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        Section: 
      Overall Objectives

        Overall Objectives

        The research conducted in the Cambium team aims at improving the safety,
reliability and security of software through advances in programming languages
and in formal program verification. Our work is centered on the design,
formalization, and implementation of programming languages, with particular
emphasis on type systems and type inference, formal program verification,
shared-memory concurrency and weak memory models. We are equally interested in
theoretical foundations and in applications to real-world problems. The OCaml
programming language and the CompCert C compiler embody many of our research
results.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Overall Objectives

        Software reliability and reusability

        Software nowadays plays a pervasive role in our environment:
it runs not only on general-purpose computers,
as found in homes, offices, and data centers,
but also on
mobile phones,
credit cards,
inside transportation systems,
factories,
and so on.
Furthermore,
whereas building a single isolated software system was once
rightly considered a daunting task, today,
tens of millions of developers throughout the world
collaborate to develop software components that have complex
interdependencies.
Does this mean that the “software crisis” of the early 1970s,
which Dijsktra described as follows, is over?

        
          By now it is generally recognized that the design of any large
sophisticated system is going to be a very difficult job, and whenever one
meets people responsible for such undertakings, one finds them very much
concerned about the reliability issue, and rightly so. – Edsger W. Dijkstra

        

        To some extent, the crisis is indeed over.
In the past five decades,
strong emphasis has been put
on modularity and reusability.
It is by now well-understood how to build reusable
software components,
thus avoiding repeated programming effort
and reducing costs.
The availability of hundreds of thousands of such components,
hosted in collaborative repositories,
has allowed the software industry to bloom in a manner that
was unimaginable a few decades ago.

        As pointed out by Dijkstra, however,
the problem is not just to build software,
but to ensure that it works.
Today, the reliability of most software leaves a lot to be desired.
Consumer-grade software,
including desktop,
Web,
and mobile phone applications,
often crashes or exhibits unexpected behavior.
This results in loss of time, loss of data,
and also can often be exploited for malicious purposes
by attackers.
Reliability includes safety—exhibiting appropriate
behavior under normal usage conditions—and security—resisting
abuse in the hands of an attacker.

        Today, achieving very high levels of reliability is possible, albeit at a
tremendous cost in time and money. In the aerospace industry, for instance,
high reliability is obtained via meticulous development processes, extensive
testing efforts, and external reviewing by independent certification
authorities.
There and elsewhere, formal verification is also used,
instead of or in addition to the above methods.
In the hardware industry,
model-checking is used to verify microprocessor components.
In the critical software industry,
deductive program verification has been used to verify
operating system kernels, file systems, compilers, and so on.
Unfortunately,
these methods are difficult to apply in industries that have strong
cost and time-to-market constraints, such as the automotive industry, let
alone the general software industry.

        Today, thus, we arguably still are experiencing a “reliable-software
crisis”. Although we have become pretty good at producing and evolving
software, we still have difficulty producing cheap reliable software.

        How to resolve this crisis remains, to a large extent, an open question.
Modularity and reusability seem needed now more than ever, not only in order
to avoid repeated programming effort and reduce the likelihood of errors, but
also and foremost to avoid repeated specification and verification effort.
Still, apparently,
the languages that we use to write software are not expressive enough,
and the logics and tools that we use to verify software are not mature enough,
for this crisis to be behind us.
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        Qualities of a programming language

        A programming language is the medium through which an intent (software design)
is expressed (program development), acted upon (program execution), and
reasoned about (verification).
It would be a mistake to argue that, with sufficient dedication, effort, time
and cleverness, good software can be written in any programming language.
Although this may be true in principle, in reality, the choice of an adequate
programming language can be the deciding factor between software that works
and software that does not, or even cannot be developed at all.

        We believe, in particular, that it is crucial for a programming language to
be safe, expressive,
to encourage modularity,
and to have a simple, well-defined semantics.

        
          	
             Safety. The execution of a program must not ever be
allowed to go wrong in an unpredictable way. Examples of behaviors that must
be forbidden include
reading or writing data outside of the memory area assigned by the operating
system to the process and executing arbitrary data as if it were code.
A programming language is safe if every safety violation is gracefully detected
either at compile time or at runtime.

          

          	
             Expressiveness. The programming language should allow
programmers to think in terms of concise, high-level
abstractions—including the concepts and entities of the application
domain—as opposed to verbose, low-level representations or encodings of
these concepts.

          

          	
             Modularity. The programming language should make it easy
to develop a software component in isolation,
to describe how it is intended to be composed with other components,
and to check at composition time that this intent is respected.

          

          	
             Semantics. The programming language should come
with a mathematical definition of the meaning of programs, as opposed
to an informal, natural-language description.
This definition should ideally be formal,
that is, amenable to processing by a machine.
A well-defined semantics is a prerequisite for
proving that the language is safe (in the above sense)
and for proving that a specific program is correct
(via model-checking, deductive program verification, or other formal methods).

          

        

        The safety of a programming language is usually achieved via a combination of
design decisions,
compile-time type-checking,
and
runtime checking.
As an example design decision,
memory deallocation, a dangerous operation,
can be placed outside of the programmer's control.
As an example of compile-time type-checking,
attempting to use an integer as if it were
a pointer can be considered a type error;
a program that attempts to do this is then rejected
by the compiler before it is executed.
Finally,
as an example of runtime checking,
attempting to access an array outside
of its bounds can be considered a runtime error:
if a program attempts to do this, then its execution is aborted.

        Type-checking can be viewed as an automated means of establishing certain
correctness properties of programs.
Thus, type-checking is a form of “lightweight formal methods” that provides
weak guarantees but whose burden seems acceptable to most programmers.
However, type-checking is more than just a program analysis that detects a
class of programming errors at compile time.
Indeed, types offer a language in which the
interaction between one program component and the rest of the program can be
formally described. Thus, they can be used to express a high-level
description of the service provided by this component (i.e., its API),
independently of its implementation. At the same time,
they protect this component against
misuse by other components.
In short,
“type structure is a syntactic discipline for enforcing
levels of abstraction”. In other words, types offer basic support for expressiveness and modularity,
as described above.

        For this reason, types play a central role in programming language design.
They have been and remain a fundamental research topic in our group.
More generally,
the design of new programming languages and new type systems
and the proof of their safety
has been and remains an important theme.
The continued evolution of OCaml, as well as the design and formalization of
Mezzo [2], are examples.
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        Design, implementation, and evolution of OCaml

        Our group's expertise in programming language design, formalization and
implementation has traditionally been focused mainly on the programming
language OCaml [22].
OCaml can be described as a high-level statically-typed general-purpose
programming language. Its main features include
first-class functions,
algebraic data structures and pattern matching,
automatic memory management,
support for traditional imperative programming (mutable state, exceptions),
and support for modularity and encapsulation
(abstract types; modules and functors; objects and classes).

