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2. Overall Objectives

2.1. Overall Objectives
Moving data on large supercomputers is becoming a major performance bottleneck, and the situation is
expected to worsen even more at exascale and beyond. Data transfer capabilities are growing at a slower
rate than processing power ones. The profusion of flops available will be difficult to use efficiently due to
constrained communication capabilities. Moving data is also an important source of power consumption.
The DataMove team focuses on data aware large scale computing, investigating approaches to reduce
data movements on large scale HPC machines. We will investigate data aware scheduling algorithms for
job management systems. The growing cost of data movements requires adapted scheduling policies able
to take into account the influence of intra-application communications, IOs as well as contention caused
by data traffic generated by other concurrent applications. At the same time experimenting new scheduling
policies on real platforms is unfeasible. Simulation tools are required to probe novel scheduling policies. Our
goal is to investigate how to extract information from actual compute centers traces in order to replay job
allocations and executions with new scheduling policies. Schedulers need information about the jobs behavior
on the target machine to actually make efficient allocation decisions. We will research approaches relying
on learning techniques applied to execution traces to extract data and forecast job behaviors. In addition to
traditional computation intensive numerical simulations, HPC platforms also need to execute more and more
often data intensive processing tasks like data analysis. In particular, the ever growing amount of data generated
by numerical simulation calls for a tighter integration between the simulation and the data analysis. The goal
is to reduce the data traffic and to speed-up result analysis by processing results in-situ, i.e. as closely as
possible to the locus and time of data generation. Our goal is here to investigate how to program and schedule
such analysis workflows in the HPC context, requiring the development of adapted resource sharing strategies,
data structures and parallel analytics schemes. To tackle these issues, we will intertwine theoretical research
and practical developments to elaborate solutions generic and effective enough to be of practical interest.
Algorithms with performance guarantees will be designed and experimented on large scale platforms with
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realistic usage scenarios developed with partner scientists or based on logs of the biggest available computing
platforms. Conversely, our strong experimental expertise will enable to feed theoretical models with sound
hypotheses, to twist proven algorithms with practical heuristics that could be further retro-feeded into adequate
theoretical models.

3. Research Program

3.1. Motivation
Today’s largest supercomputers 1 are composed of few millions of cores, with performances almost reaching
100 PetaFlops 2 for the largest machine. Moving data in such large supercomputers is becoming a major
performance bottleneck, and the situation is expected to worsen even more at exascale and beyond. The data
transfer capabilities are growing at a slower rate than processing power ones. The profusion of available flops
will very likely be underused due to constrained communication capabilities. It is commonly admitted that data
movements account for 50% to 70% of the global power consumption 3. Thus, data movements are potentially
one of the most important source of savings for enabling supercomputers to stay in the commonly adopted
energy barrier of 20 MegaWatts. In the mid to long term, non volatile memory (NVRAM) is expected to deeply
change the machine I/Os. Data distribution will shift from disk arrays with an access time often considered
as uniform, towards permanent storage capabilities at each node of the machine, making data locality an even
more prevalent paradigm.

The proposed DataMove team will work on optimizing data movements for large scale computing mainly
at two related levels:

• Resource allocation
• Integration of numerical simulation and data analysis

The resource and job management system (also called batch scheduler or RJMS) is in charge of allocating
resources upon user requests for executing their parallel applications. The growing cost of data movements
requires adapted scheduling policies able to take into account the influence of intra-application communica-
tions, I/Os as well as contention caused by data traffic generated by other concurrent applications. Modelling
the application behavior to anticipate its actual resource usage on such architecture is known to be challenging,
but it becomes critical for improving performances (execution time, energy, or any other relevant objective).
The job management system also needs to handle new types of workloads: high performance platforms now
need to execute more and more often data intensive processing tasks like data analysis in addition to traditional
computation intensive numerical simulations. In particular, the ever growing amount of data generated by nu-
merical simulation calls for a tighter integration between the simulation and the data analysis. The challenge
here is to reduce data traffic and to speed-up result analysis by performing result processing (compression,
indexation, analysis, visualization, etc.) as closely as possible to the locus and time of data generation. This
emerging trend called in-situ analytics requires to revisit the traditional workflow (loop of batch processing
followed by postmortem analysis). The application becomes a whole including the simulation, in-situ process-
ing and I/Os. This motivates the development of new well-adapted resource sharing strategies, data structures
and parallel analytics schemes to efficiently interleave the different components of the application and globally
improve the performance.

3.2. Strategy
DataMove targets HPC (High Performance Computing) at Exascale. But such machines and the associated
applications are expected to be available only in 5 to 10 years. Meanwhile, we expect to see a growing number
of petaflop machines to answer the needs for advanced numerical simulations. A sustainable exploitation of

1Top500 Ranking, http://www.top500.org
21015 floating point operations per second
3SciDAC Review, 2010, http://scidacreview.org/1001/pdf/hardware.pdf

http://www.top500.org
http://scidacreview.org/1001/pdf/hardware.pdf
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these petaflop machines is a real and hard challenge that we will address. We may also see in the coming
years a convergence between HPC and Big Data, HPC platforms becoming more elastic and supporting Big
Data jobs, or HPC applications being more commonly executed on cloud like architectures. This is the second
top objective of the 2015 US Strategic Computing Initiative 4: Increasing coherence between the technology
base used for modelling and simulation and that used for data analytic computing. We will contribute to that
convergence at our level, considering more dynamic and versatile target platforms and types of workloads.

Our approaches should entail minimal modifications on the code of numerical simulations. Often large scale
numerical simulations are complex domain specific codes with a long life span. We assume these codes
as being sufficiently optimized. We will influence the behavior of numerical simulations through resource
allocation at the job management system level or when interleaving them with analytics code.

To tackle these issues, we propose to intertwine theoretical research and practical developments in an agile
mode. Algorithms with performance guarantees will be designed and experimented on large scale platforms
with realistic usage scenarios developed with partner scientists or based on logs of the biggest available
computing platforms (national supercomputers like Curie, or the BlueWaters machine accessible through our
collaboration with Argonne National Lab). Conversely, a strong experimental expertise will enable to feed
theoretical models with sound hypotheses, to twist proven algorithms with practical heuristics that could be
further retro-feeded into adequate theoretical models.

A central scientific question is to make the relevant choices for optimizing performance (in a broad sense)
in a reasonable time. HPC architectures and applications are increasingly complex systems (heterogeneity,
dynamicity, uncertainties), which leads to consider the optimization of resource allocation based on
multiple objectives, often contradictory (like energy and run-time for instance). Focusing on the optimization
of one particular objective usually leads to worsen the others. The historical positioning of some members
of the team who are specialists in multi-objective optimization is to generate a (limited) set of trade-off
configurations, called Pareto points, and choose when required the most suitable trade-off between all the
objectives. This methodology differs from the classical approaches, which simplify the problem into a single
objective one (focus on a particular objective, combining the various objectives or agglomerate them). The real
challenge is thus to combine algorithmic techniques to account for this diversity while guaranteeing a target
efficiency for all the various objectives.

The DataMove team aims to elaborate generic and effective solutions of practical interest. We will make our
new algorithms accessible through the team flagship software tools, the OAR batch scheduler and the in-
situ processing framework FlowVR. We will maintain and enforce strong links with teams closely connected
with large architecture design and operation (CEA DAM, BULL, Argonne National Lab), as well as scientists
of other disciplines, in particular computational biologists, with whom we will elaborate and validate new
usage scenarios (IBPC, CEA DAM, EDF).

