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2. Overall Objectives

2.1. Overall Objectives
DataShape is a research project in Topological Data Analysis (TDA), a recent field whose aim is to uncover,
understand and exploit the topological and geometric structure underlying complex and possibly high di-
mensional data. The DATASHAPE project gathers a unique variety of expertise that allows it to embrace the
mathematical, statistical, algorithmic and applied aspects of the field in a common framework ranging from
fundamental theoretical studies to experimental research and software development.

The expected output of DATASHAPE is two-fold. First, we intend to set-up and develop the mathematical,
statistical and algorithmic foundations of Topological and Geometric Data Analysis. Second, we intend to
develop the Gudhi platform in order to provide an efficient state-of-the-art toolbox for the understanding of
the topology and geometry of data.
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3. Research Program

3.1. Algorithmic aspects of topological and geometric data analysis
TDA requires to construct and manipulate appropriate representations of complex and high dimensional
shapes. A major difficulty comes from the fact that the complexity of data structures and algorithms used
to approximate shapes rapidly grows as the dimensionality increases, which makes them intractable in high
dimensions. We focus our research on simplicial complexes which offer a convenient representation of general
shapes and generalize graphs and triangulations. Our work includes the study of simplicial complexes with
good approximation properties and the design of compact data structures to represent them.

In low dimensions, effective shape reconstruction techniques exist that can provide precise geometric approx-
imations very efficiently and under reasonable sampling conditions. Extending those techniques to higher
dimensions as is required in the context of TDA is problematic since almost all methods in low dimensions
rely on the computation of a subdivision of the ambient space. A direct extension of those methods would
immediately lead to algorithms whose complexities depend exponentially on the ambient dimension, which
is prohibitive in most applications. A first direction to by-pass the curse of dimensionality is to develop al-
gorithms whose complexities depend on the intrinsic dimension of the data (which most of the time is small
although unknown) rather than on the dimension of the ambient space. Another direction is to resort to cruder
approximations that only captures the homotopy type or the homology of the sampled shape. The recent the-
ory of persistent homology provides a powerful and robust tool to study the homology of sampled spaces in a
stable way.

3.2. Statistical aspects of topological and geometric data analysis
The wide variety of larger and larger available data - often corrupted by noise and outliers - requires to consider
the statistical properties of their topological and geometric features and to propose new relevant statistical
models for their study.

There exist various statistical and machine learning methods intending to uncover the geometric structure
of data. Beyond manifold learning and dimensionality reduction approaches that generally do not allow to
assert the relevance of the inferred topological and geometric features and are not well-suited for the analysis
of complex topological structures, set estimation methods intend to estimate, from random samples, a set
around which the data is concentrated. In these methods, that include support and manifold estimation,
principal curves/manifolds and their various generalizations to name a few, the estimation problems are usually
considered under losses, such as Hausdorff distance or symmetric difference, that are not sensitive to the
topology of the estimated sets, preventing these tools to directly infer topological or geometric information.

Regarding purely topological features, the statistical estimation of homology or homotopy type of compact
subsets of Euclidean spaces, has only been considered recently, most of the time under the quite restrictive
assumption that the data are randomly sampled from smooth manifolds.

In a more general setting, with the emergence of new geometric inference tools based on the study of distance
functions and algebraic topology tools such as persistent homology, computational topology has recently seen
an important development offering a new set of methods to infer relevant topological and geometric features
of data sampled in general metric spaces. The use of these tools remains widely heuristic and until recently
there were only a few preliminary results establishing connections between geometric inference, persistent
homology and statistics. However, this direction has attracted a lot of attention over the last three years. In
particular, stability properties and new representations of persistent homology information have led to very
promising results to which the DATASHAPE members have significantly contributed. These preliminary results
open many perspectives and research directions that need to be explored.

Our goal is to build on our first statistical results in TDA to develop the mathematical foundations of Statistical
Topological and Geometric Data Analysis. Combined with the other objectives, our ultimate goal is to provide
a well-founded and effective statistical toolbox for the understanding of topology and geometry of data.
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3.3. Topological approach for multimodal data processing
Due to their geometric nature, multimodal data (images, video, 3D shapes, etc.) are of particular interest for
the techniques we develop. Our goal is to establish a rigorous framework in which data having different
representations can all be processed, mapped and exploited jointly. This requires adapting our tools and
sometimes developing entirely new or specialized approaches.

The choice of multimedia data is motivated primarily by the fact that the amount of such data is steadily
growing (with e.g. video streaming accounting for nearly two thirds of peak North-American Internet traffic,
and almost half a billion images being posted on social networks each day), while at the same time it poses
significant challenges in designing informative notions of (dis)-similarity as standard metrics (e.g. Euclidean
distances between points) are not relevant.

3.4. Experimental research and software development
We develop a high quality open source software platform called GUDHI which is becoming a reference in
geometric and topological data analysis in high dimensions. The goal is not to provide code tailored to the
numerous potential applications but rather to provide the central data structures and algorithms that underlie
applications in geometric and topological data analysis.

The development of the GUDHI platform also serves to benchmark and optimize new algorithmic solutions
resulting from our theoretical work. Such development necessitates a whole line of research on software
architecture and interface design, heuristics and fine-tuning optimization, robustness and arithmetic issues,
and visualization. We aim at providing a full programming environment following the same recipes that made
up the success story of the CGAL library, the reference library in computational geometry.

Some of the algorithms implemented on the platform will also be interfaced to other software platform, such
as the R software 1 for statistical computing, and languages such as Python in order to make them usable in
combination with other data analysis and machine learning tools. A first attempt in this direction has been
done with the creation of an R package called TDA in collaboration with the group of Larry Wasserman at
Carnegie Mellon University (Inria Associated team CATS) that already includes some functionalities of the
GUDHI library and implements some joint results between our team and the CMU team. A similar interface
with the Python language is also considered a priority. To go even further towards helping users, we will
provide utilities that perform the most common tasks without requiring any programming at all.

