathalie Furmento, Olivier Aumage, Philippe Virouleau and Samuel Thibault

• Contact: Olivier Aumage

• Publications: Bridging the gap between OpenMP and task-based runtime systems for the fast
multipole method - Bridging the gap between OpenMP 4.0 and native runtime systems for the fast
multipole method - Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark Suite

• URL: http://kstar.gforge.inria.fr/#!index.md

6.5. MAQAO
SCIENTIFIC DESCRIPTION: MAQAO relies on binary codes for Intel x86 and ARM architectures. For x86
architecture, it can insert probes for instrumention directly inside the binary. There is no need to recompile.
The static/dynamic approach of MAQAO analysis is the main originality of the tool, combining performance
model with values collected through instrumentation.

MAQAO has a static performance model for x86 and ARM architectures. This model analyzes performance of
the codes on the architectures and provides some feed-back hints on how to improve these codes, in particular
for vector instructions.

The dynamic collection of data in MAQAO enables the analysis of thread interactions, such as false sharing,
amount of data reuse, runtime scheduling policy, ...
FUNCTIONAL DESCRIPTION: MAQAO is a performance tuning tool for OpenMP parallel applications. It
relies on the static analysis of binary codes and the collection of dynamic information (such as memory traces).
It provides hints to the user about performance bottlenecks and possible workarounds.

• Participants: Christopher Haine, Denis Barthou, James Tombi A Mba and Olivier Aumage

• Contact: Denis Barthou

6.6. StarPU
The StarPU Runtime System
KEYWORDS: Multicore - GPU - Scheduling - HPC - Performance
SCIENTIFIC DESCRIPTION: Traditional processors have reached architectural limits which heterogeneous
multicore designs and hardware specialization (eg. coprocessors, accelerators, ...) intend to address. However,
exploiting such machines introduces numerous challenging issues at all levels, ranging from programming
models and compilers to the design of scalable hardware solutions. The design of efficient runtime systems for
these architectures is a critical issue. StarPU typically makes it much easier for high performance libraries
or compiler environments to exploit heterogeneous multicore machines possibly equipped with GPGPUs
or Cell processors: rather than handling low-level issues, programmers may concentrate on algorithmic
concerns.Portability is obtained by the means of a unified abstraction of the machine. StarPU offers a
unified offloadable task abstraction named "codelet". Rather than rewriting the entire code, programmers can
encapsulate existing functions within codelets. In case a codelet may run on heterogeneous architectures, it is
possible to specify one function for each architectures (eg. one function for CUDA and one function for CPUs).
StarPU takes care to schedule and execute those codelets as efficiently as possible over the entire machine. In
order to relieve programmers from the burden of explicit data transfers, a high-level data management library
enforces memory coherency over the machine: before a codelet starts (eg. on an accelerator), all its data are
transparently made available on the compute resource.Given its expressive interface and portable scheduling
policies, StarPU obtains portable performances by efficiently (and easily) using all computing resources at
the same time. StarPU also takes advantage of the heterogeneous nature of a machine, for instance by using
scheduling strategies based on auto-tuned performance models.

https://hal.inria.fr/hal-01517153
https://hal.inria.fr/hal-01517153
https://hal.inria.fr/hal-01372022
https://hal.inria.fr/hal-01372022
https://hal.inria.fr/hal-01081974
http://kstar.gforge.inria.fr/#!index.md

10 Activity Report INRIA 2018

StarPU is a task programming library for hybrid architectures

The application provides algorithms and constraints: - CPU/GPU implementations of tasks - A graph of tasks,
using either the StarPU’s high level GCC plugin pragmas or StarPU’s rich C API

StarPU handles run-time concerns - Task dependencies - Optimized heterogeneous scheduling - Optimized
data transfers and replication between main memory and discrete memories - Optimized cluster communica-
tions

Rather than handling low-level scheduling and optimizing issues, programmers can concentrate on algorithmic
concerns!
FUNCTIONAL DESCRIPTION: StarPU is a runtime system that offers support for heterogeneous multicore
machines. While many efforts are devoted to design efficient computation kernels for those architectures
(e.g. to implement BLAS kernels on GPUs), StarPU not only takes care of offloading such kernels (and
implementing data coherency across the machine), but it also makes sure the kernels are executed as efficiently
as possible.

• Participants: Corentin Salingue, Andra Hugo, Benoît Lize, Cédric Augonnet, Cyril Roelandt,
François Tessier, Jérôme Clet-Ortega, Ludovic Courtes, Ludovic Stordeur, Marc Sergent, Mehdi
Juhoor, Nathalie Furmento, Nicolas Collin, Olivier Aumage, Pierre-André Wacrenier, Raymond
Namyst, Samuel Thibault, Simon Archipoff, Xavier Lacoste, Terry Cojean, Yanis Khorsi, Philippe
Virouleau, LOïC JOUANS and Leo Villeveygoux

• Contact: Olivier Aumage

• Publications: Achieving High Performance on Supercomputers with a Sequential Task-based Pro-
gramming Model - The StarPU Runtime System at Exascale ? - Analyzing Dynamic Task-Based Ap-
plications on Hybrid Platforms: An Agile Scripting Approach - Resource aggregation for task-based
Cholesky Factorization on top of heterogeneous machines - Resource aggregation in task-based ap-
plications over accelerator-based multicore machines - Controlling the Memory Subscription of Dis-
tributed Applications with a Task-Based Runtime System - Exploiting Two-Level Parallelism by
Aggregating Computing Resources in Task-Based Applications Over Accelerator-Based Machines
- Exploiting Two-Level Parallelism by Aggregating Computing Resources in Task-Based Applica-
tions Over Accelerator-Based Machines - Achieving High Performance on Supercomputers with a
Sequential Task-based Programming Model - Bridging the gap between OpenMP 4.0 and native run-
time systems for the fast multipole method - Scalability of a task-based runtime system for dense
linear algebra applications - Faithful Performance Prediction of a Dynamic Task-Based Runtime
System for Heterogeneous Multi-Core Architectures - Towards seismic wave modeling on hetero-
geneous many-core architectures using task-based runtime system - Bridging the Gap between Per-
formance and Bounds of Cholesky Factorization on Heterogeneous Platforms - Composing multiple
StarPU applications over heterogeneous machines: A supervised approach - Evaluation of OpenMP
Dependent Tasks with the KASTORS Benchmark Suite - A runtime approach to dynamic resource
allocation for sparse direct solvers - Modeling and Simulation of a Dynamic Task-Based Runtime
System for Heterogeneous Multi-Core Architectures - Toward OpenCL Automatic Multi-Device
Support - Harnessing clusters of hybrid nodes with a sequential task-based programming model -
Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes - Modulariser
les ordonnanceurs de tâches : une approche structurelle - Overview of Distributed Linear Algebra
on Hybrid Nodes over the StarPU Runtime - StarPU-MPI: Task Programming over Clusters of Ma-
chines Enhanced with Accelerators - Modeling and Simulation of a Dynamic Task-Based Runtime
System for Heterogeneous Multi-Core Architectures - Taking advantage of hybrid systems for sparse
direct solvers via task-based runtimes - Adaptive Task Size Control on High Level Programming for
GPU/CPU Work Sharing - Composing multiple StarPU applications over heterogeneous machines:
a supervised approach - Implementation of FEM Application on GPU with StarPU - Le problème
de la composition parallèle : une approche supervisée - Support exécutif scalable pour les archi-
tectures hybrides distribuées - SOCL: An OpenCL Implementation with Automatic Multi-Device
Adaptation Support - C Language Extensions for Hybrid CPU/GPU Programming with StarPU

