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      Overall Objectives

        Overall Objectives

        The general objective of the Toccata project is to promote formal
specification and computer-assisted proof in the development of
software that requires high assurance in terms of safety and
correctness with respect to the intended behavior of the software.

        
        Context

        The importance of software in critical systems increased a lot in the
last decade. Critical software appears in various application domains like
transportation (e.g., aviation, railway), communication (e.g., smartphones),
banking, etc. The number of tasks performed by software
is quickly increasing, together with the number of lines of code
involved. Given the need of high assurance of safety in the functional
behavior of such applications, the need for automated
(i.e., computer-assisted) methods and techniques to bring guarantee of
safety became a major challenge. In the past and at present, the most
widely used approach to check safety of software is to apply heavy
test campaigns. These campaigns take a large part of the costs of
software development, yet they cannot ensure that all the bugs are caught.

        Generally speaking, software verification approaches pursue three
goals: (1) verification
should be sound, in the sense that no bugs should be missed, (2)
verification should not produce false alarms, or as few as possible
(3) it should be as automated as possible.
Reaching all three goals at the same time is a challenge. A large class of
approaches emphasizes goals (2) and (3): testing, run-time
verification, symbolic execution, model checking, etc. Static
analysis, such as abstract interpretation, emphasizes goals (1) and
(3). Deductive verification emphasizes (1) and (2).
The Toccata project is mainly interested in exploring the deductive
verification approach, although we also consider the others in some
cases.

        In the past decade, there has been significant progress made in the
domain of deductive program verification. They are emphasized by some
success stories of application of these techniques on industrial-scale
software. For example, the Atelier B system was used to develop part of
the embedded software of the Paris metro line 14 [46] and
other railroad-related systems; a formally proved C compiler was
developed using the Coq proof assistant [112]; Microsoft's
hypervisor for highly secure virtualization was verified using
VCC [85] and the Z3 prover [133]; the
L4-verified project developed a formally verified micro-kernel with
high security guarantees, using analysis tools on top of the
Isabelle/HOL proof assistant [108]. Another sign of
recent progress is the emergence of deductive verification
competitions (e.g., VerifyThis [2], VScomp [99]).

        Finally, recent trends in the industrial practice
for development of critical software is to require more and more
guarantees of safety, e.g., the upcoming DO-178C standard for
developing avionics software adds to the former DO-178B the use of
formal models and formal methods. It also emphasizes the need for
certification of the analysis tools involved in the process.

        
        Deductive verification

        There are two main families of approaches for deductive
verification. Methods in the first family build on top of mathematical
proof assistants (e.g., Coq, Isabelle) in which both the model and the
program are encoded; the proof that the program meets its
specification is typically conducted in an interactive way using the
underlying proof construction engine. Methods from the second family
proceed by the design of standalone tools taking as input a program in
a particular programming language (e.g., C, Java) specified with a
dedicated annotation language (e.g., ACSL [45],
JML [68]) and automatically producing a set of
mathematical formulas (the verification conditions) which are
typically proved using automatic provers (e.g., Z3,
Alt-Ergo [48], CVC3 [44], CVC4).

        The first family of approaches usually offers a higher level of assurance than
the second, but also demands more work to perform the proofs (because
of their interactive nature) and makes them less easy to adopt by
industry. Moreover, they do not allow to directly analyze a program
written in a mainstream programming language like Java or C.
The second kind of approaches has benefited in the past years from the
tremendous progress made in SAT and SMT solving techniques, allowing
more impact on industrial practices, but suffers from a lower level of
trust: in all parts of the proof chain (the model of the input
programming language, the VC generator, the back-end automatic prover),
potential errors may appear, compromising the guarantee offered. Moreover,
while these approaches are applied to mainstream languages, they usually
support only a subset of their features.
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        Introduction

        In the former ProVal project, we have been working on the design of
methods and tools for deductive verification of programs. One of our
original skills was the ability to conduct proofs by using automatic
provers and proof assistants at the same time, depending on the
difficulty of the program, and specifically the difficulty of each
particular verification condition. We thus believe that we are in a good
position to propose a bridge between the two families of approaches of
deductive verification presented above.
Establishing this bridge is one of the goals of the Toccata project:
we want to provide methods and tools for deductive program
verification that can offer both a high amount of proof automation
and a high guarantee of validity. Toward this objective, a new axis
of research was proposed: the development of certified analysis
tools that are themselves formally proved correct.

        The reader should be aware that the word “certified”
in this scientific programme means “verified by a formal specification
and a formal proof that the program meets this specification”. This
differs from the standard meaning of “certified” in an industrial
context where it means a conformance to some rigorous process and/or
norm. We believe this is the right term to use, as it was used for the
Certified Compiler project [112], the new
conference series Certified Programs and Proofs, and more
generally the important topics of proof certificates.

        In industrial applications, numerical calculations are very common
(e.g. control software in transportation). Typically they involve
floating-point numbers. Some of the members of Toccata have an
internationally recognized expertise on deductive program verification
involving floating-point computations. Our past work includes a new
approach for proving behavioral properties of numerical C programs
using Frama-C/Jessie [42], various examples of
applications of that approach [65], the use of the Gappa
solver for proving numerical algorithms [132], an
approach to take architectures and compilers into account when dealing
with floating-point programs [66], [123]. We also
contributed to the Handbook of Floating-Point Arithmetic [122].
A representative case study is the analysis
and the proof of both the method error and the rounding error of a
numerical analysis program solving the one-dimension acoustic wave
equation [3] [56]. Our
experience led us to a conclusion that verification of numerical
programs can benefit a lot from combining automatic and interactive
theorem proving [59], [65]. Certification
of numerical programs is the other main axis of Toccata.

        Our scientific programme in structured into four objectives:

        
          	
             deductive program verification;

          

          	
             automated reasoning;

          

          	
             formalization and certification of languages, tools and systems;

          

          	
             proof of numerical programs.

          

        

        We detail these objectives below.
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        Deductive Program Verification

        Permanent researchers: A. Charguéraud, S. Conchon, J.-C. Filliâtre,
C. Marché, G. Melquiond, A. Paskevich
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	1. The Why3 ecosystem
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        The Why3 Ecosystem

        This ecosystem is central in our work; it is displayed
on Figure 1. The boxes in red background correspond to
the tools we develop in the Toccata team.

        
          	
             The initial design of Why3 was presented in 2012
[51], [98]. In the past years, the
main improvements concern the specification language (such as
support for higher-order logic
functions [72]) and the support for
provers. Several new interactive provers are now supported: PVS 6 (used at NASA),
Isabelle2014 (planned to be used in the context of Ada program via
Spark), and Mathematica. We also added support for new automated provers: CVC4, Metitarski, Metis,
Beagle, Princess, and Yices2. More technical improvements are the design of
a Coq tactic to call provers via Why3 from Coq, and the design of a
proof session mechanism [50].
Why3 was presented during several invited
talks [97], [96], [93], [94].

          

          	
             At the level of the C front-end of Why3 (via Frama-C), we have
proposed an approach to add a notion of refinement on C
programs [131], and an approach to reason about
pointer programs with a standard logic, via separation predicates[49]

          

          	
             The Ada front-end of Why3 has mainly been developed during the past three
years, leading to the release of SPARK2014 [107] (http://www.spark-2014.org/)

          

          	
             In collaboration with J. Almeida, M. Barbosa, J. Pinto, and B. Vieira (University
do Minho, Braga, Portugal), J.-C. Filliâtre has developed a method for
certifying programs involving cryptographic methods. It uses Why
as an intermediate language [41].

          

          	
             With M. Pereira and S. Melo de Sousa (Universidade da Beira
Interior, Covilhã, Portugal), J.-C. Filliâtre has developed an
environment for proving ARM assembly code. It uses Why3 as an
intermediate VC generator. It was presented at the Inforum
conference [126] (best student paper).

          

        

        
        Concurrent Programming

        
          	
             S. Conchon and A. Mebsout, in collaboration with F. Zaïdi (VALS
team, LRI), A. Goel and S. Krstić (Strategic Cad Labs, INTEL) have
proposed a new model-checking approach for verifying safety
properties of array-based systems. This is a syntactically
restricted class of parametrized transition systems with states
represented as arrays indexed by an arbitrary number of
processes. Cache coherence protocols and mutual exclusion algorithms
are typical examples of such systems. It was first presented at CAV
2012 [5] and detailed
further [83]. It was applied to the
verification of programs with fences [79].
The core algorithm has been extended with a mechanism for inferring
invariants. This new algorithm, called BRAB, is able to
automatically infer invariants strong enough to prove industrial
cache coherence protocols. BRAB computes over-approximations of
backward reachable states that are checked to be unreachable in a
finite instance of the system. These approximations (candidate
invariants) are then model-checked together with the original safety
properties. Completeness of the approach is ensured by a mechanism
for backtracking on spurious traces introduced by too coarse
approximations [80], [118].

          

          	
             In the context of the ERC DeepSea project (Arthur
Charguéraud is involved 40% of his time in the ERC DeepSea
project, which is hosted at Inria Paris Rocquencourt (team
Gallium).),
A. Charguéraud and his co-authors have developed
a unifying semantics for various different paradigms of parallel
computing (fork-join, async-finish, and futures),
and published a conference paper describing this work
[40].
Besides, A. Charguéraud and his co-authors have polished
their previous work on granularity control for parallel algorithms
using user-provided complexity functions, and produced a
journal article [39].

          

        

        
        Case Studies

        
          	
             To provide an easy access to the case studies that we develop using
Why3 and its front-ends, we have published a gallery of verified
programs on our web page
http://toccata.lri.fr/gallery/. Part of these
examples are the solutions to the competitions VerifyThis
2011 [67], VerifyThis
2012 [2], and the competition VScomp
2011 [99].

          

          	
             Other case studies that led to publications are the design of a
library of data-structures based on
AVLs [71], the verification a two-lines
C program (solving the N-queens puzzle) using Why3
[95], and the verification of Koda and
Ruskey's algorithm  [100].

          

          	
             A. Charguéraud, with F. Pottier (Inria Paris), extended their
formalization of the correctness and asympotic complexity of the
classic Union Find data structure, which features the bound expressed
in terms of the inverse Ackermann function [38].
The proof, conducted using CFML extended with time credits, was refined
using a slightly more complex potential function, allowing to derive
a simpler and richer interface for the data structure [70].

          

        

        For other case studies, see also sections of numerical programs
and formalization of languages and tools.

        
        Project-team Positioning

        Several research groups in the world develop their own approaches,
techniques, and tools for deductive verification.
With respect to all these related approaches and tools, our
originality is our will to use more sophisticated specification
languages (with inductive definitions, higher-order features and such) and the
ability to use a large set of various theorem provers, including the
use of interactive theorem proving to deal with complex functional
properties.