4. New Software and Platforms

4.1. GUDHI
Geometric Understanding in Higher Dimensions

KEYWORDS: Computational geometry - Topology

SCIENTIFIC DESCRIPTION: The current release of the GUDHI library includes: – Data structures to represent,
construct and manipulate simplicial and cubical complexes. – Algorithms to compute simplicial complexes
from point cloud data. – Algorithms to compute persistent homology and multi-field persistent homology. –
Simplification methods via implicit representations.

FUNCTIONAL DESCRIPTION: The GUDHI open source library will provide the central data structures and
algorithms that underly applications in geometry understanding in higher dimensions. It is intended to both
help the development of new algorithmic solutions inside and outside the project, and to facilitate the transfer
of results in applied fields.

1https://www.r-project.org/

https://www.r-project.org/
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NEWS OF THE YEAR: - Cover complex - Representation of persistence diagrams - Cech complex - weighted
periodic 3d alpha-complex - sparse Rips complex - debian / docker / conda-forge packages
• Participants: Clément Maria, François Godi, David Salinas, Jean-Daniel Boissonnat, Marc Glisse,

Mariette Yvinec, Pawel Dlotko, Siargey Kachanovich, Vincent Rouvreau, Mathieu Carrière and
Bertrand Michel

• Contact: Jean-Daniel Boissonnat
• URL: https://gudhi.inria.fr/

4.2. CGAL module: interval arithmetics
KEYWORD: Arithmetic

FUNCTIONAL DESCRIPTION: This package of CGAL (Computational Geometry Algorithms Library
http://www.cgal.org) provides an efficient number type for intervals of double and the corresponding
arithmetic operations. It is used in the evaluation of geometric predicates for a first quick computation, which
either provides the result with guarantees, or rarely answers that more precision is needed.

RELEASE FUNCTIONAL DESCRIPTION: Partial rewrite to take advantage of SIMD instructions on recent x86
processors.
• Contact: Marc Glisse
• URL: https://www.cgal.org/

4.3. CGAL module: interface to Boost.Multiprecision
KEYWORD: Arithmetic

FUNCTIONAL DESCRIPTION: This package of CGAL (Computational Geometry Algorithms Library
http://www.cgal.org) makes it possible to use some number types from Boost.Multiprecision in CGAL.
• Author: Marc Glisse
• Contact: Marc Glisse
• URL: https://www.cgal.org/

4.4. Module CGAL: New dD Geometry Kernel
KEYWORD: Computational geometry

FUNCTIONAL DESCRIPTION: This package of CGAL (Computational Geometry Algorithms Library
http://www.cgal.org) provides the basic geometric types (point, vector, etc) and operations (orientation test,
etc) used by geometric algorithms in arbitrary dimension. It uses filters for efficient exact predicates.

RELEASE FUNCTIONAL DESCRIPTION: New kernel with lazy exact constructions.
• Author: Marc Glisse
• Contact: Marc Glisse
• URL: http://www.cgal.org/

5. New Results

5.1. Algorithmic aspects of topological and geometric data analysis
5.1.1. Sampling and Meshing Submanifolds

Participants: Jean-Daniel Boissonnat, Siargey Kachanovich.

In collaboration with Mathijs Wintraecken (IST Autria).

https://gudhi.inria.fr/
https://www.cgal.org/
https://www.cgal.org/
http://www.cgal.org/
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This work [41], [11] presents a rather simple tracing algorithm to sample and mesh an m-dimensional
submanifold of Rd for arbitrary m and d. We extend the work of Dobkin et al. to submanifolds of arbitrary
dimension and codimension. The algorithm is practical and has been thoroughly investigated from both
theoretical and experimental perspectives. The paper provides a full description and analysis of the data
structure and of the tracing algorithm. The main contributions are : 1. We unify and complement the knowledge
about Coxeter and Freudenthal-Kuhn triangulations. 2. We introduce an elegant and compact data structure to
store Coxeter or Freudenthal-Kuhn triangulations and describe output sensitive algorithms to compute faces
and cofaces or any simplex in the triangulation. 3. We present a manifold tracing algorithm based on the above
data structure. We provide a detailled complexity analysis along with experimental results that show that the
algorithm can handle cases that are far ahead of the state-of-the-art.

5.1.2. Topological correctness of PL-approximations of isomanifolds
Participant: Jean-Daniel Boissonnat.

In collaboration with Mathijs Wintraecken (IST Autria).

Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds
defined as the zero set of some multivariate multivalued function f : Rd → Rd−n. A natural (and efficient) way
to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation
T of the ambient space Rd. In this paper [43], we give conditions under which the PL-approximation of an
isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that
they can always be met by taking a sufficiently fine triangulation T. This contrasts with previous results on
the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee
topological correctness, which leads to strong limitations in practice. We further give a bound on the Fréchet
distance between the original isomanifold and its PL-approximation. Finally we show analogous results for
the PL-approximation of an isomanifold with boundary.

5.1.3. Dimensionality Reduction for k-Distance Applied to Persistent Homology
Participants: Jean-Daniel Boissonnat, Kunal Dutta.

In collaboration with Shreya Arya (Duke University)

Given a set P of n points and a constant k, we are interested in computing the persistent homology of
the Čech filtration of P for the k-distance, and investigate the effectiveness of dimensionality reduction
for this problem, answering an open question of Sheehy [Proc. SoCG, 2014] [38]. We first show using the
Johnson-Lindenstrauss lemma, that the persistent homology can be preserved up to a (1± ε) factor while
reducing dimensionality to O(k log n/ε2). Our main result shows that the target dimension can be improved
to O(log n/ε2) under a reasonable and naturally occuring condition. The proof involves a multi-dimensional
variant of the Hanson-Wright inequality for subgaussian quadratic forms and works when the random matrices
are used for the Johnson-Lindenstrauss mapping are subgaussian. This includes the Gaussian matrices of
Indyk-Motwani, the sparse random matrices of Achlioptas and the Ailon-Chazelle fast Johnson-Lindenstrauss
transform. To provide evidence that our condition encompasses quite general situations, we show that it is
satisfied when the points are independently distributed (i) in RD under a subgaussian distribution, or (ii) on a
spherical shell in RD with a minimum angular separation, using Gershgorin’s theorem. Our results also show
that the JL-mapping preserves up to a (1± ε) factor, the Rips and Delaunay filtrations for the k-distance, as
well as the Čech filtration for the approximate k-distance of Buchet et al.

