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        Section: 
      Overall Objectives

        Overall Objectives

        Team Ecuador studies Algorithmic Differentiation (AD) of computer programs, blending :

        
          	
             AD theory: We study software engineering techniques, to
analyze and transform programs mechanically. Algorithmic Differentiation (AD)
transforms a program P  that computes a function F, into a program P' 
that computes analytical derivatives of F.
We put emphasis on the adjoint mode of AD,
a sophisticated transformation that yields gradients for optimization at a remarkably low cost.

          

          	
             AD application to Scientific Computing:
We adapt the strategies of Scientific Computing
to take full advantage of AD.
We validate our work on real-size applications.

          

        

        We aim to produce AD code that can compete
with hand-written sensitivity and adjoint programs used in the industry.
We implement our algorithms into the tool Tapenade,
one of the most popular AD tools at present.

        Our research directions :

        
          	
             Efficient adjoint AD of frequent dialects e.g. Fixed-Point loops.

          

          	
             Development of the adjoint AD model towards Dynamic Memory Management.

          

          	
             Evolution of the adjoint AD model to keep in pace with with modern programming languages constructs.

          

          	
             Optimal shape design and optimal control for steady and unsteady simulations.
Higher-order derivatives for uncertainty quantification.

          

          	
             Adjoint-driven mesh adaptation.

          

        

      

      
      

      
    

  
    Research Program

    
      	Research Program	Algorithmic Differentiation
	Static Analysis and Transformation of programs
	Algorithmic Differentiation and Scientific Computing



    

  
    
    
      
      
      

      
      
        
        Section: 
      Research Program

        Algorithmic Differentiation

        Participants :
	Laurent Hascoët, Valérie Pascual.

        

        
          
Glossary
        
        	algorithmic differentiation

        	 (AD, aka Automatic Differentiation)
Transformation of a program, that returns a new program that computes
derivatives of the initial program, i.e. some combination of the
partial derivatives of the program's outputs with respect to its inputs.


        	adjoint

        	 Mathematical manipulation of the Partial Differential Equations
that define a problem, obtaining new differential equations that define
the gradient of the original problem's solution.


        	checkpointing

        	 General trade-off technique, used in adjoint AD,
that trades duplicate execution of a part of the program
to save some memory space that was used to save intermediate results.


      

        

        

        Algorithmic Differentiation (AD) differentiates
programs. The input of AD is
a source program P that, given some X∈ℝn,
returns some Y=F(X)∈ℝm, for a differentiable F.
AD generates a new source program P' that,
given X, computes some derivatives of F [4].

        Any execution of P amounts to a sequence of instructions,
which is identified with a composition of vector functions. Thus, if
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        where each fk is the elementary function implemented by instruction Ik.
AD applies the chain rule to obtain derivatives of F.
Calling Xk the values of all variables after
instruction Ik, i.e. X0=X and Xk=fk(Xk-1),
the Jacobian of F is
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        which can be mechanically written as a sequence of instructions Ik'.
This can be generalized to higher level derivatives, Taylor series, etc.
Combining the Ik' with the control of P yields P',
and therefore this differentiation is piecewise.

        The above computation of F'(X), albeit simple and mechanical, can be prohibitively expensive on large codes.
In practice, many applications only need cheaper projections of F'(X) such as:

        
          	
             Sensitivities, defined for a given direction X˙ in the input space as:
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             This expression is easily computed from right to left, interleaved with the original
program instructions. This is the tangent mode of AD.

          

          	
             Adjoints, defined after transposition (F'*), for a given weighting Y¯ of the outputs as:

            
              
              
                
                  	
                    
                      
                        
                          F
                          
                            '
                            *
                          
                        
                        
                          (
                          X
                          )
                        
                        .
                        
                          Y
                          ¯
                        
                        =
                        
                          f
                          1
                          
                            '
                            *
                          
                        
                        
                          (
                          
                            X
                            0
                          
                          )
                        
                        .
                        
                          f
                          2
                          
                            '
                            *
                          
                        
                        
                          (
                          
                            X
                            1
                          
                          )
                        
                        .
                        
                        ⋯
                        
                        .
                        
                          f
                          
                            p
                            -
                            1
                          
                          
                            '
                            *
                          
                        
                        
                          (
                          
                            X
                            
                              p
                              -
                              2
                            
                          
                          )
                        
                        .
                        
                          f
                          p
                          
                            '
                            *
                          
                        
                        
                          (
                          
                            X
                            
                              p
                              -
                              1
                            
                          
                          )
                        
                        .
                        
