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2. Overall Objectives

2.1. Overall Objectives
Team Ecuador studies Algorithmic Differentiation (AD) of computer programs, blending :
• AD theory: We study software engineering techniques, to analyze and transform programs mechan-

ically. Algorithmic Differentiation (AD) transforms a program P that computes a function F , into a
program P’ that computes analytical derivatives of F . We put emphasis on the adjoint mode of AD,
a sophisticated transformation that yields gradients for optimization at a remarkably low cost.

• AD application to Scientific Computing: We adapt the strategies of Scientific Computing to take
full advantage of AD. We validate our work on real-size applications.

https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/OtherResearchTopicsandApplicationDomains.html


2 Activity Report INRIA 2019

We aim to produce AD code that can compete with hand-written sensitivity and adjoint programs used in the
industry. We implement our algorithms into the tool Tapenade, one of the most popular AD tools at present.

Our research directions :
• Efficient adjoint AD of frequent dialects e.g. Fixed-Point loops.
• Development of the adjoint AD model towards Dynamic Memory Management.
• Evolution of the adjoint AD model to keep in pace with with modern programming languages

constructs.
• Optimal shape design and optimal control for steady and unsteady simulations. Higher-order

derivatives for uncertainty quantification.
• Adjoint-driven mesh adaptation.

3. Research Program

3.1. Algorithmic Differentiation
Participants: Laurent Hascoët, Valérie Pascual.

algorithmic differentiation (AD, aka Automatic Differentiation) Transformation of a program, that
returns a new program that computes derivatives of the initial program, i.e. some combination of
the partial derivatives of the program’s outputs with respect to its inputs.

adjoint Mathematical manipulation of the Partial Differential Equations that define a problem,
obtaining new differential equations that define the gradient of the original problem’s solution.

checkpointing General trade-off technique, used in adjoint AD, that trades duplicate execution of a
part of the program to save some memory space that was used to save intermediate results.

Algorithmic Differentiation (AD) differentiates programs. The input of AD is a source program P that, given
some X ∈ Rn, returns some Y = F (X) ∈ Rm, for a differentiable F . AD generates a new source program
P ′ that, given X , computes some derivatives of F [4].

Any execution of P amounts to a sequence of instructions, which is identified with a composition of vector
functions. Thus, if

P runs {I1; I2; · · · Ip; },
F then is fp ◦ fp−1 ◦ · · · ◦ f1,

(1)

where each fk is the elementary function implemented by instruction Ik. AD applies the chain rule to obtain
derivatives of F . Calling Xk the values of all variables after instruction Ik, i.e. X0 = X and Xk = fk(Xk−1),
the Jacobian of F is

F ′(X) = f ′p(Xp−1) . f
′
p−1(Xp−2) . · · · . f ′1(X0) (2)

which can be mechanically written as a sequence of instructions I ′k. This can be generalized to higher
level derivatives, Taylor series, etc. Combining the I ′k with the control of P yields P ′, and therefore this
differentiation is piecewise.

The above computation of F ′(X), albeit simple and mechanical, can be prohibitively expensive on large codes.
In practice, many applications only need cheaper projections of F ′(X) such as:
• Sensitivities, defined for a given direction Ẋ in the input space as:

F ′(X).Ẋ = f ′p(Xp−1) . f
′
p−1(Xp−2) . · · · . f ′1(X0) . Ẋ . (3)
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This expression is easily computed from right to left, interleaved with the original program instruc-
tions. This is the tangent mode of AD.

• Adjoints, defined after transposition (F ′∗), for a given weighting Y of the outputs as:

F ′∗(X).Y = f ′∗1 (X0).f
′∗
2 (X1). · · · .f ′∗p−1(Xp−2).f

′∗
p (Xp−1).Y . (4)

This expression is most efficiently computed from right to left, because matrix×vector products
are cheaper than matrix×matrix products. This is the adjoint mode of AD, most effective for
optimization, data assimilation [31], adjoint problems [25], or inverse problems.

Adjoint AD builds a very efficient program [27], which computes the gradient in a time independent from
the number of parameters n. In contrast, computing the same gradient with the tangent mode would require
running the tangent differentiated program n times.