5.1.4. Edge Collapse and Persistence of Flag Complexes
Participants: Jean-Daniel Boissonnat, Siddharth Pritam.

In this article [42], we extend the notions of dominated vertex and strong collapse of a simplicial complex as
introduced by J. Barmak and E. Miniam adn build on the initial success of [30]. We say that a simplex (of any
dimension) is dominated if its link is a simplicial cone. Domination of edges appear to be very powerful and
we study it in the case of flag complexes in more detail. We show that edge collapse (removal of dominated
edges) in a flag complex can be performed using only the 1-skeleton of the complex. Furthermore, the residual
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complex is a flag complex as well. Next we show that, similar to the case of strong collapses, we can use
edge collapses to reduce a flag filtration F to a smaller flag filtration Fc with the same persistence. Here again,
we only use the 1-skeletons of the complexes. The resulting method to compute Fc is simple and extremely
efficient and, when used as a preprocessing for Persistence Computation, leads to gains of several orders
of magnitude wrt the state-of-the-art methods (including our previous approach using strong collapse). The
method is exact, irrespective of dimension, and improves performance of Persistence Computation even in low
dimensions. This is demonstrated by numerous experiments on publicly available data.

5.1.5. DTM-based Filtrations
Participants: Frédéric Chazal, Marc Glisse, Raphael Tinarrage.

In collaboration with Anai, Hirokazu and Ike, Yuichi and Inakoshi, Hiroya and Umeda, Yuhei (Fujitsu Labs).

Despite strong stability properties, the persistent homology of filtrations classically used in Topological Data
Analysis, such as, e.g. the Čech or Vietoris-Rips filtrations, are very sensitive to the presence of outliers in
the data from which they are computed. In [15], we introduce and study a new family of filtrations, the DTM-
filtrations, built on top of point clouds in the Euclidean space which are more robust to noise and outliers.
The approach adopted in this work relies on the notion of distance-to-measure functions, and extends some
previous work on the approximation of such functions.

5.1.6. Recovering the homology of immersed manifolds
Participant: Raphael Tinarrage.

Given a sample of an abstract manifold immersed in some Euclidean space, in [57], we describe a way to
recover the singular homology of the original manifold. It consists in estimating its tangent bundle -seen
as subset of another Euclidean space- in a measure theoretic point of view, and in applying measure-based
filtrations for persistent homology. The construction we propose is consistent and stable, and does not involve
the knowledge of the dimension of the manifold.

5.1.7. Regular triangulations as lexicographic optimal chains
Participant: David Cohen-Steiner.

In collaboration with André Lieutier and Julien Vuillamy (Dassault Systèmes).

We introduce [46] a total order on n-simplices in the n-Euclidean space for which the support of the
lexicographic-minimal chain with the convex hull boundary as boundary constraint is precisely the n-
dimensional Delaunay triangulation, or in a more general setting, the regular triangulation of a set of weighted
points. This new characterization of regular and Delaunay triangulations is motivated by its possible gener-
alization to submanifold triangulations as well as the recent development of polynomial-time triangulation
algorithms taking advantage of this order.

5.1.8. Discrete Morse Theory for Computing Zigzag Persistence
Participant: Clément Maria.

In collaboration with Hannah Schreiber (Graz University of Technology, Austria)

We introduce a framework to simplify zigzag filtrations of general complexes using discrete Morse theory,
in order to accelerate the computation of zigzag persistence. Zigzag persistence is a powerful algebraic
generalization of persistent homology. However, its computation is much slower in practice, and the usual
optimization techniques cannot be used to compute it. Our approach is different in that it preprocesses the
filtration before computation. Using discrete Morse theory, we get a much smaller zigzag filtration with same
persistence. The new filtration contains general complexes. We introduce new update procedures to modify on
the fly the algebraic data (the zigzag persistence matrix) under the new combinatorial changes induced by the
Morse reduction. Our approach is significantly faster in practice [35].

5.1.9. Computing Persistent Homology with Various Coefficient Fields in a Single Pass
Participants: Jean-Daniel Boissonnat, Clément Maria.
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This article [18] introduces an algorithm to compute the persistent homology of a filtered complex with various
coefficient fields in a single matrix reduction. The algorithm is output-sensitive in the total number of distinct
persistent homological features in the diagrams for the different coefficient fields. This computation allows
us to infer the prime divisors of the torsion coefficients of the integral homology groups of the topological
space at any scale, hence furnishing a more informative description of topology than persistence in a single
coefficient field. We provide theoretical complexity analysis as well as detailed experimental results. The code
is part of the Gudhi software library.

5.1.10. Exact computation of the matching distance on 2-parameter persistence modules
Participant: Steve Oudot.

In collaboration with Michael Kerber (T.U. Graz) and Michael Lesnick (SUNY).

The matching distance is a pseudometric on multi-parameter persistence modules, defined in terms of the
weighted bottleneck distance on the restriction of the modules to affine lines. It is known that this distance is
stable in a reasonable sense, and can be efficiently approximated, which makes it a promising tool for practical
applications. In [31] we show that in the 2-parameter setting, the matching distance can be computed exactly
in polynomial time. Our approach subdivides the space of affine lines into regions, via a line arrangement. In
each region, the matching distance restricts to a simple analytic function, whose maximum is easily computed.
As a byproduct, our analysis establishes that the matching distance is a rational number, if the bigrades of the
input modules are rational.

5.1.11. Decomposition of exact pfd persistence bimodules
Participant: Steve Oudot.

In collaboration with Jérémy Cochoy (Symphonia).

In [24] we identify a certain class of persistence modules indexed over R2 that are decomposable into direct
sums of indecomposable summands called blocks. The conditions on the modules are that they are both
pointwise finite-dimensional (pfd) and exact. Our proof follows the same scheme as the one for pfd persistence
modules indexed over R, yet it departs from it at key stages due to the product order not being a total order on
R2, which leaves some important gaps open. These gaps are filled in using more direct arguments. Our work
is motivated primarily by the study of interlevel-sets persistence, although the proposed results reach beyond
that setting.