                          Y
                          ¯
                        
                        
                        .
                      
                    
                  
                  	(4)
                

              

            

            
               
            

             This expression is most efficiently computed from right to left,
because matrix×vector products are cheaper
than matrix×matrix products.
This is the adjoint mode of AD, most effective for
optimization, data assimilation  [31],
adjoint problems  [25], or inverse problems.

          

        

        Adjoint AD builds a very efficient program  [27],
which computes the gradient in a time independent from the number of parameters n.
In contrast, computing the same gradient with the tangent mode
would require running the tangent differentiated program n times.

        However, the Xk are required in
the inverse of their computation order. If the
original program overwrites a part of Xk,
the differentiated program must restore Xk before it is used
by fk+1'*(Xk).
Therefore, the central research problem of adjoint AD is to
make the Xk available in reverse order at the cheapest cost,
using strategies that combine storage,
repeated forward computation from available previous values, or even
inverted computation from available later values.

        Another research issue is to make the AD model cope with the
constant evolution of modern language constructs. From the old days
of Fortran77, novelties include pointers and dynamic allocation,
modularity, structured data types, objects, vectorial notation
and parallel programming. We keep developing our models and tools
to handle these new constructs.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Research Program

        Static Analysis and Transformation of programs

        Participants :
	Laurent Hascoët, Valérie Pascual.

        

        
          
Glossary
        
        	abstract syntax tree

        	 Tree representation of a computer program,
that keeps only the semantically significant information and abstracts away
syntactic sugar such as indentation, parentheses, or separators.


        	control flow graph

        	 Representation of a procedure body as a directed graph,
whose nodes, known as basic blocks, each contain a sequence of instructions
and whose arrows represent all possible control jumps that can occur at run-time.


        	abstract interpretation

        	 Model that describes program static analysis
as a special sort of execution, in which all branches of control switches are taken
concurrently, and where computed values are replaced by abstract values
from a given semantic domain. Each particular analysis gives birth to
a specific semantic domain.


        	data flow analysis

        	 Program analysis that studies how a given property of variables
evolves with execution of the program. Data Flow analysis is static, therefore
studying all possible run-time behaviors and making conservative approximations.
A typical data-flow analysis is to detect, at any location in the source program,
whether a variable is initialized or not.


      

        

        

        The most obvious example of a program transformation tool is certainly a compiler.
Other examples are program translators, that go from one language or formalism to another,
or optimizers, that transform a program to make it run better.
AD is just one such transformation.
These tools share the technological basis that lets them implement the sophisticated
analyses  [14] required. In particular there are common
mathematical models to specify these analyses and analyze their properties.

        An important principle is abstraction: the core of a compiler
should not bother about syntactic details of the compiled program.
The optimization and code generation phases must be independent
from the particular input programming language. This is generally achieved
using language-specific front-ends, language-independent middle-ends,
and target-specific back-ends.
In the middle-end, analysis can concentrate on the semantics
of a reduced set of constructs. This analysis operates
on an abstract representation of programs made of one
call graph, whose nodes are themselves flow graphs whose
nodes (basic blocks) contain abstract syntax trees for the individual
atomic instructions.
To each level are attached symbol tables, nested to capture scoping.

        Static program analysis can be defined on this internal representation,
which is largely language independent. The simplest analyses on trees can be
specified with inference rules  [18], [28], [15].
But many data-flow analyses are more complex, and better defined on graphs than on trees.
Since both call graphs and flow graphs may be cyclic, these global analyses will be solved iteratively.
Abstract Interpretation  [19] is a theoretical framework to
study complexity and termination of these analyses.

        Data flow analyses must be carefully designed to avoid or control
combinatorial explosion. At the call graph level, they can run bottom-up or top-down,
and they yield more accurate results when they take into account the different
call sites of each procedure, which is called context sensitivity.
At the flow graph level, they can run forwards or backwards, and
yield more accurate results when they take into account only the possible
execution flows resulting from possible control, which is called flow sensitivity.

        Even then, data flow analyses are limited, because they are static and thus have very
little knowledge of actual run-time values. Far before reaching the very theoretical limit of
undecidability, one reaches practical limitations to how much information one can infer
from programs that use arrays  [34], [20] or pointers.
Therefore, conservative over-approximations must be made, leading to
derivative code less efficient than ideal.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Research Program

        Algorithmic Differentiation and Scientific Computing

        Participants :
	Alain Dervieux, Laurent Hascoët, Bruno Koobus, Eléonore Gauci, Emmanuelle Itam, Olivier Allain, Stephen Wornom.