However, the Xk are required in the inverse of their computation order. If the original program overwrites a
part of Xk, the differentiated program must restore Xk before it is used by f ′∗k+1(Xk). Therefore, the central
research problem of adjoint AD is to make the Xk available in reverse order at the cheapest cost, using
strategies that combine storage, repeated forward computation from available previous values, or even inverted
computation from available later values.

Another research issue is to make the AD model cope with the constant evolution of modern language
constructs. From the old days of Fortran77, novelties include pointers and dynamic allocation, modularity,
structured data types, objects, vectorial notation and parallel programming. We keep developing our models
and tools to handle these new constructs.

3.2. Static Analysis and Transformation of programs
Participants: Laurent Hascoët, Valérie Pascual.

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses, or
separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known as
basic blocks, each contain a sequence of instructions and whose arrows represent all possible
control jumps that can occur at run-time.

abstract interpretation Model that describes program static analysis as a special sort of execution,
in which all branches of control switches are taken concurrently, and where computed values are
replaced by abstract values from a given semantic domain. Each particular analysis gives birth
to a specific semantic domain.

data flow analysis Program analysis that studies how a given property of variables evolves with
execution of the program. Data Flow analysis is static, therefore studying all possible run-time
behaviors and making conservative approximations. A typical data-flow analysis is to detect, at
any location in the source program, whether a variable is initialized or not.

The most obvious example of a program transformation tool is certainly a compiler. Other examples are
program translators, that go from one language or formalism to another, or optimizers, that transform a
program to make it run better. AD is just one such transformation. These tools share the technological basis that
lets them implement the sophisticated analyses [14] required. In particular there are common mathematical
models to specify these analyses and analyze their properties.
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An important principle is abstraction: the core of a compiler should not bother about syntactic details of the
compiled program. The optimization and code generation phases must be independent from the particular input
programming language. This is generally achieved using language-specific front-ends, language-independent
middle-ends, and target-specific back-ends. In the middle-end, analysis can concentrate on the semantics of a
reduced set of constructs. This analysis operates on an abstract representation of programs made of one call
graph, whose nodes are themselves flow graphs whose nodes (basic blocks) contain abstract syntax trees for
the individual atomic instructions. To each level are attached symbol tables, nested to capture scoping.

Static program analysis can be defined on this internal representation, which is largely language independent.
The simplest analyses on trees can be specified with inference rules [18], [28], [15]. But many data-flow
analyses are more complex, and better defined on graphs than on trees. Since both call graphs and flow graphs
may be cyclic, these global analyses will be solved iteratively. Abstract Interpretation [19] is a theoretical
framework to study complexity and termination of these analyses.

Data flow analyses must be carefully designed to avoid or control combinatorial explosion. At the call graph
level, they can run bottom-up or top-down, and they yield more accurate results when they take into account
the different call sites of each procedure, which is called context sensitivity. At the flow graph level, they can
run forwards or backwards, and yield more accurate results when they take into account only the possible
execution flows resulting from possible control, which is called flow sensitivity.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge of
actual run-time values. Far before reaching the very theoretical limit of undecidability, one reaches practical
limitations to how much information one can infer from programs that use arrays [34], [20] or pointers.
Therefore, conservative over-approximations must be made, leading to derivative code less efficient than ideal.

3.3. Algorithmic Differentiation and Scientific Computing
Participants: Alain Dervieux, Laurent Hascoët, Bruno Koobus, Eléonore Gauci, Emmanuelle Itam, Olivier
Allain, Stephen Wornom.

linearization In Scientific Computing, the mathematical model often consists of Partial Differential
Equations, that are discretized and then solved by a computer program. Linearization of these
equations, or alternatively linearization of the computer program, predict the behavior of the
model when small perturbations are applied. This is useful when the perturbations are effectively
small, as in acoustics, or when one wants the sensitivity of the system with respect to one
parameter, as in optimization.

adjoint state Consider a system of Partial Differential Equations that define some characteristics
of a system with respect to some parameters. Consider one particular scalar characteristic. Its
sensitivity (or gradient) with respect to the parameters can be defined by means of adjoint
equations, deduced from the original equations through linearization and transposition. The
solution of the adjoint equations is known as the adjoint state.