        OCaml
meets most of the key criteria that we have put forth above.
Thanks to its static type discipline, which rejects unsafe programs,
it is safe.
Because its type system is equipped with powerful features, such as
polymorphism, abstract types, and type inference, it is expressive,
modular, and concise.
Although OCaml as a whole does not have a formal semantics,
many fragments of it have been formally studied in isolation.
As a result, we believe that OCaml is a good language in which to develop
complex software components and software systems and (possibly) to verify
that they are correct.

        OCaml has long served a dual role as a vehicle for our programming language
research and as a mature real-world programming language. This remains true
today, and we wish to preserve this dual role. On the research side, there are
many directions in which the language could be extended. On the applied side, OCaml
is used within academia (for research and for teaching) and in
the industry. It is maintained by a community of active contributors, which
extends beyond our team at Inria. It comes with a package manager,
opam, a rich ecosystem of libraries,
and a set of programming tools,
including an IDE (Merlin),
support for debugging and performance profiling,
etc.

        OCaml has been used to develop many complex systems, such as proof assistants
(Coq, HOL Light), automated theorem provers (Alt-Ergo, Zenon), program
verification tools (Why3), static analysis engines (Astrée, Frama-C, Infer,
Flow), programming languages and compilers (SCADE, Reason, Hack), Web servers
(Ocsigen), operating systems (MirageOS, Docker), financial systems (at
companies such as Jane Street, LexiFi, Nomadic Labs), and so on.
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        Software verification

        We have already mentioned the importance of formal verification to
achieve the highest levels of software quality. One of our major
contributions to this field has been the verification of
programming tools, namely the CompCert optimizing compiler for the C
language [8] and the Verasco abstract
interpretation-based static analyzer [6].
Technically, this is deductive verification of purely
functional programs, using the Coq proof assistant both as the prover
and the programming language. Scientifically, CompCert and Verasco
are milestones in the area of program proof, due to the complexity
and realism of the code generation, optimization, and static analysis
techniques that are verified. Practically, these formally-verified
tools strengthen the guarantees that can be obtained by formal
verification of critical software and reduce the need for other
verification activities, attracting the interest of Airbus and other
companies that develop critical embedded software.

        CompCert is implemented almost entirely in Gallina, the purely functional
programming language that lies at the heart of Coq. Extraction, a
whole-program translation from Gallina to OCaml, allows Gallina programs to be
compiled to native code and efficiently executed.
Unfortunately, Gallina is a very restrictive language: it rules out all side
effects, including nontermination, mutable state, exceptions, delimited
control, nondeterminism, input/output, and concurrency. In comparison, most
industrial programming languages, including OCaml, are vastly more expressive
and convenient. Thus, there is a clear need for us to also be able to verify
software components that are written in OCaml and exploit side effects.

        To reason about the behavior of effectful programs, one typically uses a
“program logic”, that is, a system of deduction rules that are tailor-made
for this purpose, and can be built into a verification tool. Since the late
1960s, program logics for imperative programming languages with global mutable
state have been in wide use. A key advance was made in the 2000s with the
appearance of Separation Logic, which emphasizes local reasoning and thereby
allows reasoning about a callee independently of its caller, about one heap
fragment independently of the rest of the heap, about one thread independently
of all other threads, and so on.
Today, this field is extremely active: the development of powerful program
logics for rich effectful programming languages, such as OCaml or Multicore OCaml,
is a thriving and challenging research area.

        Our team has expertise in this field. For several years, François Pottier has
been investigating the theoretical foundations and applications of several
features of modern Separation Logics, such as “hidden state” and “monotonic
state”. Jean-Marie Madiot has contributed to the Verified Software Toolchain,
which includes a version of Concurrent Separation Logic for
a subset of C. Arthur Charguéraud (Formerly a PhD student in our team,
today a researcher at Inria Nancy Grand-Est, team Camus.) has developed CFML, an
implementation of Separation Logic for a subset of OCaml. Armaël Guéneau has
extended CFML with the ability to simultaneously verify the correctness and
the time complexity of an OCaml component.
Glen Mével and Paulo de Vilhena are
currently investigating the use of Iris, a descendant of Concurrent
Separation Logic, to carry out proofs of Multicore OCaml programs.

        We envision several ways of using OCaml components that have been verified
using a program logic.
In the simplest scenario, some key OCaml components, such as the standard
library, are verified, and are distributed for use in unverified applications.
This increases the general trustworthiness of the OCaml system,
but does not yield strong guarantees of correctness.
In a second scenario, a fully verified application is built out of verified
OCaml components, therefore it comes with an end-to-end correctness guarantee.
In a third scenario, while some components are written and verified directly
at the level of OCaml, others are first written and verified in Gallina, then
translated down to verified OCaml components by an improved version of Coq's
extraction mechanism.
In this scenario, it is possible to fully verify an application that combines
effectful OCaml code and side-effect-free Gallina code. This scenario
represents an improvement over the current state of the art. Today, CompCert
includes several OCaml components, which cannot be verified in Coq. As a
result, the data produced by these components must be validated by verified
checkers.
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        Shared-memory concurrency

        Concurrent shared-memory programming seems required in order to extract
maximum performance out of the multicore general-purpose processors that
have been in wide use for more than a decade.
(GPUs and other special-purpose processors offer even greater raw computing
power, but are not easily exploited in the symbolic computing applications
that we are usually interested in.)
Unfortunately, concurrent programming is notoriously more difficult than
sequential programming. This can be attributed to a “state-space explosion
problem”: the number of permitted program executions grows exponentially with
the number of concurrent agents involved. Shared memory introduces an
additional, less notorious, difficulty: on a modern multicore processor,
execution does not follow the
strong model where the instructions of one thread are interleaved with the
instructions of other threads, and where reads and writes to memory
instantaneously take effect. To properly understand and analyze a program, one
must first formally define the semantics of the programming language,
or of the device
that is used to execute the program. The aspect of the semantics that governs
the interaction of threads through memory is known as a memory model.
Most modern memory models are weak in the sense that they offer fewer
guarantees than the strong model sketched above.

        Describing a memory model in precise mathematical language,
in a manner that is at the same time
faithful with respect to real-world machines
and exploitable as a basis for reasoning about programs,
is a challenging problem and a domain of active research,
where thorough testing and verification are required.