        

        
          
Glossary
        
        	linearization

        	 In Scientific Computing, the mathematical model
often consists of Partial Differential Equations, that are
discretized and then solved by a computer program.
Linearization of these equations, or alternatively
linearization of the computer program, predict the
behavior of the model when small perturbations are applied.
This is useful when the perturbations are effectively small,
as in acoustics, or when one wants the sensitivity of the system
with respect to one parameter, as in optimization.


        	adjoint state

        	 Consider a system of Partial Differential Equations
that define some characteristics of a system with respect to some
parameters. Consider one particular scalar characteristic.
Its sensitivity (or gradient) with respect to the parameters
can be defined by means of adjoint equations, deduced from the
original equations through linearization and transposition.
The solution of the adjoint equations is known as the adjoint state.


      

        

        

        Scientific Computing provides reliable simulations
of complex systems. For example it is possible to simulate
the steady or unsteady 3D air flow around a plane that captures the physical phenomena
of shocks and turbulence. Next comes optimization,
one degree higher in complexity because it repeatedly simulates and
applies gradient-based optimization steps until an optimum is reached.
The next sophistication is robustness, that detects undesirable solutions which,
although maybe optimal, are very sensitive to uncertainty on design parameters or
on manufacturing tolerances. This makes second derivatives come into play.
Similarly Uncertainty Quantification can use second derivatives to evaluate how uncertainty on
the simulation inputs imply uncertainty on its outputs.

        To obtain this gradient and possibly higher derivatives,
we advocate adjoint AD (cf 3.1)
of the program that discretizes and solves the direct system.
This gives the exact gradient of the discrete function
computed by the program, which is quicker and more sound than differentiating
the original mathematical equations  [25].
Theoretical results  [24] guarantee convergence
of these derivatives when the direct program converges.
This approach is highly mechanizable. However, it requires
careful study and special developments of the AD model  [29], [32]
to master possibly heavy memory usage.
Among these additional developments, we promote in particular
specialized AD models for Fixed-Point iterations  [26], [17],
efficient adjoints for linear algebra operators such as solvers, or exploitation
of parallel properties of the adjoint code.
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        Section: 
      Application Domains

        Algorithmic Differentiation

        Algorithmic Differentiation of programs gives sensitivities or gradients,
useful for instance for :

        
          	
             optimum shape design under constraints, multidisciplinary optimization,
and more generally any algorithm based on local linearization,

          

          	
             inverse problems, such as parameter estimation and in particular
4Dvar data assimilation in climate sciences (meteorology, oceanography),

          

          	
             first-order linearization of complex systems, or higher-order simulations, yielding
reduced models for simulation of complex systems around a given state,

          

          	
             adaption of parameters for classification tools such as Machine Learning systems,
in which Adjoint Differentiation is also known as backpropagation.

          

          	
             mesh adaptation and mesh optimization with gradients or adjoints,

          

          	
             equation solving with the Newton method,

          

          	
             sensitivity analysis, propagation of truncation errors.

          

        

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Application Domains

        Multidisciplinary optimization

        A CFD program computes the flow around a shape, starting from a number of inputs that define
the shape and other parameters.
On this flow one can define optimization criteria e.g. the lift of an aircraft.
To optimize a criterion by a gradient descent, one needs the gradient of the criterion with respect
to all inputs, and possibly additional gradients when there are constraints.
Adjoint AD is the most efficient way to compute these gradients.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Application Domains

        Inverse problems and Data Assimilation

        Inverse problems aim at estimating the value of hidden parameters from other
measurable values, that depend on the hidden parameters through a system of
equations. For example, the hidden parameter might be the shape of the ocean floor,
and the measurable values of the altitude and velocities of the surface.
Figure 1 shows an example of an inverse problem
using the glaciology code ALIF (a pure C version of ISSM  [30]) and its AD-adjoint
produced by Tapenade.