Scientific Computing provides reliable simulations of complex systems. For example it is possible to simulate
the steady or unsteady 3D air flow around a plane that captures the physical phenomena of shocks and
turbulence. Next comes optimization, one degree higher in complexity because it repeatedly simulates and
applies gradient-based optimization steps until an optimum is reached. The next sophistication is robustness,
that detects undesirable solutions which, although maybe optimal, are very sensitive to uncertainty on
design parameters or on manufacturing tolerances. This makes second derivatives come into play. Similarly
Uncertainty Quantification can use second derivatives to evaluate how uncertainty on the simulation inputs
imply uncertainty on its outputs.

To obtain this gradient and possibly higher derivatives, we advocate adjoint AD (cf 3.1) of the program that
discretizes and solves the direct system. This gives the exact gradient of the discrete function computed by
the program, which is quicker and more sound than differentiating the original mathematical equations [25].
Theoretical results [24] guarantee convergence of these derivatives when the direct program converges. This
approach is highly mechanizable. However, it requires careful study and special developments of the AD
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model [29], [32] to master possibly heavy memory usage. Among these additional developments, we promote
in particular specialized AD models for Fixed-Point iterations [26], [17], efficient adjoints for linear algebra
operators such as solvers, or exploitation of parallel properties of the adjoint code.

4. Application Domains

4.1. Algorithmic Differentiation
Algorithmic Differentiation of programs gives sensitivities or gradients, useful for instance for :

• optimum shape design under constraints, multidisciplinary optimization, and more generally any
algorithm based on local linearization,

• inverse problems, such as parameter estimation and in particular 4Dvar data assimilation in climate
sciences (meteorology, oceanography),

• first-order linearization of complex systems, or higher-order simulations, yielding reduced models
for simulation of complex systems around a given state,

• adaption of parameters for classification tools such as Machine Learning systems, in which Adjoint
Differentiation is also known as backpropagation.

• mesh adaptation and mesh optimization with gradients or adjoints,

• equation solving with the Newton method,

• sensitivity analysis, propagation of truncation errors.

4.2. Multidisciplinary optimization
A CFD program computes the flow around a shape, starting from a number of inputs that define the shape and
other parameters. On this flow one can define optimization criteria e.g. the lift of an aircraft. To optimize
a criterion by a gradient descent, one needs the gradient of the criterion with respect to all inputs, and
possibly additional gradients when there are constraints. Adjoint AD is the most efficient way to compute
these gradients.

4.3. Inverse problems and Data Assimilation
Inverse problems aim at estimating the value of hidden parameters from other measurable values, that depend
on the hidden parameters through a system of equations. For example, the hidden parameter might be the
shape of the ocean floor, and the measurable values of the altitude and velocities of the surface. Figure 1
shows an example of an inverse problem using the glaciology code ALIF (a pure C version of ISSM [30]) and
its AD-adjoint produced by Tapenade.

One particular case of inverse problems is data assimilation [31] in weather forecasting or in oceanography.
The quality of the initial state of the simulation conditions the quality of the prediction. But this initial state
is not well known. Only some measurements at arbitrary places and times are available. A good initial state
is found by solving a least squares problem between the measurements and a guessed initial state which itself
must verify the equations of meteorology. This boils down to solving an adjoint problem, which can be done
though AD [33]. The special case of 4Dvar data assimilation is particularly challenging. The 4th dimension
in “4D” is time, as available measurements are distributed over a given assimilation period. Therefore the least
squares mechanism must be applied to a simulation over time that follows the time evolution model. This
process gives a much better estimation of the initial state, because both position and time of measurements
are taken into account. On the other hand, the adjoint problem involved is more complex, because it must
run (backwards) over many time steps. This demanding application of AD justifies our efforts in reducing the
runtime and memory costs of AD adjoint codes.
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Figure 1. Assimilation of the basal friction under Pine Island glacier, West Antarctica. The final simulated surface
velocity (b) is made to match the observed surface velocity (c), by estimation of the basal friction (e). A reference

basal friction (f) is obtained by another data assimilation using the hand=written adjoint of ISSM
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4.4. Linearization
Simulating a complex system often requires solving a system of Partial Differential Equations. This can be too
expensive, in particular for real-time simulations. When one wants to simulate the reaction of this complex
system to small perturbations around a fixed set of parameters, there is an efficient approximation: just suppose
that the system is linear in a small neighborhood of the current set of parameters. The reaction of the system
is thus approximated by a simple product of the variation of the parameters with the Jacobian matrix of the
system. This Jacobian matrix can be obtained by AD. This is especially cheap when the Jacobian matrix
is sparse. The simulation can be improved further by introducing higher-order derivatives, such as Taylor
expansions, which can also be computed through AD. The result is often called a reduced model.