        Luc Maranget and Jean-Marie Madiot have acquired
an expertise in the domain of weak memory models, including
so-called axiomatic models
and event-structure-based models.
Moreover, Luc Maranget develops
diy-herd-litmus, a unique software suite for defining,
simulating and testing memory models.
In short,
diy generates so-called litmus tests
from concise specifications;
herd simulates litmus tests with respect to
memory models expressed in the domain-specific language Cat ;
litmus executes litmus tests on real hardware.
These tools have been instrumental in finding bugs in
the deployed processors IBM Power5 and ARM Cortex-A9.
Moreover, within industry, some models are now written in Cat ,
either for internal use, such as the AArch64 model by Will Deacon (ARM),
or for publication, such as the RISC-V model by Luc Maranget
and the HSA model by Jade Alglave and Luc Maranget.

        For a long time, the OCaml language and runtime system have been restricted to
sequential execution, that is, execution of a single computation thread on a
single processor core.
Yet, since 2014 approximately, the Multicore OCaml project at OCaml Labs
(Cambridge, UK)
is preparing a version of OCaml where multiple threads execute concurrently
and communicate with each other via shared memory.

        In principle, it seems desirable for Multicore OCaml to become the standard version of
OCaml. Integrating Multicore OCaml into mainstream OCaml, however, is a major
undertaking. The runtime system is deeply impacted: in particular, OCaml's
current high-performance garbage collector must be replaced with an entirely
new concurrent collector. The memory model and operational semantics of the
language must be clearly defined. At the programming-language level, several
major extensions are proposed, including effect handlers (a generalization of
exception handlers, introducing a form of delimited control) and a new
type-and-effect-discipline that statically detects and rejects unhandled
effects.
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        Research Directions

        Our research proposal is organized along three main axes, namely
programming language design and implementation,
concurrency, and
program verification.
These three areas have strong connections. For instance, the definition and
implementation of Multicore OCaml intersects the first two axes, whereas creating
verification technology for Multicore OCaml programs intersects the last two.

        In short, the “programming language design and implementation” axis includes:

        
          	
             The search for richer type disciplines,
in an effort to make our programming languages safer and more expressive.
Two domains, namely modules and effects, appear of
particular interest. In addition, we view type inference as
an important cross-cutting concern.

          

          	
             The continued evolution of OCaml.
The major evolutions that we envision in the medium term are
the integration of Multicore OCaml,
the addition of modular implicits,
and a redesign of the type-checker.

          

          	
             Research on refactoring and program transformations.

          

        

        The “concurrency” axis includes:

        
          	
             Research on weak memory models,
including axiomatic models, operational models,
and event-structure models.

          

          	
             Research on the Multicore OCaml memory model.
This might include proving that the axiomatic and operational presentations
of the model agree; testing the Multicore OCaml implementation to ensure
that it conforms to the model; and extending the model with new features,
should the need arise.

          

        

        The “program verification” axis includes:

        
          	
             The continued evolution of CompCert.

          

          	
             Building new verified tools,
such as verified compilers for domain-specific languages,
verified components for the Coq type-checker,
and so on.

          

          	
             Verifying algorithms and data structures
implemented in OCaml and in Multicore OCaml
and enriching Separation Logic with new features, if needed,
to better support this activity.

          

          	
             The continued development of tools for TLA+.
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        Formal methods

        We develop techniques and tools for the formal verification of
critical software:

        
          	
             program logics based on CFML and Iris for the
deductive verification of software, including concurrency and
algorithmic complexity aspects;

          

          	
             verified development tools such as the CompCert verified C
compiler, which extends properties established by formal
verification at the source level all the way to the final executable code.

          

        

        Some of these techniques have already been used in the nuclear industry
(MTU Friedrichshafen uses CompCert to develop emergency diesel
generators) and are under evaluation in the aerospace industry.
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        High-assurance software

        Software that is not critical enough to undergo formal verification
can still benefit greatly, in terms of reliability and security, from
a functional, statically-typed programming language. The OCaml type
system offers several advanced tools (generalized algebraic data
types, abstract types, extensible variant and object types) to express
many data structure invariants and safety properties and have them
automatically enforced by the type-checker. This makes OCaml a
popular language to develop high-assurance software, in particular in
the financial industry. OCaml is the implementation language for the
Tezos blockchain and cryptocurrency. It is also used for automated
trading at Jane Street and for modeling and pricing of financial contracts at
Bloomberg, Lexifi and Simcorp. OCaml is also widely used to
implement code verification and generation tools at Facebook,
Microsoft, CEA, Esterel Technologies, and many academic research
groups, at Inria and elsewhere.
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        Design and test of microprocessors

        The diy tool suite and the underlying methodology is in use at ARM Ltd
to design and test the memory model of ARM architectures. In
particular, the internal reference memory model of the ARMv8 (or
AArch64) architecture has been written “in house” in Cat, our
domain-specific language for specifying and simulating memory
models. Moreover, our test generators and runtime infrastructure are
used routinely at ARM to test various implementations of their
architectures.
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        Teaching programming

        Our work on the OCaml language family has an impact on the teaching of
programming. OCaml is one of the programming languages selected by the
French Ministry of Education for teaching Computer Science in classes
préparatoires scientifiques. OCaml is also widely used for teaching
advanced programming in engineering schools, colleges and universities
in France, the USA, and Japan. The MOOC “Introduction to Functional
Programming in OCaml”, developed at University Paris Diderot, is
available on the France Université Numérique platform and comes with
an extensive platform for self-training and automatic grading of
exercises, developed in OCaml itself.
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        OCaml

        Keywords:  Functional programming - Static typing - Compilation

        Functional Description:  The OCaml language is a functional programming language that combines safety with expressiveness through the use of a precise and flexible type system with automatic type inference. The OCaml system is a comprehensive implementation of this language, featuring two compilers (a bytecode compiler, for fast prototyping and interactive use, and a native-code compiler producing efficient machine code for x86, ARM, PowerPC and System Z), a debugger, a documentation generator, a compilation manager, a package manager, and many libraries contributed by the user community.

        
          	
             Participants: Damien Doligez, Xavier Leroy, Fabrice Le Fessant, Luc Maranget, Gabriel Scherer, Alain Frisch, Jacques Garrigue, Marc Shinwell, Jeremy Yallop and Leo White

          

          	
             Contact: Damien Doligez

          

          	
             URL: https://ocaml.org/
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        Compcert

        
          The CompCert formally-verified C compiler
        

        Keywords:  Compilers - Formal methods - Deductive program verification - C - Coq

        Functional Description:  CompCert is a compiler for the C programming language. Its intended use is the compilation of life-critical and mission-critical software written in C and meeting high levels of assurance. It accepts most of the ISO C 99 language, with some exceptions and a few extensions. It produces machine code for the ARM, PowerPC, RISC-V, and x86 architectures. What sets CompCert C apart from any other production compiler, is that it is formally verified to be exempt from miscompilation issues, using machine-assisted mathematical proofs (the Coq proof assistant). In other words, the executable code it produces is proved to behave exactly as specified by the semantics of the source C program. This level of confidence in the correctness of the compilation process is unprecedented and contributes to meeting the highest levels of software assurance. In particular, using the CompCert C compiler is a natural complement to applying formal verification techniques (static analysis, program proof, model checking) at the source code level: the correctness proof of CompCert C guarantees that all safety properties verified on the source code automatically hold as well for the generated executable.