https://hal.inria.fr/hal-01618526
https://hal.inria.fr/hal-01618526
https://hal.inria.fr/hal-01410103
https://hal.inria.fr/hal-01353962
https://hal.inria.fr/hal-01353962
https://hal.inria.fr/hal-01181135
https://hal.inria.fr/hal-01181135
https://hal.inria.fr/hal-01355385
https://hal.inria.fr/hal-01355385
https://hal.inria.fr/hal-01284004
https://hal.inria.fr/hal-01284004
https://hal.inria.fr/hal-01502749
https://hal.inria.fr/hal-01502749
https://hal.inria.fr/hal-01502749
https://hal.inria.fr/hal-01502749
https://hal.inria.fr/hal-01332774
https://hal.inria.fr/hal-01332774
https://hal.inria.fr/hal-01372022
https://hal.inria.fr/hal-01372022
https://hal.inria.fr/tel-01483666
https://hal.inria.fr/tel-01483666
https://hal.inria.fr/hal-01147997
https://hal.inria.fr/hal-01147997
https://hal.inria.fr/hal-01182746
https://hal.inria.fr/hal-01182746
https://hal.inria.fr/hal-01120507
https://hal.inria.fr/hal-01120507
https://hal.inria.fr/hal-01101045
https://hal.inria.fr/hal-01101045
https://hal.inria.fr/hal-01081974
https://hal.inria.fr/hal-01081974
https://hal.inria.fr/hal-01101054
https://hal.inria.fr/hal-01101054
https://hal.inria.fr/hal-01011633
https://hal.inria.fr/hal-01011633
https://hal.inria.fr/hal-01005765
https://hal.inria.fr/hal-01005765
https://hal.inria.fr/hal-01283949
https://hal.inria.fr/hal-00987094
https://hal.inria.fr/hal-00978364
https://hal.inria.fr/hal-00978364
https://hal.inria.fr/hal-00978602
https://hal.inria.fr/hal-00978602
https://hal.inria.fr/hal-00992208
https://hal.inria.fr/hal-00992208
https://hal.inria.fr/hal-00966862
https://hal.inria.fr/hal-00966862
https://hal.inria.fr/hal-00925017
https://hal.inria.fr/hal-00925017
https://hal.inria.fr/hal-00920915
https://hal.inria.fr/hal-00920915
https://hal.inria.fr/hal-00824514
https://hal.inria.fr/hal-00824514
https://hal.inria.fr/hal-00926144
https://hal.inria.fr/hal-00773610
https://hal.inria.fr/hal-00773610
https://hal.inria.fr/hal-01284235
https://hal.inria.fr/hal-01284235
https://hal.inria.fr/hal-00853423
https://hal.inria.fr/hal-00853423
https://hal.inria.fr/hal-00807033

Project-Team STORM 11

- Programming Models and Runtime Systems for Heterogeneous Architectures - Programmation
unifiée multi-accélérateur OpenCL - StarPU-MPI: Task Programming over Clusters of Machines
Enhanced with Accelerators - Parallelization on Heterogeneous Multicore and Multi-GPU Systems
of the Fast Multipole Method for the Helmholtz Equation Using a Runtime System - High-Level
Support for Pipeline Parallelism on Many-Core Architectures - Programmability and Performance
Portability Aspects of Heterogeneous Multi-/Manycore Systems - Programmation des architectures
hétérogènes à l’aide de tâches divisibles - StarPU: a unified platform for task scheduling on hetero-
geneous multicore architectures - PEPPHER: Efficient and Productive Usage of Hybrid Computing
Systems - The PEPPHER Approach to Programmability and Performance Portability for Hetero-
geneous many-core Architectures - Flexible runtime support for efficient skeleton programming on
hybrid systems - LU Factorization for Accelerator-based Systems - QR Factorization on a Multicore
Node Enhanced with Multiple GPU Accelerators - Programmation multi-accélérateurs unifiée en
OpenCL - Détection optimale des coins et contours dans des bases d’images volumineuses sur ar-
chitectures multicœurs hétérogènes - Association de modèles de programmation pour l’exploitation
de clusters de GPUs dans le calcul intensif - Programming heterogeneous, accelerator-based mul-
ticore machines:current situation and main challenges - Scheduling Tasks over Multicore machines
enhanced with acelerators: a Runtime System’s Perspective - Composabilité de codes parallèles sur
architectures hétérogènes - Data-Aware Task Scheduling on Multi-Accelerator based Platforms -
Dynamically scheduled Cholesky factorization on multicore architectures with GPU accelerators.
- StarPU: a Runtime System for Scheduling Tasks over Accelerator-Based Multicore Machines -
StarPU : un support exécutif unifié pour les architectures multicoeurs hétérogènes - Automatic Cal-
ibration of Performance Models on Heterogeneous Multicore Architectures - StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures - Exploiting the Cell/BE
architecture with the StarPU unified runtime system - Bridging the gap between OpenMP and task-
based runtime systems for the fast multipole method

• URL: http://starpu.gforge.inria.fr/

6.7. PARCOACH
PARallel Control flow Anomaly CHecker
KEYWORDS: High-Performance Computing - Program verification - Debug - MPI - OpenMP - Compilation
SCIENTIFIC DESCRIPTION: PARCOACH verifies programs in two steps. First, it statically verifies appli-
cations with a data- and control-flow analysis and outlines execution paths leading to potential deadlocks.
The code is then instrumented, displaying an error and synchronously interrupting all processes if the actual
scheduling leads to a deadlock situation.
FUNCTIONAL DESCRIPTION: Supercomputing plays an important role in several innovative fields, speeding
up prototyping or validating scientific theories. However, supercomputers are evolving rapidly with now
millions of processing units, posing the questions of their programmability. Despite the emergence of more
widespread and functional parallel programming models, developing correct and effective parallel applications
still remains a complex task. As current scientific applications mainly rely on the Message Passing Interface
(MPI) parallel programming model, new hardwares designed for Exascale with higher node-level parallelism
clearly advocate for an MPI+X solutions with X a thread-based model such as OpenMP. But integrating two
different programming models inside the same application can be error-prone leading to complex bugs - mostly
detected unfortunately at runtime. PARallel COntrol flow Anomaly CHecker aims at helping developers in
their debugging phase.