4.5. Mesh adaptation
Some approximation errors can be expressed by an adjoint state. Mesh adaptation can benefit from this. The
classical optimization step can give an optimization direction not only for the control parameters, but also for
the approximation parameters, and in particular the mesh geometry. The ultimate goal is to obtain optimal
control parameters up to a precision prescribed in advance.

5. New Software and Platforms

5.1. AIRONUM
KEYWORDS: Computational Fluid Dynamics - Turbulence

FUNCTIONAL DESCRIPTION: Aironum is an experimental software that solves the unsteady compressible
Navier-Stokes equations with k-epsilon, LES-VMS and hybrid turbulence modelling on parallel platforms,
using MPI. The mesh model is unstructured tetrahedrization, with possible mesh motion.

• Participant: Alain Dervieux

• Contact: Alain Dervieux

• URL: http://www-sop.inria.fr/tropics/aironum

5.2. TAPENADE
KEYWORDS: Static analysis - Optimization - Compilation - Gradients

SCIENTIFIC DESCRIPTION: Tapenade implements the results of our research about models and static analyses
for AD. Tapenade can be downloaded and installed on most architectures. Alternatively, it can be used as a
web server. Higher-order derivatives can be obtained through repeated application.

Tapenade performs sophisticated data-flow analysis, flow-sensitive and context-sensitive, on the complete
source program to produce an efficient differentiated code. Analyses include Type-Checking, Read-Write
analysis, and Pointer analysis. AD-specific analyses include the so-called Activity analysis, Adjoint Liveness
analysis, and TBR analysis.

FUNCTIONAL DESCRIPTION: Tapenade is an Algorithmic Differentiation tool that transforms an original
program into a new program that computes derivatives of the original program. Algorithmic Differentiation
produces analytical derivatives, that are exact up to machine precision. Adjoint-mode AD can compute
gradients at a cost which is independent from the number of input variables. Tapenade accepts source programs
written in Fortran77, Fortran90, or C. It provides differentiation in the following modes: tangent, vector
tangent, adjoint, and vector adjoint.

http://www-sop.inria.fr/tropics/aironum
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NEWS OF THE YEAR: - Continued development of multi-language capacity: AD of codes mixing Fortran and
C - Continued front-end for C++ (using Clang-LLVM) - Preliminary work, including refactoring, in view of
future Open-Source distribution
• Participants: Laurent Hascoët and Valérie Pascual
• Contact: Laurent Hascoët
• URL: http://www-sop.inria.fr/tropics/tapenade.html

6. New Results
6.1. Towards Algorithmic Differentiation of C++

Participants: Laurent Hascoët, Valérie Pascual, Frederic Cazals [ABS team, Inria Sophia-Antipolis].

Our goal is to extend Tapenade for C++. We further developed our external parser for C++, built on
top of Clang-LLVM https://clang.llvm.org/. This parser is now connected to the input formalism “IL” of
Tapenade. Tapenade now manages enough constructs of Object languages to be able to build its own Internal
Representation (IR) and to regenerate back from the IR a non-transformed C++ source.

In the present development stage, this back-and-forth chain works on several small C++ codes. Still, many
issues remain on the large example provided by the ABS team. We are working to solve those progressively.
The lack of serious development documentation on the Clang internals obviously doesn’t help.

The next development stage will be to adapt the analysis and differentiation components of Tapenade to the
new Object constructs of the IR. This development has not started yet. Upstream this development, we need
to devise an extended AD model correspondingly. This research part is in progress.