        Release Functional Description:  Novelties include a formally-verified type checker for CompCert C, a more careful modeling of pointer comparisons against the null pointer, algorithmic improvements in the handling of deeply nested struct and union types, much better ABI compatibility for passing composite values, support for GCC-style extended inline asm, and more complete generation of DWARF debugging information (contributed by AbsInt).

        
          	
             Participants: Xavier Leroy, Sandrine Blazy, Jacques-Henri Jourdan, Sylvie Boldo and Guillaume Melquiond

          

          	
             Partner: AbsInt Angewandte Informatik GmbH

          

          	
             Contact: Xavier Leroy

          

          	
             URL: http://compcert.inria.fr/
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        Diy

        
          Do It Yourself
        

        Keyword:  Parallelism

        Functional Description:  The diy suite provides a set of tools for testing shared memory models: the litmus tool for running tests on hardware, various generators for producing tests from concise specifications, and herd, a memory model simulator. Tests are small programs written in x86, Power or ARM assembler that can thus be generated from concise specification, run on hardware, or simulated on top of memory models. Test results can be handled and compared using additional tools.

        
          	
             Participants: Jade Alglave and Luc Maranget

          

          	
             Partner: University College London UK

          

          	
             Contact: Luc Maranget

          

          	
             URL: http://diy.inria.fr/
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        Menhir

        Keywords:  Compilation - Context-free grammars - Parsing

        Functional Description:  Menhir is a LR(1) parser generator for the OCaml programming language. That is, Menhir compiles LR(1) grammar specifications down to OCaml code. Menhir was designed and implemented by François Pottier and Yann Régis-Gianas.

        
          	
             Contact: François Pottier

          

          	
             Publications: A Simple, Possibly Correct LR Parser for C11 -
Reachability and Error Diagnosis in LR(1) Parsers
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        CFML

        
          Interactive program verification using characteristic formulae
        

        Keywords:  Coq - Software Verification - Deductive program verification - Separation Logic

        Functional Description:  The CFML tool supports the verification of OCaml programs through interactive Coq proofs. CFML proofs establish the full functional correctness of the code with respect to a specification. They may also be used to formally establish bounds on the asymptotic complexity of the code. The tool is made of two parts: on the one hand, a characteristic formula generator implemented as an OCaml program that parses OCaml code and produces Coq formulae, and, on the other hand, a Coq library that provides notations and tactics for manipulating characteristic formulae interactively in Coq.

        
          	
             Participants: Arthur Charguéraud, Armaël Guéneau and François Pottier

          

          	
             Contact: Arthur Charguéraud

          

          	
             URL: http://www.chargueraud.org/softs/cfml/
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        TLAPS

        
          TLA+ proof system
        

        Keyword:  Proof assistant

        Scientific Description:  TLAPS is a platform for developing and mechanically verifying proofs about TLA+
specifications. The TLA+ proof language is hierarchical and explicit, allowing a
user to decompose the overall proof into proof steps that can be checked
independently. TLAPS consists of a proof manager that interprets the proof
language and generates a collection of proof obligations that are sent to
backend verifiers. The current backends include the tableau-based prover Zenon
for first-order logic, Isabelle/TLA+, an encoding of TLA+ set theory as an
object logic in the logical framework Isabelle, an SMT backend designed for use
with any SMT-lib compatible solver, and an interface to a decision procedure for
propositional temporal logic.

        Functional Description:  TLAPS is a proof assistant for the TLA+ specification language.

        News Of The Year:  Work in 2019 focused on providing support for reasoning about TLA+'s enabled  and action composition constructs. We also prepared a minor release, fixing some issues and switching to Z3 as the default SMT back-end solver.

        
          	
             Participants: Damien Doligez, Stephan Merz and Ioannis Filippidis

          

          	
             Contact: Stephan Merz

          

          	
             URL: https://tla.msr-inria.inria.fr/tlaps/content/Home.html
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        ZENON

        Keyword:  Automated theorem proving

        Functional Description:  Zenon is an automatic theorem prover based on the tableaux method. Given a first-order statement as input, it outputs a fully formal proof in the form of a Coq proof script. It has special rules for efficient handling of equality and arbitrary transitive relations. Although still in the prototype stage, it already gives satisfying results on standard automatic-proving benchmarks.

        Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive proof assistant), and also to be retargeted to output scripts for different frameworks (for example, Isabelle and Dedukti).

        
          	
             Author: Damien Doligez

          

          	
             Contact: Damien Doligez

          

          	
             URL: http://zenon-prover.org/
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        hevea

        
          hevea is a fast latex to html translator.
        

        Keywords:  LaTeX - Web

        Functional Description:  HEVEA is a LATEX to html translator. The input language is a fairly complete subset of LATEX 2 (old LATEX style is also accepted) and the output language is html that is (hopefully) correct with respect to version 5. HEVEA understands LATEX macro definitions. Simple user style files are understood with little or no modifications. Furthermore, HEVEA customisation is done by writing LATEX code.

        HEVEA is written in Objective Caml, as many lexers. It is quite fast and flexible. Using HEVEA it is possible to translate large documents such as manuals, books, etc. very quickly. All documents are translated as one single html file. Then, the output file can be cut into smaller files, using the companion program HACHA.
HEVEA can also be instructed to output plain text or info files.

        Information on HEVEA is available at http://hevea.inria.fr/.

        
          	
             Author: Luc Maranget

          

          	
             Contact: Luc Maranget

          

          	
             URL: http://hevea.inria.fr/
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        Programming language design and implementation

        
        The OCaml system

        Participants :
	Damien Doligez, Armaël Guéneau, Xavier Leroy, Luc Maranget, David Allsop [Cambridge University] , Florian Angeletti, Frédéric Bour [Facebook, until Sep 2019] , Stephen Dolan [Cambridge University] , Alain Frisch [Lexifi] , Jacques Garrigue [Nagoya University] , Sébastien Hinderer [SED] , Nicolás Ojeda Bär [Lexifi] , Gabriel Radanne, Thomas Refis [Jane Street] , Gabriel Scherer [Inria team Parsifal] , Mark Shinwell [Jane Street] , Leo White [Jane Street] , Jeremy Yallop [Cambridge University] .