3.3. Research Directions
DataMove research activity is organised around three directions. When a parallel job executes on a machine,
it triggers data movements through the input data it needs to read, the results it produces (simulation results as
well as traces) that need to be stored in the file system, as well as internal communications and temporary
storage (for fault tolerance related data for instance). Modeling in details the simulation and the target
machines to analyze scheduling policies is not feasible at large scales. We propose to investigate alternative
approaches, including learning approaches, to capture and model the influence of data movements on the
performance metrics of each job execution to develop Data Aware Batch Scheduling models and algorithms
(Sec. 4.1). Experimenting new scheduling policies on real platforms at scale is unfeasible. Theoretical
performance guarantees are not sufficient to ensure a new algorithm will actually perform as expected on
a real platform. An intermediate evaluation level is required to probe novel scheduling policies. The second
research axe focuses on the Empirical Studies of Large Scale Platforms (Sec. 4.2). The goal is to investigate
how we could extract from actual computing centers traces information to replay the job allocations and

4https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative

https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
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executions on a simulated or emulated platform with new scheduling policies. Schedulers need information
about jobs behavior on target machines to actually be able to make efficient allocation decisions. Asking users
to caracterize jobs often does not lead to reliable information. The third research direction Integration of High
Performance Computing and Data Analytics (Sec. 4.3) addresses the data movement issue from a different
perspective. New data analysis techniques on the HPC platform introduce new type of workloads, potentially
more data than compute intensive, but could also enable to reduce data movements by directly enabling to
pipe-line simulation execution with a live analysis of the produced results. Our goal is here to investigate how
to program and schedule such analysis workflows in the HPC context.

4. Application Domains
4.1. Data Aware Batch Scheduling

Large scale high performance computing platforms are becoming increasingly complex. Determining efficient
allocation and scheduling strategies that can adapt to technological evolutions is a strategic and difficult
challenge. We are interested in scheduling jobs in hierarchical and heterogeneous large scale platforms. On
such platforms, application developers typically submit their jobs in centralized waiting queues. The job
management system aims at determining a suitable allocation for the jobs, which all compete against each
other for the available computing resources. Performances are measured using different classical metrics like
maximum completion time or slowdown. Current systems make use of very simple (but fast) algorithms that
however rely on simplistic platform and execution models, and thus, have limited performances.

For all target scheduling problems we aim to provide both theoretical analysis and complementary analysis
through simulations. Achieving meaningful results will require strong improvements on existing models (on
power for example) and the design of new approximation algorithms with various objectives such as stretch,
reliability, throughput or energy consumption, while keeping in focus the need for a low-degree polynomial
complexity.

4.1.1. Algorithms
The most common batch scheduling policy is to consider the jobs according to the First Come First
Served order (FCFS) with backfilling (BF). BF is the most widely used policy due to its easy and robust
implementation and known benefits such as high system utilization. It is well-known that this strategy does not
optimize any sophisticated function, but it is simple to implement and it guarantees that there is no starvation
(i.e. every job will be scheduled at some moment).

More advanced algorithms are seldom used on production platforms due to both the gap between theoretical
models and practical systems and speed constraints. When looking at theoretical scheduling problems, the
generally accepted goal is to provide polynomial algorithms (in the number of submitted jobs and the number
of involved computing units). However, with millions of processing cores where every process and data
transfer have to be individually scheduled, polynomial algorithms are prohibitive as soon as the polynomial
degree is too large. The model of parallel tasks simplifies this problem by bundling many threads and
communications into single boxes, either rigid, rectangular or malleable. Especially malleable tasks capture
the dynamicity of the execution. Yet these models are ill-adapted to heterogeneous platforms, as the running
time depends on more than simply the number of allotted resources, and some of the common underlying
assumptions on the speed-up functions (such as monotony or concavity) are most often only partially verified.

In practice, the job execution times depend on their allocation (due to communication interferences and
heterogeneity in both computation and communication), while theoretical models of parallel jobs usually
consider jobs as black boxes with a fixed (maximum) execution time. Though interesting and powerful, the
classical models (namely, synchronous PRAM model, delay, LogP) and their variants (such as hierarchical
delay), are not well-suited to large scale parallelism on platforms where the cost of moving data is significant,
non uniform and may change over time. Recent studies are still refining such models in order to take into
account communication contentions more accurately while remaining tractable enough to provide a useful
tool for algorithm design.



6 Activity Report INRIA 2019

Today, all algorithms in use in production systems are oblivious to communications. One of our main goals
is to design a new generation of scheduling algorithms fitting more closely job schedules according to
platform topologies.

4.1.2. Locality Aware Allocations
Recently, we developed modifications of the standard back-filling algorithm taking into account platform
topologies. The proposed algorithms take into account locality and contiguity in order to hide communication
patterns within parallel tasks. The main result here is to establish good lower bounds and small approximation
ratios for policies respecting the locality constraints. The algorithms work in an online fashion, improving the
global behavior of the system while still keeping a low running time. These improvements rely mainly on
our past experience in designing approximation algorithms. Instead of relying on complex networking models
and communication patterns for estimating execution times, the communications are disconnected from the
execution time. Then, the scheduling problem leads to a trade-off: optimizing locality of communications on
one side and a performance objective (like the makespan or stretch) on the other side.

In the perspective of taking care of locality, other ongoing works include the study of schedulers for platforms
whose interconnection network is a static structured topology (like the 3D-torus of the BlueWaters platform
we work on in collaboration with the Argonne National Laboratory). One main characteristic of this 3D-torus
platform is to provide I/O nodes at specific locations in the topology. Applications generate and access specific
data and are thus bounded to specific I/O nodes. Resource allocations are constrained in a strong and unusual
way. This problem is close for actual hierarchical platforms. The scheduler needs to compute a schedule such
that I/O nodes requirements are filled for each application while at the same time avoiding communication
interferences. Moreover, extra constraints can arise for applications requiring accelerators that are gathered on
the nodes at the edge of the network topology.

While current results are encouraging, they are however limited in performance by the low amount of
information available to the scheduler. We look forward to extend ongoing work by progressively increasing
application and network knowledge (by technical mechanisms like profiling or monitoring or by more
sophisticated methods like learning). It is also important to anticipate on application resource usage in terms
of compute units, memory as well as network and I/Os to efficiently schedule a mix of applications with
different profiles. For instance, a simple solution is to partition the jobs as "communication intensive" or
"low communications". Such a tag could be achieved by the users them selves or obtained by learning
techniques. We could then schedule low communications jobs using leftover spaces while taking care
of high communication jobs. More sophisticated options are possible, for instance those that use more
detailed communication patterns and networking models. Such options would leverage the work proposed
in Section 4.2 for gathering application traces.

4.1.3. Data-Centric Processing
Exascale computing is shifting away from the traditional compute-centric models to a more data-centric one.
This is driven by the evolving nature of large scale distributed computing, no longer dominated by pure
computations but also by the need to handle and analyze large volumes of data. These data can be large
databases of results, data streamed from a running application or another scientific instrument (collider for
instance). These new workloads call for specific resource allocation strategies.

Data movements and storage are expected to be a major energy and performance bottleneck on next gener-
ation platforms. Storage architectures are also evolving, the standard centralized parallel file system being
complemented with local persistent storage (Burst Buffers, NVRAM). Thus, one data producer can stage
data on some nodes’ local storage, requiring to schedule close by the associated analytics tasks to limit data
movements. This kind of configuration, often referred as in-situ analytics, is expected to become common as it
enables to switch from the traditional I/O intensive workflow (batch-processing followed by post mortem anal-
ysis and visualization) to a more storage conscious approach where data are processed as closely as possible
to where and when they are produced (in-situ processing is addressed in details in section 4.3). By reducing
data movements and scheduling the extra processing on resources not fully exploited yet, in-situ processing
is expected to have also a significant positive energetic impact. Analytics codes can be executed in the same



Project-Team DATAMOVE 7

nodes than the application, often on dedicated cores commonly called helper cores, or on dedicated nodes
called stagging nodes. The results are either forwarded to the users for visualization or saved to disk through
I/O nodes. In-situ analytics can also take benefit of node local disks or burst buffers to reduce data movements.
Future job scheduling strategies should take into account in-situ processes in addition to the job allocation to
optimize both energy consumption and execution time. On the one hand, this problem can be reduced to an
allocation problem of extra asynchronous tasks to idle computing units. But on the other hand, embedding
analytics in applications brings extra difficulties by making the application more heterogeneous and imposing
more constraints (data affinity) on the required resources. Thus, the main point here is to develop efficient
algorithms for dealing with heterogeneity without increasing the global computational cost.