6.2. AD of mixed-language codes
Participants: Valérie Pascual, Laurent Hascoët.

We extend Tapenade to differentiate codes that mix different languages, for both tangent and adjoint modes
of AD. Our motivating application is Calculix, a 3-D Structural Finite Element code that mixes Fortran and
C. This year we improved the memory representation of Tapenade’s IR to handle the C-Fortran memory
correspondence (commons, structs...) defined by the Fortran standard.

C files (aka “translation units”) and Fortran modules are two instances of the more general notion of “package”
for which we have developed a unified representation in Tapenade, that also handles C++ namespaces.

6.3. Application to large industrial codes
Participants: Valérie Pascual, Laurent Hascoët, Bruno Maugars [ONERA], Sébastien Bourasseau [ONERA],
Cédric Content [ONERA], Jose I. Cardesa [IMFT], Christophe Airiau [IMFT].

We support industrial users with their first experiments of Algorithmic Differentiation of large in-house codes.
This concerned two industrial codes this year.

One application is with ONERA on their ElsA CFD platform (Fortran 90). This is the continuation of a
collaboration started in 2018. Both tangent and adjoint models of the kernel of ElsA were built successfully
with Tapenade. This year’s work was mostly about improving efficiency. It is worth noticing that this
application was performed inside ONERA by ONERA engineers (Bruno Maugars, Sébastien Bourasseau,
Cédric Content) with no need for installation of ElsA inside Inria. We take this as a sign of maturity of
Tapenade. Our contribution is driven by development meetings, in which we point out some strategies and
tool options to improve efficiency of the adjoint code. As a result from these discussions, we developed
improved strategies and AD model, that will be useful to other tools. These improvements deal mostly with
the adjoint of vectorized code. We prepared together an aticle that describes the architecture of a modular and
AD-friendly ElsA, together with the corresponding extensions of the AD model of Tapenade. This article has
been submitted to “Computers and Fluids”.

http://www-sop.inria.fr/tropics/tapenade.html
https://clang.llvm.org/
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The other application ultimately targets AD of the “Jaguar” code, developed jointly by ONERA, CERFACS,
and IMFT in Toulouse. This is a collaboration with Jose I. Cardesa and Christophe Airiau, both at IMFT. After
a relatively easy tangent differentiation, most of the effort was devoted to obtaining a running and efficient
adjoint code. Not too surprisingly, the main source of trouble was the Message-Passing parallel aspect on the
application code. This underlined a lack of debugging support for adjoint-differentiated code. Given the run-
time of the simulation that we consider (from hours to a few days on a 4110 processors platform), efficiency is
crucial. We used the optimal binomial checkpointing scheme at the time-stepping level. However, performance
of the adjoint code can probably be improved further with a better checkpointing scheme on the call tree.
This calls in particular for AD-specific performance profiling tools, that we are planning to develop. We
prepared together an article that describes this succesful experiment, which is now submitted to “Journal of
Computational Science”.

Two collaborations are in preparation for next year, one with Jan Hueckelheim at Argonne National Lab.
about SIMD parallel codes, and one with Stefano Carli at KU Leuven about adjoint AD of the plasma code
SOLPS-ITER.

6.4. Control of approximation errors
Participants: Alain Dervieux, Loic Frazza [Gamma3 team, Inria-Saclay], Adrien Loseille [Gamma3 team,
Inria-Saclay], Frédéric Alauzet [Gamma3 team, Inria-Saclay], Anca Belme [university of Paris 6], Alexandre
Carabias [Lemma].

Reducing approximation errors as much as possible is a particular kind of optimal control problem. We
formulate it exactly this way when we look for the optimal metric of the mesh, which minimizes a user-
specified functional (goal-oriented mesh adaptation). In that case, the usual methods of optimal control apply,
using adjoint states that can be produced by Algorithmic Differentiation.

This year, we published the final revised versions of two conference papers [23], [21], we published in a
journal the final version of the adjoint-based mesh adaptation for Navier-Stokes flows [16]), and we published
in “Numerical Methods in Fluids” a work on nonlinear correctors extending [22]. Let us also mention the final
publication of the book “Uncertainty Management for Robust Industrial Design in Aeronautics”, edited by C.
Hirsch et al. in the Springer series Notes on Numerical Fluid Mechanics and Multidisciplinary Design (2019)
in which we have contributed chapters 20, 21, 45, and 48.