        
          	
             The RiSE
team (http://research.microsoft.com/en-us/groups/rise/default.aspx)
at Microsoft Research Redmond, USA, partly in collaboration with
team “programming methodology”
team (http://www.pm.inf.ethz.ch/) at ETH Zurich
develop tools that are closely related to ours: Boogie and Dafny are
direct competitors of Why3, VCC is a direct competitor of
Frama-C/Jessie.

          

          	
             The KeY project (http://www.key-project.org/)
(several teams, mainly at Karlsruhe and Darmstadt, Germany, and
Göteborg, Sweden) develops the KeY tool for Java program
verification [37], based on dynamic logic, and has
several industrial users. They use a specific modal logic (dynamic
logic) for modeling programs, whereas we use standard logic, so as
to be able to use off-the-shelf automated provers.

          

          	
             The “software engineering” group at Augsburg, Germany,
develops the KIV
system (http://www.isse.uni-augsburg.de/en/software/kiv/),
which was created more than 20 years ago (1992) and is still well
maintained and efficient. It provides a semi-interactive proof
environment based on algebraic-style specifications, and is able to
deal with several kinds of imperative style programs. They have a
significant industrial impact.

          

          	
             The VeriFast
system (http://people.cs.kuleuven.be/~bart.jacobs/verifast/)
aims at verifying C programs specified in Separation Logic. It is
developed at the Katholic University at Leuven, Belgium. We do not
usually use separation logic (so as to use off-the-shelf provers)
but alternative approaches (e.g. static memory separation analysis).

          

          	
             The Mobius Program Verification
Environment (http://kindsoftware.com/products/opensource/Mobius/)
is a joint effort for the verification of Java source annotated with
JML, combining static analysis and runtime checking. The tool
ESC/Java2 (http://kindsoftware.com/products/opensource/ESCJava2/)
is a VC generator similar to Krakatoa, that builds on top of
Boogie. It is developed by a community leaded by University of
Copenhagen, Denmark. Again, our specificity with respect to them is
the consideration of more complex specification languages and
interactive theorem proving.

          

          	
             The Lab for Automated Reasoning and Analysis
(http://lara.epfl.ch/w/) at EPFL, develop methods and
tools for verification of Java (Jahob) and Scala (Leon)
programs. They share with us the will and the ability to use
several provers at the same time.

          

          	
             The TLA environment (http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html),
developed by Microsoft Research and the Inria team Veridis, aims
at the verification of concurrent programs using mathematical
specifications, model checking, and interactive or automated theorem
proving.

          

          	
             The F* project (http://research.microsoft.com/en-us/projects/fstar/),
developed by Microsoft Research and the Inria Prosecco team, aims at
providing a rich environment for developing programs and proving them.

          

        

        The KeY and KIV environments mentioned above are partly based on
interactive theorem provers. There are other approaches on top of
general-purpose proof assistants for proving programs that are not
purely functional:

        
          	
             The Ynot project (http://ynot.cs.harvard.edu/) is
a Coq library for writing imperative programs specified in
separation logic. It was developed at Harvard University, until
the end of the project in 2010. Ynot had similar goals as CFML,
although Ynot requires programs to be written in monadic style
inside Coq, whereas CFML applies directly on programs written
in OCaml syntax, translating them into logical formulae.

          

          	
             Front-ends to Isabelle were developed to deal with simple
sequential imperative programs [130] or C
programs [125]. The L4-verified
project [108] is built on top of Isabelle.
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        Automated Reasoning

        Permanent researchers: S. Conchon, G. Melquiond, A. Paskevich

        
        Generalities on Automated Reasoning

        
          	
             J. C. Blanchette and A. Paskevich have designed an extension to
the TPTP TFF (Typed First-order Form) format of theorem proving
problems to support rank-1 polymorphic types (also known as ML-style
parametric polymorphism) [47]. This extension, named TFF1, has been
incorporated in the TPTP standard.

          

          	
             S. Conchon defended his habilitation à diriger des
recherches in December 2012. The memoir [76]
provides a useful survey of the scientific work of the
past 10 years, around the SMT solving techniques, that led to the
tools Alt-Ergo and Cubicle as they are nowadays.

          

        

        
        Quantifiers and Triggers

        
          	
             C. Dross, J. Kanig, S. Conchon, and A. Paskevich have proposed a
generic framework for adding a decision procedure for a theory or a
combination of theories to an SMT prover. This mechanism is based
on the notion of instantiation patterns, or triggers, which
restrict instantiation of universal premises and can effectively
prevent a combinatorial explosion. A user provides an
axiomatization with triggers, along with a proof of completeness and
termination in the proposed framework, and obtains in return a sound,
complete and terminating solver for his theory. A prototype
implementation was realized on top of
Alt-Ergo. As a case study, a feature-rich
axiomatization of doubly-linked lists was proved complete and
terminating [88]. C. Dross
defended her PhD thesis in April 2014 [89]. The
main results of the thesis are: (1) a formal semantics of the notion
of triggers typically used to control quantifier
instantiation in SMT solvers, (2) a general setting to show how a
first-order axiomatization with triggers can be proved correct,
complete, and terminating, and (3) an extended DPLL(T) algorithm to
integrate a first-order axiomatization with triggers as a decision
procedure for the theory it defines. Significant case studies were
conducted on examples coming from SPARK programs, and on the
benchmarks on B set theory constructed within the BWare project.

          

        

        
        Reasoning Modulo Theories

        
          	
             S. Conchon, É. Contejean and M. Iguernelala have presented a modular
extension of ground AC-completion for deciding formulas in the
combination of the theory of equality with user-defined AC symbols,
uninterpreted symbols and an arbitrary signature-disjoint Shostak
theory X [78]. This work extends the results presented
in [77] by showing that a simple preprocessing
step allows to get rid of a full AC-compatible reduction ordering,
and to simply use a partial multiset extension of a
non-necessarily AC-compatible ordering.

          

          	
             S. Conchon, M. Iguernelala, and A. Mebsout have designed a
collaborative framework for reasoning modulo simple properties of
non-linear arithmetic [82]. This framework
has been implemented in the Alt-Ergo SMT solver.

          

          	
             S. Conchon, G. Melquiond and C. Roux have described a dedicated
procedure for a theory of floating-point numbers which allows
reasoning on approximation errors. This procedure is based on the
approach of the Gappa tool: it performs saturation of consequences
of the axioms, in order to refine bounds on expressions. In addition
to the original approach, bounds are further refined by a constraint
solver for linear arithmetic [84]. This procedure has
been implemented in Alt-Ergo.

          

          	
             In collaboration with A. Mahboubi (Inria project-team
Typical), and G. Melquiond, the group involved in the
development of Alt-Ergo have implemented and proved the correctness of
a novel decision procedure for quantifier-free linear integer
arithmetic [1]. This algorithm tries to
bridge the gap between projection and branching/cutting methods:
it interleaves an exhaustive search for a model with bounds
inference. These bounds are computed provided an oracle capable of
finding constant positive linear combinations of affine forms. An
efficient oracle based on the Simplex procedure has been
designed. This algorithm is proved sound, complete, and terminating
and is implemented in Alt-Ergo.

          

          	
             Most of the results above are detailed in M. Iguernelala's PhD
thesis [105].

          

        

        
        Applications

        
          	
             We have been quite successful in the application of Alt-Ergo to
industrial development: qualification by Airbus France, integration
of Alt-Ergo into the Spark Pro toolset.

          

          	
             In the context of the BWare project, aiming at using Why3 and
Alt-Ergo for discharging proof obligations generated by Atelier B,
we made progress into several directions. The method of translation
of B proof obligations into Why3 goals was first presented
at ABZ'2012 [121]. Then, new drivers have been
designed for Why3, in order to use new back-end provers Zenon modulo
and iProver modulo. A notion of rewrite rule was introduced into
Why3, and a transformation for simplifying goals before sending them
to back-end provers was designed. Intermediate results obtained so
far in the project were presented both at the French conference
AFADL [87] and at
ABZ'2014 [86].

             On the side of Alt-Ergo, recent developments have been made to
efficiently discharge proof obligations generated by Atelier B. This
includes a new plugin architecture to facilitate experiments with
different SAT engines, new heuristics to handle quantified formulas,
and important modifications in its internal data structures to boost
performances of core decision procedures. Benchmarks realized on
more than 10,000 proof obligations generated from industrial B
projects show significant improvements [81].

          

          	
             Hybrid automatons interleave continuous behaviors (described by
differential equations) with discrete transitions. D. Ishii and
G. Melquiond have worked on an automated procedure for verifying
safety properties (that is, global invariants) of such
systems [106].

          

        

        
        Project-team Positioning

        Automated Theorem Proving is a large community, but several sub-groups
can be identified:

        
          	
             The SMT-LIB community gathers people interested in reasoning
modulo theories. In this community, only a minority of participants are
interested in supporting first-order quantifiers at the same time as
theories. SMT solvers that support quantifiers are Z3 (Microsoft
Research Redmond, USA), CVC3 and its successor CVC4
(http://cvc4.cs.stanford.edu/web/).

          

          	
             The TPTP community gathers people interested in first-order
theorem proving.

          

          	
             Other Inria teams develop provers: veriT by team Veridis, and Psyche
by team Parsifal.

          

          	
             Other groups develop provers dedicated to very specific cases,
such as
Metitarski (http://www.cl.cam.ac.uk/~lp15/papers/Arith/)
at Cambridge, UK, which aims at proving formulas on real numbers, in
particular involving special functions such as log or exp. The goal
is somewhat similar to our CoqInterval library, cf objective 4.

          

        

        It should be noticed that a large number of provers mentioned above
are connected to Why3 as back-ends.
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        Formalization and Certification of
Languages, Tools and Systems

        Permanent researchers: S. Boldo, A. Charguéraud, C. Marché, G. Melquiond, C. Paulin

        
        Real Numbers, Real Analysis, Probabilities

        
          	
             S. Boldo, C. Lelay, and G. Melquiond have worked on the Coquelicot
library, designed to be a user-friendly Coq library about real
analysis [62], [63]. An easier way
of writing formulas and theorem statements is achieved by relying on
total functions in place of dependent types for limits, derivatives,
integrals, power series, and so on. To help with the proof process,
the library comes with a comprehensive set of theorems and some
automation. We have exercised the library on several use cases: on
an exam at university entry level [110], for the definitions and
properties of Bessel functions [109], and for
the solution of the one-dimensional wave
equation [111]. We have also conducted a
survey on the formalization of real arithmetic and real analysis in
various proof systems [64].

          

          	
             Watermarking techniques are used to help identify copies of
publicly released information. They consist in applying a slight and
secret modification to the data before its release, in a way that
should remain recognizable even in (reasonably) modified copies of
the data. Using the Coq Alea  library, which formalizes probability theory and probabilistic programs,
D. Baelde together with P. Courtieu, D. Gross-Amblard from Rennes
and C. Paulin have established new results about the robustness of
watermarking schemes against arbitrary attackers [43].
The technique for proving robustness is adapted from methods
commonly used for cryptographic protocols and our work illustrates
the strengths and particularities of the Alea  style of reasoning
about probabilistic programs.