4.1.4. Learning
Another important issue is to adapt the job management system to deal with the bad effects of uncertainties,
which may be catastrophic in large scale heterogeneous HPC platforms (jobs delayed arbitrarly far or jobs
killed). A natural question is then: is it possible to have a good estimation of the job and platform parameters
in order to be able to obtain a better scheduling ? Many important parameters (like the number or type of
required resources or the estimated running time of the jobs) are asked to the users when they submit their
jobs. However, some of these values are not accurate and in many cases, they are not even provided by the
end-users. In DataMove, we propose to study new methods for a better prediction of the characteristics of the
jobs and their execution in order to improve the optimization process. In particular, the methods well-studied
in the field of big data (in supervised Machine Learning, like classical regression methods, Support Vector
Methods, random forests, learning to rank techniques or deep learning) could and must be used to improve
job scheduling in large scale HPC platforms. This topic received a great attention recently in the field of
parallel and distributed processing. A preliminary study has been done recently by our team with the target
of predicting the job running times (called wall times). We succeeded to improve significantly in average the
reference EASY Back Filling algorithm by estimating the wall time of the jobs, however, this method leads to
big delay for the stretch of few jobs. Even if we succeed in determining more precisely hidden parameters, like
the wall time of the jobs, this is not enough to determine an optimized solution. The shift is not only to learn on
dedicated parameters but also on the scheduling policy. The data collected from the accounting and profiling
of jobs can be used to better understand the needs of the jobs and through learning to propose adaptations for
future submissions. The goal is to propose extensions to further improve the job scheduling and improve the
performance and energy efficiency of the application. For instance preference learning may enable to compute
on-line new priorities to back-fill the ready jobs.

4.1.5. Multi-objective Optimization
Several optimization questions that arise in allocation and scheduling problems lead to the study of several
objectives at the same time. The goal is then not a single optimal solution, but a more complicated mathemat-
ical object that captures the notion of trade-off. In broader terms, the goal of multi-objective optimization is
not to externally arbitrate on disputes between entities with different goals, but rather to explore the possible
solutions to highlight the whole range of interesting compromises. A classical tool for studying such multi-
objective optimization problems is to use Pareto curves. However, the full description of the Pareto curve can
be very hard because of both the number of solutions and the hardness of computing each point. Addressing
this problem will opens new methodologies for the analysis of algorithms.

To further illustrate this point here are three possible case studies with emphasis on conflicting interests
measured with different objectives. While these cases are good representatives of our HPC context, there
are other pertinent trade-offs we may investigate depending on the technology evolution in the coming years.
This enumeration is certainly not limitative.

Energy versus Performance. The classical scheduling algorithms designed for the purpose of performance
can no longer be used because performance and energy are contradictory objectives to some extent. The
scheduling problem with energy becomes a multi-objective problem in nature since the energy consumption
should be considered as equally important as performance at exascale. A global constraint on energy could be
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a first idea for determining trade-offs but the knowledge of the Pareto set (or an approximation of it) is also
very useful.

Administrators versus application developers. Both are naturally interested in different objectives: In
current algorithms, the performance is mainly computed from the point of view of administrators, but the users
should be in the loop since they can give useful information and help to the construction of better schedules.
Hence, we face again a multi-objective problem where, as in the above case, the approximation of the Pareto set
provides the trade-off between the administrator view and user demands. Moreover, the objectives are usually
of the same nature. For example, max stretch and average stretch are two objectives based on the slowdown
factor that can interest administrators and users, respectively. In this case the study of the norm of stretch can
be also used to describe the trade-off (recall that the L1-norm corresponds to the average objective while the
L∞-norm to the max objective). Ideally, we would like to design an algorithm that gives good approximate
solutions at the same time for all norms. The L2 or L3-norm are useful since they describe the performance
of the whole schedule from the administrator point of view as well as they provide a fairness indication to the
users. The hard point here is to derive theoretical analysis for such complicated tools.

Resource Augmentation. The classical resource augmentation models, i.e. speed and machine augmentation,
are not sufficient to get good results when the execution of jobs cannot be frequently interrupted. However,
based on a resource augmentation model recently introduced, where the algorithm may reject a small number
of jobs, some members of our team have given the first interesting results in the non-preemptive direction. In
general, resource augmentation can explain the intuitive good behavior of some greedy algorithms while, more
interestingly, it can give ideas for new algorithms. For example, in the rejection context we could dedicate a
small number of nodes for the usually problematic rejected jobs. Some initial experiments show that this can
lead to a schedule for the remaining jobs that is very close to the optimal one.

4.2. Empirical Studies of Large Scale Platforms
Experiments or realistic simulations are required to take into account the impact of allocations and assess the
real behavior of scheduling algorithms. While theoretical models still have their interest to lay the groundwork
for algorithmic designs, the models are necessarily reflecting a purified view of the reality. As transferring our
algorithm in a more practical setting is an important part of our creed, we need to ensure that the theoretical
results found using simplified models can really be transposed to real situations. On the way to exascale
computing, large scale systems become harder to study, to develop or to calibrate because of the costs in
both time and energy of such processes. It is often impossible to convince managers to use a production
cluster for several hours simply to test modifications in the RJMS. Moreover, as the existing RJMS production
systems need to be highly reliable, each evolution requires several real scale test iterations. The consequence
is that scheduling algorithms used in production systems are mostly outdated and not customized correctly.
To circumvent this pitfall, we need to develop tools and methodologies for alternative empirical studies, from
analysis of workload traces, to job models, simulation and emulation with reproducibility concerns.

4.2.1. Workload Traces with Resource Consumption
Workload traces are the base element to capture the behavior of complete systems composed of submitted jobs,
running applications, and operating tools. These traces must be obtained on production platforms to provide
relevant and representative data. To get a better understanding of the use of such systems, we need to look at
both, how the jobs interact with the job management system, and how they use the allocated resources. We
propose a general workload trace format that adds jobs resource consumption to the commonly used SWF 5

workload trace format. This requires to instrument the platforms, in particular to trace resource consumptions
like CPU, data movements at memory, network and I/O levels, with an acceptable performance impact. In
a previous work we studied and proposed a dedicated job monitoring tool whose impact on the system has
been measured as lightweight (0.35% speed-down) with a 1 minute sampling rate. Other tools also explore job
monitoring, like TACC Stats. A unique feature from our tool is its ability to monitor distinctly jobs sharing
common nodes.

5Standard Workload Format: http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
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Collected workload traces with jobs resource consumption will be publicly released and serve to provide
data for works presented in Section 4.1. The trace analysis is expected to give valuable insights to define
models encompassing complex behaviours like network topology sensitivity, network congestion and resource
interferences.

We expect to join efforts with partners for collecting quality traces (ATOS/Bull, Ciment meso center, Joint
Laboratory on Extreme Scale Computing) and will collaborate with the Inria team POLARIS for their analysis.