• Participants: Emmanuelle Saillard, Denis Barthou and Pierre Huchant

• Partner: CEA

• Contact: Emmanuelle Saillard

• URL: https://esaillar.github.io/PARCOACH/

https://hal.inria.fr/tel-00948309
https://hal.inria.fr/hal-00772742
https://hal.inria.fr/hal-00772742
https://hal.inria.fr/hal-00725477
https://hal.inria.fr/hal-00725477
https://hal.inria.fr/hal-00773114
https://hal.inria.fr/hal-00773114
https://hal.inria.fr/hal-00697020
https://hal.inria.fr/hal-00697020
https://hal.inria.fr/hal-00776610
https://hal.inria.fr/hal-00776610
https://hal.inria.fr/hal-01284136
https://hal.inria.fr/hal-01284136
https://hal.inria.fr/inria-00550877
https://hal.inria.fr/inria-00550877
https://hal.inria.fr/hal-00648480
https://hal.inria.fr/hal-00648480
https://hal.inria.fr/hal-00661320
https://hal.inria.fr/hal-00661320
https://hal.inria.fr/inria-00606200
https://hal.inria.fr/inria-00606200
https://hal.inria.fr/hal-00654193
https://hal.inria.fr/inria-00547614
https://hal.inria.fr/inria-00547614
https://hal.inria.fr/hal-00643257
https://hal.inria.fr/hal-00643257
https://hal.inria.fr/inria-00606195
https://hal.inria.fr/inria-00606195
https://hal.inria.fr/hal-00803304
https://hal.inria.fr/hal-00803304
https://hal.inria.fr/inria-00590670
https://hal.inria.fr/inria-00590670
https://hal.inria.fr/tel-00777154
https://hal.inria.fr/tel-00777154
https://hal.inria.fr/inria-00619654
https://hal.inria.fr/inria-00619654
https://hal.inria.fr/inria-00523937
https://hal.inria.fr/inria-00547616
https://hal.inria.fr/inria-00467677
https://hal.inria.fr/inria-00411581
https://hal.inria.fr/inria-00421333
https://hal.inria.fr/inria-00421333
https://hal.inria.fr/inria-00384363
https://hal.inria.fr/inria-00384363
https://hal.inria.fr/inria-00378705
https://hal.inria.fr/inria-00378705
https://hal.inria.fr/hal-01517153
https://hal.inria.fr/hal-01517153
http://starpu.gforge.inria.fr/
https://esaillar.github.io/PARCOACH/

12 Activity Report INRIA 2018

6.8. AFF3CT
A Fast Forward Error Correction Toolbox
KEYWORDS: High-Performance Computing - Signal processing - Error Correction Code
FUNCTIONAL DESCRIPTION: AFF3CT proposes high performance Error Correction algorithms for Polar,
Turbo, LDPC, RSC (Recursive Systematic Convolutional), Repetition and RA (Repeat and Accumulate)
codes. These signal processing codes can be parameterized in order to optimize some given metrics, such
as Bit Error Rate, Bandwidth, Latency, ...using simulation. For the designers of such signal processing chain,
AFF3CT proposes also high performance building blocks so to develop new algorithms. AFF3CT compiles
with many compilers and runs on Windows, Mac OS X, Linux environments and has been optimized for x86
(SSE, AVX instruction sets) and ARM architectures (NEON instruction set).

• Authors: Adrien Cassagne, Bertrand Le Gal, Camille Leroux, Denis Barthou and Olivier Aumage
• Partner: IMS
• Contact: Adrien Cassagne
• URL: https://aff3ct.github.io/

6.9. MORSE
KEYWORDS: High performance computing - Matrix calculation - Fast multipole method - Runtime system
FUNCTIONAL DESCRIPTION: MORSE (Matrices Over Runtime Systems @ Exascale) is a scientific project,
its objectives are to solve matrix problems on complex architectures, using runtime systems. More specifically,
the goal is to write codes that reach a high level of performance for all architectures. The algorithms are written
independently of the architecture, and the runtime system dispatches the different computational parts to the
different computing units. This methodology has been validated on three classes of problems: dense linear
algebra, sparse and dense, and fast multipole methods. The corresponding codes have been incorporated into
several softwares, MAGMA, Pastix and ScalFMM.

• Contact: Emmanuel Agullo
• URL: http://icl.cs.utk.edu/morse/

6.10. SwLoc
Software Contexts for Locality
KEYWORDS: HPC - Locality - Contexts - Multicore - GPU
FUNCTIONAL DESCRIPTION: SwLoc is a library for flexible and generic partitioning of computing resources
(processors, accelerators) to be able to co-excute confined parallel regions which can rely on different runtime
systems (e.g. OpenMP, Intel TBB, StarPU, etc.). With all different hypervisor strategies, It is possible to adapt
dynamically the computing resources of each context, in order to match each parallel region’s need as closely
as possible.

• Contact: Corentin Salingue
• URL: http://swloc.gforge.inria.fr/

6.11. VITE
Visual Trace Explorer
KEYWORDS: Visualization - Execution trace
FUNCTIONAL DESCRIPTION: ViTE is a trace explorer. It is a tool made to visualize execution traces of large
parallel programs. It supports Pajé, a trace format created by Inria Grenoble, and OTF and OTF2 formats,
developed by the University of Dresden and allows the programmer a simpler way to analyse, debug and/or
profile large parallel applications.

• Participant: Mathieu Faverge
• Contact: Mathieu Faverge
• URL: http://vite.gforge.inria.fr/

https://aff3ct.github.io/
http://icl.cs.utk.edu/morse/
http://swloc.gforge.inria.fr/
http://vite.gforge.inria.fr/

Project-Team STORM 13

7. New Results

7.1. InKS Programming Model
Existing programming models tend to tightly interleave algorithm and optimization in HPC simulation codes.
This requires scientists to become experts in both the simulated domain and the optimization process and
makes the code difficult to maintain and port to new architectures. The InKS programming model, developed
within the context of the PhD. Thesis of Ksander Ejjaaouani [9], decouples these two concerns with distinct
languages for each. The simulation algorithm is expressed in the InKS pia language with no concern for
machine-specific optimizations. Optimizations are expressed using both a family of dedicated optimizations
DSLs (InKS O) and plain C++. InKS O relies on the InKS pia source to assist developers with common
optimizations while C++ is used for less common ones. Our evaluation demonstrates the soundness of the
approach by using it on synthetic benchmarks and the Vlasov-Poisson equation. It shows that InKS offers
separation of concerns at no performance cost.

7.2. Porting Chameleon on top of OpenMP
Chameleon is a dense linear algebra software relying on sequential task-based algorithms where sub-tasks
of the overall algorithms are submitted to a Runtime system. Algorithms were implemented on top of several
task-based runtime systems: QUARK, PaRSEC, and StarPU (for which there is also an optional heterogeneous
implementation). In the context of PRACE-5IP, we introduced OpenMP as an alternative backend for these
linear algebra kernels.

7.3. StarPU in Julia
Julia is a modern language for parallelism and simulation that aims to ease the effort for developping high
performance codes. In this context, we have started to develop a StarPU binding inside Julia. It is now possible
to launch StarPU kernels inside Julia, either given as libraries, or described in Julia directly. Julia has the
advantage to simplify significantly the syntax required to express the task and data management in StarPU
(defining a new scope for StarPU, using automatic desallocation of buffers, ...).

Besides, using the introspection properties of Julia, the kernels written in Julia are automatically translated in
both C codes and CUDA codes. Some preliminary experimental results show encouraging speedups on some
limited codes. This is a work in progress, developped with A.Juven and M.Keryell.