5.1.12. Level-sets persistence and sheaf theory
Participants: Nicolas Berkouk, Steve Oudot.

In collaboration with Grégory Ginot (Paris 13).

In [39] we provide an explicit connection between level-sets persistence and derived sheaf theory over the
real line. In particular we construct a functor from 2-parameter persistence modules to sheaves over R, as
well as a functor in the other direction. We also observe that the 2-parameter persistence modules arising
from the level sets of Morse functions carry extra structure that we call a Mayer-Vietoris system. We prove
classification, barcode decomposition, and stability theorems for these Mayer-Vietoris systems, and we show
that the aforementioned functors establish a pseudo-isometric equivalence of categories between derived
constructible sheaves with the convolution or (derived) bottleneck distance and the interleaving distance
of strictly pointwise finite-dimensional Mayer-Vietoris systems. Ultimately, our results provide a functorial
equivalence between level-sets persistence and derived pushforward for continuous real-valued functions.

5.1.13. Intrinsic Interleaving Distance for Merge Trees
Participant: Steve Oudot.

In collaboration with Ellen Gasparovic (Union College), Elizabeth Munch (Michigan State), Katharine Turner
(Australian National University), Bei Wang (Utah), and Yusu Wang (Ohio-State).
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Merge trees are a type of graph-based topological summary that tracks the evolution of connected components
in the sublevel sets of scalar functions. They enjoy widespread applications in data analysis and scientific
visualization. In [49] we consider the problem of comparing two merge trees via the notion of interleaving
distance in the metric space setting. We investigate various theoretical properties of such a metric. In particular,
we show that the interleaving distance is intrinsic on the space of labeled merge trees and provide an algorithm
to construct metric 1-centers for collections of labeled merge trees. We further prove that the intrinsic property
of the interleaving distance also holds for the space of unlabeled merge trees. Our results are a first step toward
performing statistics on graph-based topological summaries.

5.2. Statistical aspects of topological and geometric data analysis
5.2.1. Estimating the Reach of a Manifold

Participants: Frédéric Chazal, Jisu Kim, Bertrand Michel.

In collaboration with E. Aamari (Univ. Paris-Diderot), A. Rinaldo, L. Wasserman (Carnegie Mellon Univer-
sity).

In [13], various problems in manifold estimation make use of a quantity called the reach, denoted by τM , which
is a measure of the regularity of the manifold. This paper is the first investigation into the problem of how to
estimate the reach. First, we study the geometry of the reach through an approximation perspective. We derive
new geometric results on the reach for submanifolds without boundary. An estimator τ̂ of τM is proposed in
an oracle framework where tangent spaces are known, and bounds assessing its efficiency are derived. In the
case of i.i.d. random point cloudXn, τ̂(Xn) is showed to achieve uniform expected loss bounds over aC3-like
model. Finally, we obtain upper and lower bounds on the minimax rate for estimating the reach.

5.2.2. A statistical test of isomorphism between metric-measure spaces using the
distance-to-a-measure signature
Participant: Claire Brecheteau.

In [20], we introduce the notion of DTM-signature, a measure on R that can be associated to any metric-
measure space. This signature is based on the function distance to a measure (DTM) introduced in 2009
by Chazal, Cohen-Steiner and Mérigot. It leads to a pseudo-metric between metric-measure spaces, that is
bounded above by the Gromov-Wasserstein distance. This pseudo-metric is used to build a statistical test of
isomorphism between two metric-measure spaces, from the observation of two N-samples.

The test is based on subsampling methods and comes with theoretical guarantees. It is proven to be of the
correct level asymptotically. Also, when the measures are supported on compact subsets of Rd, rates of
convergence are derived for the L1-Wasserstein distance between the distribution of the test statistic and
its subsampling approximation. These rates depend on some parameter ρ > 1. In addition, we prove that the
power is bounded above by exp(−CN1/ρ), with C proportional to the square of the aforementioned pseudo-
metric between the metric-measure spaces. Under some geometrical assumptions, we also derive lower bounds
for this pseudo-metric.

An algorithm is proposed for the implementation of this statistical test, and its performance is compared to the
performance of other methods through numerical experiments.

5.2.3. On the choice of weight functions for linear representations of persistence diagrams
Participant: Vincent Divol.

In collaboration with Wolfgang Polonik (UC Davis).
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Persistence diagrams are efficient descriptors of the topology of a point cloud. As they do not naturally belong
to a Hilbert space, standard statistical methods cannot be directly applied to them. Instead, feature maps (or
representations) are commonly used for the analysis. A large class of feature maps, which we call linear,
depends on some weight functions, the choice of which is a critical issue. An important criterion to choose a
weight function is to ensure stability of the feature maps with respect to Wasserstein distances on diagrams. In
[21], we improve known results on the stability of such maps, and extend it to general weight functions. We
also address the choice of the weight function by considering an asymptotic setting; assume that Xn is an i.i.d.
sample from a density on [0, 1]

d. For the Č ech and Rips filtrations, we characterize the weight functions for
which the corresponding feature maps converge as n approaches infinity, and by doing so, we prove laws of
large numbers for the total persistences of such diagrams. Those two approaches (stability and convergence)
lead to the same simple heuristic for tuning weight functions: if the data lies near a d-dimensional manifold,
then a sensible choice of weight function is the persistence to the power α with α ≥ d.

5.2.4. Understanding the Topology and the Geometry of the Persistence Diagram Space via
Optimal Partial Transport
Participants: Vincent Divol, Théo Lacombe.

Despite the obvious similarities between the metrics used in topological data analysis and those of optimal
transport, an optimal-transport based formalism to study persistence diagrams and similar topological descrip-
tors has yet to come. In [48], by considering the space of persistence diagrams as a measure space, and by
observing that its metrics can be expressed as solutions of optimal partial transport problems, we introduce
a generalization of persistence diagrams, namely Radon measures supported on the upper half plane. Such
measures naturally appear in topological data analysis when considering continuous representations of persis-
tence diagrams (e.g. persistence surfaces) but also as limits for laws of large numbers on persistence diagrams
or as expectations of probability distributions on the persistence diagrams space. We study the topological
properties of this new space, which will also hold for the closed subspace of persistence diagrams. New results
include a characterization of convergence with respect to transport metrics, the existence of Fréchet means
for any distribution of diagrams, and an exhaustive description of continuous linear representations of persis-
tence diagrams. We also showcase the usefulness of this framework to study random persistence diagrams by
providing several statistical results made meaningful thanks to this new formalism.