        This year, we released four versions of the OCaml system: versions
4.08.0, 4.08.1, 4.09.0, and 4.09.1.
Versions 4.08.1 and 4.09.1 are minor releases that
respectively fix 6 and 5 issues.
Versions 4.08.0 and 4.09.0 are major releases that
introduce new language features, improve performance and usability,
and fix about 50 issues. The main novelties are:

        
          	
             User-defined binding operators are now supported, with syntax
similar to let* , let+ , and* . These operators
make it much easier to write OCaml code in monadic style or using
applicative structures.

          

          	
             The open  construct now applies to arbitrary module
expressions in structures and to applicative paths in signatures.

          

          	
             A new notion of user-defined “alerts” generalizes the
“deprecated” warning.

          

          	
             New modules were added to the standard library:
Fun , Bool , Int , Option , Result .

          

          	
             Many floating-point functions were added, including fused
multiply-add, as well as a new Float.Array  submodule.

          

          	
             Many error messages were improved, as well as error and warning
reporting mechanisms.

          

          	
             Pattern-matching constructs that correspond to affine functions are now
optimized into arithmetic computations.

          

        

        
        Evolution of the OCaml type system

        Participants :
	Florian Angeletti, Jacques Garrigue, Thomas Refis [Jane Street] , Didier Rémy, Gabriel Radanne, Gabriel Scherer [Inria team Parsifal] , Leo White [Jane Street] .

        In addition to the work done on the above releases, efforts have been
done to improve the type system and its implementation. Those include:

        
          	
             Formalizing the typing of the pattern-matching of generalized algebraic
data types (GADTs).

          

          	
             Fixing some issues related to the incompleteness of the treatment of GADTs.

          

          	
             Proposing extensions of the type system to reduce this
incompleteness in concrete cases, by refining the information on
abstract types.

          

          	
             Exploring practical ways to obtain more polymorphism for functions
whose soundness does not rely on the value restriction.

          

          	
             Improving the readability of the type-checker code.

          

          	
             Making the module layer of the type-checker more incremental,
in order to improve efficiency and
to facilitate integration with documentation tools.

          

        

        
        Refactoring with ornaments in ML

        Participants :
	Didier Rémy, Thomas Williams [Google Paris] .

        Thomas Williams, Lucas Baudin, and Didier Rémy have been working on
refactoring and other transformations of ML programs based on mixed
ornamentation and disornamentation. Ornaments have been introduced as a way
of describing changes in data type definitions that can reorganize or add
pieces of data. After a new data structure has been described as an ornament
of an older one, the functions that operate on the bare structure can be
partially or sometimes totally lifted into functions that operate on the
ornamented structure.

        This year, Williams and Rémy improved the formalization of the lifting
framework. In particular, they introduced an intermediate language, in which
nonexpansive expressions can be marked on source terms and traced during
reduction. This allows to treat the nonexpansive part of expansive expressions
as nonexpansive and use equational reasoning on nonexpansive parts of terms
that appear in types. This approach significantly simplifies the metatheory of
ornaments. This calculus could also have some interest in itself, beyond
ornaments, to study languages with side effects.

        
        A better treatment of type abbreviations during type inference

        Participants :
	Didier Rémy, Carine Morel.

        During her M2 internship under the supervision of Didier Rémy, Carine
Morel revisited the treatment of type abbreviations in type inference for
ML-like type systems, using a modern approach based on typing
constraints [24].
Instead of expanding type abbreviations prior to unification, both the
original abbreviated view and all expanded views are kept during
unification, so as to avoid unnecessary expansions and use the
least-expanded view whenever possible in the result of unification.
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        Software specification and verification

        
        The CompCert formally-verified compiler

        Participants :
	Xavier Leroy, Jacques-Henri Jourdan [CNRS] , Michael Schmidt [AbsInt GmbH] , Bernhard Schommer [AbsInt GmbH] .

        In the context of our work on compiler verification, since 2005, we
have been developing and formally verifying a moderately-optimizing
compiler for a large subset of the C programming language, generating
assembly code for the ARM, PowerPC, RISC-V and x86 architectures
[8]. This compiler comprises a
back-end part, which translates the Cminor intermediate language to PowerPC
assembly and which is reusable for source languages other than C
[7], and a front-end, which translates
the CompCert C subset of C to Cminor. The compiler is mostly written
within the specification language of the Coq proof assistant, from
which Coq's extraction facility generates executable OCaml code. The
compiler comes with a 100000-line machine-checked Coq proof of
semantic preservation establishing that the generated assembly code
executes exactly as prescribed by the semantics of the source C
program.

        This year, we added a new optimization to CompCert: “if-conversion”,
that is, the replacement of conditional statements and expressions by
conditional move operations and similar branchless instruction
sequences. As a consequence, fewer conditional branch instructions
are generated. This replacement usually improves worst-case execution time
(WCET), because mispredicted conditional branches tremendously
increase execution time. This replacement is also interesting for
cryptographic code and other programs that manipulate secret data:
conditional branches over secret data take time that depends on the
data, leaking some information, while conditional move instructions
are constant-time and do not leak. The new if-conversion optimization
plays a role in the ongoing work of Inria team Celtique on compilation
that preserves constant-time properties. Its proof of semantic
preservation is nontrivial and prompted the development of a new kind
of simulation diagram.

        Other recent improvements to the CompCert C compiler include:

        
          	
             a new code generator targeting the AArch64 instruction set, that
is, the 64-bit mode of the ARMv8 architecture;

          

          	
             the ability to specify the semantics of certain built-in
functions, making them amenable to optimizations such as constant
propagation and common subexpression elimination;

          

          	
             improvements to the verified C parser generated by Menhir,
including fewer run-time checks, faster validation, and the removal
of all axioms from the proof.

          

        

        We released two versions of CompCert incorporating these improvements:
version 3.5 in February 2019 and version 3.6 in September 2019.

        
        Time credits and time receipts in Iris

        Participants :
	Glen Mével, François Pottier, Jacques-Henri Jourdan [CNRS] .

        From March to August 2018, Glen Mével did an M2 internship at Gallium, where
he was co-advised by Jacques-Henri Jourdan (CNRS) and François Pottier. Glen
extended the program logic Iris with time credits and time receipts.

        Time credits are a well-understood concept, and have been used in several
papers already by Armaël Guéneau, Arthur Charguéraud, and François Pottier.
However, because Iris is implemented and proved sound inside Coq,
extending Iris with time credits
requires a nontrivial proof,
which Glen carried out, based on a program transformation
which inserts “tick” instructions into the code.
As an application of time credits,
Glen verified inside Iris the correctness of
Okasaki's notion of “debits”,
which allows reasoning about the time complexity of programs that use thunks.