The monography on mesh adaptation currently being written by Alauzet, Loseille, Koobus and Dervieux now
involves all its chapters (14 chapters) and is being finalized.

6.5. Turbulence models
Participants: Alain Dervieux, Bruno Koobus, Stephen Wornom.

Modeling turbulence is an essential aspect of CFD. The purpose of our work in hybrid RANS/LES (Reynolds
Averaged Navier-Stokes / Large Eddy Simulation) is to develop new approaches for industrial applications of
LES-based analyses. In the applications targetted (aeronautics, hydraulics), the Reynolds number can be as
high as several tens of millions, far too high for pure LES models. However, certain regions in the flow can
be predicted better with LES than with usual statistical RANS models. These are mainly vortical separated
regions as assumed in one of the most popular hybrid models, the hybrid Detached Eddy Simulation (DES)
model. Here, “hybrid” means that a blending is applied between LES and RANS. An important difference
between a real life flow and a wind tunnel or basin is that the turbulence of the flow upstream of each body is
not well known.

The development of hybrid models, in particular DES in the litterature, has raised the question of the domain
of validity of these models. According to theory, these models should not be applied to flow involving laminar
boundary layers (BL). But industrial flows are complex flows and often present regions of laminar BL, regions
of fully developed turbulent BL and regions of non-equilibrium vortical BL. It is then mandatory for industrial
use that the new hybrid models give a reasonable prediction for all these types of flow. We concentrated on
evaluating the behavior of hybrid models for laminar BL and for vortical wakes. While less predictive than pure
LES on laminar BL, some hybrid models still give reasonable predictions for rather low Reynolds numbers.
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We have developed a new model relying on the hybridation of a DES model based on a k-ε closure with our
dynamic VMS model [13] [11]. Our purpose is to propose a model rather predictive in condition where the
engineer has not much information concerning the turbulence in the flow under study. This year, we continued
to improve this model and to test it for a large set of configurations with Reynolds numbers ranging from low
(laminar flows) to very large.

6.6. High order approximations
Participants: Alain Dervieux, Bruno Koobus, Stephen Wornom, Tanya Kozubskaya [Keldysh Institute of
Russian Academy].

High order approximations for compressible flows on unstructured meshes are facing many constraints that
increase their complexity i.e. their computational cost. This is clear for the largest class of approximation, the
class of k-exact schemes, which rely on a local polynomial representation of degree k. We are investigating
schemes which would solve as efficiently as possible the dilemma of choosing between an approximation with
a representation inside macro-elements which finally constrains the mesh, and a representation around each
individual cell, as in vertex formulations. This is a cooperation with the Keldysh Institute of Russian Academy
which whom we have already developed several families of superconvergent schemes.

6.7. Aeroacoustics
Participants: Alain Dervieux, Bruno Koobus, Stephen Wornom, Tanya Kozubskaya [Keldysh Institute of
Russian Academy].

The progress in highly accurate schemes for compressible flows on unstructured meshes (together with
advances in massive parallelization of these schemes) allows us to solve problems previously out of reach.
The three teams of Montpellier university (coordinator), Inria-Sophia and Keldysh Institute of Moscow have
written a proposal for cooperation on the subject of the extension of these methods to simulate the noise
emission of rotating machines (helicopters, future aerial vehicles, unmanned aerial vehicles, wind turbines...).
The proposal has been selected by ANR and RSF (Russian Science Foundation) for support for a program
duration of 4 years.

7. Dissemination

7.1. Promoting Scientific Activities
7.1.1. Scientific Events: Organisation
7.1.1.1. Member of the organizing committees

• Laurent Hascoët is on the organizing commitee of the EuroAD Workshops on Algorithmic Differ-
entiation (http://www.autodiff.org).

• Laurent Hascoët was on the organizing and program committees of the workshop “Program Trans-
formations for Machine Learning” at NeurIPS2019, Vancouver Canada, December 14th.

7.1.2. Invited Talks
Laurent Hascoët was invited to give a talk on AD for the “GdR Calcul”, at “Institut de Physique du Globe”,
Paris, January 24th.

7.1.3. Scientific Expertise
Alain Dervieux is Scientific Director for the LEMMA company.

http://www.autodiff.org
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