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2. Overall Objectives

2.1. Overview
The CONVECS project-team addresses the rigorous design of concurrent asynchronous systems using formal
methods and automated analysis. These systems comprise several activities that execute simultaneously
and autonomously (i.e., without the assumption about the existence of a global clock), synchronize, and
communicate to accomplish a common task. In computer science, asynchronous concurrency arises typically
in hardware, software, and telecommunication systems, but also in parallel and distributed programs.

Asynchronous concurrency is becoming ubiquitous, from the micro-scale of embedded systems (asynchronous
logic, networks-on-chip, GALS – Globally Asynchronous, Locally Synchronous systems, multi-core proces-
sors, etc.) to the macro-scale of grids and cloud computing. In the race for improved performance and lower
power consumption, computer manufacturers are moving towards asynchrony. This increases the complexity
of the design by introducing nondeterminism, thus requiring a rigorous methodology, based on formal methods
assisted by analysis and verification tools.

There exist several approaches to formal verification, such as theorem proving, static analysis, and model
checking, with various degrees of automation. When dealing with asynchronous systems involving complex
data types, verification methods based on state space exploration (reachability analysis, model checking,
equivalence checking, etc.) are today the most successful way to detect design errors that could not be
found otherwise. However, these verification methods have several limitations: they are not easily accepted
by industry engineers, they do not scale well while the complexity of designs is ever increasing, and they
require considerable computing power (both storage capacity and execution speed). These are the challenges
that CONVECS seeks to address.

To achieve significant impact in the design and analysis of concurrent asynchronous systems, several research
topics must be addressed simultaneously. There is a need for user-friendly, intuitive, yet formal specification
languages that will be attractive to designers and engineers. These languages should provide for both functional
aspects (as needed by formal verification) and quantitative ones (to enable performance evaluation and
architecture exploration). These languages and their associated tools should be smoothly integrated into large-
scale design flows. Finally, verification tools should be able to exploit the parallel and distributed computing
facilities that are now ubiquitous, from desktop to high-performance computers.
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3. Research Program

3.1. New Formal Languages and their Concurrent Implementations
We aim at proposing and implementing new formal languages for the specification, implementation, and
verification of concurrent systems. In order to provide a complete, coherent methodological framework, two
research directions must be addressed:

• Model-based specifications: these are operational (i.e., constructive) descriptions of systems, usually
expressed in terms of processes that execute concurrently, synchronize together and communicate.
Process calculi are typical examples of model-based specification languages. The approach we
promote is based on LOTOS NT (LNT for short), a formal specification language that incorporates
most constructs stemming from classical programming languages, which eases its acceptance by
students and industry engineers. LNT [6] is derived from the ISO standard E-LOTOS (2001), of
which it represents the first successful implementation, based on a source-level translation from
LNT to the former ISO standard LOTOS (1989). We are working both on the semantic foundations
of LNT (enhancing the language with module interfaces and timed/probabilistic/stochastic features,
compiling the m among n synchronization, etc.) and on the generation of efficient parallel and
distributed code. Once equipped with these features, LNT will enable formally verified asynchronous
concurrent designs to be implemented automatically.

• Property-based specifications: these are declarative (i.e., non-constructive) descriptions of systems,
which express what a system should do rather than how the system should do it. Temporal logics
and µ-calculi are typical examples of property-based specification languages. The natural models
underlying value-passing specification languages, such as LNT, are Labeled Transition Systems
(LTSs or simply graphs) in which the transitions between states are labeled by actions containing
data values exchanged during handshake communications. In order to reason accurately about these
LTSs, temporal logics involving data values are necessary. The approach we promote is based on
MCL (Model Checking Language) [47], which extends the modal µ-calculus with data-handling
primitives, fairness operators encoding generalized Büchi automata, and a functional-like language
for describing complex transition sequences. We are working both on the semantic foundations of
MCL (extending the language with new temporal and hybrid operators, translating these operators
into lower-level formalisms, enhancing the type system, etc.) and also on improving the MCL on-
the-fly model checking technology (devising new algorithms, enhancing ergonomy by detecting and
reporting vacuity, etc.).

We address these two directions simultaneously, yet in a coherent manner, with a particular focus on applicable
concurrent code generation and computer-aided verification.

3.2. Parallel and Distributed Verification
Exploiting large-scale high-performance computers is a promising way to augment the capabilities of formal
verification. The underlying problems are far from trivial, making the correct design, implementation, fine-
tuning, and benchmarking of parallel and distributed verification algorithms long-term and difficult activities.
Sequential verification algorithms cannot be reused as such for this task: they are inherently complex, and their
existing implementations reflect several years of optimizations and enhancements. To obtain good speedup
and scalability, it is necessary to invent new parallel and distributed algorithms rather than to attempt a
parallelization of existing sequential ones. We seek to achieve this objective by working along two directions:

• Rigorous design: Because of their high complexity, concurrent verification algorithms should them-
selves be subject to formal modeling and verification, as confirmed by recent trends in the certifi-
cation of safety-critical applications. To facilitate the development of new parallel and distributed
verification algorithms, we promote a rigorous approach based on formal methods and verification.
Such algorithms will be first specified formally in LNT, then validated using existing model checking
algorithms of the CADP toolbox. Second, parallel or distributed implementations of these algorithms
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will be generated automatically from the LNT specifications, enabling them to be experimented on
large computing infrastructures, such as clusters and grids. As a side-effect, this “bootstrapping”
approach would produce new verification tools that can later be used to self-verify their own design.

• Performance optimization: In devising parallel and distributed verification algorithms, particular
care must be taken to optimize performance. These algorithms will face concurrency issues at sev-
eral levels: grids of heterogeneous clusters (architecture-independence of data, dynamic load balanc-
ing), clusters of homogeneous machines connected by a network (message-passing communication,
detection of stable states), and multi-core machines (shared-memory communication, thread syn-
chronization). We will seek to exploit the results achieved in the parallel and distributed computing
field to improve performance when using thousands of machines by reducing the number of connec-
tions and the messages exchanged between the cooperating processes carrying out the verification
task. Another important issue is the generalization of existing LTS representations (explicit, implicit,
distributed) in order to make them fully interoperable, such that compilers and verification tools can
handle these models transparently.

3.3. Timed, Probabilistic, and Stochastic Extensions
Concurrent systems can be analyzed from a qualitative point of view, to check whether certain properties
of interest (e.g., safety, liveness, fairness, etc.) are satisfied. This is the role of functional verification, which
produces Boolean (yes/no) verdicts. However, it is often useful to analyze such systems from a quantitative
point of view, to answer non-functional questions regarding performance over the long run, response time,
throughput, latency, failure probability, etc. Such questions, which call for numerical (rather than binary)
answers, are essential when studying the performance and dependability (e.g., availability, reliability, etc.) of
complex systems.

Traditionally, qualitative and quantitative analyzes are performed separately, using different modeling lan-
guages and different software tools, often by distinct persons. Unifying these separate processes to form a
seamless design flow with common modeling languages and analysis tools is therefore desirable, for both sci-
entific and economic reasons. Technically, the existing modeling languages for concurrent systems need to be
enriched with new features for describing quantitative aspects, such as probabilities, weights, and time. Such
extensions have been well-studied and, for each of these directions, there exist various kinds of automata,
e.g., discrete-time Markov chains for probabilities, weighted automata for weights, timed automata for hard
real-time, continuous-time Markov chains for soft real-time with exponential distributions, etc. Nowadays, the
next scientific challenge is to combine these individual extensions altogether to provide even more expressive
models suitable for advanced applications.

Many such combinations have been proposed in the literature, and there is a large amount of models adding
probabilities, weights, and/or time. However, an unfortunate consequence of this diversity is the confuse
landscape of software tools supporting such models. Dozens of tools have been developed to implement
theoretical ideas about probabilities, weights, and time in concurrent systems. Unfortunately, these tools do
not interoperate smoothly, due both to incompatibilities in the underlying semantic models and to the lack of
common exchange formats.