        Time receipts are a new concept, which allows proving that certain
undesirable events, such as integer overflows, cannot occur until a very long
time has elapsed. Glen extended Iris with time receipts and proved the
soundness of this extension. As an application of time credits and receipts
together, Jacques-Henri Jourdan updated Charguéraud and Pottier's earlier
verification of the Union-Find data structure [12]
and proved that integer ranks cannot realistically overflow, even if they are
stored using only logW bits, where W is the number of bits in a machine
word.

        This work carried out in 2018
has been published at ESOP 2019 [16].

        
        A program logic for Multicore Ocaml

        Participants :
	Glen Mével, François Pottier, Jacques-Henri Jourdan [CNRS] .

        Glen Mével, who is co-advised by Jacques-Henri Jourdan and François Pottier,
has been working on designing a mechanized program logic for Multicore OCaml.

        One of the key challenges is to enable deductive reasoning under a weak memory
model. In such a model, the behaviors of a program are no longer described by
a naive interleaving semantics. Thus, the operational semantics that describes
a weak memory model often feels unnatural to the programmer, and is difficult
to reason about.

        This year, Glen designed and implemented a proof system on top of Iris, a
modular separation logic framework whose implementation and soundness proof
are both expressed in Coq. This system allows mechanized program verification
for a fragment of the Multicore OCaml language. It provides a certain degree
of abstraction over the low-level operational semantics, in the hope of
simplifying reasoning. This abstraction includes an abstract concept of
“local view” of the shared memory; views are exchanged between threads via
atomic locations.

        A few simple concurrent data structures have been proven correct using the
system. They include several variants of locks and mutual exclusion
algorithms.

        Glen presented preliminary results at the Iris Workshop in October 2019.

        
        Verifying a generic local solver in Iris

        Participants :
	Paulo Emílio de Vilhena, Jacques-Henri Jourdan [CNRS] , François Pottier.

        From March to August 2019, Paulo Emílio de Vilhena did an M2 internship in
our team, where he was advised by François Pottier, with precious help from
Jacques-Henri Jourdan (CNRS).

        Paulo verified a short but particularly subtle piece of code, namely a "local
generic solver", that is, an on-demand, incremental, memoizing least fixed
point computation algorithm. This algorithm is a slightly simplified version
of Fix (https://gitlab.inria.fr/fpottier/fix),
an OCaml library published by François Pottier in 2009.

        The specification of this algorithm is simple: the solver computes the
optimal least fixed point of a system of monotone equations. Although the
solver relies on mutable internal state for memoization and for “spying”, a
form of dynamic dependency discovery, no side effects are mentioned in the
specification. The challenge is precisely to formally justify why it is
permitted to hide these side effects from the user.

        The verification is carried out in Iris, a modern breed of concurrent
separation logic. Iris is embedded in Coq, so the proof is machine-checked.
The proof makes crucial use of prophecy variables, a novel feature of Iris.
Auxiliary contributions include a restricted infinitary conjunction rule
for Iris and a specification and proof of Longley's “modulus”
function, an archetypical example of spying.

        This paper [13] has been accepted for presentation at
the conference POPL 2020, which will take place in New Orleans in January
2020.

        
        Formal reasoning about asymptotic complexity

        Participants :
	Armaël Guéneau, Arthur Charguéraud [Inria team Camus] , François Pottier, Jacques-Henri Jourdan [CNRS] .

        For several years, Armaël Guéneau, Arthur Charguéraud, François Pottier have
been investigating the use of Separation Logic, extended with Time Credits, as
an approach to the formal verification of the time complexity of OCaml
programs. In 2018 and 2019, in collaboration with Jacques-Henri Jourdan,
Armaël has worked on a more ambitious case study, namely a state-of-the-art
incremental cycle detection algorithm, whose amortized complexity analysis is
nontrivial. Armaël has proposed an improved and simplified algorithm and has
carried out a machine-checked proof of its complexity. Furthermore, the
verified algorithm has been released and is now used in production inside the
Dune build system for OCaml. A paper has been published and presented at the
International Conference on Interactive Theorem Proving (ITP 2019)
[15]. A more detailed version of these results
appears in Armaël Guéneau's dissertation [11],
which was defended on December 16, 2019.

        
        TLA+

        Participants :
	Damien Doligez, Leslie Lamport [Microsoft Research] , Ioannis Filippidis, Stephan Merz [Inria team VeriDis] .

        Damien Doligez is the head of the “Tools for Proofs” team in the
Microsoft-Inria Joint Centre. The aim of this project is to
extend the TLA+ language with a formal language for hierarchical
proofs, formalizing Lamport's ideas [25], and to
build tools for writing TLA+ specifications and mechanically
checking the proofs.

        We have made a bug-fix release of TLAPS (version 1.4.4). In
parallel, we are working on adding features for dealing with temporal
properties, that is, fairness and liveness. We have implemented support for
the enabled  operator and the action composition operator in
TLA+ proofs. This support is still experimental, but we hope to
release a new version of TLAPS next year with these features.
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        Shared-memory concurrency

        
        Instruction fetch in the ARMv8 architecture

        Participants :
	Luc Maranget, Peter Sewell [University of Cambridge] , Ben Simmer [University of Cambridge] .

        Modern multi-core and multi-processor computers do not follow the intuitive
“sequential consistency” model that would define a concurrent execution as
the interleaving of the executions of its constituent threads and that would
command instantaneous writes to the shared memory. This situation is due both
to in-core optimisations such as speculative and out-of-order execution of
instructions, and to the presence of sophisticated (and cooperating) caching
devices between processors and memory. Luc Maranget is taking part in an
international research effort to define the semantics of the computers of the
multi-core era, and more generally of shared-memory parallel devices or
languages, with a clear initial focus on devices.

        Luc Maranget participates in project REMS,
for Rigorous Engineering for Mainstream Systems,
an EPSRC project led by Peter Sewell.
This year Luc Maranget took part in a research effort
that resulted in a paper entitled
ARMv8-A system semantics: instruction fetch in
relaxed architectures.
This paper has been accepted for presentation at ESOP 2020.
This paper introduces a robust model of instruction fetch and cache
maintenance, a central aspect of a processor system's semantics, for ARMv8-A.
Luc Maranget specifically extended the litmus and diy test
generators so as to account for self-modifying code. He also performed part of
the experiments that support the instruction fetch model.

        
        An ARMv8 mixed-size memory model

        Participants :
	Luc Maranget, Jade Alglave [ARM Ltd & University College London] .

        Jade Alglave and Luc Maranget have completed their work on a mixed-size version
of the ARMv8 memory model. This model builds on the aarch64.cat  model
authored by Will Deacon (ARM Ltd). The model is now ready, and a paper has been
written. They hope to work around certain intellectual property restrictions and
to submit this paper for publication next year.