          

        

        
        Formalization of Languages, Semantics

        
          	
             P. Herms, together with C. Marché and B. Monate (CEA List), has
developed a certified VC generator, using Coq. The program for VC
calculus and its specifications are both written in Coq, but the
code is crafted so that it can be extracted automatically into a
stand-alone executable. It is also designed in a way that allows the
use of arbitrary first-order theorem provers to discharge the
generated obligations [104]. On top of this generic
VC generator, P. Herms developed a certified VC generator for C
source code annotated using ACSL. This work is the main result of
his PhD thesis [103].

          

          	
             A. Tafat and C. Marché have developed a certified VC generator
using Why3 [114], [115]. The
challenge was to formalize the operational semantics of an
imperative language, and a corresponding weakest precondition
calculus, without the possibility to use Coq advanced features
such as dependent types or higher-order functions. The classical
issues with local bindings, names and substitutions were solved by
identifying appropriate lemmas. It was shown that Why3 can offer a
significantly higher amount of proof automation compared to
Coq.

          

          	
             A. Charguéraud, together with Alan Schmitt (Inria Rennes) and
Thomas Wood (Imperial College), has developed an interactive debugger
for JavaScript. The interface, accessible as a webpage in a browser,
allows to execute a given JavaScript program, following step by step
the formal specification of JavaScript developped in prior work
on JsCert [52]. Concretely, the
tool acts as a double-debugger: one can visualize both the state of
the interpreted program and the state of the interpreter program.
This tool is intended for the JavaScript committee, VM developpers,
and other experts in JavaScript semantics.

          

          	
             M. Clochard, C. Marché, and A. Paskevich have developed a general
setting for developing programs involving binders, using
Why3. This approach was successfully validated on two case
studies: a verified implementation of untyped lambda-calculus and
a verified tableaux-based theorem prover [75].

          

          	
             M. Clochard, J.-C. Filliâtre, C. Marché, and A. Paskevich
have developed a case study on the formalization of semantics of
programming languages using
Why3 [72]. This case study aims at
illustrating recent improvements of Why3 regarding the support for
higher-order logic features in the input logic of Why3, and how
these are encoded into first-order logic, so that goals can be
discharged by automated provers. This case study also illustrates
how reasoning by induction can be done without need for
interactive proofs, via the use of lemma functions.

          

          	
             M. Clochard and L. Gondelman have developed a formalization of a
simple compiler in Why3 [73]. It compiles a
simple imperative language into assembler instructions for a stack
machine. This case study was inspired by a similar example
developed using Coq and interactive theorem proving. The aim is to
improve significantly the degree of automation in the proofs. This
is achieved by the formalization of a Hoare logic and a Weakest
Precondition Calculus on assembly programs, so that the
correctness of compilation is seen as a formal specification of
the assembly instructions generated.

          

        

        
        Project-team Positioning

        The objective of formalizing languages and algorithms is very
general, and it is pursued by several Inria teams. One common
trait is the use of the Coq proof assistant for this purpose: Pi.r2
(development of Coq itself and its meta-theory), Gallium (semantics
and compilers of programming languages), Marelle (formalization of mathematics),
SpecFun (real arithmetic), Celtique (formalization of static
analyzers).

        Other environments for the formalization of languages include

        
          	
             ACL2
system (http://www.cs.utexas.edu/~moore/acl2/): an
environment for writing programs with formal specifications in
first-order logic based on a Lisp engine. The proofs
are conducted using a prover based on the Boyer-Moore approach. It is
a rather old system but still actively maintained and powerful,
developed at University of Texas at Austin. It has a strong
industrial impact.

          

          	
             Isabelle
environment (http://isabelle.in.tum.de/):
both a proof assistant and an environment for developing pure
applicative programs. It is developed jointly at University of
Cambridge, UK, Technische Universität München, Germany, and to some
extent by the VALS team at LRI, Université Paris-Sud. It features
highly automated tactics based on ATP systems (the Sledgehammer tool).

          

          	
             The team “Trustworthy Systems” at NICTA in
Australia (http://ssrg.nicta.com.au/projects/TS/) aims at
developing highly trustable software applications. They developed a
formally verified micro-kernel called seL4 [108], using
a home-made layer to deal with C programs on top of the Isabelle prover.

          

          	
             The PVS system (http://pvs.csl.sri.com/) is an
environment for both programming and proving (purely applicative)
programs. It is developed at the Computer Science Laboratory of SRI
international, California, USA. A major user of PVS is the team LFM (http://shemesh.larc.nasa.gov/fm/fm-main-team.html) at NASA
Langley, USA, for the certification of programs related to air
traffic control.

          

        

        In the Toccata team, we do not see these alternative environments as
competitors, even though, for historical reasons, we are mainly using Coq.
Indeed both Isabelle and PVS are available as back-ends of Why3.
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        Proof of Numerical Programs

        Permanent researchers: S. Boldo, C. Marché, G. Melquiond

        
          	
             Linked with objective 1 (Deductive Program Verification), the
methodology for proving numerical C programs has been presented by
S. Boldo in her habilitation [54] and as
invited speaker [55]. An application is the
formal verification of a numerical analysis program. S. Boldo,
J.-C. Filliâtre, and G. Melquiond, with F. Clément and P. Weis
(POMDAPI team, Inria Paris - Rocquencourt), and M. Mayero (LIPN),
completed the formal proof of the second-order centered
finite-difference scheme for the one-dimensional acoustic
wave [57][3].

          

          	
             Several challenging floating-point algorithms have been studied and
proved. This includes an algorithm by Kahan for computing the area
of a triangle: S. Boldo proved an improvement of its error bound and
new investigations in case of
underflow [53]. This
includes investigations about quaternions. They should be of norm 1,
but due to the round-off errors, a drift of this norm is observed
over time. C. Marché determined a bound on this drift and formally
proved it correct [9]. P. Roux formally
verified an algorithm for checking that a matrix is semi-definite
positive [129]. The challenge here is that
testing semi-definiteness involves algebraic number computations,
yet it needs to be implemented using only approximate floating-point
operations.

          

          	
             Because of compiler optimizations (or bugs), the floating-point
semantics of a program might change once compiled, thus invalidating
any property proved on the source code. We have investigated two
ways to circumvent this issue, depending on whether the compiler is
a black box. When it is, T. Nguyen has proposed to analyze the
assembly code it generates and to verify it is
correct [124]. On the contrary, S. Boldo and
G. Melquiond (in collaboration with J.-H. Jourdan and X. Leroy) have
added support for floating-point arithmetic to the CompCert compiler
and formally proved that none of the transformations the compiler
applies modify the floating-point semantics of the
program [61], [60].

          

          	
             Linked with objectives 2 (Automated Reasoning) and 3
(Formalization and Certification of Languages, Tools and Systems),
G. Melquiond has implemented an efficient Coq library for
floating-point arithmetic and proved its correctness
in terms of operations on real
numbers [119].
It serves as a basis for an
interval arithmetic on which Taylor models have been
formalized. É. Martin-Dorel and G. Melquiond have integrated these
models into CoqInterval [10]. This Coq
library is dedicated to automatically proving the approximation
properties that occur when formally verifying the implementation of
mathematical libraries (libm).

          

          	
             Double rounding occurs when the target precision of a
floating-point computation is narrower than the working
precision. In some situations, this phenomenon incurs a loss of
accuracy. P. Roux has formally studied when it is innocuous for
basic arithmetic
operations [129]. É. Martin-Dorel and
G. Melquiond (in collaboration with J.-M. Muller) have formally
studied how it impacts algorithms used for error-free
transformations [117]. These works were
based on the Flocq formalization of floating-point arithmetic for
Coq.

          

          	
             By combining multi-precision arithmetic, interval arithmetic,
and massively-parallel computations, G. Melquiond (in collaboration
with G. Nowak and P. Zimmermann) has computed enough digits of the
Masser-Gramain constant to invalidate a 30-year old conjecture about
its closed form [120].

          

        

        
        Project-team Positioning

        This objective deals both with formal verification and
floating-point arithmetic, which is quite uncommon. Therefore our
competitors/peers are few. We may only cite the works by J. Duracz and
M. Konečný, Aston University in Birmingham, UK.

        The Inria team AriC (Grenoble - Rhône-Alpes) is closer to our research
interests, but they are lacking manpower on the formal proof side; we have
numerous collaborations with them. The Inria team Caramel (Nancy - Grand
Est) also shares some research interests with us, though fewer; again,
they do not work on the formal aspect of the verification; we have some
occasional collaborations with them.

        There are many formalization efforts from chip manufacturers, such as AMD
(using the ACL2 proof assistant) and Intel (using the Forte proof
assistants) but the algorithms they consider are quite different from the
ones we study. The works on the topic of floating-point arithmetic from
J. Harrison at Intel using HOL Light are really close to our research
interests, but they seem to be discontinued.

        A few deductive program verification teams are willing to extend their tools
toward floating-point programs. This includes the KeY project and
SPARK. We have an ongoing collaboration with the latter, in the
context of the ProofInUSe project.

        Deductive verification is not the only way to prove programs. Abstract
interpretation is widely used, and several teams are interested in
floating-point arithmetic. This includes the Inria team Antique (Paris
- Rocquencourt) and a CEA List team, who have respectively developed
the Astrée and Fluctuat tools. This approach targets a different class
of numerical algorithms than the ones we are interested in.

        Other people, especially from the SMT community (cf
objective 2), are also interested in automatically proving formulas
about floating-point numbers, notably at Oxford University. They are
mainly focusing on pure floating-point arithmetic though and do not
consider them as approximation of real numbers.

        Finally, it can be noted that numerous teams are working on the
verification of numerical programs, but assuming the computations are
real rather than floating-point ones. This is out of the scope of this
objective.
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        Domain 1

        The application domains we target involve safety-critical software,
that is where a high-level guarantee of soundness of functional
execution of the software is wanted. Currently our industrial
collaborations mainly belong to the domain of transportation,
including aeronautics, railroad, space flight, automotive.

        
          	Verification of C programs, Alt-Ergo at Airbus

          	
             Transportation
is the domain considered in the context of the ANR U3CAT project,
led by CEA, in partnership with Airbus France, Dassault Aviation,
Sagem Défense et Sécurité. It included proof of C programs via
Frama-C/Jessie/Why, proof of floating-point
programs [116], the use of the Alt-Ergo prover
via CAVEAT tool (CEA) or Frama-C/WP. Within this context, we
contributed to a qualification process of Alt-Ergo with Airbus
industry: the technical documents (functional specifications and
benchmark suite) have been accepted by Airbus, and these documents
were submitted by Airbus to the certification authorities (DO-178B
standard) in 2012. This action is continued in the new project
Soprano.

          

          	Certified compilation, certified static analyzers

          	
             Aeronautics is the main target of the Verasco project, led by Verimag,
on the development of certified static analyzers, in partnership with
Airbus. This is a follow-up of the transfer of the CompCert certified
compiler (Inria team Gallium) to which we contributed to the support
of floating-point computations [61].