To address these issues, CONVECS follows two research directions:

• Unifying the semantic models. Firstly, we will perform a systematic survey of the existing semantic
models in order to distinguish between their essential and non-essential characteristics, the goal
being to propose a unified semantic model that is compatible with process calculi techniques for
specifying and verifying concurrent systems. There are already proposals for unification either
theoretical (e.g., Markov automata) or practical (e.g., PRISM and MODEST modeling languages),
but these languages focus on quantitative aspects and do not provide high-level control structures
and data handling features (as LNT does, for instance). Work is therefore needed to unify process
calculi and quantitative models, still retaining the benefits of both worlds.
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• Increasing the interoperability of analysis tools. Secondly, we will seek to enhance the interoperabil-
ity of existing tools for timed, probabilistic, and stochastic systems. Based on scientific exchanges
with developers of advanced tools for quantitative analysis, we plan to evolve the CADP toolbox as
follows: extending its perimeter of functional verification with quantitative aspects; enabling deeper
connections with external analysis components for probabilistic, stochastic, and timed models; and
introducing architectural principles for the design and integration of future tools, our long-term goal
being the construction of a European collaborative platform encompassing both functional and non-
functional analyzes.

3.4. Component-Based Architectures for On-the-Fly Verification
On-the-fly verification fights against state explosion by enabling an incremental, demand-driven exploration
of LTSs, thus avoiding their entire construction prior to verification. In this approach, LTS models are
handled implicitly by means of their post function, which computes the transitions going out of given states
and thus serves as a basis for any forward exploration algorithm. On-the-fly verification tools are complex
software artifacts, which must be designed as modularly as possible to enhance their robustness, reduce their
development effort, and facilitate their evolution. To achieve such a modular framework, we undertake research
in several directions:

• New interfaces for on-the-fly LTS manipulation. The current application programming interface
(API) for on-the-fly graph manipulation, named OPEN/CAESAR [35], provides an “opaque” repre-
sentation of states and actions (transitions labels): states are represented as memory areas of fixed
size and actions are character strings. Although appropriate to the pure process algebraic setting, this
representation must be generalized to provide additional information supporting an efficient con-
struction of advanced verification features, such as: handling of the types, functions, data values, and
parallel structure of the source program under verification, independence of transitions in the LTS,
quantitative (timed/probabilistic/stochastic) information, etc.

• Compositional framework for on-the-fly LTS analysis. On-the-fly model checkers and equivalence
checkers usually perform several operations on graph models (LTSs, Boolean graphs, etc.), such
as exploration, parallel composition, partial order reduction, encoding of model checking and
equivalence checking in terms of Boolean equation systems, resolution and diagnostic generation
for Boolean equation systems, etc. To facilitate the design, implementation, and usage of these
functionalities, it is necessary to encapsulate them in software components that could be freely
combined and replaced. Such components would act as graph transformers, that would execute (on
a sequential machine) in a way similar to coroutines and to the composition of lazy functions in
functional programming languages. Besides its obvious benefits in modularity, such a component-
based architecture will also make it possible to take advantage of multi-core processors.

• New generic components for on-the-fly verification. The quest for new on-the-fly components for
LTS analysis must be pursued, with the goal of obtaining a rich catalog of interoperable components
serving as building blocks for new analysis features. A long-term goal of this approach is to provide
an increasingly large catalog of interoperable components covering all verification and analysis
functionalities that appear to be useful in practice. It is worth noticing that some components can
be very complex pieces of software (e.g., the encapsulation of an on-the-fly model checker for a
rich temporal logic). Ideally, it should be possible to build a novel verification or analysis tool by
assembling on-the-fly graph manipulation components taken from the catalog. This would provide
a flexible means of building new verification and analysis tools by reusing generic, interoperable
model manipulation components.

3.5. Real-Life Applications and Case Studies
We believe that theoretical studies and tool developments must be confronted with significant case studies to
assess their applicability and to identify new research directions. Therefore, we seek to apply our languages,
models, and tools for specifying and verifying formally real-life applications, often in the context of industrial
collaborations.
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4. Application Domains

4.1. Application Domains
The theoretical framework we use (automata, process algebras, bisimulations, temporal logics, etc.) and the
software tools we develop are general enough to fit the needs of many application domains. They are applicable
to virtually any system or protocol that consists of distributed agents communicating by asynchronous
messages. The list of recent case studies performed with the CADP toolbox (see in particular § 7.5) illustrates
the diversity of applications:

• Bioinformatics: genetic regulatory networks, nutritional stress response, metabolic pathways,

• Component-based systems: Web services, peer-to-peer networks,

• Cloud computing: self-deployment protocols, dynamic reconfiguration protocols,

• Fog and IoT: stateful IoT applications in the fog,

• Databases: transaction protocols, distributed knowledge bases, stock management,

• Distributed systems: virtual shared memory, dynamic reconfiguration algorithms, fault tolerance
algorithms, cloud computing,

• Embedded systems: air traffic control, avionic systems, train supervision systems, medical devices,

• Hardware architectures: multiprocessor architectures, systems on chip, cache coherency protocols,
hardware/software codesign,

• Human-machine interaction: graphical interfaces, biomedical data visualization, plasticity,

• Security protocols: authentication, electronic transactions, cryptographic key distribution,

• Telecommunications: high-speed networks, network management, mobile telephony, feature inter-
action detection.

5. Highlights of the Year

5.1. Highlights of the Year
Frédéric Lang, together with Franco Mazzanti from CNR-ISTI/FMT (Pisa, Italy), won all the gold medals for
the “Parallel CTL” and “Parallel LTL” tracks of the RERS’2019 (Rigorous Evaluation of Reactive Systems)
challenge 1. The goal of these two tracks was to verify 180 properties expressed in the branching-time temporal
logic CTL and 180 properties expressed in the linear-time temporal logic LTL. These properties had to
be evaluated on various complex systems, having up to 70 concurrent processes and 234 synchronization
actions. To attack such difficult problems, Lang and Mazzanti decided to join forces, and managed to evaluate
all the 360 properties correctly, by designing new verification algorithms and exploiting the compositional
verification techniques of CADP.

6. New Software and Platforms

6.1. CADP
Construction and Analysis of Distributed Processes

KEYWORDS: Formal methods - Verification
1http://rers-challenge.org/2019

http://rers-challenge.org/2019
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FUNCTIONAL DESCRIPTION: CADP (Construction and Analysis of Distributed Processes – formerly known
as CAESAR/ALDEBARAN Development Package) [5] is a toolbox for protocols and distributed systems
engineering.

In this toolbox, we develop and maintain the following tools:

• CAESAR.ADT [34] is a compiler that translates LOTOS abstract data types into C types and
C functions. The translation involves pattern-matching compiling techniques and automatic recog-
nition of usual types (integers, enumerations, tuples, etc.), which are implemented optimally.

• CAESAR [40], [39] is a compiler that translates LOTOS processes into either C code (for rapid
prototyping and testing purposes) or finite graphs (for verification purposes). The translation is done
using several intermediate steps, among which the construction of a Petri net extended with typed
variables, data handling features, and atomic transitions.

• OPEN/CAESAR [35] is a generic software environment for developing tools that explore graphs on
the fly (for instance, simulation, verification, and test generation tools). Such tools can be developed
independently of any particular high level language. In this respect, OPEN/CAESAR plays a central
role in CADP by connecting language-oriented tools with model-oriented tools. OPEN/CAESAR
consists of a set of 16 code libraries with their programming interfaces, such as:

– CAESAR GRAPH, which provides the programming interface for graph exploration,

– CAESAR HASH, which contains several hash functions,

– CAESAR SOLVE, which resolves Boolean equation systems on the fly,

– CAESAR STACK, which implements stacks for depth-first search exploration, and

– CAESAR TABLE, which handles tables of states, transitions, labels, etc.