        
        Work on diy

        Participants :
	Luc Maranget, Jade Alglave [ARM Ltd & University College London] , Antoine Hacquard.

        The diy suite (for “Do It Yourself”) provides a set of tools for
testing shared memory models: the litmus tool for running tests on
hardware, various generators for producing tests from concise specifications,
and herd, a memory model simulator. Tests are small programs written
in x86, Power, ARM, generic (LISA) assembler, or a subset of the C language
that can thus be generated from concise specifications, run on hardware, or
simulated on top of memory models. Test results can be handled and compared
using additional tools. On distinctive feature of our system is Cat, a
domain-specific language for memory models.

        This year, new synchronisation primitives and instructions were added to
various models. Some sizable developments occurred that facilitate the
integration of mixed-size models into herd: a default definition of
the same-instruction relation, which allows using mixed-size models on all
tests; an automatic adjustment of the machine's elementary granularity, which
facilitates massive testing; and the addition of equivalence classes and
relations on them as basic values, which extends the expressiveness of Cat to
some abstract mixed-size models.

        During a 3-month internship, Antoine Hacquard (an EPITA second-year student)
extended the complete tool suite to handle a new target, namely X86_64. The
addition of this new target significantly enhances the diy tool
suite, as X86_64 is a very popular architecture. Moreover, Antoine Hacquard
implemented all memory access instructions for all sizes (from byte to
quadword), which enabled us to design a mixed-size TSO model for this very
popular architecture.

        
        Unifying axiomatic and operational weak memory models

        Participants :
	Quentin Ladeveze, Jean-Marie Madiot, Jade Alglave [ARM Ltd & University College London] , Simon Castellan [Imperial College London] .

        Modern multi-processors optimize the running speed of programs using a variety
of techniques, including caching, instruction reordering, and branch
speculation. While those techniques are perfectly invisible to sequential
programs, such is not the case for concurrent programs that execute several
threads and share memory: threads do not share at every point in time a single
consistent view of memory. A weak memory model offers only weak
consistency guarantees when reasoning about the permitted behaviors of a
program. Until now, there have been two kinds of such models, based on
different mathematical foundations: axiomatic models and operational models.

        Axiomatic models explicitly represent the dependencies between the program and
memory actions. These models are convenient for causal reasoning about
programs. They are also well-suited to the simulation and testing of
hardware microprocessors.

        Operational models represent program states directly, thus can be used to
reason on programs: program logics become applicable, and the reasoning behind
nondeterministic behavior is much clearer. This makes them preferable for
reasoning about software.

        Jean-Marie Madiot has been collaborating with weak memory model expert Jade
Alglave and concurrent game semantics researcher Simon Castellan in order to
unify these styles, in a way that attempts to combine the best of both
approaches. The first results are a formalisation of TSO-style architectures
using partial-order techniques similar to the ones used in game semantics, and
a proof of a stronger-than-state-of-art “data-race freedom” theorem:
well-synchronised programs can assume a strong memory model.

        Since October 2019, Luc Maranget and Jean-Marie Madiot are advising a PhD
candidate, Quentin Ladeveze. His goal is to further generalize and formalize
weak memory models. This involves reasoning about linearizations of
interdependent acyclic relations.

        This is a first step towards tractable verification of concurrent programs,
combining software verification using concurrent program logics, in the top
layer, and hardware testing using weak memory models, in the bottom layer. Our
hope is to leave no unverified gap between software and hardware, even (and
especially) in the presence of concurrency.
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        Bilateral Contracts with Industry

        
        The Caml Consortium

        Participant :
	Damien Doligez.

        The Caml Consortium, is a formal structure where industrial and
academic users of OCaml can support the development of the language and
associated tools, express their specific needs, and contribute to the
long-term stability of OCaml. Membership fees are used to fund
specific developments targeted towards industrial users. Members of
the Consortium automatically benefit from very liberal licensing
conditions on the OCaml system, allowing for instance the OCaml
compiler to be embedded within proprietary applications.

        Damien Doligez chairs the Caml Consortium.

        The Consortium currently has 9 member companies:

        
          	
             Aesthetic Integration

          

          	
             Citrix

          

          	
             Docker

          

          	
             Esterel Technologies

          

          	
             Facebook

          

          	
             Jane Street

          

          	
             LexiFi

          

          	
             Microsoft

          

          	
             SimCorp

          

        

        The Caml Consortium is being gradually phased out.
In the future, we would like to replace it entirely
with the OCaml Software Foundation, discussed below.
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        Bilateral Grants with Industry

        
        The OCaml Software Foundation

        Participants :
	Damien Doligez, Xavier Leroy.

        The OCaml Software Foundation (OCSF),(http://ocaml-sf.org/)
established in 2018
under the umbrella of the Inria Foundation,
aims to promote, protect, and advance the OCaml programming language and its
ecosystem, and to support and facilitate the growth of a diverse and
international community of OCaml users.

        Damien Doligez and Xavier Leroy serve as advisors on the foundation's
Executive Committee.

        We receive substantial basic funding from the OCaml Software Foundation in
order to support research activity related to OCaml.

        
        Funding from Nomadic Labs

        Nomadic Labs, a Paris-based company, has implemented the Tezos blockchain and
cryptocurrency entirely in OCaml. This year, Nomadic Labs and Inria have
signed a framework agreement (“contrat-cadre”) that allows Nomadic Labs to
fund multiple research efforts carried out by Inria groups. Within this
framework, we have received three 3-year grants:

        
          	
             “Évolution d'OCaml”. This grant is intended to fund a number of
improvements to OCaml, including the addition of new features and a possible
re-design of the OCaml type-checker. This grant has allowed us to fund
Jacques Garrigue's visit (10 months) and to hire Gabriel Radanne on a Starting
Research Position (3 years).

          

          	
             “Maintenance d'OCaml”. This grant is intended to fund the day-to-day
maintenance of OCaml as well as the considerable work involved in managing
the release cycle. This grant has allowed us to hire Florian Angeletti as an
engineer for 3 years.

          

          	
             “Multicore OCaml”. This grant is intended to encourage research work
on Multicore OCaml within our team. This grant has allowed us to fund Glen
Mével's PhD thesis (3 years).

          

        

        
        Funding from the Microsoft-Inria joint lab

        Funding from the Microsoft-Inria joint lab has allowed us to hire Ioannis
Filippidis on a Starting Research Position (until March 2020) to work on
the TLAPS system.
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        Promoting Scientific Activities

        
        Scientific Events: Selection

        
        Chair of Conference Program Committees

        François Pottier was the program chair of the International
Conference on Functional Programming (ICFP 2019)
which took place in Berlin, Germany in August 2019.