          

          	Transfer to the community of Ada development

          	
             The former FUI
project Hi-Lite, led by Adacore company, introduced the use of Why3
and Alt-Ergo as back-end to SPARK2014, an environment for
verification of Ada programs. This is applied to the domain of
aerospace (Thales, EADS Astrium). At the very beginning of that
project, Alt-Ergo was added in the Spark Pro toolset (predecessor of
SPARK2014), developed by Altran-Praxis: Alt-Ergo can be used by
customers as an alternate prover for automatically proving
verification conditions. Its usage is described in the new edition
of the Spark book (http://www.altran-praxis.com/book/) (Chapter
“Advanced proof tools”). This action is continued in the new joint
laboratory ProofInUse. A recent paper [69]
provides an extensive list of applications of SPARK, a major one
being the British air control management iFacts.

          

          	Transfer to the community of Atelier B

          	
             In the current ANR project BWare, we investigate the use of Why3 and
Alt-Ergo as an alternative back-end for checking proof obligations
generated by Atelier B, whose main applications are
railroad-related
software (http://www.methode-b.com/),
a collaboration with Mitsubishi Electric R&D Centre Europe (Rennes)
(joint publication [121]) and ClearSy
(Aix-en-Provence).

          

          	SMT-based Model-Checking: Cubicle

          	
             S. Conchon (with A. Mebsout
and F. Zaidi from VALS team at LRI) has a long-term collaboration
with S. Krstic and A. Goel (Intel Strategic Cad Labs in Hillsboro,
OR, USA) that aims in the development of the SMT-based model checker
Cubicle (http://cubicle.lri.fr/) based on
Alt-Ergo [118][5]. It is
particularly targeted to the verification of concurrent programs and
protocols.
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        Highlights of the Year

        
          	
             J.-C. Filliâtre served as judge at the ICPC regional programming
contests SWERC 2017 and 2018. These two editions were organized in
Paris and gathered each year 80 teams of three students from universities
and schools from South-West Europe. https://swerc.eu/

          

          	
             The 2nd edition of the Handbook of Floating-Point arithmetic was
published [28]

          

        

        
        Awards

        
          	
             R. Rieu-Helft received the "Student Gold Medal"
award, and J.-C. Filliâtre the "Best challenge submitted" award, at the
VerifyThis@ETAPS2018 verification competition
http://www.pm.inf.ethz.ch/research/verifythis/Prizes.html
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        Alt-Ergo

        
          Automated theorem prover for software verification
        

        Keywords:  Software Verification - Automated theorem proving

        Functional Description:  Alt-Ergo is an automatic solver of formulas based on SMT technology. It is especially designed to prove mathematical formulas generated by program verification tools, such as Frama-C for C programs, or SPARK for Ada code. Initially developed in Toccata research team, Alt-Ergo's distribution and support are provided by OCamlPro since September 2013.

        Release Functional Description:  the "SAT solving" part can now be delegated to an external plugin,
new experimental SAT solver based on mini-SAT, provided as a plugin. This solver is, in general, more efficient on ground problems,
heuristics simplification in the default SAT solver and in the matching (instantiation) module,
re-implementation of internal literals representation,
improvement of theories combination architecture,
rewriting some parts of the formulas module,
bugfixes in records and numbers modules,
new option "-no-Ematching" to perform matching without equality reasoning (i.e. without considering "equivalence classes"). This option is very useful for benchmarks coming from Atelier-B,
two new experimental options: "-save-used-context" and "-replay-used-context". When the goal is proved valid, the first option allows to save the names of useful axioms into a ".used" file. The second one is used to replay the proof using only the axioms listed in the corresponding ".used" file. Note that the replay may fail because of the absence of necessary ground terms generated by useless axioms (that are not included in .used file) during the initial run.

        
          	
             Participants: Alain Mebsout, Évelyne Contejean, Mohamed Iguernelala, Stéphane Lescuyer and Sylvain Conchon

          

          	
             Partner: OCamlPro

          

          	
             Contact: Sylvain Conchon

          

          	
             URL: http://alt-ergo.lri.fr
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        CoqInterval

        
          Interval package for Coq
        

        Keywords:  Interval arithmetic - Coq

        Functional Description:  CoqInterval is a library for the proof assistant Coq.

        It provides several tactics for proving theorems on enclosures of real-valued expressions. The proofs are performed by an interval kernel which relies on a computable formalization of floating-point arithmetic in Coq.

        The Marelle team developed a formalization of rigorous polynomial approximation using Taylor models in Coq. In 2014, this library has been included in CoqInterval.

        
          	
             Participants: Assia Mahboubi, Érik Martin-Dorel, Guillaume Melquiond, Jean-Michel Muller, Laurence Rideau, Laurent Théry, Micaela Mayero, Mioara Joldes, Nicolas Brisebarre and Thomas Sibut-Pinote

          

          	
             Contact: Guillaume Melquiond

          

          	
             Publications: Proving bounds on real-valued functions with computations -
Floating-point arithmetic in the Coq system -
Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq -
Formally Verified Approximations of Definite Integrals -
Formally Verified Approximations of Definite Integrals

          

          	
             URL: http://coq-interval.gforge.inria.fr/
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        Coquelicot

        
          The Coquelicot library for real analysis in Coq
        

        Keywords:  Coq - Real analysis

        Functional Description:  Coquelicot is library aimed for supporting real analysis in the Coq proof assistant. It is designed with three principles in mind. The first is the user-friendliness, achieved by implementing methods of automation, but also by avoiding dependent types in order to ease the stating and readability of theorems. This latter part was achieved by defining total function for basic operators, such as limits or integrals. The second principle is the comprehensiveness of the library. By experimenting on several applications, we ensured that the available theorems are enough to cover most cases. We also wanted to be able to extend our library towards more generic settings, such as complex analysis or Euclidean spaces. The third principle is for the Coquelicot library to be a conservative extension of the Coq standard library, so that it can be easily combined with existing developments based on the standard library.

        
          	
             Participants: Catherine Lelay, Guillaume Melquiond and Sylvie Boldo

          

          	
             Contact: Sylvie Boldo

          

          	
             URL: http://coquelicot.saclay.inria.fr/
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        Cubicle

        
          The Cubicle model checker modulo theories
        

        Keywords:  Model Checking - Software Verification

        Functional Description:  Cubicle is an open source model checker for verifying safety properties of array-based systems, which corresponds to a syntactically restricted class of parametrized transition systems with states represented as arrays indexed by an arbitrary number of processes. Cache coherence protocols and mutual exclusion algorithms are typical examples of such systems.

        
          	
             Participants: Alain Mebsout and Sylvain Conchon

          

          	
             Contact: Sylvain Conchon

          

          	
             URL: http://cubicle.lri.fr/
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        Flocq

        
          The Flocq library for formalizing floating-point arithmetic in Coq
        

        Keywords:  Floating-point - Arithmetic code - Coq

        Functional Description:  The Flocq library for the Coq proof assistant is a comprehensive formalization of floating-point arithmetic: core definitions, axiomatic and computational rounding operations, high-level properties. It provides a framework for developers to formally verify numerical applications.

        Flocq is currently used by the CompCert verified compiler to support floating-point computations.

        
          	
             Participants: Guillaume Melquiond, Pierre Roux and Sylvie Boldo

          

          	
             Contact: Sylvie Boldo

          

          	
             Publications: Flocq: A Unified Library for Proving Floating-point Algorithms in Coq -
A Formally-Verified C Compiler Supporting Floating-Point Arithmetic -
Verified Compilation of Floating-Point Computations -
Innocuous Double Rounding of Basic Arithmetic Operations -
Formal Proofs of Rounding Error Bounds -
Computer Arithmetic and Formal Proofs

          

          	
             URL: http://flocq.gforge.inria.fr/
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        Gappa

        
          The Gappa tool for automated proofs of arithmetic properties
        

        Keywords:  Floating-point - Arithmetic code - Software Verification - Constraint solving

        Functional Description:  Gappa is a tool intended to help formally verifying numerical programs dealing with floating-point or fixed-point arithmetic. It has been used to write robust floating-point filters for CGAL and it is used to verify elementary functions in CRlibm. While Gappa is intended to be used directly, it can also act as a backend prover for the Why3 software verification plateform or as an automatic tactic for the Coq proof assistant.

        
          	
             Participant: Guillaume Melquiond

          

          	
             Contact: Guillaume Melquiond

          

          	
             Publications: Generating formally certified bounds on values and round-off errors -
Formal certification of arithmetic filters for geometric predicates -
Assisted verification of elementary functions -
From interval arithmetic to program verification -
Formally Certified Floating-Point Filters For Homogeneous Geometric Predicates -
Combining Coq and Gappa for Certifying Floating-Point Programs -
Handbook of Floating-Point Arithmetic -
Certifying the floating-point implementation of an elementary function using Gappa -
Automations for verifying floating-point algorithms -
Automating the verification of floating-point algorithms -
Computer Arithmetic and Formal Proofs

          

          	
             URL: http://gappa.gforge.inria.fr/
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        Why3

        
          The Why3 environment for deductive verification
        

        Keywords:  Formal methods - Trusted software - Software Verification - Deductive program verification

        Functional Description:  Why3 is an environment for deductive program verification. It provides a rich language for specification and programming, called WhyML, and relies on external theorem provers, both automated and interactive, to discharge verification conditions. Why3 comes with a standard library of logical theories (integer and real arithmetic, Boolean operations, sets and maps, etc.) and basic programming data structures (arrays, queues, hash tables, etc.). A user can write WhyML programs directly and get correct-by-construction OCaml programs through an automated extraction mechanism. WhyML is also used as an intermediate language for the verification of C, Java, or Ada programs.

        
          	
             Participants: Andriy Paskevych, Claude Marché, François Bobot, Guillaume Melquiond, Jean-Christophe Filliâtre, Levs Gondelmans and Martin Clochard

          

          	
             Partners: CNRS - Université Paris-Sud

          

          	
             Contact: Claude Marché

          

          	
             URL: http://why3.lri.fr/
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        Coq

        
          The Coq Proof Assistant
        

        Keywords:  Proof - Certification - Formalisation

        Scientific Description:  Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive Constructions, extended with universe polymorphism. This type theory features inductive and co-inductive families, an impredicative sort and a hierarchy of predicative universes, making it a very expressive logic. The calculus allows to formalize both general mathematics and computer programs, ranging from theories of finite structures to abstract algebra and categories to programming language metatheory and compiler verification. Coq is organised as a (relatively small) kernel including efficient conversion tests on which are built a set of higher-level layers: a powerful proof engine and unification algorithm, various tactics/decision procedures, a transactional document model and, at the very top an IDE.

        Functional Description:  Coq provides both a dependently-typed functional programming language and a logical formalism, which, altogether, support the formalisation of mathematical theories and the specification and certification of properties of programs. Coq also provides a large and extensible set of automatic or semi-automatic proof methods. Coq's programs are extractible to OCaml, Haskell, Scheme, ...