        
          
            
          
          
            Figure
	1. Assimilation of the basal friction under Pine Island glacier, West Antarctica. The final simulated surface velocity (b) is made to match the observed surface velocity (c), by estimation of the basal friction (e). A reference basal friction (f) is obtained by another data assimilation using the hand=written adjoint of ISSM
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        One particular case of inverse problems is data assimilation  [31]
in weather forecasting or in oceanography.
The quality of the initial state of the simulation conditions the quality of the
prediction. But this initial state is not well known. Only some
measurements at arbitrary places and times are available.
A good initial state is found by solving a least squares problem
between the measurements and a guessed initial state which itself must verify the
equations of meteorology. This boils down to solving an adjoint problem,
which can be done though AD  [33].
The special case of 4Dvar data assimilation is particularly challenging.
The 4th dimension in “4D” is time, as available measurements are distributed
over a given assimilation period. Therefore the least squares mechanism must be
applied to a simulation over time that follows the time evolution model.
This process gives a much better estimation of the initial state, because
both position and time of measurements are taken into account.
On the other hand, the adjoint problem involved is more complex,
because it must run (backwards) over many time steps.
This demanding application of AD justifies our efforts in
reducing the runtime and memory costs of AD adjoint codes.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Application Domains

        Linearization

        Simulating a complex system often requires solving a system of Partial Differential Equations.
This can be too expensive, in particular for real-time simulations.
When one wants to simulate the reaction of this complex system to small perturbations around a fixed
set of parameters, there is an efficient approximation: just suppose that the system
is linear in a small neighborhood of the current set of parameters. The reaction of the system
is thus approximated by a simple product of the variation of the parameters with the
Jacobian matrix of the system. This Jacobian matrix can be obtained by AD.
This is especially cheap when the Jacobian matrix is sparse.
The simulation can be improved further by introducing higher-order derivatives, such as Taylor
expansions, which can also be computed through AD.
The result is often called a reduced model.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Application Domains

        Mesh adaptation

        Some approximation errors can be expressed by an adjoint state.
Mesh adaptation can benefit from this. The classical optimization step can give an optimization
direction not only for the control parameters, but also for the approximation parameters, and in
particular the mesh geometry. The ultimate goal is to obtain optimal control parameters
up to a precision prescribed in advance.
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        Section: 
      New Software and Platforms

        AIRONUM

        Keywords:  Computational Fluid Dynamics - Turbulence

        Functional Description:  Aironum is an experimental software that solves the unsteady compressible Navier-Stokes equations with k-epsilon, LES-VMS and hybrid turbulence modelling on parallel platforms, using MPI. The mesh model is unstructured tetrahedrization, with possible mesh motion.

        
          	
             Participant: Alain Dervieux

          

          	
             Contact: Alain Dervieux

          

          	
             URL: http://www-sop.inria.fr/tropics/aironum

          

        

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Software and Platforms

        TAPENADE

        Keywords:  Static analysis - Optimization - Compilation - Gradients

        Scientific Description:  Tapenade implements the results of our research about models and static analyses for AD. Tapenade can be downloaded and installed on most architectures. Alternatively, it can be used as a web server. Higher-order derivatives can be obtained through repeated application.

        Tapenade performs sophisticated data-flow analysis, flow-sensitive and context-sensitive, on the complete source program to produce an efficient differentiated code. Analyses include Type-Checking, Read-Write analysis, and Pointer analysis. AD-specific analyses include the so-called Activity analysis, Adjoint Liveness analysis, and TBR analysis.

        Functional Description:  Tapenade is an Algorithmic Differentiation tool that transforms an original program into a new program that computes derivatives of the original program. Algorithmic Differentiation produces analytical derivatives, that are exact up to machine precision. Adjoint-mode AD can compute gradients at a cost which is independent from the number of input variables. Tapenade accepts source programs written in Fortran77, Fortran90, or C. It provides differentiation in the following modes: tangent, vector tangent, adjoint, and vector adjoint.

        News Of The Year:  - Continued development of multi-language capacity: AD of codes mixing Fortran and C
- Continued front-end for C++ (using Clang-LLVM)
- Preliminary work, including refactoring, in view of future Open-Source distribution

        
          	
             Participants: Laurent Hascoët and Valérie Pascual

          

          	
             Contact: Laurent Hascoët

          

          	
             URL: http://www-sop.inria.fr/tropics/tapenade.html
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        Section: 
      New Results

        Towards Algorithmic Differentiation of C++

        Participants :
	Laurent Hascoët, Valérie Pascual, Frederic Cazals [ABS team, Inria Sophia-Antipolis] .

        Our goal is to extend Tapenade for C++. We further developed our external parser for C++, built
on top of Clang-LLVM https://clang.llvm.org/. This parser is now connected to the input formalism “IL” of Tapenade. Tapenade now manages enough constructs of Object languages to be able to build its own Internal Representation (IR) and to regenerate back from the IR a non-transformed C++ source.