4.2.2. Simulation
Simulations of large scale systems are faster by multiple orders of magnitude than real experiments. Unfor-
tunately, replacing experiments with simulations is not as easy as it may sound, as it brings a host of new
problems to address in order to ensure that the simulations are closely approximating the execution of typical
workloads on real production clusters. Most of these problems are actually not directly related to scheduling
algorithms assessment, in the sense that the workload and platform models should be defined independently
from the algorithm evaluations, in order to ensure a fair assessment of the algorithms’ strengths and weak-
nesses. These research topics (namely platform modeling, job models and simulator calibration) are addressed
in the other subsections.

We developed an open source platform simulator within DataMove (in conjunction with the OAR development
team) to provide a widely distributable test bed for reproducible scheduling algorithm evaluation. Our
simulator, named Batsim, allows to simulate the behavior of a computational platform executing a workload
scheduled by any given scheduling algorithm. To obtain sound simulation results and to broaden the scope of
the experiments that can be done thanks to Batsim, we did not chose to create a (necessarily limited) simulator
from scratch, but instead to build on top of the SimGrid simulation framework.

To be open to as many batch schedulers as possible, Batsim decouples the platform simulation and the
scheduling decisions in two clearly-separated software components communicating through a complete and
documented protocol. The Batsim component is in charge of simulating the computational resources behaviour
whereas the scheduler component is in charge of taking scheduling decisions. The scheduler component may
be both a resource and a job management system. For jobs, scheduling decisions can be to execute a job, to
delay its execution or simply to reject it. For resources, other decisions can be taken, for example to change
the power state of a machine i.e. to change its speed (in order to lower its energy consumption) or to switch it
on or off. This separation of concerns also enables interfacing with potentially any commercial RJMS, as long
as the communication protocol with Batsim is implemented. A proof of concept is already available with the
OAR RJMS.

Using this test bed opens new research perspectives. It allows to test a large range of platforms and workloads
to better understand the real behavior of our algorithms in a production setting. In turn, this opens the
possibility to tailor algorithms for a particular platform or application, and to precisely identify the possible
shortcomings of the theoretical models used.

4.2.3. Job and Platform Models
The central purpose of the Batsim simulator is to simulate job behaviors on a given target platform under
a given resource allocation policy. Depending on the workload, a significant number of jobs are parallel
applications with communications and file system accesses. It is not conceivable to simulate individually all
these operations for each job on large plaforms with their associated workload due to implied simulation
complexity. The challenge is to define a coarse grain job model accurate enough to reproduce parallel
application behavior according to the target platform characteristics. We will explore models similar to the
BSP (Bulk Synchronous Program) approach that decomposes an application in local computation supersteps
ended by global communications and a global synchronization. The model parameters will be established by
means of trace analysis as discussed previously, but also by instrumenting some parallel applications to capture
communication patterns. This instrumentation will have a significant impact on the concerned application
performance, restricting its use to a few applications only. There are a lot of recurrent applications executed
on HPC platform, this fact will help to reduce the required number of instrumentations and captures. To assign



10 Activity Report INRIA 2019

each job a model, we are considering to adapt the concept of application signatures as proposed in. Platform
models and their calibration are also required. Large parts of these models, like those related to network, are
provided by Simgrid. Other parts as the filesystem and energy models are comparatively recent and will need
to be enhanced or reworked to reflect the HPC platform evolutions. These models are then generally calibrated
by running suitable benchmarks.

4.2.4. Emulation and Reproducibility
The use of coarse models in simulation implies to set aside some details. This simplification may hide system
behaviors that could impact significantly and negatively the metrics we try to enhance. This issue is particularly
relevant when large scale platforms are considered due to the impossibility to run tests at nominal scale on these
real platforms. A common approach to circumvent this issue is the use of emulation techniques to reproduce,
under certain conditions, the behavior of large platforms on smaller ones. Emulation represents a natural
complement to simulation by allowing to execute directly large parts of the actual evaluated software and
system, but at the price of larger compute times and a need for more resources. The emulation approach was
chosen in to compare two job management systems from workload traces of the CURIE supercomputer (80000
cores). The challenge is to design methods and tools to emulate with sufficient accuracy the platform and the
workload (data movement, I/O transfers, communication, applications interference). We will also intend to
leverage emulation tools like Distem from the MADYNES team. It is also important to note that the Batsim
simulator also uses emulation techniques to support the core scheduling module from actual RJMS. But the
integration level is not the same when considering emulation for larger parts of the system (RJMS, compute
node, network and filesystem).

Replaying traces implies to prepare and manage complex software stacks including the OS, the resource
management system, the distributed filesystem and the applications as well as the tools required to conduct
experiments. Preparing these stacks generate specific issues, one of the major one being the support for re-
producibility. We propose to further develop the concept of reconstructability to improve experiment repro-
ducibility by capturing the build process of the complete software stack. This approach ensures reproducibility
over time better than other ways by keeping all data (original packages, build recipe and Kameleon engine)
needed to build the software stack.

In this context, the Grid’5000 (see Sec. 6.4) experimentation infrastructure that gives users the control on the
complete software stack is a crucial tool for our research goals. We will pursue our strong implication in this
infrastructure.

4.3. Integration of High Performance Computing and Data Analytics
Data produced by large simulations are traditionally handled by an I/O layer that moves them from the compute
cores to the file system. Analysis of these data are performed after reading them back from files, using some
domain specific codes or some scientific visualisation libraries like VTK. But writing and then reading back
these data generates a lot of data movements and puts under pressure the file system. To reduce these data
movements, the in situ analytics paradigm proposes to process the data as closely as possible to where
and when the data are produced. Some early solutions emerged either as extensions of visualisation tools
or of I/O libraries like ADIOS. But significant progresses are still required to provide efficient and flexible
high performance scientific data analysis tools. Integrating data analytics in the HPC context will have an
impact on resource allocation strategies, analysis algorithms, data storage and access, as well as computer
architectures and software infrastructures. But this paradigm shift imposed by the machine performance also
sets the basis for a deep change on the way users work with numerical simulations. The traditional workflow
needs to be reinvented to make HPC more user-centric, more interactive and turn HPC into a commodity
tool for scientific discovery and engineering developments. In this context DataMove aims at investigating
programming environments for in situ analytics with a specific focus on task scheduling in particular, to
ensure an efficient sharing of resources with the simulation.
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4.3.1. Programming Model and Software Architecture
In situ creates a tighter loop between the scientist and her/his simulation. As such, an in situ framework needs
to be flexible to let the user define and deploy its own set of analysis. A manageable flexibility requires to
favor simplicity and understandability, while still enabling an efficient use of parallel resources. Visualization
libraries like VTK or Visit, as well as domain specific environments like VMD have initially been developed
for traditional post-mortem data analysis. They have been extended to support in situ processing with some
simple resource allocation strategies but the level of performance, flexibility and ease of use that is expected
requires to rethink new environments. There is a need to develop a middleware and programming environment
taking into account in its fundations this specific context of high performance scientific analytics.

Similar needs for new data processing architectures occurred for the emerging area of Big Data Analytics,
mainly targeted to web data on cloud-based infrastructures. Google Map/Reduce and its successors like Spark
or Stratosphere/Flink have been designed to match the specific context of efficient analytics for large volumes
of data produced on the web, on social networks, or generated by business applications. These systems have
mainly been developed for cloud infrastructures based on commodity architectures. They do not leverage the
specifics of HPC infrastructures. Some preliminary adaptations have been proposed for handling scientific
data in a HPC context. However, these approaches do not support in situ processing.