        Release Functional Description:  Coq version 8.8.2 contains the result of refinements and stabilization of features and deprecations, cleanups of the internals of the system along with a few new features.

        Summary of changes:

        Kernel: fix a subject reduction failure due to allowing fixpoints on non-recursive values (#407), by Matthieu Sozeau. Handling of evars in the VM (#935) by Pierre-Marie Pédrot.

        Notations: many improvements on recursive notations and support for destructuring patterns in the syntax of notations by Hugo Herbelin.

        Proof language: tacticals for profiling, timing and checking success or failure of tactics by Jason Gross. The focusing bracket { supports single-numbered goal selectors, e.g. 2:{, (#6551) by Théo Zimmermann.

        Vernacular: cleanup of definition commands (#6653) by Vincent Laporte and more uniform handling of the Local flag (#1049), by Maxime Dénès. Experimental Show Extraction command (#6926) by Pierre Letouzey. Coercion now accepts Prop or Type as a source (#6480) by Arthur Charguéraud. Export modifier for options allowing to export the option to modules that Import and not only Require a module (#6923), by Pierre-Marie Pédrot.

        Universes: many user-level and API level enhancements: qualified naming and printing, variance annotations for cumulative inductive types, more general constraints and enhancements of the minimization heuristics, interaction with modules by Gaëtan Gilbert, Pierre-Marie Pédrot and Matthieu Sozeau.

        Library: Decimal Numbers library (#6599) by Pierre Letouzey and various small improvements.

        Documentation: a large community effort resulted in the migration of the reference manual to the Sphinx documentation tool. The new documentation infrastructure (based on Sphinx) is by Clément Pit-Claudel. The migration was coordinated by Maxime Dénès and Paul Steckler, with some help of Théo Zimmermann during the final integration phase. The 14 people who ported the manual are Calvin Beck, Heiko Becker, Yves Bertot, Maxime Dénès, Richard Ford, Pierre Letouzey, Assia Mahboubi, Clément Pit-Claudel, Laurence Rideau, Matthieu Sozeau, Paul Steckler, Enrico Tassi, Laurent Théry, Nikita Zyuzin.

        Tools: experimental -mangle-names option to coqtop/coqc for linting proof scripts (#6582), by Jasper Hugunin.
Main changes:

        Critical soundness bugs were fixed between versions 8.8.0 and 8.8.2, and a PDF version of the reference manual was made available. The Windows installer also includes many more external packages that can be individually selected for installation.

        On the implementation side, the dev/doc/changes.md file documents the numerous changes to the implementation and improvements of interfaces. The file provides guidelines on porting a plugin to the new version.

        More information can be found in the CHANGES file. Feedback and bug reports are extremely welcome.

        Distribution
Installers for Windows 32 bits (i686), Windows 64 bits (x8_64) and macOS are available. They come bundled with CoqIDE. Windows binaries now include the Bignums library.

        Complete sources of the files installed by the Windows installers are made available, to comply with license requirements.

        News Of The Year:  Version 8.8.0 was released in April 2018 and version 8.8.2 in September 2018. This is the third release of Coq developed on a time-based development cycle. Its development spanned 6 months from the release of Coq 8.7 and was based on a public road-map. It attracted many external contributions. Code reviews and continuous integration testing were systematically used before integration of new features, with an important focus given to compatibility and performance issues.

        The main advances in this version are cleanups and fixes in the many different components of the system, ranging from low level kernel fixes to advances in the support of notations and tacticals for selecting goals. A large community effort was made to move the documentation to the Sphinx format, providing a more accessible online ressource to users.

        
          	
             Participants: Abhishek Anand, C. J. Bell, Yves Bertot, Frédéric Besson, Tej Chajed, Pierre Courtieu, Maxime Denes, Julien Forest, Emilio Jesús Gallego Arias, Gaëtan Gilbert, Benjamin Grégoire, Jason Gross, Hugo Herbelin, Ralf Jung, Matej Kosik, Sam Pablo Kuper, Xavier Leroy, Pierre Letouzey, Assia Mahboubi, Cyprien Mangin, Érik Martin-Dorel, Olivier Marty, Guillaume Melquiond, Pierre-Marie Pédrot, Benjamin C. Pierce, Lars Rasmusson, Yann Régis-Gianas, Lionel Rieg, Valentin Robert, Thomas Sibut-Pinote, Michael Soegtrop, Matthieu Sozeau, Arnaud Spiwack, Paul Steckler, George Stelle, Pierre-Yves Strub, Enrico Tassi, Hendrik Tews, Laurent Théry, Amin Timany, Vadim Zaliva and Théo Zimmermann
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        Deductive Verification

        
          	
            Synthetic topology in HoTT for probabilistic
programming.
          

          	
             F. Faissole and B. Spitters have developed a
mathematical formalism based on synthetic topology and homotopy
type theory to interpret probabilistic algorithms. They suggest to
use proof assistants to prove such programs
[91] [92].
They also have formalized synthetic topology in the Coq proof
assistant using the HoTT library. It consists of a theory of lower
reals, valuations and lower integrals. All the results are
constructive. They apply their results to interpret probabilistic
programs using a monadic approach [23].

          

          	
            A Toolchain to Produce Correct-by-Construction OCaml Programs
          

          	
             In the context of the research project Vocal, J.-C. Filliâtre,
A. Paskevich, and
M. Pereira, together with L. Gondelman (postdoc in January 2017)
and S. Melo de Sousa (visiting Associate Professor from UBI,
Portugal, in Sep/Oct 2017), designed and implemented a toolchain
for the verification of OCaml code using Why3 [33].
In this framework, the user provides a formal specification within
comments embedded in the OCaml interface file together with an
implementation in Why3. Two tools automatically translate the
former to a Why3 specification and the latter to an OCaml
code. One the refinement proof is completed on the Why3 side, the
overall diagram commutes, ensuring the soundness of the OCaml code.

          

          	
            Ghost monitors
          

          	
             M. Clochard, C. Marché, and
A. Paskevich designed a new approach to deductive program
verification based on auxiliary programs called ghost
monitors. This technique is useful when the syntactic
structure of the target program is not well suited for
verification, for example, when an essentially recursive algorithm
is implemented in an iterative fashion. The approach consists in
implementing, specifying, and verifying an auxiliary program that
monitors the execution of the target program, in such a way that
the correctness of the monitor entails the correctness of the
target. This technique is also applicable when one wants to
establish relational properties between two target programs
written in different languages and having different syntactic
structure [32]
[29].

             This approach is based on an earlier variant proposed in
M. Clochard's PhD thesis [11]. The ghost
monitor maintains the necessary data and invariants to facilitate
the proof, it can be implemented and verified in any suitable
framework, which does not have to be related to the language of
the target programs. M. Clochard introduced one such framework,
with an original extension that allows one to specify and prove
fine-grained properties about infinite behaviors of target
programs. The proof of correctness of this approach relies on a
particular flavor of transfinite games. This proof is formalized
and verified using the Why3 tool
(http://toccata.lri.fr/gallery/hoare_logic_and_games.en.html).

          

          	
            Extracting Why3 programs to C programs.
          

          	
             R. Rieu-Helft, C. Marché, and G. Melquiond devised a simple
memory model for representing C-like pointers in the Why3
system. This makes it possible to translate a small fragment of
Why3 verified programs into idiomatic C code
[26]. This extraction mechanism was used
to turn a verified Why3 library of arbitrary-precision integer
arithmetic into a C library that can be substituted to part of the
GNU Multi-Precision (GMP) library [128].

          

          	
            Verification of highly imperative OCaml programs with
Why3
          

          	
             J.-C. Filliâtre, M. Pereira, and S. Melo de Sousa proposed
a new methodology for proving highly imperative OCaml programs
with Why3. For a given OCaml program, a specific memory model is
built and one checks a Why3 program that operates on it. Once the
proof is complete, they use Why3's extraction mechanism to
translate its programs to OCaml, while replacing the operations on
the memory model with the corresponding operations on mutable
types of OCaml. This method is evaluated on several examples that
manipulate linked lists and mutable graphs
[24].

          

          	
            Verification of Parameterized Concurrent Programs on
Weak Memory Models
          

          	
             Modern multiprocessors and microprocesseurs
implement weak or relaxed memory models, in which the apparent
order of memory operation does not follow the sequential
consistency (SC) proposed by Leslie Lamport. Any concurrent
program running on such architecture and designed with an SC model
in mind may exhibit new behaviors during its execution, some of
which may potentially be incorrect. For instance, a mutual
exclusion algorithm, correct under an interleaving semantics, may
no longer guarantee mutual exclusion when implemented on a weaker
architecture. Reasoning about the semantics of such programs is a
difficult task. Moreover, most concurrent algorithms are designed
for an arbitrary number of processes. D. Declerck
[12] proposed an approach to ensure the
correctness of such concurrent algorithms, regardless of the
number of processes involved. It relies on the Model Checking
Modulo Theories (MCMT) framework, developed by Ghilardi and
Ranise, which allows for the verification of safety properties of
parameterized concurrent programs, that is to say, programs
involving an arbitrary number of processes. This technology is
extended with a theory for reasoning about weak memory models. The
result is an extension of the Cubicle model checker called
Cubicle-W, which allows the verification of safety properties of
parameterized transition systems running under a weak memory model
similar to TSO.

          

          	
            Counterexample Generation
          

          	
             S. Dailler and C. Marché
worked on extensions and improvements of the counterexample
generation feature of Why3, used in particular by the SPARK
front-end for Ada [102] [101].
When the logic goal generated for a given verification condition
is not shown unsatisfiable by an SMT solvers, some solver can
propose a model. By carefully reverting the transformation chain
(from an input program through the VC generator and the various
translation steps to solvers), this model is turned into a
potential counterexample that the user can exploit to analyze why
its original code is not proved. The extension consists in a deep
analysis of the complete model generated by the solver, so as to
extract more information and produce better counterexamples. A
journal paper giving the details of the whole process was
published [14]

          

          	
            Alias Control for SPARK Program Verification
          

          	
             G.-A. Jaloyan and A. Paskevich, together with C. Dross,
M. Maalej, and Y. Moy made a proposal for introduction
of pointers to the SPARK language, based on permission-driven
static alias analysis method inspired by Rust's borrow-checker
and affine types [35].
By ensuring that at any point of execution any writable value
can only be accessed through a single name, it is possible to
apply the standard rules of Hoare logic (or weakest precondition
calculus) to verify programs with pointers.
The proposed framework was implemented in the GNAT Ada compiler
and the SPARK toolset.
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            A Why3 Framework for Reflection Proofs and its
Application to GMP's Algorithms
          

          	
             Earlier works using Why3 showed
that automatically verifying the algorithms of the
arbitrary-precision integer library GMP exceeds the current
capabilities of automatic solvers. To complete this verification,
numerous cut indications had to be supplied by the user, slowing the
project to a crawl. G. Melquiond and R. Rieu-Helf extended Why3 with
a framework for proofs by reflection, with minimal impact on the
trusted computing base. This framework makes it easy to write
dedicated decision procedures that make full use of Why3's imperative
features and are formally verified. This approach opens the way to
efficiently tackling the further verification of GMP's algorithms
[20], [27].