7.4. Simulation and Validation of Error Correction Code Algorithms
The AFF3CT Error Correction Code (ECC) development and experimentation toolchain reached a major
milestone with the release of the 2.x branch. It incorporates a hefty set of new modules and capabilities:

• New code families: Reed-Solomon, Turbo Product Code (TCP);

• New decoders: Maximum Likelihood (ML), Chase, LDPC Approximate Min-Star (AMS), LDPC
Vertical Layered, LDPC Peeling, LDPC Bit Flipping;

• New channels: Optical, Binary Erasure Channel (BEC), Binary Symmetric Channel (BSC);

• New modem: On-Off Keying (OOK).

This new branch comes with extensive documentation of all available parameters at any point in the chain
(https://aff3ct.readthedocs.io). In the process of the new release, the source code has also be reorganized in a
rational and compartimentalized way, in terms of modules, tasks and sockets. This refactoring streamlines the
use AFF3CT as a library, building on the concept of tasks, with well defined input and output sockets.

https://aff3ct.readthedocs.io

14 Activity Report INRIA 2018

7.5. Speeding-Up Error Correction Code Processing using a Portable SIMD
Wrapper
Error correction code (ECC) processing has so far been performed on dedicated hardware for previous
generations of mobile communication standards, to meet latency and bandwidth constraints. As the 5G mobile
standard, and its associated channel coding algorithms, are now being specified, modern CPUs are progressing
to the point where software channel decoders can viably be contemplated. A key aspect in reaching this
transition point is to get the most of CPUs SIMD units on the decoding algorithms being pondered for 5G
mobile standards. The nature and diversity of such algorithms requires highly versatile programming tools.
We proposed the virtues and versatility of our MIPP SIMD wrapper in implementing a high performance
portfolio of key ECC decoding algorithms on AFF3CT [8].

7.6. Runtime System Interoperability with StarPU
Parallel HPC applications increasingly build on multiple parallel libraries, which results in interferences if the
parallel entities in the application and in the libraries it uses access computing resources in an uncoordinated
manner. A set of resource management APIs has therefore been designed within the context of H2020 project
INTERTWinE (see http://www.intertwine-project.eu/developer-hub/resource-manager), and implemented in
the StarPU task-based runtime system developed by Team STORM, as well as in the OmpSs/Nanos 6 task-
based runtime system developed at the Barcelona Supercomputing Center (BSC). It enables StarPU and
OmpSs to interoperate within an application, along multiple scenarios such as nested interoperability, with
a host runtime system executing parallel tasks over a guest runtime system, or concurrent interoperability,
with several runtime systems dynamically sharing computing resources over the application lifespan.

7.7. Hierarchicals Tasks
The programming model of StarPU, namely the sequential task flow model, was successfuly used in several
applicative areas and was able to achieve high performance. However, the submission process needed either
to be completely static, in the sense that the whole task graph is submitted at once, or to be stopped from
time to time in order to control the execution. To overcome these limitations, we have introduced a new
paradigm which we call hierarchical tasks where the so-called control tasks allow to submit at runtime a task
subgraph. By allowing the submission of some parts of the task graph to be delayed until the execution of
the corresponding control task, this feature allows to timely and dynamically choose the right version of the
computation task subgraph (e.g. OpenMP, StarPU, cuda, or sequential, etc. implementations).

The graph of control tasks provide a high-level description of the computations which allow to use and design
sophisticated scheduling algorithms. Furthermore, the cost of managing the control graph being much smaller
than the one of the computation task graph, relying on the hierarchical tasks scheme enhances the scalability
of the runtime system and allows to parallelize the submission process. Finally, this mechanism represents an
elegant way of tackling the granularity issues which represent a key problem for achieving high performance
in a heterogeneous context. The specificity of our implementation is to nicely combine hierarchical tasks with
data partitioning, without needless synchronisation points.

7.8. Load Balancing Management in a Distributed Task-Based Programming
Model
Distributed task-based programming models such as StarPU optimize the execution of applications based
on an initial distribution of data. The resulting computational load on each node may however evolve over
the course of the application, to the point where this initial distribution of data leads becomes suboptimal.
It becomes necessary to correct the distribution the distribution of data to rebalance the load among nodes.
Tools such as Zoltan or ParMetis do exist to perform this rebalancing job. However, they cannot be employed
without breaking the application execution flow, and force synchronizing steps in fundamentally asynchronous
task parallelism paradigms. Within the context of the internship of Loïc Jouans, we proposed a mechanism to
enable the detection of load imbalance as well as the application of corrective measures to rebalance it while
preserving the execution asynchrony.

http://www.intertwine-project.eu/developer-hub/resource-manager

Project-Team STORM 15

7.9. Task-based Execution Visualization
One of the purpose of task-based programming is to let asynchronous execution achieve extreme pipelining of
operations. This however make it a real challenge to determine why an execution performs poorly, since the
execution trace shows the mixture of unrelated tasks. With the the University of Grenoble, we have designed
a visualization framework which allows to easily visualize different metrics of the execution trace and apply
different techniques to reveal the execution behavior. This allowed to determine and fix some erratic behaviors
for instance in the StarPU runtime system and OpenMPI communication library [13], [4]

7.10. Interprocedural Collectives Verification
The advent to exascale requires more scalable and efficient techniques to help developers to locate, analyze
and correct errors in parallel applications. PARallel COntrol flow Anomaly CHecker (PARCOACH) is a
framework that detects the origin of collective errors in applications using MPI and/or OpenMP. In MPI,
such errors include collective operations mismatches. In OpenMP, a collective error can be a barrier not called
by all tasks in a team. We have developed an extension of PARCOACH which improves its collective errors
detection [11]. The new analysis is more precise and accurate than the previous one on different benchmarks
and real applications.

7.11. Profile-Guided Scope-Based Data Allocation Method
The complexity of High Performance Computing nodes memory system increases in order to challenge
application growing memory usage and increasing gap between computation and memory access speeds. As
these technologies are just being introduced in HPC supercomputers no one knows if it is better to manage
them with hardware or software solutions. Thus both are being studied in parallel. For both solutions, the
problem consists in choosing which data to store on which memory at any time.

In this context, we propose a linear formulation of the data allocation problem. Moreover, we propose a new
profile- guided scope-based approach which reduces the data allocation problem complexity, thus enhancing
the precision of state of the art analyzes. Finally we have implemented our method in a framework made of
GCC plugins, dynamic libraries and python scripts, allowing to test the method on several benchmarks. We
have evaluated our method on an INTEL Knight’s Landing processor. To this aim we have run LULESH,
HydroMM, two hydrodynamic codes, and MiniFE, a finite element mini application. We have compared our
framework performance over these codes to several straight- forward solutions: MCDRAM as a cache, in
hybrid mode, in flat mode using numactl command and existing AutoHBW dynamic library [7]

7.12. Lightweight Containerization of Computing Resources
SwLoc is a library for flexible and generic partitioning of computing resources (CPU, accelerators). It
allows applications to create contexts (i.e. resource partitions) and run parallel codes inside such lightweight
containers. Many libraries developed using OpenMP, Pthreads or Intel TBB can ben executed concurrently
with little or no modification. SwLoc also features dynamic context resizing capabilities that enables parallel
applications to perform resource negotiation.