A number of on-the-fly analysis tools have been developed within the OPEN/CAESAR environment,
among which:

– BISIMULATOR, which checks bisimulation equivalences and preorders,

– CUNCTATOR, which performs steady-state simulation of continuous-time Markov
chains,

– DETERMINATOR, which eliminates stochastic nondeterminism in normal, probabilistic,
or stochastic systems,

– DISTRIBUTOR, which generates the graph of reachable states using several machines,

– EVALUATOR, which evaluates MCL formulas,

– EXECUTOR, which performs random execution,

– EXHIBITOR, which searches for execution sequences matching a given regular expres-
sion,

– GENERATOR, which constructs the graph of reachable states,

– PROJECTOR, which computes abstractions of communicating systems,

– REDUCTOR, which constructs and minimizes the graph of reachable states modulo
various equivalence relations,

– SIMULATOR, XSIMULATOR, and OCIS, which enable interactive simulation, and

– TERMINATOR, which searches for deadlock states.

• BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using
efficient compression techniques) and a software environment for handling this format. BCG also
plays a key role in CADP as many tools rely on this format for their inputs/outputs. The BCG
environment consists of various libraries with their programming interfaces, and of several tools,
such as:

– BCG CMP, which compares two graphs,
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– BCG DRAW, which builds a two-dimensional view of a graph,
– BCG EDIT, which allows the graph layout produced by BCG DRAW to be modified

interactively,
– BCG GRAPH, which generates various forms of practically useful graphs,
– BCG INFO, which displays various statistical information about a graph,
– BCG IO, which performs conversions between BCG and many other graph formats,
– BCG LABELS, which hides and/or renames (using regular expressions) the transition

labels of a graph,
– BCG MIN, which minimizes a graph modulo strong or branching equivalences (and can

also deal with probabilistic and stochastic systems),
– BCG STEADY, which performs steady-state numerical analysis of (extended) continuous-

time Markov chains,
– BCG TRANSIENT, which performs transient numerical analysis of (extended)

continuous-time Markov chains, and
– XTL (eXecutable Temporal Language), which is a high level, functional language for

programming exploration algorithms on BCG graphs. XTL provides primitives to handle
states, transitions, labels, successor and predecessor functions, etc.

For instance, one can define recursive functions on sets of states, which allow evaluation
and diagnostic generation fixed point algorithms for usual temporal logics (such as HML
[43], CTL [32], ACTL [33], etc.) to be defined in XTL.

• PBG (Partitioned BCG Graph) is a file format implementing the theoretical concept of Partitioned
LTS [38] and providing a unified access to a graph partitioned in fragments distributed over a set
of remote machines, possibly located in different countries. The PBG format is supported by several
tools, such as:

– PBG CP, PBG MV, and PBG RM, which facilitate standard operations (copying, mov-
ing, and removing) on PBG files, maintaining consistency during these operations,

– PBG MERGE (formerly known as BCG MERGE), which transforms a distributed graph
into a monolithic one represented in BCG format,

– PBG INFO, which displays various statistical information about a distributed graph.
• The connection between explicit models (such as BCG graphs) and implicit models (explored on the

fly) is ensured by OPEN/CAESAR-compliant compilers, e.g.:
– BCG OPEN, for models represented as BCG graphs,
– CAESAR.OPEN, for models expressed as LOTOS descriptions,
– EXP.OPEN, for models expressed as communicating automata,
– FSP.OPEN, for models expressed as FSP [45] descriptions,
– LNT.OPEN, for models expressed as LNT descriptions, and
– SEQ.OPEN, for models represented as sets of execution traces.

The CADP toolbox also includes TGV (Test Generation based on Verification), which has been developed by
the VERIMAG laboratory (Grenoble) and Inria Rennes – Bretagne-Atlantique.

The CADP tools are well-integrated and can be accessed easily using either the EUCALYPTUS graphical
interface or the SVL [36] scripting language. Both EUCALYPTUS and SVL provide users with an easy and
uniform access to the CADP tools by performing file format conversions automatically whenever needed and
by supplying appropriate command-line options as the tools are invoked.

• Participants: Hubert Garavel, Frédéric Lang, Radu Mateescu and Wendelin Serwe
• Contact: Hubert Garavel
• URL: http://cadp.inria.fr/

http://cadp.inria.fr/
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6.2. TRAIAN
KEYWORDS: Compilation - LOTOS NT

FUNCTIONAL DESCRIPTION: TRAIAN is a compiler for translating LOTOS NT descriptions into C pro-
grams, which will be used for simulation, rapid prototyping, verification, and testing.

The current version of TRAIAN, which handles LOTOS NT types and functions only, has useful applications
in compiler construction [37], being used in all recent compilers developed by CONVECS.

• Participants: Hubert Garavel, Frédéric Lang and Wendelin Serwe

• Contact: Hubert Garavel

• URL: http://convecs.inria.fr/software/traian/

7. New Results

7.1. New Formal Languages and their Implementations
7.1.1. LOTOS and LNT Specification Languages

Participants: Hubert Garavel, Frédéric Lang, Wendelin Serwe.

LNT [6] [31] is a next-generation formal description language for asynchronous concurrent systems. The
design of LNT at CONVECS is the continuation of the efforts undertaken in the 80s to define sound languages
for concurrency theory and, indeed, LNT is derived from the ISO standards LOTOS (1989) and E-LOTOS
(2001). In a nutshell, LNT attempts to combine the best features of imperative programming languages,
functional languages, and value-passing process calculi.

LNT is not a frozen language: its definition started in 2005, as part of an industrial project. Since 2010,
LNT has been systematically used by CONVECS for numerous case studies (many of which being industrial
applications — see § 7.5). LNT is also used as a back-end by other research teams who implement various
languages by translation to LNT. It is taught in university courses, e.g., at University Grenoble Alpes and
ENSIMAG, where it is positively accepted by students and industry engineers. Based on the feedback acquired
by CONVECS, LNT is continuously improved.

In 2019, a new option -depend has been added to the LNT_DEPEND, LNT2LOTOS, and LNT.OPEN
tools. LNT_DEPEND now supports the case where the user replaces the predefined LNT modules (e.g.,
BOOLEAN, NATURAL, etc.) with custom versions. LNT_DEPEND has been made faster and displays better
error messages. The LOTOS code generated by LNT2LOTOS for parallel compositions could be semantically
incorrect and has been fixed.

We continued working on the TRAIAN compiler for the LOTOS NT language (a predecessor of LNT), which
is used for the construction of most CADP compilers and translators.

The version 2.x of TRAIAN that we have been developing for almost 20 years is increasingly difficult
to maintain. It consists of a large collection of attribute grammars and is built using the FNC-2 compiler
generation system, which is no longer supported. For this reason, TRAIAN 2.x only exists in a 32-bit version,
and sometimes hits the 4 GB RAM limit when dealing with large compiler specifications, such as those of
LNT2LOTOS or EVALUATOR 5.

For this reason, we undertook in 2018 a complete rewrite of TRAIAN (version 3.0) to get rid of FNC-2.
Two main design decisions behind TRAIAN 3.0 are the following: (i) it supports (most of) the LOTOS NT
language currently accepted by TRAIAN 2.x, but also extensions belonging to LNT, so as to allow a future
migration from LOTOS NT to LNT; and (ii) TRAIAN 3.0 is currently written in LOTOS NT and compiled
using TRAIAN 2.x, but should be ultimately capable of bootstrapping itself.

http://convecs.inria.fr/software/traian/
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In 2019, we continued the development of TRAIAN 3.0, whose grammar and syntax analysis phase was
already almost complete. We fully implemented several static program analysis phases, among which the
following:

• binding analysis, which associates a declaration to every identifier occurring in the program (e.g.,
type, channel, variable, event, etc.)

• typing analysis (including resolution of function name overloading), which associates a type to every
expression in the program

• type-productivity and type-finiteness analysis, which check respectively whether a type has at least
one value and whether a type has a finite number of values

We also fully implemented the C function generation phase and started to implement the C type generation
phase. To avoid problems when switching from TRAIAN 2.x to TRAIAN 3.0, TRAIAN 3.0 generates almost
exactly the same code as TRAIAN 2.x. The principal differences concern the numbers used to uniquely
identify symbols (variables and functions) in the generated C code, because these are often derived from
the syntax tree.