          

          	
            Expressive and extensible automated reasoning tactics
for Coq
          

          	
             Proof assistants based on Type Theory, such as Coq,
allow implementing effective automatic tactics based on
computational reasoning (e.g. lia  for linear integer
arithmetic, or ring  for ring theory). Unfortunately,
these are usually limited to one particular domain. In contrast,
SMTCoq is a modular and extensible tool, using external provers,
which generalizes these computational approaches to combine
multiple theories. It relies on a high-level interface, which
offers a greater expressiveness, at the cost of more complex
automation. Q. Garchery, in collaboration with C. Keller and
V .Blot, designed two improvements to increase expressiveness of
SMTCoq without impeding its modularity and its efficiency: the
first adds some support for universally quantified hypotheses,
while the second generalizes the support for integer arithmetic to
the different representations of natural numbers and integers in
Coq. This work will be presented in the next JFLA
[30]

          

          	
            Non-linear Arithmetic Reasoning for Control-Command
Software
          

          	
             State-of-the-art (semi-)decision procedures for
non-linear real arithmetic address polynomial inequalities by mean
of symbolic methods, such as quantifier elimination, or numerical
approaches such as interval arithmetic. Although (some of) these
methods offer nice completeness properties, their high complexity
remains a limit, despite the impressive efficiency of modern
implementations. This appears to be an obstacle to the use of SMT
solvers when verifying, for instance, functional properties of
control-command programs. Using off-the-shelf convex optimization
solvers is known to constitute an appealing alternative. However,
these solvers only deliver approximate solutions, which means they
do not readily provide the soundness expected for applications
such as software verification. S. Conchon, together with P. Roux
and M. Iguernelala [21], investigated
a-posteriori validation methods and their integration in the SMT
framework. Although their early prototype, implemented in the
Alt-Ergo SMT solver, often does not prove competitive with state
of the art solvers, it already gives some interesting results,
particularly on control-command programs.

          

          	
            Lightweight Interactive Proving for Automated Program
Verification
          

          	
             Deductive verification approach allows
establishing the strongest possible formal guarantees on critical
software. The downside is the cost in terms of human effort
required to design adequate formal specifications and to
successfully discharge the required proof obligations. To
popularize deductive verification in an industrial software
development environment, it is essential to provide means to
progressively transition from simple and automated approaches to
deductive verification. The SPARK environment, for development of
critical software written in Ada, goes towards this goal by
providing automated tools for formally proving that some code
fulfills the requirements expressed in Ada contracts.

             In a program verifier that makes use of automatic provers to
discharge the proof obligations, a need for some additional user
interaction with proof tasks shows up: either to help analyzing
the reason of a proof failure or, ultimately, to discharge the
verification conditions that are out-of-reach of state-of-the-art
automatic provers. Adding interactive proof features in SPARK
appears to be complicated by the fact that the proof toolchain
makes use of the independent, intermediate verification tool Why3,
which is generic enough to accept multiple front-ends for
different input languages. S. Dailler, C. Marché and Y. Moy
proposed an approach to extend Why3 with interactive proof
features and also with a generic client-server infrastructure
allowing integration of proof interaction into an external,
front-end graphical user interface such as the one of SPARK. This
was presented at the F-IDE symposium [18].
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        Certification of Algorithms, Languages, Tools and Systems

        
          	
            Formalization and closedness of finite dimensional
subspaces.
          

          	
             F. Faissole formalized a theory of finite
dimensional subspaces of Hilbert spaces in order to apply the
Lax-Milgram Theorem on such subspaces. He had to prove, in the Coq
proof assistant, that finite dimensional subspaces of Hilbert
spaces are closed in the context of general topology using filters
[90]. He also formalized both finite dimensional
modules and finite dimensional subspaces of modules. He compared
the two formalizations and showed a complementarity between
them. He proved that the product of two finite dimensional modules
is a finite dimensional module [22].

          

          	
            Analysis of explicit Runge-Kutta methods
          

          	
             Numerical integration schemes are mandatory to understand complex
behaviors of dynamical systems described by ordinary differential
equations. Implementation of these numerical methods involve
floating-point computations and propagation of round-off errors.
In the spirit of [58], S. Boldo, F. Faissole and
A. Chapoutot developed a fine-grained analysis of round-off errors in
explicit Runge-Kutta integration methods, taking into account
exceptional behaviors, such as underflow and overflow
[31].

          

          	
            Verified numerical approximations of improper definite
integrals.
          

          	
             The CoqInterval library provides some tactics for
computing and formally verifying numerical approximations of
real-valued expressions inside the Coq system. In particular, it
is able to compute reliable bounds on proper definite integrals
[113]. A. Mahboubi, G. Melquiond, and
T. Sibut-Pinote extended these algorithms to also cover some
improper integrals, e.g., those with an unbounded integration
domain [15]. This makes CoqInterval one of
the very few tools able to produce reliable results for improper
integrals, be they formally verified or not.

          

          	
            Case study: algorithms for matrix multiplication.
          

          	
             M. Clochard, L. Gondelman and M. Pereira worked on a case study
about matrix multiplication. Two variants for the multiplication
of matrices are proved: a naive version using three nested loops
and Strassen's algorithm. To formally specify the two
multiplication algorithms, they developed a new Why3 theory of
matrices, and they applied a reflection methodology to conduct
some of the proofs. A first version of this work was presented at
the VSTTE Conference in 2016 [74]. An extended
version that considers arbitrary rectangular matrices instead of
square ones is published in the Journal of Automated Reasoning
[13]. The development is available in
Toccata's gallery
http://toccata.lri.fr/gallery/verifythis_2016_matrix_multiplication.en.html.

          

          	
            Digital Filters
          

          	
             Digital filters are small iterative
algorithms, used as basic bricks in signal processing (filters)
and control theory (controllers). D. Gallois-Wong, S. Boldo and
T. Hilaire formally proved in Coq some error analysis theorems
about digital filters, namely the Worst-Case Peak Gain theorem and
the existence of a filter characterizing the difference between
the exact filter and the implemented one. Moreover, as the digital
signal processing literature provides many equivalent algorithms,
called realizations, they formally defined and proved the
equivalence of several realizations (Direct Forms and State-Space)
[19]. Another Coq development dedicated
the a realization called SIF (Specialized Implicit Form) has been
done, in order to encompass all the other realizations up to the
order of computation, which is very important in finite precision
[25].
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            Correct Average of Decimal Floating-Point Numbers
          

          	
             Some modern processors include decimal floating-point units, with
a conforming implementation of the IEEE-754 2008
standard. Unfortunately, many algorithms from the computer
arithmetic literature are not correct anymore when computations
are done in radix 10. This is in particular the case for the
computation of the average of two floating-point numbers.
S. Boldo, F. Faissole and V. Tourneur developed a new radix-10
algorithm that computes the correctly-rounded average, with a Coq
formal proof of its correctness, that takes gradual underflow into
account [17].

          

          	
            Optimal Inverse Projection of Floating-Point Addition
          

          	
             In a setting where we have intervals for the values of
floating-point variables x, a, and b, we are interested in
improving these intervals when the floating-point equality x⊕a=b holds. This problem is common in constraint propagation, and
called the inverse projection of the addition. It also appears in
abstract interpretation for the analysis of programs containing
IEEE 754 operations. D. Gallois-Wong, S. Boldo and P. Cuoq proposed
floating-point theorems that provide optimal bounds for all the
intervals. Fast loop-free algorithms compute these optimal bounds
using only floating-point computations at the target precision
[34].

          

          	
            Handbook of Floating-point Arithmetic
          

          	
             Initially
published in 2010, the Handbook of Floating-Point Arithmetic
has been heavily updated. G. Melquiond contributed to the second
edition [28].

          

          	
            Error analysis of finite precision digital filters and
controllers
          

          	
             The effort to provide accurate and reliable error
analysis of fixed-point implementations of Signal Processing and
Control algorithms was continued (see also the formalization effort
above). A. Volkova, M. Istoan, F. de Dinechin and T. Hilaire (Citi Lyon, INSA Lyon) created an automatic code generator for FPGAs and dedicated roundoff analysis in order to minimize the bit-widths used for the intern computations while guaranteeing a bound on the output error [16]. The global workflow for the rigorous design of reliable Fixed-Point filters has been studied by A. Volkova, T. Hilaire and C. Lauter and submitted to a journal 
[36] : it concerns the rigorous determination of the Most Significant Bit of each variable, to guaranty that no overflow will ever occur, also taking into account the roundoff error propagation.
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        Bilateral Contracts with Industry

        
        ProofInUse Joint Laboratory

        Participants :
	Claude Marché [contact] , Jean-Christophe Filliâtre, Andrei Paskevich, Guillaume Melquiond, Sylvain Dailler.

        The objective of ProofInUse is to provide verification tools, based
on mathematical proof, to industry users. These tools are aimed
at replacing or complementing the existing test activities, whilst
reducing costs.

        This laboratory is a joint effort of the Inria project-team Toccata,
the AdaCore company which provides development tools for the Ada
programming language, and the TrustInSoft company which provides
static analysis tools for the C and C++ programming language.

        The objective of ProofInUse is thus to significantly increase the
capabilities and performances of verification environments proposed
by these two companies. It aims at integration of verification
techniques at the state-of-the-art of academic research, via the
generic environment Why3 for deductive program verification
developed by Toccata.

        This joint laboratory is a follow-up of the former “LabCom
ProofInUse” between Toccata and AdaCore, funded by the ANR
programme “Laboratoires communs”, from April 2014 to March 2017
http://www.spark-2014.org/proofinuse.

        The SME AdaCore is a software publisher specializing in providing
software development tools for critical systems. A previous
successful collaboration between Toccata and AdaCore enabled
Why3 technology to be put into the heart of the
AdaCore-developed SPARK technology.

        The SME TrustInSoft is a company whose speciality is the
verification of critical software, written in the C or C++
languages. It is interested in integrating the novelties of
ProofInUse in its own environment TIS Analyzer.
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        Bilateral Grants with Industry

        
        CIFRE contract with TrustInSoft company

        Participants :
	Guillaume Melquiond [contact] , Raphaël Rieu-Helft.