5.3. Topological approach for multimodal data processing
5.3.1. A General Neural Network Architecture for Persistence Diagrams and Graph

Classification
Participants: Frédéric Chazal, Théo Lacombe, Martin Royer.

In collaboration with Mathieu Carrière (Colombia Univ.) and Umeda Yuhei and Ike Yiuchi (Fujitsu Labs).

Persistence diagrams, the most common descriptors of Topological Data Analysis, encode topological prop-
erties of data and have already proved pivotal in many different applications of data science. However, since
the (metric) space of persistence diagrams is not Hilbert, they end up being difficult inputs for most Machine
Learning techniques. To address this concern, several vectorization methods have been put forward that embed
persistence diagrams into either finite-dimensional Euclidean space or (implicit) infinite dimensional Hilbert
space with kernels. In [44], we focus on persistence diagrams built on top of graphs. Relying on extended
persistence theory and the so-called heat kernel signature, we show how graphs can be encoded by (extended)
persistence diagrams in a provably stable way. We then propose a general and versatile framework for learn-
ing vectorizations of persistence diagrams, which encompasses most of the vectorization techniques used in
the literature. We finally showcase the experimental strength of our setup by achieving competitive scores on
classification tasks on real-life graph datasets.

5.3.2. Topological Data Analysis for Arrhythmia Detection through Modular Neural Networks
Participant: Frédéric Chazal.
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In collaboration with Umeda Yuhei and Meryll Dindin (Fujitsu Labs).

In [47], we present an innovative and generic deep learning approach to monitor heart conditions from ECG
signals.We focus our attention on both the detection and classification of abnormal heartbeats, known as
arrhythmia. We strongly insist on generalization throughout the construction of a deep-learning model that
turns out to be effective for new unseen patient. The novelty of our approach relies on the use of topological
data analysis as basis of our multichannel architecture, to diminish the bias due to individual differences.
We show that our structure reaches the performances of the state-of-the-art methods regarding arrhythmia
detection and classification.

5.3.3. ATOL: Automatic Topologically-Oriented Learning
Participants: Frédéric Chazal, Martin Royer.

In collaboration with Umeda Yuhei and Ike Yiuchi (Fujitsu Labs).

There are abundant cases for using Topological Data Analysis (TDA) in a learning context, but robust
topological information commonly comes in the form of a set of persistence diagrams, objects that by nature
are uneasy to affix to a generic machine learning framework. In [56], we introduce a vectorisation method
for diagrams that allows to collect information from topological descriptors into a format fit for machine
learning tools. Based on a few observations, the method is learned and tailored to discriminate the various
important plane regions a diagram is set into. With this tool one can automatically augment any sort of
machine learning problem with access to a TDA method, enhance performances, construct features reflecting
underlying changes in topological behaviour. The proposed methodology comes with only high level tuning
parameters such as the encoding budget for topological features. We provide an open-access, ready-to-use
implementation and notebook. We showcase the strengths and versatility of our approach on a number of
applications. From emulous and modern graph collections to a highly topological synthetic dynamical orbits
data, we prove that the method matches or beats the state-of-the-art in encoding persistence diagrams to
solve hard problems. We then apply our method in the context of an industrial, difficult time-series regression
problem and show the approach to be relevant.

5.3.4. Inverse Problems in Topological Persistence: a Survey
Participant: Steve Oudot.

In collaboration with Elchanan Solomon (Duke).

In [27] we review the literature on inverse problems in topological persistence theory.The first half of the
survey is concerned with the question of surjectivity, i.e. the existence of rightinverses, and the second half
focuses on injectivity, i.e. left inverses. Throughout, we highlightthe tools and theorems that underlie these
advances, and direct the reader’s attention to openproblems, both theoretical and applied.

5.3.5. Intrinsic Topological Transforms via the Distance Kernel Embedding
Participants: Clément Maria, Steve Oudot.

In collaboration with Elchanan Solomon (Duke).

Topological transforms are parametrized families of topological invariants, which, by analogy with transforms
in signal processing, are much more discriminative than single measurements. The first two topological
transforms to be defined were the Persistent Homology Transform and Euler Characteristic Transform, both of
which apply to shapes embedded in Euclidean space. The contribution of this work [54] is to define topological
transforms that depend only on the intrinsic geometry of a shape, and hence are invariant to the choice
of embedding. To that end, given an abstract metric measure space, we define an integral operator whose
eigenfunctions are used to compute sublevel set persistent homology. We demonstrate that this operator,
which we call the distance kernel operator, enjoys desirable stability properties, and that its spectrum and
eigenfunctions concisely encode the large-scale geometry of our metric measure space. We then define a
number of topological transforms using the eigenfunctions of this operator, and observe that these transforms
inherit many of the stability and injectivity properties of the distance kernel operator.
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5.3.6. A Framework for Differential Calculus on Persistence Barcodes
Participant: Steve Oudot.

In collaboration with Jacob Leygonie and Ulrike Tillmann (Oxford).

In [52], we define notions of differentiability for maps from and to the space of persistence barcodes. Inspired
by the theory of diffeological spaces, the proposed framework uses lifts to the space of ordered barcodes, from
which derivatives can be computed. The two derived notions of differentiability (respectively from and to the
space of barcodes) combine together naturally to produce a chain rule that enables the use of gradient descent
for objective functions factoring through the space of barcodes. We illustrate the versatility of this framework
by showing how it can be used to analyze the smoothness of various parametrized families of filtrations arising
in topological data analysis.

5.4. Experimental research and software development
5.4.1. Robust Stride Detector from Ankle-Mounted Inertial Sensors for Pedestrian Navigation

and Activity Recognition with Machine Learning Approaches
Participants: Bertrand Beaufils, Frédéric Chazal, Bertrand Michel.

In collaboration with Marc Grelet (Sysnav).