Following the initial development of FlowVR, our middleware for in situ processing, we will pursue our
effort to develop a programming environment and software architecture for high performance scientific data
analytics. Like FlowVR, the map/reduce tools, as well as the machine learning frameworks like TensorFlow,
adopted a dataflow graph for expressing analytics pipe-lines. We are convinced that this dataflow approach
is both easy to understand and yet expresses enough concurrency to enable efficient executions. The graph
description can be compiled towards lower level representations, a mechanism that is intensively used by
Stratosphere/Flink for instance. Existing in situ frameworks, including FlowVR, inherit from the HPC way
of programming with a thiner software stack and a programming model close to the machine. Though this
approach enables to program high performance applications, this is usually too low level to enable the scientist
to write its analysis pipe-line in a short amount of time. The data model, i.e. the data semantics level accessible
at the framework level for error check and optimizations, is also a fundamental aspect of such environments.
The key/value store has been adopted by all map/reduce tools. Except in some situations, it cannot be adopted
as such for scientific data. Results from numerical simulations are often more structured than web data,
associated with acceleration data structures to be processed efficiently. We will investigate data models for
scientific data building on existing approaches like Adios or DataSpaces.

4.3.2. Resource Sharing
To alleviate the I/O bottleneck, the in situ paradigm proposes to start processing data as soon as made available
by the simulation, while still residing in the memory of the compute node. In situ processings include data
compression, indexing, computation of various types of descriptors (1D, 2D, images, etc.). Per se, reducing
data output to limit I/O related performance drops or keep the output data size manageable is not new. Scientists
have relied on solutions as simple as decreasing the frequency of result savings. In situ processing proposes
to move one step further, by providing a full fledged processing framework enabling scientists to more easily
and thoroughly manage the available I/O budget.

The most direct way to perform in situ analytics is to inline computations directly in the simulation code. In
this case, in situ processing is executed in sequence with the simulation that is suspended meanwhile. Though
this approach is direct to implement and does not require complex framework environments, it does not enable
to overlap analytics related computations and data movements with the simulation execution, preventing to
efficiently use the available resources. Instead of relying on this simple time sharing approach, several works
propose to rely on space sharing where one or several cores per node, called helper cores, are dedicated to
analytics. The simulation responsibility is simply to handle a copy of the relevant data to the node-local in situ
processes, both codes being executed concurrently. This approach often lead to significantly beter performance
than in-simulation analytics.
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For a better isolation of the simulation and in situ processes, one solution consists in offloading in situ tasks
from the simulation nodes towards extra dedicated nodes, usually called staging nodes. These computations
are said to be performed in-transit. But this approach may not always be beneficial compared to processing on
simulation nodes due to the costs of moving the data from the simulation nodes to the staging nodes.

FlowVR enables to mix these different resources allocation strategies for the different stages of an analytics
pile-line. Based on a component model, the scientist designs analytics workflows by first developing process-
ing components that are next assembled in a dataflow graph through a Python script. At runtime the graph is
instantiated according to the execution context, FlowVR taking care of deploying the application on the target
architecture, and of coordinating the analytics workflows with the simulation execution.

But today the choice of the resource allocation strategy is mostly ad-hoc and defined by the programmer.
We will investigate solutions that enable a cooperative use of the resource between the analytics and the
simulation with minimal hints from the programmer. In situ processings inherit from the parallelization scale
and data distribution adopted by the simulation, and must execute with minimal perturbations on the simulation
execution (whose actual resource usage is difficult to know a priori). We need to develop adapted scheduling
strategies that operate at compile and run time. Because analysis are often data intensive, such solutions
must take into consideration data movements, a point that classical scheduling strategies designed first for
compute intensive applications often overlook. We expect to develop new scheduling strategies relying on
the methodologies developed in Sec. 4.1.5. Simulations as well as analysis are iterative processes exposing a
strong spatial and temporal coherency that we can take benefit of to anticipate their behavior and then take
more relevant resources allocation strategies, possibly based on advanced learning algorithms or as developed
in Section 4.1.

In situ analytics represent a specific workload that needs to be scheduled very closely to the simulation, but
not necessarily active during the full extent of the simulation execution and that may also require to access
data from previous runs (stored in the file system or on specific burst-buffers). Several users may also need
to run concurrent analytics pipe-lines on shared data. This departs significantly from the traditional batch
scheduling model, motivating the need for a more elastic approach to resource provisioning. These issues will
be conjointly addressed with research on batch scheduling policies (Sec. 4.1).

4.3.3. Co-Design with Data Scientists
Given the importance of users in this context, it is of primary importance that in situ tools be co-designed with
advanced users, even if such multidisciplinary collaborations are challenging and require constant long term
investments to learn and understand the specific practices and expectations of the other domain.

We will tightly collaborate with scientists of some application domains, like molecular dynamics or fluid
simulation, to design, develop, deploy and assess in situ analytics scenarios, as already done with Marc Baaden,
a computational biologist from LBT.

5. Highlights of the Year

5.1. Highlights of the Year
• Pierre Neyron received the Médaille de Cristal CNRS 2019 (http://www.cnrs.fr/fr/personne/pierre-

neyron)

• Denis Trystram leading the Edge Intelligence chair of the new Institute of Artificial Intelligence of
Univ. Grenoble Alpes (MIA@Grenoble-Alpes).

• Best Paper Awards at CCGrid 2019

• Outstanding Paper Award at HPCS 2019

BEST PAPERS AWARDS:

[12]

http://www.cnrs.fr/fr/personne/pierre-neyron
http://www.cnrs.fr/fr/personne/pierre-neyron
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D. CARASTAN-SANTOS, R. Y. DE CAMARGO, D. TRYSTRAM, S. ZRIGUI. One can only gain by
replacing EASY Backfilling: A simple scheduling policies case study, in "CCGrid 2019 - International
Symposium in Cluster, Cloud, and Grid Computing", Larnaca, Cyprus, IEEE, May 2019, pp. 1-10
[DOI : 10.1109/CCGRID.2019.00010], https://hal.archives-ouvertes.fr/hal-02237895

[15]
F. ZANON BOITO, R. NOU, L. LIMA PILLA, J. LUCA BEZ, J.-F. MÉHAUT, T. CORTES, P. O. NAVAUX. On
server-side file access pattern matching, in "HPCS 2019 - 17th International Conference on High Performance
Computing & Simulation", Dublin, Ireland, IEEE, 2019, pp. 1-8, outstanding paper award, https://hal.inria.fr/
hal-02079899

6. New Software and Platforms

6.1. FlowVR
SCIENTIFIC DESCRIPTION: FlowVR adopts the "data-flow" paradigm, where your application is divided as a
set of components exchanging messages (think of it as a directed graph). FlowVR enables to encapsulate
existing codes in components, interconnect them through data channels, and deploy them on distributed
computing resources. FlowVR takes care of all the heavy lifting such as application deployment and message
exchange.

The base entity, called a module or component, is an autonomous process, potentially multi-threaded with tools
like OpenMP, TBB, or deferring computations to a GPU or Xeon Phi. This module processes data coming from
input ports and write data on output ports. A module has no global insight on where the data comes from or
goes to. The programming interface is designed to limit code refactoring, easing turning an existing code into
a FlowVR component. The three main functions are:

wait(): Blocking function call that waits for the availability of new messages on input ports. get(): Retrieve
a handle to access the message received at the previous wait() call on a given input port. put(): Notify
FlowVR that a new message on a given output port is ready for dispatch. FlowVR manages data transfers.
Intra-node communications between two components take place through a shared memory segment, avoiding
copies. Once the sender has prepared the data in a shared memory segment, it simply handles a pointer to the
destination that can directly access them. Inter-node communications extend this mechanism, FlowVR taking
care of packing and transferring the data from the source shared memory segment to the destination shared
memory segment.

Assembling components to build an application consists in writing a Python script, instanciate it according
to the target machine. FlowVR will process it and prepare everything so that in one command line you can
deploy and start your application.