TRAIAN 3.0 is checked regularly against a non-regression test suite consisting of 845 correct and 1545
incorrect programs.

In total, the functionalities that remain to be implemented in TRAIAN 3.0 represent less than 32% of the code
of TRAIAN 2.x.

7.1.2. Nested-Unit Petri Nets
Participants: Pierre Bouvier, Hubert Garavel.

Nested-Unit Petri Nets (NUPNs) is a model of computation that can be seen as an upward-compatible
extension of P/T nets, which are enriched with structural information on their concurrent and hierarchical
structure. Such structural information can easily be produced when NUPNs are generated from higher-level
specifications (e.g., process calculi) and allows logarithmic reductions in the number of bits required to
represent reachable states, thus enabling verification tools to perform better. For this reason, NUPNs have been
so far implemented in thirteen verification tools developed in four countries, and adopted by two international
competitions (the Model Checking Contest and the Rigorous Examination of Reactive Systems challenge).

In 2019, a journal article [13] has been published, which formalizes the complete theory of NUPNs.

The development of software tools for NUPNs has steadily progressed. The file format for NUPNs has
been enhanced and made more precise; the NUPN_INFO tool has been extended with two new options; the
CAESAR.BDD tool as been extended with six new options and its capabilities and efficiency improved in
many respects.

We also revisited the problem of decomposing a Petri net into a network of automata, a problem that has been
around since the early 70s. We reformulated this problem as the transformation of an ordinary, one-safe Petri
net into a unit-safe NUPN. We developed various transformation methods, all of which we implemented in a
tool chain that combines NUPN tools with third-party software, such as SAT solvers, SMT solvers, and tools
for graph colouring and finding maximal cliques. We performed an extensive evaluation of these methods on
a collection of more than 12,000 nets from diverse sources, including nets whose marking graph is too large
for being explored exhaustively.

7.1.3. Formal Modeling and Analysis of BPMN
Participant: Gwen Salaün.

A business process is a set of structured activities that provide a certain service or product. Business processes
can be modeled using the BPMN (Business Process Model and Notation) standard, and several industrial
platforms have been developed for supporting their design, modeling, and simulation.
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In collaboration with Francisco Durán (University of Málaga, Spain) and Camilo Rocha (University of Cali,
Colombia), we proposed an approach for the modeling and analysis of resource allocation for business pro-
cesses. Our approach enables the automatic computation of measures for precisely identifying and optimizing
the allocation of resources in business processes, including resource usage over time. The proposed analysis,
especially suited to support decision-making strategies, is illustrated with a case study of a parcel ordering and
delivery by a fleet of drones. This work comprises an encoding of a significant and expressive subset of BPMN
in rewriting logic, an executable logic of concurrent change that can naturally deal with states and concurrent
computations. The encoding is by itself a formal semantics and interpreter of the BPMN subset that captures
all concurrent behavior and thus is used to simulate the concurrent evolution of any business process with a
given number of resources and replicas. This work led to two publications, in an international conference [19]
and an international journal [12].

7.2. Parallel and Distributed Verification
7.2.1. Debugging of Concurrent Systems using Counterexample Analysis

Participant: Gwen Salaün.

Model checking is an established technique for automatically verifying that a model satisfies a given temporal
property. When the model violates the property, the model checker returns a counterexample, which is a
sequence of actions leading to a state where the property is not satisfied. Understanding this counterexample
for debugging the specification is a complicated task for several reasons: (i) the counterexample can contain
hundreds of actions, (ii) the debugging task is mostly achieved manually, (iii) the counterexample does not
explicitly highlight the source of the bug that is hidden in the model, (iv) the most relevant actions are not
highlighted in the counterexample, and (v) the counterexample does not give a global view of the problem.

We proposed a novel approach to improve the usability of model checking by simplifying the comprehension
of counterexamples. Our approach takes as input an LTS model and an (unsatisfied) temporal logic property,
and operates in four steps. First, all counterexamples for the property are extracted from the model. Second, the
model is analyzed to identify the actions that skip from correct to incorrect behaviours (intuitively, these are
the most relevant actions from a debugging perspective). Third, using a panel of abstraction techniques, these
actions are extracted from the counterexamples. Fourth, 3D visualization techniques are used for highlighting
specific regions in the model, where a choice is possible between executing a correct behaviour or falling into
an erroneous part of the model, according to the property under analysis. We developed a tool named CLEAR
to fully automate our approach, and we applied it on real-world case studies from various application areas for
evaluation purposes. This allowed us to identify several patterns corresponding to typical cases of errors (e.g.,
interleaving, iteration, causality, etc.).

These results led to two publications in international conferences [15] [16] and a publication to appear in an
international journal [11].

7.2.2. Eliminating Data Races in Parallel Programs using Model Checking
Participants: Radu Mateescu, Wendelin Serwe.

Parallelization of existing sequential programs to increase their performance and exploit recent multi- and
many-core architectures is a challenging but inevitable effort. One increasingly popular parallelization ap-
proach is based on OpenMP, which enables the designer to annotate a sequential program with constructs
specifying the parallel execution of code blocks. These constructs are then interpreted by the OpenMP com-
piler and runtime, which assigns blocks to threads running on a parallel architecture. Although this scheme
is very flexible and not (very) intrusive, it does not prevent the occurrence of synchronization errors (e.g.,
deadlocks) or data races on shared variables.
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In the framework of the CAPHCA project (see § 9.2.1.1), in collaboration with Eric Jenn and Viet Anh Nguyen
(IRT Saint-Exupéry, Toulouse), we proposed an iterative method to assist the OpenMP parallelization by
using formal methods and verification. In each iteration, potential data races are identified by applying to
the OpenMP program a lockset analysis, which computes the set of shared variables that potentially need to
be protected by locks. To avoid the insertion of superfluous locks, an abstract, action-based formal model of
the OpenMP program in LNT is extracted and analyzed using the EVALUATOR model checker of CADP.
Spurious locks are detected by checking ACTL formulas expressing the absence of concurrent execution of
shared variables accesses. This work led to an international publication [28].

7.3. Timed, Probabilistic, and Stochastic Extensions
7.3.1. On-the-fly Model Checking for Extended Regular Probabilistic Operators

Participants: Armen Inants, Radu Mateescu.

Specifying and verifying quantitative properties of concurrent systems requires expressive and user-friendly
property languages combining temporal, data-handling, and quantitative aspects. To this aim, we undertook the
quantitative analysis of concurrent systems modeled as PTSs (Probabilistic Transition Systems), whose actions
contain channel names, data values, and probabilities. We proposed a new regular probabilistic operator that
extends naturally the Until operators of PCTL (Probabilistic Computation Tree Logic) [41], by specifying the
probability measure of a path characterized by a generalized regular formula involving arbitrary computations
on data values. We devised an on-the-fly model checking method for this new operator, based on a combined
local resolution of linear and Boolean equation systems.

In 2019, we continued this work as follows:

• The MCL v4 language was conservatively extended with the new probabilistic operator, leading to
a new version MCL v5.

• A new version 5 of the EVALUATOR model checker that handles the MCL v5 language, was added
to CADP. EVALUATOR 5 is backward compatible with EVALUATOR 4, to which it adds a new
option “-epsilon” specifying the precision of floating-point computations. A new version 5 of the
MCL_EXPAND tool, the front-end common to the EVALUATOR 3, 4, and 5 model checkers, was
added to CADP. This version is upward compatible with the previous one (except for slight changes
in some error messages), it corrects a bug and brings some optimizations in the C code generated.
Two new manual pages “evaluator5” and “mcl5” have been added.

• For certain probabilistic formulas (e.g., expressing the step-bounded reachability of events), the
on-the-fly model checking procedure can be optimized by taking advantage of the possible query
containments, i.e., implications between instances of the formula with different data parameters.
We studied query containment in DHMLR (Data-based Hennessy-Milner Logic with Recursion),
a parameterized equational formalism used as intermediate language for model checking MCL
formulas. Our method consists in detecting, by static analysis, the containment orders present in the
DHMLR representation of an MCL formula, and using the information about parameterized Boolean
variable implications to improve the convergence of the BES resolution algorithms. We implemented
the method in a prototype extension of EVALUATOR 5 and of the CAESAR_SOLVE library for BES
resolution, and applied it for verifying probabilistic and also functional properties (e.g., bounded
inevitability). The experiments we carried out on self-stabilizing protocols and communication
protocols over unreliable channels showed reductions of up to 50% in memory and up to 33% in
execution time. This work led to a paper submitted to an international conference.