In [16], a stride detector algorithm combined with a technique inspired by zero velocity update (ZUPT) is
proposed to reconstruct the trajectory of a pedestrian from an ankle-mounted inertial device. This innovative
approach is based on sensor alignment and machine learning. It is able to detect 100% of both normal walking
strides and more than 97% of atypical strides such as small steps, side steps, and backward walking that
existing methods can hardly detect. This approach is also more robust in critical situations, when for example
the wearer is sitting and moving the ankle or when the wearer is bicycling (less than two false detected strides
per hour on average). As a consequence, the algorithm proposed for trajectory reconstruction achieves much
better performances than existing methods for daily life contexts, in particular in narrow areas such as in
a house. The computed stride trajectory contains essential information for recognizing the activity (atypical
stride, walking, running, and stairs). For this task, we adopt a machine learning approach based on descriptors
of these trajectories, which is shown to be robust to a large of variety of gaits. We tested our algorithm on
recordings of healthy adults and children, achieving more than 99% success. The algorithm also achieved
more than 97by children suffering from movement disorders. Compared to most algorithms in the literature,
this original method does not use a fixed-size sliding window but infers this last in an adaptive way

5.4.2. Robust pedestrian trajectory reconstruction from inertial sensor
Participants: Bertrand Beaufils, Frédéric Chazal, Bertrand Michel.

In collaboration with Marc Grelet (Sysnav).

In [28], a strides detection algorithm combined with a technique inspired by Zero Velocity Update (ZUPT) is
proposed using inertial sensors worn on the ankle. This innovative approach based on a sensors alignment and
machine learning can detect both normal walking strides and atypical strides such as small steps, side steps and
backward walking that existing methods struggle to detect. As a consequence, the trajectory reconstruction
achieves better performances in daily life contexts for example, where a lot of these kinds of strides are
performed in narrow areas such as in a house. It is also robust in critical situations, when for example the
wearer is sitting and moving the ankle or bicycling, while most algorithms in the literature would wrongly
detect strides and produce error in the trajectory reconstruction by generating movements.Our algorithm is
evaluated on more than 7800 strides from seven different subjects performing several activities. We validated
the trajectory reconstruction during motion capture sessions by analyzing the stride length. Finally, we tested
the algorithm in a challenging situation by plotting the computed trajectory on the building map of an 5 hours
and 30 minutes office worker recording.
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5.5. Algorithmic and Combinatorial Aspects of Low Dimensional Topology
5.5.1. Treewidth, crushing and hyperbolic volume

Participant: Clément Maria.

In collaboration with Jessica S. Purcell (Monash University, Australia)

The treewidth of a 3-manifold triangulation plays an important role in algorithmic 3-manifold theory, and so
it is useful to find bounds on the tree-width in terms of other properties of the manifold. In [26], we prove
that there exists a universal constant c such that any closed hyperbolic 3-manifold admits a triangulation of
tree-width at most the product of c and the volume. The converse is not true: we show there exists a sequence
of hyperbolic 3-manifolds of bounded tree-width but volume approaching infinity. Along the way, we prove
that crushing a normal surface in a triangulation does not increase the carving-width, and hence crushing any
number of normal surfaces in a triangulation affects tree-width by at most a constant multiple.

5.5.2. Parameterized complexity of quantum knot invariants
Participant: Clément Maria.

In [53], we give a general fixed parameter tractable algorithm to compute quantum invariants of links presented
by diagrams, whose complexity is singly exponential in the carving-width (or the tree-width) of the diagram. In
particular, we get a O(N3/2cwpoly(n)) time algorithm to compute any Reshetikhin-Turaev invariant-derived
from a simple Lie algebra g of a link presented by a planar diagram with n crossings and carving-width cw,
and whose components are coloured with g-modules of dimension at most N . For example, this includes the
N th-coloured Jones polynomial and the N th-coloured HOMFLYPT polynomial.

5.6. Miscellaneous
5.6.1. Material Coherence from Trajectories via Burau Eigenanalysis of Braids

Participant: David Cohen-Steiner.

In collaboration with Melissa Yeung and Mathieu Desbrun (Caltech).

In this paper [58], we provide a numerical tool to study material coherence from a set of 2D Lagrangian
trajectories sampling a dynamical system, i.e., from the motion of passive tracers. We show that eigenvectors
of the Burau representation of a topological braid derived from the trajectories have levelsets corresponding
to components of the Nielsen-Thurston decomposition of the dynamical system. One can thus detect and
identify clusters of space-time trajectories corresponding to coherent regions of the dynamical system by
solving an eigenvalue problem. Unlike previous methods, the scalable computational complexity of our braid-
based approach allows the analysis of large amounts of trajectories. Studying two-dimensional flows and their
induced transport and mixing properties is key to geophysical studies of atmospheric and oceanic processes.
However, one often has only sparse tracer trajectories (e.g., positions of buoys in time) to infer the overall flow
geometry. Fortunately, topological methods based on the theory of braid groups have recently been proposed to
extract structures from such a sparse set of trajectories by measuring their entan-glement. This braid viewpoint
offers sound foundations for the definition of coherent structures. Yet, there has been only limited efforts in
developing practical tools that can leverage topological properties for the efficient analysis of flow structures:
handling a larger number of tra-jectories remains computationally challenging. We contribute a new and simple
computational tool to extract Lagrangian structures from sparse trajectories by noting that the eigenstructure
of the Burau matrix representation of a braid of particle trajectories can be used to reveal coherent regions of
the flows. Detection of clusters of space-time trajectories corresponding to coherent regions of the dynamical
system can thus be achieved by solving a simple eigenvalue problem. This paper establishes the theoretical
foundations behind this braid eigenanalysis approach, along with numerical validations on various flows.

5.6.2. Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein
space
Participants: Alex Delalande, Frédéric Chazal.
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In collaboration with Quentin Mérigot (Institut de Mathématiques d’Orsay).

In [55], we study an explicit embedding of the set of probability measures into a Hilbert space, defined using
optimal transport maps from a reference probability density. This embedding linearizes to some extent the
2-Wasserstein space, and enables the direct use of generic supervised and unsupervised learning algorithms
on measure data. Our main result is that the embedding is (bi-)Holder continuous, when the reference density
is uniform over a convex set, and can be equivalently phrased as a dimension-independent Hölder-stability
results for optimal transport maps.