FUNCTIONAL DESCRIPTION: FlowVR adopts the "data-flow" paradigm, where your application is divided as
a set of components exchanging messages (think of it as a directed graph). FlowVR enables to encapsulate
existing codes in components, interconnect them through data channels, and deploy them on distributed
computing resources. FlowVR takes care of all the heavy lifting such as application deployment and message
exchange.

• Participants: Bruno Raffin, Clément Ménier, Emmanuel Melin, Jean Denis Lesage, Jérémie Allard,
Jérémy Jaussaud, Matthieu Dreher, Sébastien Limet, Sophie Robert and Valérie Gourantou

• Contact: Bruno Raffin

• URL: http://flowvr.sf.net

6.2. OAR
KEYWORDS: HPC - Cloud - Clusters - Resource manager - Light grid

https://hal.archives-ouvertes.fr/hal-02237895
https://hal.inria.fr/hal-02079899
https://hal.inria.fr/hal-02079899
http://flowvr.sf.net
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SCIENTIFIC DESCRIPTION: This batch system is based on a database (PostgreSQL (preferred) or MySQL),
a script language (Perl) and an optional scalable administrative tool (e.g. Taktuk). It is composed of modules
which interact mainly via the database and are executed as independent programs. Therefore, formally, there
is no API, the system interaction is completely defined by the database schema. This approach eases the
development of specific modules. Indeed, each module (such as schedulers) may be developed in any language
having a database access library.

FUNCTIONAL DESCRIPTION: OAR is a versatile resource and task manager (also called a batch scheduler)
for HPC clusters, and other computing infrastructures (like distributed computing experimental testbeds where
versatility is a key).

• Participants: Bruno Bzeznik, Olivier Richard and Pierre Neyron

• Partners: LIG - CNRS - Grid’5000 - CIMENT

• Contact: Olivier Richard

• URL: http://oar.imag.fr

6.3. MELISSA
Modular External Library for In Situ Statistical Analysis

KEYWORD: Sensitivity Analysis

FUNCTIONAL DESCRIPTION: Melissa is an in situ solution for sensitivity analysis. It implements iterative
algorithms to compute spatio-temporal statistic fields over results of large scale sensitivity studies. Melissa
relies on a client/server architecture, composed of three main modules:

Melissa Server: an independent parallel executable. It receives data from the simulations, updates iterative
statistics as soon as possible, then trow data away. Melissa API: a shared library to be linked within the
simulation code. It mainly transmit simulation data to Melissa Server at each timestep. The simulations of
the sensitivity analysis become the clients of Melissa Server. Melissa Launcher: A Python script in charge of
generating and managing the whole global sensitivity analysis.

• Authors: Theophile Terraz, Bruno Raffin, Alejandro Ribes and Bertrand Iooss

• Partner: Edf

• Contact: Bruno Raffin

• Publications: In Situ Statistical Analysis for Parametric Studies - Melissa: Large Scale In Transit
Sensitivity Analysis Avoiding Intermediate Files

• URL: https://melissa-sa.github.io

6.4. Platforms
6.4.1. Grid’5000 (https://www.grid5000.fr/) and Meso Center Ciment

(http://ciment.univ-grenoble-alpes.fr/)
We have been very active in promoting the factorization of compute resources at a regional and national level.
We have a three level implication, locally to maintain a pool of very flexible experimental machines (hundreds
of cores), regionally through the CIMENT meso center (Equipex Grant), and nationally by contributing to
the Grid’5000 platform, our local resources being included in this platform. Olivier Richard is member of
Grid’5000 scientific committee and Pierre Neyron is member of the technical committee. The OAR scheduler
in particular is deployed on both infrastructures. We are currently preparing proposals for the next generation
machines within the context of the new university association (Univ. Grenoble-Alpes).

http://oar.imag.fr
https://hal.inria.fr/hal-01383860
https://hal.inria.fr/hal-01607479
https://hal.inria.fr/hal-01607479
https://melissa-sa.github.io


Project-Team DATAMOVE 15

7. New Results

7.1. Integration of High Performance Computing and Data Analytics
7.1.1. In Situ Processing Model

The work in [2] focuses on proposing a model for in situ analysis taking into account memory constraints. This
model is used to provide different scheduling policies to determine both the number of resources that should
be dedicated to analysis functions, and that schedule efficiently these functions. We evaluate them and show
the importance of considering memory constraints when choosing in between in situ and in transit resource
allocation.

7.1.2. I/O Characterization
I/O operations are the bottleneck of several HPC applications due to the difference between process- ing and
data access speeds. Hence, it is important to understand and characterize the typical I/O behavior of these
applications, so we can identify problems in HPC architectures and propose solutions. In [3], we conducted
an extensive analysis to collect and analyze information about applications that run in the Santos Dumont
supercomputer, deployed in the National Laboratory for Scientific Computing (LNCC), in Brazil. In [9], we
propose an I/O characterization approach that uses unsupervised learning to cluster jobs with similar I/O
behavior, using information from high-level aggregated traces.

7.1.3. Online adaptation of the I/O stack to applications
I/O optimization techniques such as request scheduling can improve performance mainly for the access
patterns they target, or they depend on the precise tune of parameters. In [19], we propose an approach to adapt
the I/O forwarding layer of HPC systems to the application access patterns by tuning a request scheduler. Our
case study is the TWINS scheduling algorithm, where performance improvements depend on the time window
parameter, which depends on the current workload. Our approach uses a reinforcement learning technique to
make the system capable of learning the best parameter value to each access pattern during its execution,
without a previous training phase. Our approach can achieve a precision of 88% on the parameter selection
in the first hundreds of observations of an access pattern. After having observed an access pattern for a few
minutes (not necessarily contiguously), the system will be able to optimize its performance for the rest of the
life of the system (years).

Such an auto-tuning approach requires a classification of application access patterns,to separate situations
where the optimization techniques will have a different performance behavior. Such a classification is not
available in the stateless server-side, hence it has to be estimated from metrics on recent accesses. In [8], we
evaluate three machine learning techniques to automatically detect the I/O access pattern of HPC applications
at run time: decision trees, random forests, and neural networks. We also proposed in [15] a pattern matching
approach for server-side access pattern detection for the HPC I/O stack. The goal is to empower the system to
learn a classification during the execution of the system, by representing access patterns by all relevant metrics.
We build a time series to represent accesses spatiality, and use a pattern matching algorithm, in addition to an
heuristic, to compare it to known patterns.

7.1.4. Data management for workflow execution
In [11], we studied a typical scenario in research facilities. Instrumental data is generated by lab equipment
such as microscopes, collected by researchers into USB devices, and analyzed in their own computers. In
this scenario, an instrumental data management framework could store data in a institution-level storage
infrastructure and allow to execute tasks to analyze this data in some available processing nodes. This setup has
the advantages of promoting reproducible research and the efficient usage of the expensive lab equipment (in
addition to increasing researchers productivity). We detailed the requirements for such a framework regarding
the needs of our case study of the CEA, analyzed performance limitations of the proposed architecture, and
pointed to the connection between centralized storage and the processing nodes as the critical point.
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In order to alleviate this bottleneck, we investigated using the storage devices of the processing nodes as a
cache for the remote storage, and replication strategies to maximize data locality for tasks. A simulator called
RepliSim was developed for this research.

7.2. Data Aware Batch Scheduling
We obtained in 2018 two important results on on-line scheduling using resource augmentation. The main idea
is that the algorithm is applied to a more powerful environment than that of the adversary. We focused more
specifically on the mechanism of rejection based on the concept of duality for mathematical programming
applied for the analysis of the algorithm’s performance. More precisely, we proposed a primal-dual algorithm
for the online scheduling problem of minimizing the total weighted flow time of jobs on unrelated machines
when the preemption of jobs is not allowed. This analysis concerned usual sequential jobs. These results have
been distinguished among the most significant ones on the annual ACM review of on-line algorithms. We
extended this work on a practical side by applying the analysis to actual batch schedulers with parallel jobs,
rejection was interpreted as redirecting jobs to some predefined machines.