7.4. Component-Based Architectures for On-the-Fly Verification
7.4.1. Compositional Verification

Participants: Frédéric Lang, Radu Mateescu.
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The CADP toolbox contains various tools dedicated to compositional verification, among which EXP.OPEN,
BCG_MIN, BCG_CMP, and SVL play a central role. EXP.OPEN explores on the fly the graph corresponding
to a network of communicating automata (represented as a set of BCG files). BCG_MIN and BCG_CMP
respectively minimize and compare behavior graphs modulo strong or branching bisimulation and their
stochastic extensions. SVL (Script Verification Language) is both a high-level language for expressing
complex verification scenarios and a compiler dedicated to this language.

In 2019, in addition to small bug corrections, we updated SVL to support version 5 of EVALUATOR, and we
corrected a semantic bug in the expansion of meta-operators of SVL.

In collaboration with Franco Mazzanti (ISTI-CNR, Pisa, Italy), we also used the compositional verification
tools of CADP in the framework of the RERS’2019 challenge 2, which consisted in verifying 180 LTL
properties and 180 CTL properties on large models of concurrent systems having up to 70 concurrent processes
and 234 synchronization actions.

We applied to these examples the maximal hiding technique [48], which consists in hiding in the model
all actions that are not necessary to verify the property. We combined this technique with compositional
minimization (using the smart reduction heuristic implemented in SVL) as follows:

• In a first attempt, we used the technique consisting in applying minimization modulo either strong
bisimulation or divbranching (divergence-preserving branching) bisimulation, depending on the
fragment of the modal µ-calculus to which the formula belongs, as proposed in [48]. This was
more efficient than non-compositional verification on large models, but not sufficient to verify all
RERS problems successfully.

• We then proposed a refinement of this approach, which consists in (1) partitioning the actions of the
system to be verified into so-called strong and weak actions, depending on the formula, and (2) min-
imizing modulo divbranching bisimulation all processes and process compositions containing weak
actions only. This is an improvement over the previous technique, since divbranching bisimulation
can be used to minimize some processes of the system even though the formula does not belong
to the fragment of the µ-calculus adequate with divbranching bisimulation (which corresponds to
formulas with an empty set of strong actions). This new technique allowed us to verify a lot more
problems successfully, but still letting a few of the largest RERS problems unresolved. We published
a paper describing the approach in an international conference [23].

• At last, we designed a new bisimulation relation, named sharp bisimulation, parameterized by the
strong actions of the system, and we implemented a prototype tool that reduces a behavior graph
modulo this relation. Sharp bisimulation parameterized by a set S of strong actions is weaker than
strong bisimulation, stronger than divbranching bisimulation, and adequate with formulas whose
strong actions are included in S. Such a fine-tuning of the bisimulation relation by strong actions
allowed us to verify all RERS problems successfully and to win the 2019 challenge. A paper
describing the approach was accepted for publication in an international conference.

7.4.2. Other Component Developments
Participants: Hubert Garavel, Frédéric Lang, Philippe Ledent, Radu Mateescu, Wendelin Serwe.

In 2019, several components of CADP have been improved as follows:

• We enhanced the TESTOR tool by adding the possibility to interact with an SUT (System Under
Test) using its standard input and output.

• We enhanced the XTL compiler with a function converting a transition label into a string (useful for
handling the entire content of the label), and we also corrected three bugs.

• We enhanced MCL_EXPAND 5 with a better detection of nondeterminism in probabilistic formulas
and a vacuity check for infinite looping operators, and we also corrected a semantic bug.

2http://rers-challenge.org/2019

http://rers-challenge.org/2019
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• We enhanced EVALUATOR 5 with more explanative messages about the assignment of probabilities
to transitions, and we corrected two bugs in each of the tools EVALUATOR 4 and 5.

• The C code generated by CAESAR has been modified to suppress GCC 6.5 warnings.
• Several changes have been brought to CADP to enable its use on new platforms, including macOS

10.15 "Catalina" and the forthcoming Debian 10.0 Linux distribution. Various bugs specific to Linux
and SunOS systems (Solaris or Illumos/OpenIndiana) have been fixed.

7.5. Real-Life Applications and Case Studies
7.5.1. Autonomous Resilience of Distributed IoT Applications in a Fog Environment

Participants: Umar Ozeer, Gwen Salaün.

Recent computing trends have been advocating for more distributed paradigms, namely Fog computing, which
extends the capacities of the Cloud at the edge of the network, that is close to end devices and end users in
the physical world. The Fog is a key enabler of the Internet of Things (IoT) applications as it resolves some
of the needs that the Cloud fails to provide such as low network latencies, privacy, QoS, and geographical
requirements. For this reason, the Fog has become increasingly popular and finds application in many fields
such as smart homes and cities, agriculture, healthcare, transportation, etc.

The Fog, however, is unstable because it is constituted of billions of heterogeneous devices in a dynamic
ecosystem. IoT devices may regularly fail because of bulk production and cheap design. Moreover, the Fog-
IoT ecosystem is cyber-physical and thus devices are subjected to external physical world conditions, which
increase the occurrence of failures. When failures occur in such an ecosystem, the resulting inconsistencies in
the application affect the physical world by inducing hazardous and costly situations.

In the framework of the collaboration with Orange Labs (see § 8.1.1), we proposed an end-to-end autonomic
failure management approach for IoT applications deployed in the Fog. The proposed approach recovers
from failures in a cyber-physical consistent way. Cyber-physical consistency aims at maintaining a consistent
behavior of the application with respect to the physical world, as well as avoiding dangerous and costly
circumstances. The approach was validated using model checking techniques to verify important correctness
properties. It was then implemented as a framework called F3ARIoT. This framework was evaluated on a smart
home application. The results showed the feasibility of deploying F3ARIoT on real Fog-IoT applications as
well as its good performances in regards to end user experience.

These results have been published in U. Ozeer’s PhD thesis [10] and at an international conference [26].
Another paper was submitted to an international journal.

7.5.2. Verified Composition and Deployment of IoT Applications
Participants: Alejandro Martinez Rivero, Radu Mateescu, Ajay Muroor Nadumane, Gwen Salaün.

The Internet of Things (IoT) applications are built by interconnecting everyday objects over internet. As IoT
is becoming popular among consumers, the challenge of making IoT applications easy to design and deploy
is more relevant than ever. In 2019, we considered this challenge along two perspectives.

• In the framework of the collaboration with Nokia Bell Labs (see § 8.1.2), we focused on helping
consumers to easily design IoT applications that are correct, and also support the deployment of these
applications. The correctness of the applications is ensured through formal methods and verification
techniques.

Using W3C Web of Things (WoT) specification as the basis of our work, we extended the specifica-
tion of objects in WoT with a behavioural model. This allows us to describe formally the composition
of objects and thus, to verify their behavioural correctness. Typically, an IoT application is defined
using Event-Condition-Action (ECA) rules of the type “IF event THEN action”. Our work supports
users to specify not only the ECA rules, but also the composition of rules using a simple, yet expres-
sive language. This makes possible the construction of advanced compositions, which would have
been hard or sometimes impossible to build using simple ECA rules. Finally, users are provided with
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an easy-to-deploy solution for these advanced compositions. All these steps were implemented and
packaged in a tool named MozART, built on top of Mozilla WebThings platform. LNT is used as the
formal specification language, and various tools of CADP are used for verifying the composition.
Also, an execution engine based on Mozilla WebThings API was built to support the deployment of
advanced compositions. The work has led to the preparation of two conference articles.