7.13. Adaptive Partitioning for Iterated Sequences of Irregular OpenCL
Kernels
OpenCL defines a common parallel programming language for CPU and GPU devices, although writing tasks
adapted to the devices, managing communication and load-balancing issues are left to the programmer. We
propose [10] a static/dynamic approach for the execution of an iterated sequence of data-dependent kernels
on a multi-device heterogeneous architecture. The method allows to automatically distribute irregular kernels
onto multiple devices and tackles, without training, both load balancing and data transfers issues coming from
hardware heterogeneity, load imbalance within the application itself and load variations between repeated
executions of the sequence. Our evaluation on some benchmarks and a complex N-body application, SOTL,
simulating the electromagnetic Coulomb force applied on particles, show the interest of our approach.

16 Activity Report INRIA 2018

7.14. A compiler front-end for OpenMP’s variants
OpenMP 5.0 introduced the concept of variant: a directive which can be used to indicate that a function is a
variant of another existing base function, in a specific context (eg: foo_gpu_nvidia could be declared as a
variant of foo, but only when executing on specific NVidia hardware).

In the context of PRACE-5IP, we want to leverage this construct to be able to take advantage of the StarPU
heterogeneous scheduler through the interoperability layer between OpenMP and StarPU.

We started this work by implementing the necessary changes in the Clang front-end to support OpenMP’s
variant.

7.15. Combining Task-based Parallelism and Adaptive Mesh Refinement
Techniques in Molecular Dynamics Simulations
Modern parallel architectures require applications to generate massive parallelism so as to feed their large
number of cores and their wide vector units. We have revisited the extensively studied classical Molecular
Dynamics N-body problem in the light of these hardware constraints. We have introduced Adaptive Mesh
Refinement techniques to store particles in memory, and to optimize the force computation loop using multi-
threading and vectorization-friendly data structures [14]. Our design is guided by the need for load balancing
and adaptivity raised by highly dynamic particle sets, as typically observed in simulations of strong shocks
resulting in material micro-jetting. We have analyzed performance results on several simulation scenarios,
over 512 nodes equipped by Intel Xeon Phi Knights Landing (KNL) processors. Performance obtained with
our OpenMP implementation outperforms state-of-the-art implementations (LAMMPS) on both steady and
micro-jetting particles simulations. In the latter case, our implementation is 1.38 times faster on KNL.

These results were obtained in the context of joint work between Inria and CEA/DAM.

8. Partnerships and Cooperations

8.1. Regional Initiatives
HPC Cloud Computing

Participants: Olivier Aumage, Nathalie Furmento, Samuel Thibault.
Other participants : David Auber, Olivier Beaumont, Lionel Eyraud-Dubois, Gérald Point
Abstract: The goal of this project is to gather teams from the HPC and Big Data communi-
ties to work at the intersection between these domains. We will focus on how StarPU can
be adapted to achieve good performances on Big Data platforms.

8.2. National Initiatives
ELCI The ELCI PIA project (Software Environment for HPC) aims to develop a new generation of

software stack for supercomputers, numerical solvers, runtime and programming development
environments for HPC simulation. The ELCI project also aims to validate this software stack by
showing its capacity to offer improved scalability, resilience, security, modularity and abstraction
on real applications. The coordinator is Bull, and the different partners are CEA, Inria, SAFRAN,
CERFACS, CNRS CORIA, CENAERO, ONERA, UVSQ, Kitware and AlgoTech.

8.2.1. ANR
ANR SOLHAR (http://solhar.gforge.inria.fr/doku.php?id=start).

ANR MONU 2013 Program, 2013 - 2018 (36 months extended)
Identification: ANR-13-MONU-0007
Coordinator: Inria Bordeaux/LaBRI

http://solhar.gforge.inria.fr/doku.php?id=start

Project-Team STORM 17

Other partners: CNRS-IRIT, Inria-LIP Lyon, CEA/CESTA, EADS-IW
Abstract: This project aims at studying and designing algorithms and parallel programming
models for implementing direct methods for the solution of sparse linear systems on
emerging computers equipped with accelerators. The ultimate aim of this project is to
achieve the implementation of a software package providing a solver based on direct
methods for sparse linear systems of equations. Several attempts have been made to
accomplish the porting of these methods on such architectures; the proposed approaches
are mostly based on a simple offloading of some computational tasks (the coarsest grained
ones) to the accelerators and rely on fine hand-tuning of the code and accurate performance
modeling to achieve efficiency. This project proposes an innovative approach which relies
on the efficiency and portability of runtime systems, such as the StarPU tool developed in
the runtime team (Bordeaux). Although the SOLHAR project will focus on heterogeneous
computers equipped with GPUs due to their wide availability and affordable cost, the
research accomplished on algorithms, methods and programming models will be readily
applicable to other accelerator devices such as ClearSpeed boards or Cell processors.

ANR EXACARD
AAPG ANR 2018 (42 months)
Coordinator: Yves Coudière (Carmen) Inria Bordeaux
Abstract: Cardiac arrhythmia affect millions of patients and cause 300,000 deaths each
year in Europe. Most of these arrhythmia are due to interaction between structural and
electrophysiological changes in the heart muscle. A true understanding of these phenomena
requires numerical simulations at a much finer resolution, and larger scale, than currently
possible. Next-generation, heterogeneous, high-performance computing (HPC) systems
provide the power for this. But the large scale of the computations pushes the limits of
current runtime optimization systems, and together with task-based parallelism, prompts
for the development of dedicated numerical methods and HPC runtime optimizations.
With a consortium including specialists of these domains and cardiac modeling, we will
investigate new task-based optimization techniques and numerical methods to utilize these
systems for cardiac simulations at an unprecedented scale, and pave the way for future use
cases.

8.2.2. ADT - Inria Technological Development Actions
ADT SwLoc (http://swloc.gforge.inria.fr/)

Participants: Raymond Namyst, Pierre-André Wacrenier, Andra Hugo, Brice Goglin, Corentin
Salingue.

Inria ADT Campaign 2017, 10/2017 - 9/2019 (24 months)
Coordinator: Raymond Namyst
Abstract: The Inria action ADT SwLoc is aiming at developing a library allowing dynamic
flexible partitioning of computing resources in order to execute parallel regions concur-
rently inside the same processes.

ADT Gordon
Participants: Denis Barthou, Nathalie Furmento, Samuel Thibault, Pierre-André Wacrenier.

Inria ADT Campaign 2018, 11/2018 - 11/2020 (24 months)
Coordinator: Emmanuel Jeannot (Tadaam)
Other partners: HiePACS, PLEIADE, Tadaam (Inria Bordeaux)
Abstract: Teams HiePACS, Storm and Tadaam develop each a brick of an HPC software
stack, namely solver, runtime, and communication library. The goal of the Gordon project
is to consolidate the HPC stack, to improve interfaces between each brick, and to target a
better scalability. The bioinformatics application involved in the project has been selected
so as to stress the underlying systems.

http://swloc.gforge.inria.fr/

18 Activity Report INRIA 2018

ADT AFF3CT Matlab
Participants: Denis Barthou, Olivier Aumage, Adrien Cassagne.