        In the present development stage, this back-and-forth chain works on several small C++ codes. Still, many issues remain on the large example provided by the ABS team. We are working to solve those progressively. The lack of serious development documentation on the Clang internals obviously doesn't help.

        The next development stage will be to adapt the analysis and differentiation components of Tapenade to the new Object constructs of the IR. This development has not started yet. Upstream this development, we need to devise an extended AD model correspondingly. This research part is in progress.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        AD of mixed-language codes

        Participants :
	Valérie Pascual, Laurent Hascoët.

        We extend Tapenade to differentiate codes that mix different languages, for both tangent and adjoint modes of AD. Our motivating application is Calculix, a 3-D Structural Finite Element code that mixes Fortran and C.
This year we improved the memory representation of Tapenade's IR to handle the C-Fortran memory correspondence (commons, structs...) defined by the Fortran standard.

        C files (aka “translation units”) and Fortran modules are two instances of the more general notion of “package”
for which we have developed a unified representation in Tapenade, that also handles C++ namespaces.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Application to large industrial codes

        Participants :
	Valérie Pascual, Laurent Hascoët, Bruno Maugars [ONERA] , Sébastien Bourasseau [ONERA] , Cédric Content [ONERA] , Jose I. Cardesa [IMFT] , Christophe Airiau [IMFT] .

        We support industrial users with their first experiments of Algorithmic Differentiation of large in-house codes.
This concerned two industrial codes this year.

        One application is with ONERA on their ElsA CFD platform (Fortran 90). This is the continuation of a collaboration started in 2018. Both tangent and adjoint models of the kernel of ElsA were built successfully with Tapenade. This year's work was mostly about improving efficiency. It is worth noticing that this application was performed inside ONERA by ONERA engineers (Bruno Maugars, Sébastien Bourasseau, Cédric Content) with no need for installation of ElsA inside Inria. We take this as a sign of maturity of Tapenade. Our contribution is driven by development meetings, in which we point out some strategies and tool options to improve efficiency of the adjoint code. As a result from these discussions, we developed improved strategies and AD model, that will be useful to other tools. These improvements deal mostly with the adjoint of vectorized code.
We prepared together an aticle that describes the architecture of a modular and AD-friendly ElsA, together with the corresponding extensions of the AD model of Tapenade. This article has been submitted to “Computers and Fluids”.

        The other application ultimately targets AD of the “Jaguar” code, developed jointly by ONERA, CERFACS, and IMFT in Toulouse. This is a collaboration with Jose I. Cardesa and Christophe Airiau, both at IMFT. After a relatively easy tangent differentiation, most of the effort was devoted to obtaining a running and efficient adjoint code. Not too surprisingly, the main source of trouble was the Message-Passing parallel aspect on the application code. This underlined a lack of debugging support for adjoint-differentiated code. Given the run-time of the simulation that we consider (from hours to a few days on a 4110 processors platform), efficiency is crucial. We used the optimal binomial checkpointing scheme at the time-stepping level. However, performance of the adjoint code can probably be improved further with a better checkpointing scheme on the call tree. This calls in particular for AD-specific performance profiling tools, that we are planning to develop. We prepared together an article that describes this succesful experiment, which is now submitted to “Journal of Computational Science”.

        Two collaborations are in preparation for next year, one with Jan Hueckelheim at Argonne National Lab. about SIMD parallel codes, and one with Stefano Carli at KU Leuven about adjoint AD of the plasma code SOLPS-ITER.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Control of approximation errors

        Participants :
	Alain Dervieux, Loic Frazza [Gamma3 team, Inria-Saclay] , Adrien Loseille [Gamma3 team, Inria-Saclay] , Frédéric Alauzet [Gamma3 team, Inria-Saclay] , Anca Belme [university of Paris 6] , Alexandre Carabias [Lemma] .

        Reducing approximation errors as much as possible is a
particular kind of optimal control problem.
We formulate it exactly this way when we look for the optimal metric
of the mesh, which minimizes a user-specified functional (goal-oriented mesh
adaptation). In that case, the usual methods of optimal control apply,
using adjoint states that can be produced by Algorithmic Differentiation.

        This year, we published the final revised versions of
two conference papers
[23], [21],
we published in a journal the final version of the adjoint-based mesh adaptation for Navier-Stokes flows [16]),
and we published in “Numerical Methods in Fluids” a work on nonlinear correctors
extending [22].
Let us also mention the final publication of the
book “Uncertainty Management for Robust
Industrial Design in Aeronautics”,
edited by C. Hirsch et al. in the Springer series
Notes on Numerical Fluid Mechanics and Multidisciplinary
Design (2019) in which we have contributed
chapters 20, 21, 45, and 48.