• Building IoT applications of added-value from a set of available devices with minimal human
intervention is one of the main challenges facing the IoT. This is a difficult task that requires models
for specifying objects, in addition to user-friendly and reliable composition techniques which in turn
prevent the design of erroneous applications.

In collaboration with Francisco Durán (University of Málaga, Spain), we tackled this problem by first
describing IoT applications using abstract models obtained from existing models of concrete devices.
Then, we proposed automated techniques for building compositions of devices using a repository
of available devices, and an abstract goal of what the user expects from such compositions. Since
the number of possible solutions can be quite high, we used both filtering and ranking techniques to
provide the most relevant solutions to users. The provided solutions satisfy the given goal and may be
analysed with respect to properties such as deadlock-freeness or unmatched send messages. Finally,
the application can be deployed using existing execution engines. This work led to a publication in
an international conference [20].

7.5.3. Autonomous Car
Participants: Philippe Ledent, Lina Marsso, Radu Mateescu, Wendelin Serwe.

Autonomous vehicles are complex cyber-physical systems that must satisfy critical correctness requirements
to increase the safety of road traffic. The validation of autonomous driving is a challenging field because of the
complexity of its key components (perception of the environment, scene interpretation, decision making and
undertaking of actions) and the intertwinning of physical and software components. In 2019, we considered
this challenge along two lines of work.

• From the embedded software perspective, autonomous cars can be considered as GALS systems,
which integrate reactive synchronous components that interact asynchronously. The complexity
induced by combining synchronous and asynchronous aspects makes GALS systems difficult to
develop and debug.

In the framework of the ARC6 collaboration (see § 9.1.1), we proposed a testing methodology for
GALS systems that leverages conformance test generation for asynchronous systems to automati-
cally derive realistic scenarios (inputs constraints and oracles), which are necessary ingredients for
the unit testing of individual synchronous components, and are difficult and error-prone to design
manually. The methodology consists of several steps (derivation of asynchronous test cases from a
GALS model and a test purpose, projection of the complete test graph on a synchronous component,
extraction and execution of test scenarios) and was illustrated on a simple, but relevant example in-
spired by autonomous cars. These results were published in L. Marsso’s PhD thesis [9] and at an
international conference [25].

• In collaboration with Christian Laugier, Anshul Paigwar, and Alessandro Renzaglia (CHROMA
project-team), we proposed a new approach where formal verification is employed to validate sys-
tems with probabilistic predictions. We focused on the risk assessment generated by CMCDOT
(Conditional Monte Carlo Dense Occupancy Tracker), a probabilistic perception system for au-
tonomous cars. CMCDOT provides an environment representation through Bayesian probabilistic
occupancy grids and estimates Time-to-Collision probabilities for every static and dynamic part of
the grid in the near future. To validate the probabilistic collision risk estimation, we used the CARLA
simulator to generate a large number of realistic intersection crossing scenarios with two vehicles.
The set of scenarios is then validated using the XTL model checker, by defining appropriate KPIs
(Key Performance Indicators) as temporal logic formulas and also performing a quantitative analysis.
This work led to a publication at an international conference [24].
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8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Grants with Industry
8.1.1. Orange Labs

Participants: Umar Ozeer, Gwen Salaün.

Umar Ozeer is supported by a PhD grant (from November 2016 to November 2019) from Orange Labs
(Grenoble) on detecting and repairing failures of data-centric applications distributed in the cloud and the IoT
(see § 7.5.1), under the supervision of Loïc Letondeur (Orange Labs), Gwen Salaün (CONVECS), François
Gaël Ottogalli (Orange Labs), and Jean-Marc Vincent (POLARIS project-team).

8.1.2. Nokia Bell Labs
Participants: Radu Mateescu, Ajay Muroor Nadumane, Gwen Salaün.

Ajay Muroor Nadumane is supported by a PhD grant (from October 2017 to October 2020) from Nokia Bell
Labs (Nozay) on IoT service composition (see § 7.5.2) supported by formal methods, under the supervision of
Gwen Salaün (CONVECS), Radu Mateescu (CONVECS), Ludovic Noirie, and Michel Le Pallec (Nokia Bell
Labs).

9. Partnerships and Cooperations

9.1. Regional Initiatives
9.1.1. ARC6 Programme

Participants: Lina Marsso, Radu Mateescu [correspondent], Wendelin Serwe.

ARC6 is an academic research community funded by the Auvergne Rhône-Alpes region, whose objective is to
foster the scientific collaborations between different academic institutions of the region working in the domain
of information and communication technologies. ARC6 organizes various scientific animations (conferences,
working groups, summer schools, etc.) and issues a yearly call for PhD and post-doctorate research project
proposals.

Lina Marsso is supported by an ARC6 grant (from October 2016 to October 2019) on formal methods for
testing networks of programmable logic controllers, under the supervision of Radu Mateescu and Wendelin
Serwe (CONVECS), and Ioannis Parissis (LCIS, Valence).

9.2. National Initiatives
9.2.1. PIA (Programme d’Investissements d’Avenir)
9.2.1.1. CAPHCA

Participants: Frédéric Lang, Radu Mateescu [correspondent], Wendelin Serwe.

CAPHCA (Critical Applications on Predictable High-Performance Computing Architectures) is a project
funded by the PIA. The project, led by IRT Saint-Exupéry (Toulouse), involves a dozen of industrial partners
(among which Airbus, CS Systèmes d’Information, Synopsis, and Thalès Avionics), the University Paul
Sabatier (Toulouse), and Inria Grenoble – Rhône-Alpes (CONVECS and SPADES project-teams). CAPHCA
addresses the dual problem of achieving performance and determinism when using new, high performance,
multicore System-on-Chip (SoC) platforms for the deployment of real-time, safety-critical applications. The
methodology adopted by CAPHCA consists in building a pragmatic combination of methods, tools, design
constraints and patterns deployable at a short-term horizon in the industrial domains targeted in the project.
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CAPHCA started in December 2017 for four years. The main contributions of CONVECS to CAPHCA are
the detection of concurrency errors in parallel applications by means of formal methods and verification
techniques.

9.2.2. Competitivity Clusters
9.2.2.1. SECURIOT-2

Participants: Hubert Garavel [correspondent], Armen Inants, Radu Mateescu, Wendelin Serwe.

SECURIOT-2 is a project funded by the FUI (Fonds Unique Interministériel) within the Pôle de Compétitivité
Minalogic. The project, led by Tiempo Secure (Grenoble), involves the SMEs (Small and Medium Enterprises)
Alpwise, Archos, Sensing Labs, and Trusted Objects, the Institut Fourier and the VERIMAG laboratories of
Université Grenoble Alpes, and CONVECS. SECURIOT-2 aims at developing a secure micro-controller unit
(SMCU) that will bring to the IoT a high level of security, based on the techniques used for smart cards or
electronic passports. The SMCU will also include an original power management scheme adequate with the
low power consumption constraints of the IoT.

SECURIOT-2 started in September 2017 for three years. The main contributions of CONVECS to SECURIOT-
2 are the formal modeling and verification of the asynchronous hardware implementing the secure elements
developed by the project partners.

9.2.3. Other National Collaborations
We had sustained scientific relations with the following researchers:

• Xavier Etchevers (Orange Labs, Meylan),

• Fabrice Kordon and Lom Messan Hillah (LIP6, Paris),

• Eric Jenn and Viet Anh Nguyen (IRT Saint-Exupéry, Toulouse),

• Michel Le Pallec (Nokia Bell Labs, Nozay),

• Chu-Min Li (University of Picardie Jules Verne),

• Ioannis Parissis and Oum-El-Kheir Aktouf (LCIS, Valence),

• Pascal Poizat (LIP6, Paris).

9.3. European Initiatives
9.3.1. Collaborations with Major European Organizations

The CONVECS project-team is member of the FMICS (Formal Methods for Industrial Critical Systems)
working group of ERCIM 3. H. Garavel and R. Mateescu are members of the FMICS board, H. Garavel being
in charge of dissemination actions.

9.4. International Initiatives
H. Garavel is a member of IFIP (International Federation for Information Processing) Technical Committee 1
(Foundations of Computer Science) Working Group 1.8 on Concurrency Theory chaired successively by Luca
Aceto and Jos Baeten.