Machine Learning is a hot topic which received recently a great attention for dealing with the huge amount
of data produced by the explosion of the digital applications and for dealing with uncertainties. The members
of DataMove promoted a methodology based on simulation and machine learning to obtain efficient dynamic
scheduling policies. The main idea is to focus the learning scheme targeting the policies them-selves, and not
the specific parameters of the problem. Today, this methodology is mature and it is applied in several project
like ANR Energumen (performances and replaced by energy saving). We also launched a new project at MIAI
on edge Intelligence. The idea is to propose an alternative to the high-consuming classical IA by doing most
of the computations close the the place where the data are produced. We are developing both an efficient task
orchestration framework and distributed learning algorithms.

We wrote a survey [20] on scheduling on heterogeneous machines where we provided a complete benchmark
suite and we recoded all existing algorithms and compared them.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
• EDF R&D (2019). Integration of Melissa and OpenTurn.

• TOTAL SA (2019). Proof of Concept for performing large scale sensibility analysis with Melissa
on Total use-case.

8.2. Bilateral Grants with Industry
• ATOS-BULL (2016-2019). Two PhD grants (Michael Mercier and Adrien Faure). Job and resource

management algorithms.

• Qarnot Computing (2019-2022). PhD grant (Angan Mitra).

9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. ANR

• ANR grant GRECO (2017-2020). Resource manager for cloud of things. Coordinator: Quarnot
Computing. Partners: Quarnot Computing, Grenoble-INP, Inria.

https://gitlab.inria.fr/frzanonb/replisim
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• ANR grant Energumen (2018-2022). Resource management: malleable jobs for a better use of the
resources along with energy optimization. Coordinator: Denis Trystram. Partners: Grenoble-INP,
IRIT, Sorbonne Université.

9.1.2. Competitivity Clusters
• FUI IDIOM (2018-2020). Monitoring and optimization of I/Os. Coordinator DDN Storage. Part-

ners: DDN Storage, Criteo, Quarnot, QuasarDB, CEA, Université de Bretagne Occidentale, Telecom
SudParis, Inria (DataMove).

9.1.3. Inria
• Inria PRE COSMIC (exploratory research project), 2017-2019. Photovoltaic Energy Management

for Distributed Cloud Platforms. Myriads, DataMove.
• Inria IPL HPC-BigData (2018-2021). Convergence between HPC, Big Data and AI. Coordinator:

Bruno Raffin. Partners: the Inria teams Zenith, Kerdata, Datamove, Tadaam, SequeL, Parietal, Tau,
and the external partners ATOS, ANL, IBPC, ESI-Group. See https://project.inria.fr/hpcbigdata/

9.2. European Initiatives
9.2.1. FP7 & H2020 Projects

• H2020 EoCoE-II (2019-2021)
– Energy oriented Center of Excellence on HPC.
– H2020 RIA european project, call H2020-INFRAEDI-2018-1.
– PI: CEA.
– Partners: CEA, FZL, ENEA, BSC, CNRS, Inria, CERFACS, Max-Planck-Gesellschaft,

FRAUNHOFER, FAU, CNR, UNITN, PSNC, ULB, UBAH, CIEMAT, IFPEN, DDN.
Datamove is leading the WP5 (Ensemble Runs)

– Summary: The EoCoE-II project will build on its unique, established role at the cross-
roads of HPC and renewable energy to accelerate the adoption of production, storage and
distribution of clean electricity. How will we achieve this? In its proof-of-principle phase,
the EoCoE consortium developed a comprehensive, structured support pathway for en-
hancing the HPC capability of energy-oriented numerical models, from simple entry-level
parallelism to fully-fledged exascale readiness. At the top end of this scale, promising ap-
plications from each energy domain have been selected to form the basis of 5 new Energy
Science Challenges:

* Wind turbine modelling, from detailed understanding single turbine dynamics to
flow across entire wind farms in complex terrain;

* Energy Meteorology, where probabilistic forecasting is needed to predict the
production efficiency of solar and wind parks and their impact on energy trading
across the grid;

* Design and study of new energy materials for photovoltaic cells, batteries and
super-capacitors;

* Water for energy to manage geothermal and hydro-power including the influence
of climate change on these resources;

* And fusion for energy, where the mandatory kinetic modelling of plasma tur-
bulence and transport from the core to the edge of complex tokamak magnetic
geometries requires exascale resources.

9.2.2. Collaborations in European Programs, Except FP7 & H2020
• Program: SKŁODOWSKA-CURIE ACTIONS - Individual Fellowship

https://project.inria.fr/hpcbigdata/
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• Project acronym: DAMA

• Project title: Extreme-Scale Data Management

• Duration: November 2018 - October 2020

• Coordinator: Bruno Raffin

• Followship Recipient: Francieli Zanon Boito.

• Abstract: This project is concerned with the I/O challenges that arise from the convergence between
these two different paradigms. It is clear data analytics tools cannot simply replace their typical
storage solutions for the HPC I/O stack, centered on the abstraction of files and powered by a parallel
file system, because their workload is not well suited for that and would observe poor performance.
Moreover, the separated storage infrastructure breaks the data affinity idea in which they are built
upon. Finally, even among traditional HPC applications there is a need to minimize data movement,
as it imposes high latency and increases energy consumption.

9.3. International Initiatives
9.3.1. Inria International Labs
9.3.1.1. JLESC

• Title: Joint Laboratory for Extreme-Scale-Computing.

• International Partners:

– University of Illinois at Urbana Champaign (USA)

– Argonne National Laboratory (USA),

– Barcelona Supercomputing Center (Spain),

– Jülich Supercomputing Centre (Germany)

– Riken Advanced Institute for Computational Science (Japan)

• Start year: 2009

• See also: https://jlesc.github.io/

• The purpose of the Joint Laboratory for Extreme Scale Computing is to be an international, virtual
organization whose goal is to enhance the ability of member organizations and investigators to
make the bridge between Petascale and Extreme computing. The JLESC organizes a workshop
every 6 months DataMove participates to. DataMove developed several collaborations related to
in situ processing with Tom Peterka group (ANL) , the Argo exascale operating system with Swann
Perarnau (ANL).

9.3.2. Inria Associate Teams Not Involved in an Inria International Labs
9.3.2.1. UNIFY

• Title: Intelligent Unified Data Services for Hybrid Workflows Combining Compute-Intensive Simu-
lations and Data-Intensive Analytics at Extreme Scales

• Partners:

– Inria teams: KerData, DataMove

– Argonne National Lab (Tom PETERKA)

• Duration: 2019-2021

9.3.3. Participation in Other International Programs
9.3.3.1. STIC AmSud SAQED

• Title: Scalable Approximate Query Evaluation on Document Inverted Files for GPU based Big-Data
Applications

https://jlesc.github.io/
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• International Partner:

– Universidad Nacional de San Luis - UNSL, Argentina

– Universidad de Santiago de Chile - USACH, Chile

– Universidade Federal de São Carlos - UFSCAR, Brazil

• Duration: 2019-2021

• Develop efficient and scalable approximate search and document similarity evaluation on large
datasets based on document inverted files using high performance computing and GPUs.

9.3.3.2. LICIA

• Title: International Laboratory in High Performance and Ubiquitous Computing

• International Partner (Institution - Laboratory - Researcher):

– UFRGS (Brazil)

• Duration: Funded by CNRS in 2011-2018, by Univ Grenoble Alpes for 2019-2020.