        The monography on mesh adaptation currently being written by Alauzet, Loseille,
Koobus and Dervieux now involves all its chapters
(14 chapters) and is being finalized.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Turbulence models

        Participants :
	Alain Dervieux, Bruno Koobus, Stephen Wornom.

        Modeling turbulence is an essential aspect of CFD.
The purpose of our work in hybrid RANS/LES
(Reynolds Averaged Navier-Stokes / Large Eddy Simulation) is to develop new approaches
for industrial applications of LES-based analyses.
In the applications targetted (aeronautics, hydraulics), the Reynolds
number can be as high as several tens of millions, far too high for pure
LES models. However, certain regions in the flow can be predicted better
with LES than with usual statistical RANS models.
These are mainly vortical separated regions
as assumed in one of the most popular hybrid models,
the hybrid Detached Eddy Simulation (DES) model.
Here, “hybrid” means that a blending is applied between LES and RANS.
An important difference between a real life flow and a wind tunnel or basin
is that the turbulence of the flow upstream of each body is not well known.

        The development of hybrid models, in particular DES in the litterature, has
raised the question of the domain of validity of these models.
According to theory, these models should not be applied to flow
involving laminar boundary layers (BL).
But industrial flows are complex flows and often present regions of
laminar BL, regions of fully developed turbulent BL and regions of
non-equilibrium vortical BL.
It is then mandatory for industrial use that the new hybrid models give a reasonable
prediction for all these types of flow. We concentrated on evaluating
the behavior of hybrid models for laminar BL and for vortical wakes.
While less predictive than pure LES on laminar BL, some hybrid models
still give reasonable predictions for rather low Reynolds numbers.

        We have developed a new model relying on the hybridation of a DES model
based on a k-ϵ closure with our dynamic VMS model [13] [11].
Our purpose is to propose a model rather predictive in condition where
the engineer has not much information concerning the turbulence in the flow under study.
This year, we continued to improve this model and to test it for a large set of
configurations with Reynolds numbers ranging from low (laminar flows) to
very large.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        High order approximations

        Participants :
	Alain Dervieux, Bruno Koobus, Stephen Wornom, Tanya Kozubskaya [Keldysh Institute of Russian Academy] .

        High order approximations for compressible flows on unstructured meshes
are facing many constraints that increase their complexity
i.e. their computational cost.
This is clear for the largest class of approximation, the class of
k-exact schemes, which rely on a local polynomial representation
of degree k. We are investigating schemes which would solve
as efficiently as possible the dilemma of choosing between
an approximation with a representation inside macro-elements
which finally constrains the mesh, and a representation around
each individual cell, as in vertex formulations. This is a cooperation with
the Keldysh Institute of Russian Academy which whom we have already developed
several families of superconvergent schemes.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Aeroacoustics

        Participants :
	Alain Dervieux, Bruno Koobus, Stephen Wornom, Tanya Kozubskaya [Keldysh Institute of Russian Academy] .

        The progress in highly accurate schemes for compressible flows on
unstructured meshes (together with advances in massive parallelization
of these schemes) allows us to solve problems previously out of reach.
The three teams of Montpellier university (coordinator), Inria-Sophia and
Keldysh Institute of Moscow have written a proposal for
cooperation on the subject of the extension of these methods to
simulate the noise emission of rotating machines (helicopters,
future aerial vehicles, unmanned aerial
vehicles, wind turbines...). The proposal has been selected by ANR and RSF (Russian Science Foundation)
for support for a program duration of 4 years.
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        Section: 
      Dissemination

        Promoting Scientific Activities

        
        Scientific Events: Organisation

        
        Member of the organizing committees

        
          	
             Laurent Hascoët is on the organizing commitee of the EuroAD Workshops
on Algorithmic Differentiation (http://www.autodiff.org).

          

          	
             Laurent Hascoët was on the organizing and program committees of the workshop
“Program Transformations for Machine Learning” at NeurIPS2019, Vancouver Canada, December 14th.

          

        

        
        Invited Talks

        Laurent Hascoët was invited to give a talk on AD for the “GdR Calcul”,
at “Institut de Physique du Globe”, Paris, January 24th.

        
        Scientific Expertise

        Alain Dervieux is Scientific Director for the LEMMA company.
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