6. Bilateral Contracts and Grants with Industry

6.1. Bilateral Contracts with Industry
• Collaboration with Sysnav, a French SME with world leading expertise in navigation and geopo-

sitioning in extreme environments, on TDA, geometric approaches and machine learning for the
analysis of movements of pedestrians and patients equipped with inetial sensors (CIFRE PhD of
Bertrand Beaufils).

• Research collaboration with Fujitsu on the development of new TDA methods and tools for Machine
learning and Artificial Intelligence (started in Dec 2017).

• Research collaboration with MetaFora on the development of new TDA-based and statistical meth-
ods for the analysis of cytometric data (started in Nov. 2019).

6.2. Bilateral Grants with Industry
• DATASHAPE and Sysnav have been selected for the ANR/DGA Challenge MALIN (funding: 700

kEuros) on pedestrian motion reconstruction in severe environments (without GPS access).

7. Partnerships and Cooperations

7.1. Regional Initiatives
Mini course on “Sheaf Theory and Topological Data Analysis” taught by Rodrigo Cordoniu (Nice University)
at Inria Sophia Antipolis — 8 weeks, 2h per week, Feb 2019 to Apr 2019.

7.2. National Initiatives
7.2.1. ANR
7.2.1.1. ANR ASPAG

Participant: Marc Glisse.

- Acronym : ASPAG.

- Type : ANR blanc.

- Title : Analysis and Probabilistic Simulations of Geometric Algorithms.

- Coordinator : Olivier Devillers (équipe Inria Gamble).

- Duration : 4 years from January 2018 to December 2021.

- Others Partners: Inria Gamble, LPSM, LABRI, Université de Rouen, IECL, Université du Littoral Côte
d’Opale, Telecom ParisTech, Université Paris X (Modal’X), LAMA, Université de Poitiers, Université de
Bourgogne.

- Abstract:
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The analysis and processing of geometric data has become routine in a variety of human activities ranging
from computer-aided design in manufacturing to the tracking of animal trajectories in ecology or geographic
information systems in GPS navigation devices. Geometric algorithms and probabilistic geometric models are
crucial to the treatment of all this geometric data, yet the current available knowledge is in various ways much
too limited: many models are far from matching real data, and the analyses are not always relevant in practical
contexts. One of the reasons for this state of affairs is that the breadth of expertise required is spread among
different scientific communities (computational geometry, analysis of algorithms and stochastic geometry)
that historically had very little interaction. The Aspag project brings together experts of these communities to
address the problem of geometric data. We will more specifically work on the following three interdependent
directions.

(1) Dependent point sets: One of the main issues of most models is the core assumption that the data points
are independent and follow the same underlying distribution. Although this may be relevant in some contexts,
the independence assumption is too strong for many applications.

(2) Simulation of geometric structures: The phenomena studied in (1) involve intricate random geometric
structures subject to new models or constraints. A natural first step would be to build up our understanding and
identify plausible conjectures through simulation. Perhaps surprisingly, the tools for an effective simulation of
such complex geometric systems still need to be developed.

(3) Understanding geometric algorithms: the analysis of algorithm is an essential step in assessing the strengths
and weaknesses of algorithmic principles, and is crucial to guide the choices made when designing a complex
data processing pipeline. Any analysis must strike a balance between realism and tractability; the current
analyses of many geometric algorithms are notoriously unrealistic. Aside from the purely scientific objectives,
one of the main goals of Aspag is to bring the communities closer in the long term. As a consequence, the
funding of the project is crucial to ensure that the members of the consortium will be able to interact on a very
regular basis, a necessary condition for significant progress on the above challenges.

- See also: https://members.loria.fr/Olivier.Devillers/aspag/

7.3. International Research Visitors
7.3.1. Visits of International Scientists

• Arijit Ghosh, Indian Statistical Institute, Kolkata, India (September 2019)

• Ramsay Dyer Berkeley Publishing (September 2019)

• Mathijs Wintraecken, IST Austria (September and October 2019)

7.3.1.1. Internships

• Alex Delalande, Centrale-Supelec, (May-October 2019).

7.3.1.2. Research Stays Abroad

• Martin Royer, Fujitsu Laboratories, Tokyo, 2 months.

8. Dissemination

8.1. Promoting Scientific Activities
8.1.1. Scientific Events: Organisation

• F. Chazal was co-organiser of the Geometric Data Analysis conference at the Stevanovich Center for
Financial Mathematics, Chicago, May 2019.

• F. Chazal was co-organiser of the conference New Horizons in Computational Geometry and
Topology, Sophia-Antipolis, September 2019.

https://members.loria.fr/Olivier.Devillers/aspag/
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8.1.2. Scientific Events: Selection
8.1.2.1. Chair of Conference Program Committees

• Steve Oudot was chair of the program committee for the Young Researchers Forum at the Interna-
tional Symposium on Computational Geometry (SoCG) 2019.

8.1.2.2. Member of the Conference Program Committees

• Jean-Daniel Boissonnat was a member of the Organizing Committee of the International Conference
on Curves and Surfaces 2019.

• Clément Maria was a member of the Program Committee of the International Symposium on
Computational Geometry (SoCG), Portland, USA, June 2019.

• David Cohen-Steiner was a member of the Program Committees of SGP’19 and SMI’19.

8.1.3. Journal
8.1.3.1. Member of the Editorial Boards

Jean-Daniel Boissonnat is a member of the Editorial Board of Journal of the ACM, Discrete and
Computational Geometry, International Journal on Computational Geometry and Applications.

Frédéric Chazal is a member of the Editorial Board of SIAM Journal on Imaging Sciences, Discrete
and Computational Geometry (Springer), Graphical Models (Elsevier), and Journal of Applied and
Computational Topology (Springer).

Frédéric Chazal is a member of the Scientific Board of Journal of Applied and Computational
Topology (Springer).

Steve Oudot is a member of the Editorial Board of Journal of Computational Geometry.