9.4.1. Inria International Partners
9.4.1.1. Informal International Partners

Saarland University (Germany): we collaborate on a regular basis with the DEPEND (Dependable Systems and
Software) research group headed by Holger Hermanns, who received an ERC Advanced Grant (“POWVER”)
in 2016.

3http://fmics.inria.fr

http://fmics.inria.fr
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9.4.2. Other International Collaborations
In 2019, we had scientific relations with several universities and institutes abroad, including:

• University of Málaga, Spain (Francisco Durán),
• University of Cali, Colombia (Camilo Rocha),
• University of Zaragoza, Spain (José Ignacio Requeno),
• ISTI/CNR, Pisa, Italy (Franco Mazzanti),
• FBK, Trento, Italy (Enrico Magnano),
• Aalto University, Finland and Northeastern University, Boston, Massachusetts (Stavros Tripakis),
• Saarland University, Germany (Holger Hermanns),
• Eindhoven University of Technology, The Netherlands (Anton Wijs and Sander de Putter),
• University of Zielona Gora, Poland (Remigiusz Wisniewski).

9.5. International Research Visitors
9.5.1. Visits of International Scientists

• H. Garavel is an invited professor at Saarland University (Germany) as a holder of the Gay-Lussac
Humboldt Prize.

• Hernan Ponce de Leon (Fortiss, Munich, Germany) visited us on June 25–26, 2019. He gave a lecture
entitled “BMC with Weak Memory Models”.

• Hugues Evrard (Google, London, UK) visited us on October 21, 2019. He gave a lecture entitled
“GPU Schedulers: How Fair is Fair Enough?”.

• Karoliina Lehtinen (University of Liverpool, UK) visited us on October 23, 2019. She gave a lecture
entitled “Quasi-Polynomial Techniques for Parity Games and Other Problems”.

• Peter Csaba Ölveczky (University of Oslo, Norway) visited us on November 25, 2019. He gave a
lecture entitled “Formal Specification and Analysis of Real-Time Systems in Real-Time Maude”.

The annual CONVECS seminar was held in Villard-de-Lans (France) on July 1-3, 2019. The following invited
scientists attended the seminar:

• Loïc Letondeur (Orange Labs) gave on July 2, 2019 a talk entitled “Artificial Intelligence and Edge
Computing”.

• Eric Jenn (IRT Saint-Exupéry / Thales Avionics) gave on July 3, 2019 a talk entitled “Recent
Achievements of the CAPHCA Project”.

• Viet Anh Nguyen (IRT Saint-Exupéry) gave on July 3, 2019 a talk entitled “Using Model Checking
to Identify Timing Interferences on Multicore Processors”.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events: Organisation
10.1.1.1. General Chair, Scientific Chair

• H. Garavel is a member of the model board 4 of MCC (Model Checking Contest). In 2019, he helped
preparing new models (especially those in the NUPN format) and verified, using the CÆSAR.BDD
tool of CADP, the forms describing all benchmark models submitted by the contest participants; this
revealed a number of inconsistencies. The results of MCC’2019 have been published online [44].

4http://mcc.lip6.fr/models.php

http://mcc.lip6.fr/models.php
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• Together with Peter Höfner (Data61, CSIRO, Sydney, Australia), H. Garavel set up a model
repository (hosted on the Gforge of Inria) to collect and archive formal models of real systems;
this infrastructure is used by the series of MARS workshops 5. This repository currently contains 21
models, among which 5 were deposited by CONVECS.

• G. Salaün is member of the steering committee of the ACM SAC-SVT (Symposium of Applied
Computing – Software Verification and Testing Track) conference series since 2018.

• G. Salaün is member of the steering committee of the SEFM (International Conference on Software
Engineering and Formal Methods) conference series since 2014.

• G. Salaün is member of the steering committee of the FOCLASA (International Workshop on
Foundations of Coordination Languages and Self-Adaptative Systems) workshop series since 2011.

10.1.1.2. Member of the Organizing Committees
• L. Marsso and A. Muroor Nadumane were publicity chairs (also in charge of the conference Web site

and social media feeds) for SEFM’2019 (17th International Conference on Software Engineering
and Formal Methods), Oslo, Norway, September 16–20, 2019.

10.1.2. Scientific Events: Selection
10.1.2.1. Chair of Conference Program Committees

• G. Salaün was co-chair of SEFM’2019.

10.1.2.2. Member of the Conference Program Committees
• H. Garavel was program committee member of FMICS’2019 (24rd International Conference on

Formal Methods for Industrial Critical Systems), Amsterdam, The Netherlands, August 30–31,
2019.

• R. Mateescu was program committee member of IFIP-ICTSS’2019 (31st IFIP International Con-
ference on Testing Software and Systems), Paris, France, October 15–17, 2019.

• G. Salaün was program committee member of SAC-SVT’2019 (34th ACM Symposium on Applied
Computing - Software Verification and Testing Track), Limassol, Cyprus, April 8–12, 2019.

• G. Salaün was program committee member of FSEN’2019 (8th IPM International Conference on
Fundamentals of Software Engineering), Tehran, Iran, May 1–3, 2019.

• G. Salaün was program committee member of COORDINATION’2019 (21st International Confer-
ence on Coordination Models and Languages), Lyngby, Denmark, June 18–21, 2019.

• G. Salaün was program committee member of Microservices’2019, Dortmund, Germany, February
19–21, 2019.

• G. Salaün was program committee member of COMPSAC-ITIP’2019 and COMPSAC-SETA’2019
(IEEE International Conference on Computers, Software, and Applications – IT in Practice, and
Software Engineering Technologies and Applications), Wisconsin, USA, July 15–19, 2019.

• G. Salaün was program committee member of HPCS-4PAD’2019 and HPCS-SERCO’2019 (6th
International Symposium on Formal Approaches to Parallel and Distributed Systems, and 3rd
Special Session on High Performance Services Computing and Internet Technologies), Dublin,
Ireland, July 15–19, 2019.

• G. Salaün was program committee member of FACS’2019 (16th International Conference on Formal
Aspects of Component Software), Amsterdam, The Netherlands, October 23–25, 2019.

• G. Salaün was program committee member of FOCLASA’2019 (17th International Workshop on
Coordination and Self-Adaptativeness of Software Applications), Oslo, Norway, September 17,
2019.

• G. Salaün was program committee member of DATAMOD’2019 (8th International Symposium
“From Data to Models and Back”), Porto, Portugal, October 7–8, 2019.

5http://www.mars-workshop.org/

http://www.mars-workshop.org/
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10.1.2.3. Reviewer

• R. Mateescu was a reviewer for the Festschrift in honor of Stefania Gnesi.

• A. Muroor Nadumane was a reviewer for SAC-SVT’2020, FACS’2019, SEFM’2019, COMPSAC-
SETA’2019.

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

• H. Garavel is an editorial board member of STTT (Springer International Journal on Software Tools
for Technology Transfer).

10.1.3.2. Reviewer - Reviewing Activities

• F. Lang and A. Muroor Nadumane were reviewers for STTT.

• R. Mateescu was a reviewer for ISSE (Innovations in Systems and Software Engineering), IST
(Information and Software Technology), LMCS (Logical Methods in Computer Science), and SCP
(Science of Computer Programming).

• G. Salaün was a reviewer for JISA (Journal of Internet Services and Applications), JLAMP (Journal
of Logical and Algebraic Methods in Programming), JSME (Journal of Software: Evolution and
Process), LMCS, and SCP.

10.1.4. Software Dissemination and Internet Visibility
The CONVECS project-team distributes several software tools, among which the CADP toolbox.

In 2019, the main facts are the following:

• We prepared and distributed twelve successive versions (2019-a to 2019-l) of CADP.

• We were requested to grant CADP licenses for 340 different computers in the world.

The CONVECS Web site 6 was updated with scientific contents, announcements, publications, etc.

By the end of December 2019, the CADP forum 7, opened in 2007 for discussions regarding the CADP
toolbox, had over 435 registered users and over 1940 messages had been exchanged.