• See also: http://licia-lab.org/

• The LICIA is an Internacional Laboratory and High Performance and Ubiquitous Computing born
in 2011 from the common desire of members of Informatics Institute of the Federal University of
Rio Grande do Sul and of Laboratoire d’Informatique de Grenoble to enhance and develop their
scientific parternship that started by the end of the 1970. LICIA is an Internacional Associated Lab
of the CNRS, a public french research institution. It has support from several brazilian and french
research funding agencies, such as CNRS, Inria, ANR, European Union (from the french side) and
CAPES, CNPq, FAPERGS (from the Brazilian side). DataMove is deeply involved in the animation
of LICIA.

9.4. International Research Visitors
9.4.1. Visits of International Scientists

• Professor visit: Alfredo Goldman, Professor at Universidade de São Paulo, visited Datamove from
June to July 2019.

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events: Organisation
10.1.1.1. General Chair, Scientific Chair

• President of the steering committee of Edu-Europar.

• President of the steering committee of EGPGV (Eurographics Symposium on Parallel Graphics and
Visualization).

• Member of the steering committee of Europar.

• Member of the steering committee of HeteroPar.

10.1.1.2. Member of the Organizing Committees

• Member of Organizing committee of HPML Workshop, co-located with CCGRID 2019

• Member of organization committee of Conv’2019

10.1.2. Scientific Events: Selection
10.1.2.1. Chair of Conference Program Committees

http://licia-lab.org/
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• Vice-Chair of Algorithms track of IPDPS 2019
• Workshop Chair at Hetero-Par 2019
• Member of the steering committee of Euro-Par 2019
• Program co-chair of ISAV 2019 (workshop of SC)
• Member of steering committee of EGPV 2019

10.1.2.2. Member of the Conference Program Committees
• CCGrid 2019 (19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing),

May, Larcana, Cyprus.
• PARCO 2019 (International Conference on Parallel Computing), September, Prague, Czech Repub-

lic.
• PPAM 2019 (13th International Conference on Parallel Processing and Applied Mathematics),

September, Bialystok, Poland.
• STACS 2019 (36th International Symposium on Theoretical Aspects of Computer Science), March,

Berlin, Germany.
• Euro-Par 2019, August, Göttingen, Germany.
• IESM, September, Shanghai, China.
• ISAV 2019 (In Situ Infrastructures for Enabling Extreme-scale Analysis and Visualization), Novem-

ber, Denver, US.
• SBAC-PAD 2019 (International Symposium on Computer Architecture and High Performance

Computing), October, Campo Grande, Brazil.
• HiPC 2019 (26th IEEE International Conference on High Performance Computing, Data, and

Analytics ), December, Hyderabad, India.
• ALGOCLOUD 2019 (5th International Symposium on Algorithmic Aspects of Cloud Computing),

September, Munich, Germany.

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

• Associate Editor of the Parallel Computing journal PARCO.
• Member of the Editorial Board of Computational Methods in Science and Technology.

10.1.4. Research Administration
• Director of Pôle MSTIC of COMUE Univ. Grenoble-Alpes.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

• Master: Denis Trystram is responsible of the first year (M1) of the international Master of Science
in Informatics at Grenoble (MOSIG-M1). 200 hours per year in average.

• Master: Fanny Dufossé. 90 hours per year. Combinatorial scientific computing in Master at ENS
Lyon, Algorithmic in Licence at Grenoble INP and Algorithmic at Univ. Grenoble-Alpes.

• Master: Pierre-François Dutot. 226 hours per year. Licence (first and second year) at IUT2/UPMF
(Institut Universitaire Technologique de Univ. Grenoble-Alpes) and 9 hours Master M2R-ISC
Informatique-Systèmes-Communication at Univ. Grenoble-Alpes.

• Master: Grégory Mounié. 237 hours per year. Master (M1/2nd year and M2/3rd year) at Engineering
school ENSIMAG, Grenoble-INP, Univ Grenoble Alpes.

• Master: Bruno Raffin. 28 hours per year. Parallel System. International Master of Science in
Informatics at Grenoble (MOSIG-M2).
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• Master: Olivier Richard is responsible of the third year of the computer science department of
Grenoble INP. 222 hours per year. Master at Engineering school Polytech-Grenoble, Univ. Grenoble-
Alpes.

• Master: Frédéric Wagner. 220 hours per year. Engineering school ENSIMAG, Grenoble-INP
(M1/2nd year and M2/3rd year).

• Master: Yves Denneulin. 192 hours per year. Engineering school ENSIMAG, Grenoble-INP
(M1/2nd year and M2/3rd year).

10.2.2. Supervision
• PhD: Danilo Carastan Dos Santos, Apprentissage sur heuristiques simples pour l’ordonnancement

online de tâches parallèles, Univ Grenoble Alpes and Federal University of ABC, Brazil (co-tutelle),
November, 27th 2019. Advisers: Denis Trystam and Raphael Yokoingawa De Camargo.

• PhD: Michael Mercier, Resource Management and Job Scheduling in HPC–Cloud environments
towards the Big Data era, Univ. Grenoble Alpes. Started October 2016. July, 1st 2019. Advisers:
Olivier Richard and Bruno Raffin.

• PhD in progress: Mohammed Khatiri, Tasks scheduling on heterogeneous Multicore, Univ.
Grenoble-Alpes and University Mohammed First (co-tutelle), Advisers: Denis Trystram, El Mostafa
DAOUDI (University Mohammed First, Oujda, Morocco)

• PhD in progress: Adrien Faure, Scheduling with Resource Augmentation, Advisers: Denis Trystram,
Olivier Richard

• PhD in progress: Clément Mommessin, Scheduling on heterogeneous platforms, Advisers: Denis
Trystram

• PhD in progress: Loris Felardos, Deep Learning for the Analytics of Molecular Systems, Advisers:
Bruno Raffin, Guillaume Charpiat (Inria team Tau), Jérome Hénin (IBPC).

• PhD in progress: Salah Zrigui, Learning Scheduling Strategies, Advisers: Denis Trystram, Arnaud
Legrand.

• PhD in progress: Sebastian Friedemann, Large Scale Data Assimilation, Adviser: Bruno Raffin.

• PhD in progress: Vincent Fagnon, Analyse de politique d’ordonnancement dynamique pour objets
mobiles , Adviser: Denis Trystram

• PhD in progress: Angan Mitra, Theoretical and implementation challenges in Lifelong Learning and
Edge Computing , Adviser: Denis Trystram

• PhD in progress: Paul Youssef, Coresets Analysis , Adviser: Denis Trystram

• PhD in progress: Ioannis Panagiotas, High performance algorithms for big data graph and hyper-
graph problems, Advisers: Bora Uçar (LIP) and Fanny Dufossé

10.2.3. Juries
• PhD Defense of Malin Rau, Useful structures and how to find them. Kiel (Allemagne). May, 24th,

2019. Referee.

• PhD Defense of Mohamad El Sayah, Random Generation for the Performance Evaluation of
Scheduling Algorithms, November 20th 2019, Université de Bourgogne Franche-Comté. Member.

• PhD Defense of David Deibe, Geospatial Processing and Visualization of Point Clouds: from GPUs
to Big Data Technologies, Univ. of A Coruna, December 2019. Referee

• PhD Defense of Charles Gueunet, Calcul Haute Performance pour l’Analyse Topologique de
Données par Ensembles de Niveaux, Feburary 15th 2019, Sorbonne Université

• PhD Defense of Jorge Veiga Fachal, Evaluation and Optimization of Big Data Processing on High
Performance Computing Systems, Univ. of A Coruna, Fev 2019. Jury.
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10.3. Popularization
10.3.1. Internal or external Inria responsibilities

• Commission des emplois scientifiques du centre GRA

10.3.2. Interventions
• Fête de la Science, Grenoble
• CS unplugged for schoolchildren, Inria RA
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