Inria ADT Campaign 2018, 12/2018 - 12/2019 (12 months)
Coordinator: Denis Barthou
Other partners: C.Jego and C.Leroux (IMS lab, U.Bordeaux)
Abstract: AFF3CT is a toolchain for designing, validation and experimentation of new
Error Correcting codes. This toolchain is written in C++, and this constitutes a difficulty
for many industrial users, who are mostly electronicians. The goal of this ADT is to widen
the number of possible users by designing a Matlab and Python interface for AFF3CT, in
collaboration with existing users, and proposing a parallel framework in OpenMP.

8.2.3. IPL - Inria Project Lab
HAC-SPECIS (High-performance Application and Computers, Studying PErformance and Correctness

In Simulation)
Participants: Samuel Thibault, Luka Stanisic, Emmanuelle Saillard, Olivier Aumage, Idriss Daoudi.

Inria IPL 2016 - 2020 (48 months)
Coordinator: Arnaud Legrand (team Polaris, Inria Rhône Alpes)

Since June 2016, the team is participating to the HAC-SPECIS http://hacspecis.gforge.inria.fr/ Inria
Project Lab (IPL). This national initiative aims at answering methodological needs of HPC appli-
cation and runtime developers and allowing to study real HPC systems both from the correctness
and performance point of view. To this end, it gathers experts from the HPC, formal verification and
performance evaluation community.

HPC-BigData (High Performance Computing and Big Data)
Participant: Samuel Thibault.

Inria IPL 2018 - 2022 (48 months)
Coordinator: Bruno Raffin (team DataMove, Inria Rhône Alpes)

Since June 2018, the team is participating to the HPC-BigData https://project.inria.fr/hpcbigdata/
Inria Project Lab (IPL). The goal of this HPC-BigData IPL is to gather teams from the HPC, Big
Data and Machine Learning (ML) areas to work at the intersection between these domains. Research
is organized along three main axes: high performance analytics for scientific computing applications,
high performance analytics for big data applications, infrastructure and resource management.

8.3. European Initiatives
8.3.1. H2020 Projects

INTERTWinE
– Title: Programming Model INTERoperability ToWards Exascale
– Program: H2020
– Duration: October 2015 - October 2018
– Coordinator: EPCC
– Inria contact: Olivier Aumage
– Partners:

* Barcelona Supercomputing Center - Centro Nacional de Supercomputacion
(Spain)

* Deutsches Zentrum für Luft - und Raumfahrt Ev (Germany)
* Fraunhofer Gesellschaft Zur Forderung Der Angewandten Forschung Ev (Ger-

many)

http://hacspecis.gforge.inria.fr/
https://project.inria.fr/hpcbigdata/

Project-Team STORM 19

* Institut National de Recherche en Informatique et en Automatique (France)

* Kungliga Tekniska Hoegskolan (Sweden)

* T-Systems Solutions for Research (Germany)

* The University of Edinburgh (United Kingdom)

* Universitat Jaume I de Castellon (Spain)

* The University of Manchester (United Kingdom)

This project addresses the problem of programming model design and implementation for the Exascale.
The first Exascale computers will be very highly parallel systems, consisting of a hierarchy of architectural
levels. To program such systems effectively and portably, programming APIs with efficient and robust
implementations must be ready in the appropriate timescale. A single, “silver bullet” API which addresses
all the architectural levels does not exist and seems very unlikely to emerge soon enough. We must therefore
expect that using combinations of different APIs at different system levels will be the only practical solution in
the short to medium term. Although there remains room for improvement in individual programming models
and their implementations, the main challenges lie in interoperability between APIs. It is this interoperability,
both at the specification level and at the implementation level, which this project seeks to address and to further
the state of the art. INTERTWinE brings together the principal European organisations driving the evolution
of programming models and their implementations. The project will focus on seven key programming APIs:
MPI, GASPI, OpenMP, OmpSs, StarPU, QUARK and PaRSEC, each of which has a project partner with
extensive experience in API design and implementation. Interoperability requirements, and evaluation of
implementations will be driven by a set of kernels and applications, each of which has a project partner with
a major role in their development. The project will implement a co-design cycle, by feeding back advances in
API design and implementation into the applications and kernels, thereby driving new requirements and hence
further advances.

Exa2PRO

– Title: Enhancing Programmability and boosting Performance Portability for Exascale
Computing systems

– Program: H2020-FETHPC

– Duration: May 2018 - April 2021

– Coordinator: ICCS

– Inria contact: Samuel Thibault

– Partners:

* Institute of Communications and Computer Systems (ICCS) (Greece)

* Linköpiung University (LIU) (Sweden)

* Centre for Research and Technology Hellas (CERTH) (Greece)

* Institut National de Recherche en Informatique et en Automatique (Inria)
(France)

* Maxeler Technologies Limited (MAX) (UK)

* Forschungszentrum Jülich (JUELICH) (Germany)

* Centre National de la Rcherche Scientifique (CNRS) (France)

20 Activity Report INRIA 2018

The vision of EXA2PRO is to develop a programming environment that will enable the productive deployment
of highly parallel applications in exascale computing systems. EXA2PRO programming environment will
integrate tools that will address significant exascale challenges. It will support a wide range of scientific
applications, provide tools for improving source code quality, enable efficient exploitation of exascale
systems’ heterogeneity and integrate tools for data and memory management optimization. Additionally, it will
provide various fault-tolerance mechanisms, both user-exposed and at runtime system level and performance
monitoring features. EXA2PRO will be evaluated using 4 use cases from 4 different domains, which will be
deployed in JUELICH supercomputing center. The use cases will leverage the EXA2PRO tool-chain and we
expect:

• Increased applications performance based on EXA2PRO optimization tools (data and memory
management)

• Efficient exploitation of heterogeneity by the applications that will allow the evaluation of more
complex problems.

• Identification of trade-offs between design qualities (source code maintainability/reusability) and
run-time constraints (performance/energy consumption).

• Evaluation of various fault-tolerance mechanisms for applications with different characteristics.

EXA2PRO outcome is expected to have major impact in a) the scientific and industrial community that focuses
on application deployment in supercomputing centers: EXA2PRO environment will allow efficient application
deployment with reduced effort. b) on application developers of exascale application: EXA2PRO will provide
tools for improving source code maintainability/ reusability, which will allow application evaluation with
reduced developers’ effort. c) on the scientific community and the industry relevant to the EXA2PRO use
cases. At least two of the EXA2PRO use cases will have significant impact to the CO2 capture and to the
Supercapacitors industry.

8.3.2. Collaborations in European Programs, Except FP7 & H2020
PRACE-5IP

– Title: PRACE 5th Implementation Phase
– Program: PRACE
– Duration: 2017 - 2019
– Coordinator: PRACE
– Inria contact for team STORM: Olivier Aumage
– Abstract: The objectives of PRACE-5IP are to build on and seamlessly continue the

successes of PRACE and start new innovative and collaborative activities proposed by
the consortium. These include:

* assisting the transition to PRACE2 including analysis of TransNational Access;
* strengthening the internationally recognised PRACE brand;
* continuing and extend advanced training which so far provided more than 18 800

persontraining days;
* preparing strategies and best practices towards Exascale computing;
* coordinating and enhancing the operation of the multi-tier HPC systems and

services;
* supporting users to exploit massively parallel systems and novel architectures.