        Jointly with the thesis of R. Rieu-Helft, supervised in collaboration
with the TrustInSoft company, we established a 3-year bilateral
collaboration contract, that started in October 2017. The aim is to
design methods that make it possible to design an arbitrary-precision
integer library that, while competitive with the state-of-the-art
library GMP, is formally verified. Not only are GMP's algorithm
especially intricate from an arithmetic point of view, but numerous
tricks were also used to optimize them. We are using the Why3
programming language to implement the algorithms, we are developing
reflection-based procedures to verify them, and we finally extract them
as a C library that is binary-compatible with GMP
[20] [26].
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        Promoting Scientific Activities

        
        Scientific Events Organisation

        
        General Chair, Scientific Chair

        
          	
             S. Boldo, president of the 29th “Journées Francophones des
Langages Applicatifs” (JFLA 2018)

          

          	
             J.-C. Filliâtre, scientific chair and co-organizer of EJCP
(École Jeunes Chercheurs en Programmation du GDR GPL) at
Lyon on June 25–29, 2018. 5 days / 8 lectures / 25 participants.
https://ejcp2018.sciencesconf.org/

          

          	
             D. Gallois-Wong, co-chair of the Doctoral Programme of the
11th Conference on Intelligent Computer Mathematics (CICM 2018).

          

        

        
        Member of the Organizing Committees

        
          	
             G. Melquiond, organizer of the 10th “Rencontres
Arithmétiques du GDR Informatique-Mathématique” (RAIM 2018)

          

        

        
        Scientific Events Selection

        
        Chair of Conference Program Committees

        
          	
             S. Boldo, program chair of the 29th “Journées Francophones des
Langages Applicatifs” (JFLA 2018).

          

          	
             S. Boldo, program co-chair of the 26th IEEE Symposium on Computer
Arithmetic (ARITH 2019), Kyoto, Japan.

          

        

        
        Member of the Conference Program Committees

        
          	
             S. Boldo, PC of the 25th IEEE Symposium on Computer Arithmetic
(ARITH 2018)

          

          	
             S. Boldo, PC of the 7th ACM SIGPLAN Conference on
Certified Programs and Proofs (CPP 2018)

          

          	
             S. Boldo, PC of the Tenth NASA Formal Methods Symposium (NFM 2018)

          

          	
             S. Boldo, PC of the Eleventh NASA Formal Methods Symposium (NFM 2019)

          

          	
             J.-C. Filliâtre, PC of the 18th International Workshop on
Automated Verification of Critical Systems (AVOCS 2018)

          

          	
             J.-C. Filliâtre, PC of the 10th International Conference on
Interactive Theorem Proving (ITP 2019)

          

          	
             J.-C. Filliâtre, PC of the European Symposium on Programming
(ESOP 2020)

          

          	
             J.-C. Filliâtre, PC of the Symposium on Languages, Applications
and Technologies (SLATE 2018)

          

          	
             G. Melquiond, PC of the 26th IEEE Symposium on Computer Arithmetic
(ARITH 2019)

          

          	
             G. Melquiond, PC of the 10th International Conference on
Interactive Theorem Proving (ITP 2019)

          

        

        
        Reviewer

        The members of the Toccata team have reviewed papers for numerous
international conferences.

        
        Journal

        
        Member of the Editorial Boards

        
          	
             G. Melquiond, member of the editorial board of Reliable
Computing.

          

          	
             J.-C. Filliâtre, member of the editorial board of Journal
of Functional Programming.

          

        

        
        Reviewer - Reviewing Activities

        The members of the Toccata team have reviewed numerous papers for
numerous international journals.

        
        Invited Talks

        
          	
             J.-C. Filliâtre, invited speaker at the 8th International
Conference on Interactive Theorem Proving (ITP 2018).

          

          	
             J.-C. Filliâtre, invited speaker at the Formal Integrated
Development Environment (F-IDE 2018).

          

        

        
        Leadership within the Scientific Community

        
          	
             S. Boldo, elected chair of the ARITH working group of
the GDR-IM (a CNRS subgroup of computer science) with J. Detrey (Inria Nancy).

          

          	
             J.-C. Filliâtre, chair of IFIP WG 1.9/2.15 verified Software.

          

        

        
        Scientific Expertise

        
          	
             G. Melquiond, member of the scientific commission of
Inria-Saclay, in charge of selecting candidates for PhD grants,
Post-doc grants, temporary leaves from universities
(“délégations”).

          

          	
             C. Marché, member of the “Bureau du Comité des Projets” of
Inria-Saclay (includes examination of proposals for creation of new
Inria project-teams for Saclay research center).

          

          	
             S. Boldo, member of the program committee for selecting postdocs
of the maths/computer science program of the Labex mathématique Hadamard.

          

          	
             S. Boldo, member of the national Inria admission committee.

          

          	
             J.-C. Filliâtre, grading the entrance examination at X/ENS
(“option informatique”).

          

          	
             C. Marché, scientific expert for project evaluation, Dutch
Research Council (NWO https://www.nwo.nl/en), The Netherlands,
2018.

          

          	
             C. Marché, scientific expert for project evaluation, National
Science Centre (Narodowe Centrum Nauki - NCN
http://www.ncn.gov.pl/), Poland, 2018.

          

          	
             C. Marché, scientific expert for promotion of academic staff,
Chalmers University of Technology, Sweden, 2018.

          

          	
             S. Boldo, member of a hiring committee for an associate professor
position in computer science at University Paris Diderot (IRIF
laboratory).

          

          	
             C. Marché, member of DigiCosme committee for research and
innovation (selection of projects for working groups, post-doc
grants, doctoral missions, invited professors)

          

        

        
        Research Administration

        
          	
             G. Melquiond, member of the committee for the monitoring of PhD
students (“commission de suivi doctoral”).

          

          	
             S Boldo, member of the CLFP (“commission locale de
formation permanente”).

          

          	
             S. Boldo, member of the CCD, (“commission consultative des
doctorants”).

          

          	
             S. Boldo will be deputy scientific director (DSA) of Inria Saclay
research center from January 1st, 2019
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        Teaching

        
          	
             J.-C. Filliâtre, Langages de programmation et
compilation, 25h, L3, École Normale Supérieure, France.

          

          	
             J.-C. Filliâtre, Les bases de l'algorithmique et de la
programmation, 15h, L3, École Polytechnique, France.

          

          	
             J.-C. Filliâtre, Compilation, 18h, M1, École
Polytechnique, France.

          

          	
             G. Melquiond, Programmation C++ avancée, 12h, M2,
Université Paris-Saclay, France.

          

        

        
        Supervision

        
          	
             PhD: M. Clochard, “Methods and tools for specification and
proof of difficult properties of sequential
programs” [11], Université Paris-Saclay
& Université Paris-Sud, March 30th 2018, supervised by
C. Marché and A. Paskevich.

          

          	
             PhD: D. Declerck, “Verification via Model Checking of
Parameterized Concurrent Programs on Weak Memory
Models” [12], Université Paris-Saclay &
Université Paris-Sud, Sep 24th 2018, supervised by F. Zaïdi
(LRI) and S. Conchon.

          

          	
             PhD: M. Pereira, “Tools and Techniques for the Verification of
Modular Stateful Code”  [127], Université
Paris-Saclay & Université Paris-Sud, Dec 10th 2018, supervised by
by J.-C. Filliâtre.

          

          	
             PhD in progress: M. Roux, “Model Checking de systèmes
paramétrés et temporisés”, since Sep. 2015, supervised
by Sylvain Conchon.

          

          	
             PhD in progress: A. Coquereau, “[ErgoFast] Amélioration de
performances pour le solveur SMT Alt-Ergo : conception d'outils
d'analyse, optimisations et structures de données efficaces pour
OCaml”, since Sep. 2015, supervised by S. Conchon, F. Le
Fessant et M. Mauny.

          

          	
             PhD in progress: F. Faissole, “Stabilité(s): liens entre
l'arithmétique flottante et l'analyse numérique”, since Oct. 2016,
supervised by S. Boldo and A. Chapoutot.

          

          	
             PhD in progress: R. Rieu-Helft, “Développement et vérification
de bibliothèques d'arithmétique entière en précision arbitraire”,
since Oct. 2017, supervised by G. Melquiond and P. Cuoq (TrustInSoft).

          

          	
             PhD in progress: D. Gallois-Wong, “Vérification formelle et
filtres numériques”, since Oct. 2017, supervised by S. Boldo
and T. Hilaire.

          

          	
             PhD in progress: Q. Garchery, “Certification de la génération
et de la transformation d’obligations de preuve”, since
Oct. 2018, supervised by C. Keller, C. Marché and A. Paskevich.

          

        

        
        Juries

        
          	
             C. Marché: examiner of the habilitation thesis of J. Signoles,
“From Static Analysis to Runtime Verification with Frama-C and
E-ACSL”, Université Paris-Sud, July 9th 2018

          

          	
             C. Marché: examiner of the habilitation thesis of N. Kosmatov,
“Combinations of Analysis Techniques for Sound and Efficient Software
Verification”, Université Paris-Sud, Nov 20th 2018

          

          	
             C. Marché: president of the PhD defense of J.-C. Léchenet,
“Certified Algorithms for Program Slicing”, Université
Paris-Saclay, July 19th 2018

          

          	
             C. Marché: reviewer of the PhD defense of C. Laurenço,
“Single-assignment Program Verification”, Universidad do Minho,
Portugal, July 2nd 2018

          

          	
             S. Boldo: reviewer and president of the PhD defense of
B. Djalal, “Formalisation en Coq pour la décision de problèmes en
géométrie algébrique réelle”, Université Côte d'Azur, December 3rd
2018

          

          	
             S. Boldo: reviewer of the PhD of R. Picot, “Amélioration de la
fiabilité numérique de codes de calcul industriels”, Sorbonne Université,
March 27th 2018

          

          	
             S. Boldo: president of the PhD defense of S. Covanov,
“Algorithmes de multiplication : complexité bilinéaire et méthodes
asymptotiquement rapides”, Université de Lorraine, June 5th 2018

          

          	
             S. Boldo: president of the PhD defense of G. Davy,
“Génération de codes et d'annotations prouvables d'algorithmes
de points intérieurs à destination de systèmes embarqués
critiques”, Université de Toulouse, December 6th 2018

          

          	
             J.-C. Filliâtre: licentiate doctorate examination at Chalmers
University of Technology, Sweden, August 23, 2018.

          

        

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Dissemination

        Popularization

        
        Internal or external Inria responsibilities

        S. Boldo is the scientific head for Saclay for the MECSI group for
networking about computer science popularization inside Inria.

        She was also responsible (with M. Quet of the SCM) for the 2018 “Fête
de la science” on October 11th 2018. About 260 teenagers were
welcomed on 8 activities ranging from unplugged activities with Duplo
construction toys to programming, and from applied mathematics to
theoretical computer science.

        
        Interventions

        
          	
             S. Boldo animated an activity at the Inria “Fête
de la science” on October 11th 2018 the whole day long.

          

          	
             S. Boldo animated an activity and gave talks at the LRI “Fête
de la science” on October 12th 2018.

          

          	
             S. Boldo gave a talk during at a Girls can code week on
August 31st 2018 in Paris.

          

          	
             S. Boldo will give a talk to about 180 teenagers at the
Marie Curie high school in Sceaux on February 8th, 2019

          

          	
             J.-C. Filliâtre gave a talk at Mathematical Summer in
Paris on July 16, 2018.