Also, for the 2019 edition of the Model Checking Contest, one family of models generated using CADP
(totalling 16 Nested-Unit Petri Nets) was provided.

Other research teams took advantage of the software components provided by CADP (e.g., the BCG and
OPEN/CAESAR environments) to build their own research software. We can mention the following develop-
ments:

• The OCARINA Tool and its Extension AADL2LNT for Analysing AADL Descriptions [49]

• The LFD-MPI Tool for Lightweight Formal Development of MPI Applications [52], [53]

• The FTRES Tool for Rare Event Simulation in Dynamic Fault Trees [54]

• Formal Analysis of Security Guidelines for Program Certification [55]

Other teams also used the CADP toolbox for various case studies:

• Applying Automata Learning to Embedded Control Software [50]

• Model Checking Based Approach for Compliance Checking [46]

• Finding Conservative Schema Evolutions by Analysing API Changes [51]

• Selection of Model Checking Strategies using Machine Learning [42]

• Verifying Complex Software Control Systems from Test Objectives [29]

• Designing Safe Synchronous Reactive Systems [30]

6http://convecs.inria.fr
7http://cadp.inria.fr/forum.html

http://convecs.inria.fr
http://cadp.inria.fr/forum.html
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10.1.5. Invited Talks
• H. Garavel participated in the workshop “Advancing Verification Competitions as a Scientific

Method” organized by the Lorentz Center (Leiden, The Netherlands) on February 18–22, 2019.
He gave a lecture entitled “Managing Large Collections of Benchmarks: An Experiment Report”.

• H. Garavel presented a retrospective of the Rewrite Engines Competitions at the TOOLympics event
at ETAPS 2019, Prague, Czech Republic, April 6–7, 2019.

• H. Garavel was one of the six invited speakers at the panel discussion “Moore’s Law, and More?”
organized at the occasion of the 25th Anniversary of the TACAS conference, Prague, Czech
Republic, April 7, 2019.

• H. Garavel gave a highlight talk entitled “From Safe Petri Nets to NUPNs” at the 8th IFIP WG 1.8
Workshop on Trends in Concurrency Theory, Amsterdam, The Netherlands, August 31, 2019.

• H. Garavel gave a seminar entitled “Converting Safe Petri Nets to NUPNs” at Saarland University,
Germany, on September 26, 2019.

• R. Mateescu gave a talk entitled “The MCL Language for Temporal and Probabilistic Analysis of
Concurrent Systems” at the Languages, Semantics, and Compilation seminar of the LIP laboratory,
Lyon, September 19, 2019.

• R. Mateescu visited the Gran Sasso Science Institute (L’Aquila, Italy) on November 4–7, 2019. He
gave a talk entitled “An Action-based Model Checking Language for Concurrent Systems”.

• A. Muroor Nadumane gave a talk entitled “Advanced Rule-based Composition and Deployment for
Web of Things” at the Inria-Nokia Bell Labs meeting held at Inria Rennes on June 11, 2019.

10.1.6. Research Administration
• H. Garavel was appointed to the Executive Commission in charge of International Relations at

COMUE Université Grenoble Alpes.

• F. Lang is chair of the “Commission du développement technologique”, which is in charge of
selecting R&D projects for Inria Grenoble – Rhône-Alpes, and giving an advice on the recruitment
of temporary engineers.

• R. Mateescu is the scientific correspondent of the European and International Partnerships for Inria
Grenoble – Rhône-Alpes.

• R. Mateescu is a member of the Comité d’orientation scientifique for Inria Grenoble – Rhône-Alpes.

• R. Mateescu is a member of the “Bureau” of the LIG laboratory.

• G. Salaün is a member of the Scientific Committee of the PCS (Pervasive Computing Systems) action
of the PERSYVAL Labex.

• W. Serwe is (together with Laurent Lefèvre from the AVALON Inria project-team) correspondent in
charge of the 2019 Inria activity reports at Inria Grenoble – Rhône-Alpes.

• W. Serwe is a member of the “Comité de Centre” at Inria Grenoble – Rhone-Alpes.

• W. Serwe is “chargé de mission” for the scientific axis Formal Methods, Models, and Languages of
the LIG laboratory.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

CONVECS is a host team for the computer science master MOSIG (Master of Science in Informatics at
Grenoble), common to Grenoble INP and Université Grenoble Alpes (UGA).
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In 2019, we carried out the following teaching activities:

P. Bouvier supervised a group of seven two-person teams of 2nd year students in the context of
the “projet informatique” (31 hours “équivalent TD”, consisting of lab exercises and supervision) at
PHELMA.

H. Garavel was a jury member for the MOSIG master defenses in June and September 2019.

F. Lang and R. Mateescu gave a lecture on “Modeling and Analysis of Concurrent Systems: Models
and Languages for Model Checking” (27 hours “équivalent TD”) to third year students of ENSIMAG
and second year students of the MOSIG.

F. Lang gave a course on “Formal Software Development Methods” (7.5 hours “équivalent TD”) in
the framework of the “Software Engineering” lecture given to first year students of the MOSIG.

A. Muroor Nadumane gave a course on “Object Oriented Programming” (42 hours “équivalent TD”)
at the department MMI of IUT1 (UGA).

G. Salaün taught about 250 hours of classes (algorithmics, Web development, object-oriented
programming, iOS programming) at the department MMI of IUT1 (UGA). He is also headmaster of
the “Services Mobiles et Interface Nomade” (SMIN) professional licence (third year of university)
at IUT1/UGA.

W. Serwe gave the part on “Behavioural Testing” (9 hours “équivalent TD”) of the course “Verifica-
tion and Test Theories” to second year students of the MOSIG.

W. Serwe supervised a group of six teams in the context of the “projet Génie Logiciel” (55 hours
“équivalent TD”, consisting in 16 hours of lectures, plus supervision and evaluation), ENSIMAG,
January 2019.

10.2.2. Supervision
PhD: Lina Marsso, “Formal Methods for Testing Networks of Controllers”, Université Grenoble
Alpes, December 10, 2019, R. Mateescu, W. Serwe, and I. Parissis

PhD: Umar Ozeer, “Autonomic Resilience of Applications in a Largely Distributed Cloud Environ-
ment”, Université Grenoble Alpes, December 11, 2019, L. Letondeur, G. Salaün, F.-G. Ottogalli, and
J.-M. Vincent

PhD in progress: Pierre Bouvier, “Implémentation et vérification des langages concurrents de
nouvelle génération”, Université Grenoble Alpes, since October 2019, H. Garavel and R. Mateescu

PhD in progress: Ajay Muroor Nadumane, “Softwarization of Everything: IoT Service Composition”,
Université Grenoble Alpes, since October 2017, G. Salaün, R. Mateescu, and M. Le Pallec

10.2.3. Juries
• F. Lang was PhD committee member of Sander de Putter’s PhD thesis, entitled “Verification of

Concurrent Systems in a Model-Driven Engineering Workflow”, defended at Technische Universiteit
Eindhoven (The Netherlands) on January 28, 2019.

• R. Mateescu was reviewer of The Anh Pham’s PhD thesis, entitled “Efficient State-Space Exploration
for Asynchronous Distributed Programs”, defended at ENS Rennes on December 6, 2019.

• G. Salaün was committee president of Xavier Etchevers’s Habilitation thesis, entitled “Evolution
du déploiement automatisé d’applications : des infrastructures cloud aux enjeux de l’agilité et de
l’intelligence ambiante”, defended at Université Grenoble Alpes on November 29, 2019.

• G. Salaün was PhD committee president of Raphaël Jackse’s PhD thesis, entitled “Interactive
Runtime Verification”, defended at Université Grenoble Alpes on December 18, 2019.

10.3. Popularization
10.3.1. Interventions
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• R. Mateescu has participated to the “Journée Transfo : Plongez dans le monde du numérique”
organized at Inria Montbonnot on January 24, 2019.

• R. Mateescu has participated to the “Fête de la Science” organized at Inria Montbonnot on October
12, 2019.
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