A high level Service Catalogue is provided. The proven project structure will be used to
achieve each of the objectives in 6 dedicated work packages. The activities are designed to
increase Europe’s research and innovation potential especially through:

* seamless and efficient Tier-0 services and a pan-European HPC ecosystem
including national capabilities;

Project-Team STORM 21

* promoting take-up by industry and new communities and special offers to SMEs;
* implementing a new flexible business model for PRACE 2;
* proposing strategies for deployment of leadership systems;
* collaborating with the ETP4HPC, CoEs and other European and international

organisations on future architectures, training, application support and policies.

8.4. International Research Visitors
• Costin Iancu, LBNL (USA), from Oct. 8 to Oct. 12, 2018

8.4.1. Internships
• Dana Akhmetova, KTH (Sweden), PhD Internship, from Feb. 18, 2018 to Mar. 24, 2018, within the

context of H2020 INTERTWinE.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific Events Organisation
9.1.1.1. General Chair, Scientific Chair

• Olivier Aumage, hosting of the OpenMP Language Committee week at Inria Bordeaux, May 14-18,
30 participants.

• Raymond Namyst, Organization of the “Inria National Scientific Days” in Bordeaux, June 27-29,
250 participants.

9.1.2. Scientific Events Selection
9.1.2.1. Member of the Conference Program Committees

• Olivier Aumage: Cluster 2018, ICPP 2018, SC Asia 2018.
• Emmanuelle Saillard: COMPAS 2018, ISC HPC 2018 (poster committee), SC18 (workshop com-

mittee).
• Samuel Thibault: HCW, P3MA’18
• Denis Barthou: CF 2018
• Raymond Namyst: ISC 2018, IPDPS 2018, SC 2018, Euro-MPI 2018, SC Asia 2018.

9.1.2.2. Reviewer
• Olivier Aumage: Cluster, HCW, ICPP, PDP, PDSEC, SC Asia.
• Emmanuelle Saillard: COMPAS, ISC HPC, SC.
• Samuel Thibault: HCW

9.1.3. Journal
9.1.3.1. Member of the Editorial Boards

• Olivier Aumage: CCPE special issue.

9.1.3.2. Reviewer - Reviewing Activities
• Olivier Aumage: CCPE, IJPEDS, JPDC
• Samuel Thibault: JPDC, TPDS, IJHPCA

9.1.4. Invited Talks
• Olivier Aumage: SIAMPP (Tokyo), EPCC (Edinburgh), COMPAS (Toulouse), HPCS (Orléans).

22 Activity Report INRIA 2018

• Emmanuelle Saillard: Journées GDR-GPL (Grenoble), Journée LaMHA (Paris).
• Samuel Thibault: ROMA seminar (Lyon), COMPAS (Toulouse), Task-based seminar (Uppsala)

9.1.5. Scientific Expertise
• Olivier Aumage: ANR (1 project in phase 2).
• Samuel Thibault: ANR (1 project in phase 2).

9.1.6. Research Administration
• Olivier Aumage: Permanent Contact for Team STORM.
• Nathalie Furmento: Member of the Commission de Développement Technologique at Inria Bordeaux

Sud-Ouest
• Nathalie Furmento: Member of the technical team for PlaFRIM, Federative Platform for Research

in Computer Science and Mathematics
• Nathalie Furmento: Member of the HCERES evaluation committee for the IRIF laboratory
• Nathalie Furmento: Member of the selection committee for an engineer position at the Université de

Bordeaux

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

• Engineering School: Olivier Aumage, High Performance Communication Libraries, 20HeTD, M2,
ENSEIRB-MATMECA.

• Engineering School: Olivier Aumage, Languages and Supports for Parallelism, 14HeTD, M2,
ENSEIRB-MATMECA.

• Engineering School: Emmanuelle Saillard, Introduction to Algorithms, 16HeCI, L3, ENSEIRB-
MATMECA.

• Engineering School: Emmanuelle Saillard, Tree Structure, 16HeCI, L3, ENSEIRB-MATMECA.
• Engineering School: Adrien Cassagne, Projet d’algorithmique et de programmation, 30HeTD, L3,

ENSEIRB-MATMECA.
• Engineering School: Adrien Cassagne, Introduction aux réseaux, 15HeTD, L3, ENSEIRB-

MATMECA.
• Engineering School: Adrien Cassagne, Applications TCP/IP, 15HeTD, L3, ENSEIRB-MATMECA.
• Engineering School: Philippe Virouleau, Programmation Impérative, 18HeTD, L3, ENSEIRB-

MATMECA.
• Engineering School: Philippe Virouleau, Projet d’algorithmique et de programmation, 25HeTD, L3,

ENSEIRB-MATMECA.
• Licence: Samuel Thibault is responsible for the computer science topic of the first university year.
• Licence: Samuel Thibault is responsible for the new Licence Pro ADSILLH (Administration et

Développeur de Systèmes Informatiques à base de Logiciels Libres et Hybrides)
• Licence: Samuel Thibault, Introduction to Computer Science, 32HeTD, L1, University of Bordeaux.
• Licence: Samuel Thibault, Networking, 51HeTD, Licence Pro, University of Bordeaux.
• Engineering School: Denis Barthou is the head of the computer science teaching department of

ENSEIRB-MATMECA (300 students, 20 faculty, 120 external teachers)
• Engineering School: Denis Barthou, Architectures (L3), Parallel Architectures (M2), Procedural

Generation for 3D Games (M2), C/Algorithm projects (L3)
• Licence: Marie-Christine Counilh, Introduction to Computer Science (64HeTD), Introduction to C

programming (52HeTD), L1, University of Bordeaux.

Project-Team STORM 23

• Master MIAGE: Marie-Christine Counilh, Object oriented programming in Java (30HeTD), M1,
University of Bordeaux.

9.2.2. Supervision
• PhD in progress: Ksander Ejjaaouani, Novembre 2016, Olivier Aumage, Michel Mehrenberger,

Julien Bigot.
• PhD in progress: Adrien Cassagne, “Parallelization and Code Generation for Error Correcting Codes

from Factor Graphs” October 2017, Olivier Aumage, Denis Barthou, Christophe Jego, Camille
Leroux.

• PhD in progress: Idriss Daoudi, October 2018, Olivier Aumage, Thierry Gautier.
• PhD in progress: Romain Lion, October 2018, Samuel Thibault
• PhD in progress: Pierre Huchant, “Static analysis and dynamic adaptation of parallelism”, oct. 2015,

supervised by Marie-Christine Counilh, Denis Barthou.
• PhD in progress: Hugo Brunie, “Optimization of data allocations for high performance applications

on heterogeneous memory architectures”, oct. 2015, supervised by Julien Jaeger (CEA), Patrick
Carribault (CEA) and Denis Barthou.

• Internship: Antoine Tirel, June 2018 - Sept. 2018, Emmanuelle Saillard

9.2.3. Juries
• Olivier Aumage: Ph.D defense of Adrián Castelló Gimeno at the University of Castellon Jaume I,

(reviewer).
• Samuel Thibault: Ph.D defense of Germán Ceballos at the University of Uppsala (opponent).
• Denis Barthou: Ph.D defense of Van Long TRAN at Institut Telecom Sud-Paris, University Paris-

Saclay (reviewer), Ph.D defense of Arnaud Durocher at the University of Bordeaux (president)

9.3. Popularization
9.3.1. Interventions

• Olivier Aumage, Emmanuelle Saillard, Denis Barthou: Welcoming of the general public for the open
days at the Inria research center, October 2018.