8.1.4. Invited Talks
Frédéric Chazal, Geometry of Big Data, Institute of Pure and Applied Mathematics at UCLA, Los
Angeles, April 2019.

Frédéric Chazal, Workshop on Data Science, Fundaçao Getulio Vargas, Rio de Janeiro, April 2019.

Frédéric Chazal, SUMTOPO 2019, Topology in Data Science, Johannesburg, June 2019.

Frédéric Chazal, New Horizons in Computational Geometry and Topology, Sophia-Antipolis,
September 2019.

Frédéric Chazal, Seminar@System X, Saclay, June 2019.

Clément Maria, Monash University, Australia.

Clément Maria, New Horizons in Computational Geometry and Topology, Sophia-Antipolis,
September 2019.

Clément Maria, Applied Algebraic Topology Research Network Seminar, October 2019.

Clément Maria, Dagstuhl Seminar 19352 “Computation in Low-Dimensional Geometry and Topol-
ogy”, August 2019.

Clément Maria, 2ème Demi-journée Pole Calcul - Topologie et Géométrie du Calcul - LIS Marseille,
June 2019.

Steve Oudot, Workshop on computational applications of quiver representations: TDA and QPA,
Bielefeld University, April 2019.

Steve Oudot, Minisymposium on Algebraic Geometry in Topological Data Analysis, SIAM Confer-
ence on Applied Algebraic Geometry, Bern, July 2019.

Steve Oudot, Summer Conference on Topology and its Applications, Johannesburg, July 2019.

Steve Oudot, Spires workshop: from theory to applications of TDA, Oxford, September 2019.

8.1.5. Leadership within the Scientific Community
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Frédéric Chazal is co-responsible, with S. Arlot (Paris-Sud Univ.), of the “programme Maths-STIC”
of the Labex Fondation Mathématique Jacques Hadamard (FMJH).

Frédéric Chazal is a member of the “Comité de pilotage” of the SIGMA group at SMAI.

Steve Oudot is co-head with Luca Castelli Aleardi (École polytechnique) of the GT GeoAlgo within
the GdR-IM.

8.1.6. Research Administration
Marc Glisse is president of the CDT at Inria Saclay.

Steve Oudot is vice-president of the Commission Scientifique at Inria Saclay.

Clément Maria is a member of the CDT at Inria Sophia Antipolis-Méditerranée.

Clément Maria, responsable RAweb pour Datashape.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Master: Frédéric Chazal and Quentin Mérigot, Analyse Topologique des Données, 30h eq-TD,
Université Paris-Sud, France.

Master: Marc Glisse and Clément Maria, Computational Geometry Learning, 36h eq-TD, M2,
MPRI, France.

Master: Frédéric Cazals and Frédéric Chazal, Geometric Methods for Data Analysis, 30h eq-TD,
M1, École Centrale Paris, France.

Master: Frédéric Chazal and Julien Tierny, Topological Data Analysis, 38h eq-TD, M2, Mathéma-
tiques, Vision, Apprentissage (MVA), ENS Paris-Saclay, France.

Course on TDA at the Statistics with Geometry and Topology Conference 2019, 4hCM, Toulouse,
France.

Master: Steve Oudot, Topological data analysis, 45h eq-TD, M1, École polytechnique, France.

Master: Steve Oudot, Data Analysis: geometry and topology in arbitrary dimensions, 24h eq-TD,
M2, graduate program in Artificial Intelligence & Advanced Visual Computing, École polytech-
nique, France.

Undergrad-Master: Steve Oudot, Algorithms for data analysis in C++, 22.5h eq-TD, L3/M1, École
polytechnique, France.

8.2.2. Supervision
PhD : Alba Chiara de Vitis, Kernel Methods for High Dimensional Data Analysis [12]. Université
Côte d’Azur. May 28, 2019. Jean-Daniel Boissonnat and David Cohen-Steiner.

PhD : Sergei Kachanovich, Meshing submanifolds using Coxeter triangulations [11]. Université Côte
d’Azur. October 23, 2019. Jean-Daniel Boissonnat.

PhD: Yitchzak Solomon, Inverse problems in topological data analysis, Brown University. Defended
in May 2019. Jeff Brock (Yale University) and Steve Oudot.

PhD in progress: Raphaël Tinarrage, Persistence and stability of nerves in measured metric spaces
for Topological Data Analysis, started September 1st, 2017, Frédéric Chazal and Marc Glisse.

PhD in progress: Louis Pujol, Partitionnement de données cytométriques, started Novermber 1st,
2019, Pascal Massart and Marc Glisse.

PhD in progress: Bertrand Beaufils, Méthodes topologiques et apprentissage statistique pour
l’actimétrie du piéton à partir de données de mouvement, Frédéric Chazal and Bertrand Michel
(Ecole Centrale de Nantes).
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PhD in progress: Vincent Divol, statistical aspects of TDA, started September 1st, 2017, Frédéric
Chazal and Pascal Massart (LMO).

PhD in progress: Etienne Lasalle, TDA for graph data, started September 1st, 2019, Frédéric Chazal
and Pascal Massart (LMO).

PhD in progress: Alex Delalande, Measure embedding with Optimal Transport and applications in
Machine Learning, started December 1st, 2019, Frédéric Chazal and Quentin Mérigot (LMO).

PhD in progress: Owen Rouillé, started September 2018, co-advised by C. Maria and J-D. Boisson-
nat.

PhD in progress: Nicolas Berkouk, Categorification of topological graph structures, started Novem-
ber 1st, 2016, Steve Oudot.

PhD in progress: Théo Lacombe, Statistics for persistence diagrams using optimal transport, started
October 1st, 2017. Marco Cuturi (ENSAE & Google Brain) and Steve Oudot.

8.2.3. Juries
Clément Maria was a member of the jury attributing the Gilles Kahn PhD award, from the SIF and
the Academy of Science, Nov. 2019.

Steve Oudot was reviewer and committee member for the PhD defence of Hannah Schreiber, October
2019.

8.3. Popularization
8.3.1. Interventions

• Frédéric Chazal, Un exemple de dispositif dédié aux études cliniques. Seminar on AI, Haute Autorité
de Santé, September 2019.
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