          

          	
             J.-C. Filliâtre gave a talk Parcours d'un informaticien
at the seminar “Info Pour Tous” (high school and
undergraduate students). Video on YouTube.
http://seminairespourtous.ens.fr/ipt

          

          	
             S. Dailler and C. Marché gave a demonstration of the SPARK
environment, at the DigiHall Day (May 22 2018
https://www.irt-systemx.fr/evenements/digihall-2018/). DigiHall
is a cluster of digital technologies of Paris-Saclay. More than 800
industrial and institutional decision-makers and academic
counterparts took part in this first-of-its-kind event.

          

          	
             C. Marché presented the joint laboratory ProofInUse at the
LabCom Colloquium (Maison de la Chimie, Paris, Sep. 27 2018
http://ptolemee.com/colloque-labcom/index.html) organized by
ANR, with participation of numerous actors from both academia and
industry.

          

        

        
        Internal action

        
          	
             S. Boldo demonstrated popularization by an unplugged activity to
all the new Inria staff at the welcome days on June 7th 2018

          

          	
             S. Boldo animated an unplugged activity to the AER service (team
assistants) on July 3rd 2018

          

          	
             S. Boldo trained colleagues on unplugged activities for the
“Fête de la science” (5 sessions of about 1h30)

          

          	
             S. Dailler and C. Marché gave a presentation of the joint
laboratory ProofInUse, together with a demonstration of the SPARK
environment, at the Software Day of the DigiCosme Labex (Saclay,
June 7 2018
https://digicosme.lri.fr/tiki-read_article.php?articleId=256)

          

        

        
        Creation of media or tools for science outreach

        
          	
             S. Boldo is supervising the popularization mission of C. Patte
(M3DISIM team) in order to create a new popularization activity for
teenagers in 2019.

          

          	
             C. Marché, main contributor of the site for the Why3 tool inside
the Inria Saclay Virtual Showroom. Includes a short video
introduction of Why3 for beginners using the TryWhy3 Web interface
http://why3.lri.fr/try/
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      Partnerships and Cooperations


        European Initiatives


        
        FP7 & H2020 Projects


        
        EMC2


        Participant :
	Sylvie Boldo [contact] .


        A new ERC Synergy Grant 2018 project, called Extreme-scale
Mathematically-based Computational Chemistry (EMC2) has just been
accepted. The PIs are É. Cancès, L. Grigori, Y. Maday and
J.-P. Piquemal. S. Boldo is part of the work package 3: validation and
certification of molecular simulation results.
https://www.sorbonne-universite.fr/newsroom/actualites/erc-synergy-grant-2018


        
        Collaborations in European Programs, Except FP7 & H2020


        
          		
             Program: COST (European Cooperation in Science and Technology).


          


          		
             Project acronym: EUTypes https://eutypes.cs.ru.nl/


          


          		
             Project title: The European research network on types for programming and verification


          


          		
             Duration: 2015-2019


          


          		
             Coordinator: Herman Geuvers, Radboud University Nijmegen, The Netherlands


          


          		
             Other partners: 36 members countries, see http://www.cost.eu/COST_Actions/ca/CA15123?parties


          


          		
             Abstract: Types are pervasive in programming and information
technology. A type defines a formal interface between software
components, allowing the automatic verification of their
connections, and greatly enhancing the robustness and reliability of
computations and communications. In rich dependent type theories,
the full functional specification of a program can be expressed as a
type. Type systems have rapidly evolved over the past years,
becoming more sophisticated, capturing new aspects of the behaviour
of programs and the dynamics of their execution.


             This COST Action will give a strong impetus to research on type
theory and its many applications in computer science, by promoting
(1) the synergy between theoretical computer scientists, logicians
and mathematicians to develop new foundations for type theory, for
example as based on the recent development of "homotopy type
theory”, (2) the joint development of type theoretic tools as proof
assistants and integrated programming environments, (3) the study of
dependent types for programming and its deployment in software
development, (4) the study of dependent types for verification and
its deployment in software analysis and verification. The action
will also tie together these different areas and promote
cross-fertilisation.
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        Section: 
      Partnerships and Cooperations


        National Initiatives


        
        ANR CoLiS


        Participants :
	Claude Marché [contact] , Andrei Paskevich.


        The CoLiS research project is funded by the programme “Société de
l'information et de la communication” of the ANR, for a period of
60 months, starting on October 1st,
2015. http://colis.irif.univ-paris-diderot.fr/


        The project aims at developing formal analysis and verification
techniques and tools for scripts. These scripts are written in the
POSIX or bash shell language. Our objective is to produce, at the
end of the project, formal methods and tools allowing to analyze,
test, and validate scripts. For this, the project will develop
techniques and tools based on deductive verification and tree
transducers stemming from the domain of XML documents.


        Partners: Université Paris-Diderot, IRIF laboratory (formerly PPS
& LIAFA), coordinator; Inria Lille, team LINKS


        
        ANR Vocal


        Participants :
	Jean-Christophe Filliâtre [contact] , Andrei Paskevich.


        The Vocal research project is funded by the programme “Société de
l'information et de la communication” of the ANR, for a period of 60
months, starting on October 1st, 2015. https://vocal.lri.fr/


        The goal of the Vocal project is to develop the first formally
verified library of efficient general-purpose data structures and
algorithms. It targets the OCaml programming language, which allows
for fairly efficient code and offers a simple programming model that
eases reasoning about programs. The library will be readily
available to implementers of safety-critical OCaml programs, such as
Coq, Astrée, or Frama-C. It will provide the essential building
blocks needed to significantly decrease the cost of developing safe
software. The project intends to combine the strengths of three
verification tools, namely Coq, Why3, and CFML. It will use Coq to
obtain a common mathematical foundation for program specifications,
as well as to verify purely functional components. It will use Why3 to
verify a broad range of imperative programs with a high degree of
proof automation. Finally, it will use CFML for formal reasoning
about effectful higher-order functions and data structures making
use of pointers and sharing.


        Partners:
team Gallium (Inria Paris-Rocquencourt),
team DCS (Verimag),
TrustInSoft,
and OCamlPro.


        
        ANR FastRelax


        Participants :
	Sylvie Boldo [contact] , Guillaume Melquiond.


        This is a research project funded by the programme “Ingénierie
Numérique & Sécurité” of the ANR. It is funded for a period of
48 months and it has started on October 1st,
2014. http://fastrelax.gforge.inria.fr/


        Our aim is to develop computer-aided proofs of numerical values, with
certified and reasonably tight error bounds, without sacrificing
efficiency. Applications to zero-finding, numerical quadrature or
global optimization can all benefit from using our results as building
blocks. We expect our work to initiate a "fast and reliable" trend in
the symbolic-numeric community. This will be achieved by developing
interactions between our fields, designing and implementing prototype
libraries and applying our results to concrete problems originating in
optimal control theory.


        Partners:
team ARIC (Inria Grenoble Rhône-Alpes),
team MARELLE (Inria Sophia Antipolis - Méditerranée),
team SPECFUN (Inria Saclay - Île-de-France), Université Paris 6,
and LAAS (Toulouse).


        
        ANR Soprano


        Participants :
	Sylvain Conchon [contact] , Guillaume Melquiond.


        The Soprano research project is funded by the programme “Sciences et
technologies logicielles” of the ANR, for a period of
42 months, starting on October 1st, 2014. http://soprano-project.fr/


        The SOPRANO project aims at preparing the next generation of
verification-oriented solvers by gathering experts from academia and
industry. We will design a new framework for the cooperation of
solvers, focused on model generation and borrowing principles from SMT
(current standard) and CP (well-known in optimization). Our main
scientific and technical objectives are the following. The first
objective is to design a new collaboration framework for solvers,
centered around synthesis rather than satisfiability and allowing
cooperation beyond that of Nelson-Oppen while still providing minimal
interfaces with theoretical guarantees. The second objective is to
design new decision procedures for industry-relevant and hard-to-solve
theories. The third objective is to implement these results in a new
open-source platform. The fourth objective is to ensure
industrial-adequacy of the techniques and tools developed through
periodical evaluations from the industrial partners.


        Partners:
team DIVERSE (Inria Rennes - Bretagne Atlantique),
Adacore, CEA List, Université Paris-Sud, and OCamlPro.


        
        FUI LCHIP


        Participant :
	Sylvain Conchon [contact] .


        LCHIP (Low Cost High Integrity Platform) is aimed at easing the
development of safety critical applications (up to SIL4) by
providing: (i) a complete IDE able to automatically generate and
prove bounded complexity software (ii) a low cost, safe execution
platform. The full support of DSLs and third party code generators
will enable a seamless deployment into existing development cycles.
LCHIP gathers scientific results obtained during the last 20 years
in formal methods, proof, refinement, code generation, etc. as well
as a unique return of experience on safety critical systems design.
http://www.clearsy.com/en/2016/10/4260/


        Partners: 2 technology providers (ClearSy, OcamlPro), in charge of
building the architecture of the platform; 3 labs (IFSTTAR, LIP6,
LRI), to improve LCHIP IDE features; 2 large companies (SNCF,
RATP), representing public ordering parties, to check compliance
with standard and industrial railway use-case.


        The project lead by ClearSy has started in April 2016 and lasts 3
years. It is funded by BpiFrance as well as French regions.


        
        ANR PARDI


        Participant :
	Sylvain Conchon [contact] .


        Verification of PARameterized DIstributed systems. A parameterized
system specification is a specification for a whole class of
systems, parameterized by the number of entities and the properties
of the interaction, such as the communication model
(synchronous/asynchronous, order of delivery of message, application
ordering) or the fault model (crash failure, message loss). To
assist and automate verification without parameter instantiation,
PARDI uses two complementary approaches. First, a fully automatic
model checker modulo theories is considered. Then, to go beyond the
intrinsic limits of parameterized model checking, the project
advocates a collaborative approach between proof assistant and model
checker. http://pardi.enseeiht.fr/


        The proof lead by Toulouse INP/IRIT started in 2016 and lasts for 4
years. Partners: Université Pierre et Marie Curie (LIP6),
Université Paris-Sud (LRI), Inria Nancy (team VERIDIS)
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        Section: 
      Partnerships and Cooperations


        Regional Initiatives


        
        ELEFFAN


        Participant :
	Sylvie Boldo [contact] .


        ELEFFAN is a Digicosme project funding the PhD of
F. Faissole. S. Boldo is the principal investigator. It began in 2016
for three years. https://project.inria.fr/eleffan/


        The ELEFFAN project aims at formally proving rounding error bounds of
numerical schemes.


        Partners: ENSTA Paristech (A. Chapoutot)


        
        MILC


        Participant :
	Sylvie Boldo [contact] .


        MILC is a DIM-RFSI project. It is a one-year project (2018–2019) that
aims at formalizing measure theory and Lebesgue integral in the
Coq proof assistant. https://lipn.univ-paris13.fr/MILC/


        Partners: Université Paris 13 (M. Mayero, PI), Inria Paris, Inria Saclay


      

      
      

      
    

  