        
        Member of the Conference Program Committees

        Xavier Leroy was on the program committee of PERR 2019, the 3rd
Workshop on Program Equivalence and Relational Reasoning, part of the
ETAPS 2019 joint conferences.

        Xavier Leroy was on the program committee of FOSSACS 2020, the
23rd International Conference on Foundations of Software Science and
Computation Structures, part of the ETAPS 2020 joint conferences.

        Didier Rémy was a member of the program committee for FLOPS 2020,
the 15th International Symposium on Functional and Logic Programming.

        
        Journal

        
        Member of the Editorial Boards

        Xavier Leroy is area editor for Journal of the ACM, in charge of the
Programming Languages area.
He is a member of the editorial board of Journal of Automated
Reasoning.

        François Pottier is a member of the ICFP steering committee and a member of
the editorial boards of the Journal of Functional Programming and the
Proceedings of the ACM on Programming Languages.

        Until September 2019,
Didier Rémy was a member of the ML Family workshop steering committee.

        
        Scientific Expertise

        Didier Rémy co-authored the Inria white book on
Cybersecurity [17], [18]
and a companion document of Recommendations for Inria's Management.

        
        Research Administration

        Damien Doligez chairs the Caml Consortium.

        François Pottier is a member of Inria Paris' Commission de Développement
Technologique and the president of Inria Paris' Comité de Suivi
Doctoral.

        Didier Rémy is Inria's delegate in the MPRI's pedagogical and management
board of the Master Parisien de Recherche en Informatique (MPRI).

        Didier Rémy set up the Inria-Nomadic Labs partnership and is currently the
co-chair of its steering committee.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Dissemination

        Teaching - Supervision - Juries

        
        Teaching

        
          	
             Master (M2):
“Proofs of Programs”,
Jean-Marie Madiot,
18 HETD,
MPRI, Université Paris Diderot,
France.

          

          	
             Master (M2):
“Programming shared memory multicore machines”,
Luc Maranget,
18 HETD,
MPRI, Université Paris Diderot,
France.
Starting December 2019, Luc Maranget is in charge of this course.

          

          	
             Master (M2):
“Functional programming and type systems”,
François Pottier,
18 HETD,
MPRI, Université Paris Diderot,
France.

          

          	
             Master (M2):
“Functional programming and type systems”,
Didier Rémy,
18 HETD,
MPRI, Université Paris Diderot,
France.
Didier Rémy is in charge of this course.

          

          	
             Licence (L3):
Jean-Marie Madiot,
“Introduction à l'informatique”,
40 HETD,
École Polytechnique,
France.

          

          	
             Open lectures:
Xavier Leroy,
Sémantiques mécanisées: quand la machine raisonne sur ses langages,
19 HETD, Collège de France,
France.

          

          	
             Summer school:
Xavier Leroy,
Proving the correctness of a compiler,
6 HETD,
2019 EUtypes summer school on Types for Programming and Verification,
North Macedonia.

          

        

        
        Supervision

        
          	
             PhD in progress:
Frédéric Bour,
“An interactive, modular proof environment for OCaml”,
Université Paris Diderot,
since October 2019,
advised by François Pottier and Thomas Gazagnaire (Taridès).

          

          	
             PhD in progress:
Basile Clément,
“Domain-specific language and machine learning compiler for the
automatic synthesis of high-performance numerical libraries”,
École Normale Supérieure,
since September 2018,
advised by Xavier Leroy since October 2019.

          

          	
             PhD in progress:
Nathanaël Courant,
“Towards an efficient, formally-verified proof checker for Coq”,
Université Paris Diderot,
since September 2019,
advised by Xavier Leroy.

          

          	
             PhD:
Armaël Guéneau,
“Mechanized Verification of the Correctness and Asymptotic Complexity of Programs”,
Université Paris Diderot,
defended on December 16, 2019 [11],
advised by Arthur Charguéraud and François Pottier.

          

          	
             PhD in progress:
Quentin Ladeveze,
“Generic conditions for DRF-SC in axiomatic memory models”,
Université Paris Diderot,
since October 2019,
advised by Luc Maranget and Jean-Marie Madiot.

          

          	
             PhD in progress:
Glen Mével,
“Towards a system for proving the correctness of
concurrent Multicore OCaml programs”,
Université Paris Diderot,
since November 2018,
advised by Jacques-Henri Jourdan and François Pottier.

          

          	
             PhD in progress:
Thomas Williams,
“Putting Ornaments into practice”,
Université Paris Diderot,
since September 2014,
advised by Didier Rémy.

          

        

        
        Juries

        Xavier Leroy participated in the hiring committee for a professor
position at the UFR d'Informatique of U. Paris Diderot.

        Xavier Leroy chaired the jury for the Habilitation defense of Yann
Régis-Gianas (U. Paris Diderot, November 2019).

        Xavier Leroy was external reviewer for the PhD of Andrea Condoluci
(U. Bologna, to be defended in 2020).

        Jean-Marie Madiot served as an examiner
at the computer science oral examination
for the “second concours” of École Normale Supérieure de Lyon.

        Didier Rémy participated in the hiring committee for an Inria
Centrale-Supélec Chair in cybersecurity.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Dissemination

        Popularization

        
        Interventions

        Xavier Leroy was on the committee of the 2019 Sephora Berrebi scholarship
for women in mathematics and computer science. At the award ceremony
(Paris, France, February 2019), he gave a popular science talk on
Grace Hopper and the birth of the compiler.

        Xavier Leroy gave popularization talks on deductive software
verification at the Aerospace Lab Conferences of ONERA (Palaiseau,
France, June 2019) and at the Summer 2019 BOB conference (Berlin,
Germany, August 2019).
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        Section: 
      Partnerships and Cooperations


        International Research Visitors


        
        Visits of International Scientists


        Jacques Garrigue (Nagoya University) is staying with our team in Paris from
September 2019 to June 2020. He has long been one of the key designers and
implementors of the OCaml type system. We are collaborating on the design of
new language features and on a possible re-design of the type-checker
implementation.
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        Section: 
      Partnerships and Cooperations


        National Initiatives


        
        ANR projects


        
        Vocal


        Participants :
	Armaël Guéneau, Xavier Leroy, François Pottier.


        The “Vocal” project (2015–2020) aims at developing the first mechanically
verified library of efficient general-purpose data structures and algorithms.
It is funded by Agence Nationale de la Recherche under its “appel à
projets générique 2015”.


        A first release of the library has been published in December 2018.
It contains a small number of verified data structures, including
resizable vectors, hash tables, priority queues, and Union-Find.


        In 2019, progress was made on the definition of Gospel, a standard
language for annotating OCaml programs with logical specifications,
which could be understood and processed by several verification
tools, including Why3 and CFML.


      

      
      

      
    

  