• Emmanuelle Saillard, Corentin Salingue: Fête de la Science, Inria, October 2018.
• Emmanuelle Saillard, Corentin Salingue: Semaine des maths, Lycée Saint Genès, March 2018.
• Corentin Salingue: Printemps de la mixité, Inria, April 2018.
• Corentin Salingue: Welcoming of schoolchildren: internship of Matthieu Vigier-Lafosse, January

2018.

9.3.2. Internal action
• Emmanuelle Saillard: DevDays, October 2018
• Denis Barthou: Unithé ou café, June 2018

10. Bibliography
Publications of the year

Doctoral Dissertations and Habilitation Theses

[1] S. THIBAULT. On Runtime Systems for Task-based Programming on Heterogeneous Platforms, Université de
Bordeaux, December 2018, Habilitation à diriger des recherches, https://hal.inria.fr/tel-01959127

https://hal.inria.fr/tel-01959127

24 Activity Report INRIA 2018

Articles in International Peer-Reviewed Journals

[2] O. BEAUMONT, L. EYRAUD-DUBOIS, S. KUMAR. Fast Approximation Algorithms for Task-Based Runtime
Systems, in "Concurrency and Computation: Practice and Experience", September 2018, vol. 30, no 17
[DOI : 10.1002/CPE.4502], https://hal.inria.fr/hal-01878606

[3] T. COJEAN, A. GUERMOUCHE, A. HUGO, R. NAMYST, P.-A. WACRENIER. Resource aggregation for task-
based Cholesky Factorization on top of modern architectures, in "Parallel Computing", October 2018, This
paper is submitted for review to the Parallel Computing special issue for HCW and HeteroPar 16 workshops,
https://hal.inria.fr/hal-01957086

[4] V. GARCIA PINTO, L. M. SCHNORR, L. STANISIC, A. LEGRAND, S. THIBAULT, V. DANJEAN. A
Visual Performance Analysis Framework for Task-based Parallel Applications running on Hybrid Clus-
ters, in "Concurrency and Computation: Practice and Experience", April 2018, vol. 30, no 18, pp. 1-31
[DOI : 10.1002/CPE.4472], https://hal.inria.fr/hal-01616632

[5] A. GHAFFARI, M. LEONARDON, A. CASSAGNE, C. LEROUX, Y. SAVARIA. Toward High-Performance
Implementation of 5G SCMA Algorithms, in "IEEE Access", January 2019, vol. 7, pp. 10402-10414
[DOI : 10.1109/ACCESS.2019.2891597], https://hal.archives-ouvertes.fr/hal-01977885

[6] M. LEONARDON, A. CASSAGNE, C. LEROUX, C. JEGO, L.-P. HAMELIN, Y. SAVARIA. Fast and
Flexible Software Polar List Decoders, in "Journal of Signal Processing Systems", January 2019
[DOI : 10.1007/S11265-018-1430-3], https://hal.inria.fr/hal-01987848

International Conferences with Proceedings

[7] H. BRUNIE, J. JAEGER, P. CARRIBAULT, D. BARTHOU. Profile-Guided Scope-Based Data Allocation Method,
in "MEMSYS 2018 - International Symposium on Memory Systems", Alexandria, United States, October
2018, https://hal.inria.fr/hal-01897917

[8] A. CASSAGNE, O. AUMAGE, D. BARTHOU, C. LEROUX, C. JEGO. MIPP: a Portable C++ SIMD
Wrapper and its use for Error Correction Coding in 5G Standard, in "The 4th Workshop on Program-
ming Models for SIMD/Vector Processing (WPMVP 2018)", Vienna, Austria, ACM Press, February 2018
[DOI : 10.1145/3178433.3178435], https://hal.inria.fr/hal-01888010

[9] K. EJJAAOUANI, O. AUMAGE, J. BIGOT, M. MEHRENBERGER, H. MURAI, M. NAKAO, M. SATO. InKS,
a Programming Model to Decouple Performance from Algorithm in HPC Codes, in "Repara 2018 - 4th
International Workshop on Reengineering for Parallelism in Heterogeneous Parallel Platforms", Turin, Italy,
August 2018, pp. 1-12, https://hal.archives-ouvertes.fr/hal-01890132

[10] P. HUCHANT, D. BARTHOU, M.-C. COUNILH. Adaptive Partitioning for Iterated Sequences of Irregular
OpenCL Kernels, in "SBAC-PAD - 30th International Symposium on Computer Architecture and High Per-
formance Computing", Lyon, France, September 2018 [DOI : 10.1109/SBAC-PAD.2018.00051], https://
hal.archives-ouvertes.fr/hal-01888216

[11] P. HUCHANT, E. SAILLARD, D. BARTHOU, H. BRUNIE, P. CARRIBAULT. PARCOACH Extension for a Full-
Interprocedural Collectives Verification, in "Second International Workshop on Software Correctness for HPC
Applications", Dallas, United States, November 2018, https://hal.inria.fr/hal-01937316

https://hal.inria.fr/hal-01878606
https://hal.inria.fr/hal-01957086
https://hal.inria.fr/hal-01616632
https://hal.archives-ouvertes.fr/hal-01977885
https://hal.inria.fr/hal-01987848
https://hal.inria.fr/hal-01897917
https://hal.inria.fr/hal-01888010
https://hal.archives-ouvertes.fr/hal-01890132
https://hal.archives-ouvertes.fr/hal-01888216
https://hal.archives-ouvertes.fr/hal-01888216
https://hal.inria.fr/hal-01937316

Project-Team STORM 25

[12] E. SAILLARD, K. SEN, W. LAVRIJSEN, C. IANCU. Maximizing Communication Overlap with Dynamic
Program Analysis, in "International Conference on High Performance Computing in Asia-Pacific Region",
Tokyo, Japan, January 2018, https://hal.inria.fr/hal-01937407

National Conferences with Proceedings

[13] V. G. PINTO, L. MELLO SCHNORR, A. LEGRAND, S. THIBAULT, L. STANISIC, V. DANJEAN. Detecção de
Anomalias de Desempenho em Aplicações de Alto Desempenho baseadas em Tarefas em Clusters Híbridos,
in "WPerformance 2018 - 17º Workshop em Desempenho de Sistemas Computacionais e de Comunicação",
Natal, Brazil, July 2018, pp. 1-14, https://hal.inria.fr/hal-01842038

Conferences without Proceedings

[14] R. PRAT, L. COLOMBET, R. NAMYST. Combining Task-based Parallelism and Adaptive Mesh Refinement
Techniques in Molecular Dynamics Simulations, in "ICPP18, International Conference on Parallel Process-
ing", Eugene, United States, August 2018 [DOI : 10.1145/3225058.3225085], https://hal.archives-ouvertes.
fr/hal-01833266

https://hal.inria.fr/hal-01937407
https://hal.inria.fr/hal-01842038
https://hal.archives-ouvertes.fr/hal-01833266
https://hal.archives-ouvertes.fr/hal-01833266

