
IN PARTNERSHIP WITH:
Université de Bologne (Italie)

Activity Report 2019

Project-Team FOCUS

Foundations of Component-based Ubiquitous
Systems

IN COLLABORATION WITH: Dipartimento di Informatica - Scienza e Ingegneria (DISI), Universita’ di Bologna

RESEARCH CENTER
Sophia Antipolis - Méditerranée

THEME
Distributed programming and Soft-
ware engineering

Table of contents

1. Team, Visitors, External Collaborators . 1
2. Overall Objectives . 2
3. Research Program . 3

3.1. Foundations 1: Models 3
3.2. Foundations 2: Foundational calculi and interaction 3
3.3. Foundations 3: Type systems and logics 3
3.4. Foundations 4: Implicit computational complexity 3

4. Application Domains .3
4.1. Ubiquitous Systems 3
4.2. Service Oriented Computing and Cloud Computing 4

5. Highlights of the Year . 4
6. New Software and Platforms . 4

6.1. HoCA 4
6.2. JOLIE 5
6.3. NightSplitter 6
6.4. AIOCJ 6
6.5. CauDEr 7
6.6. SUNNY-AS 7
6.7. eco-imp 8

7. New Results . 8
7.1. Service-Oriented and Cloud Computing 8

7.1.1. Service-Oriented Computing and Internet of Things 8
7.1.2. Cloud Computing 9

7.2. Models for Reliability 9
7.3. Probabilistic Systems and Resource Control 9

7.3.1. Probabilistic Programming and Static Analysis 9
7.3.2. Higher-Order end Effectful Programs: Relational Reasoning 10
7.3.3. Alternative Probabilistic Models 10

7.4. Verification Techniques 11
7.4.1. Name Mobility and Coinductive Techniques 11
7.4.2. Deadlock Analysis 12
7.4.3. Static Analysis of Properties of Concurrent Programs 12

7.5. Computer Science Education 12
7.5.1. Computational Thinking, Unplugged Activities, and Constructionism 12
7.5.2. CS in Primary School 13
7.5.3. Growth Mindset and Transfer 13

7.6. Constraint Programming 13
8. Bilateral Contracts and Grants with Industry . 13
9. Partnerships and Cooperations . 14

9.1. National Initiatives 14
9.2. European Initiatives 14

9.2.1. FP7 & H2020 Projects 14
9.2.2. Collaborations with Major European Organizations 15

9.3. International Initiatives 15
9.3.1. Inria Associate Teams Not Involved in an Inria International Lab 15
9.3.2. Participation in Other International Programs 16

9.4. International Research Visitors 16
9.4.1.1. Sabbatical programme 16
9.4.1.2. Research Stays Abroad 16

2 Activity Report INRIA 2019

10. Dissemination . 17
10.1. Promoting Scientific Activities 17

10.1.1. Scientific Events: Organisation 17
10.1.1.1. General Chair, Scientific Chair 17
10.1.1.2. Member of the Organizing Committees 17

10.1.2. Scientific Events: Selection 17
10.1.3. Journals 18
10.1.4. Invited Talks 18
10.1.5. Leadership within the Scientific Community 18
10.1.6. Administration duties 18

10.2. Teaching - Supervision - Juries 19
10.2.1. Teaching 19
10.2.2. Supervision 20
10.2.3. Juries 20

10.3. Popularization 20
11. Bibliography .21

Project-Team FOCUS

Creation of the Project-Team: 2010 January 01

Keywords:

Computer Science and Digital Science:
A1. - Architectures, systems and networks
A1.3. - Distributed Systems
A1.4. - Ubiquitous Systems
A2.1.1. - Semantics of programming languages
A2.1.6. - Concurrent programming
A2.1.7. - Distributed programming
A2.4.3. - Proofs

Other Research Topics and Application Domains:
B6.1. - Software industry
B6.3. - Network functions
B6.4. - Internet of things
B9.5.1. - Computer science

1. Team, Visitors, External Collaborators
Research Scientist

Martin Avanzini [Inria, Researcher]
Faculty Members

Mario Bravetti [University Bologna, Associate Professor]
Ugo Dal Lago [University Bologna, Professor]
Maurizio Gabbrielli [University Bologna, Professor]
Ivan Lanese [University Bologna, Associate Professor]
Cosimo Laneve [University Bologna, Professor]
Simone Martini [University Bologna, Professor]
Davide Sangiorgi [Team leader, University Bologna, Professor, HDR]
Gianluigi Zavattaro [University Bologna, Professor]

Post-Doctoral Fellows
Francesco Gavazzo [University Bologna, Post-Doctoral Fellow, from Nov 2019]
Guillaume Geoffroy [University Bologna, Post-Doctoral Fellow, from Dec 2019]
Thomas Nicolas Georges Leventis [Inria, Post-Doctoral Fellow, from Apr 2019 until Aug 2019]
Michael Lodi [University Bologna, Post-Doctoral Fellow, from Oct 2019]
Doriana Medic [Inria, Post-Doctoral Fellow, from Aug 2019]
Paolo Pistone [University Bologna, Post-Doctoral Fellow, from Dec 2019]
Akira Yoshimizu [Inria, Post-Doctoral Fellow, until Jan 2019]
Stefano Pio Zingaro [University Bologna, Post-Doctoral Fellow, from Nov 2019]

PhD Students
Melissa Antonelli [University Bologna, PhD Student, from Dec 2019]
Raphaelle Crubillé [Univ Denis Diderot, PhD Student]
Adrien Durier [ENS Lyon and University Bologna, PhD Student]
Tong Liu [University Bologna, PhD Student, until Oct 2019]

https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2019

Michael Lodi [University Bologna, PhD Student, until Oct 2019]
Gabriele Vanoni [University Bologna, PhD Student]
Stefano Pio Zingaro [University Bologna, PhD Student, until Oct 2019]

Administrative Assistant
Christine Claux [Inria, Administrative Assistant]

Visiting Scientist
Emma Kerinec [University Bologna, until Mar 2019]

External Collaborators
Saverio Giallorenzo [University of Southern Denmark]
Claudio Guidi [Italiana Software]
Daniel Hirschkoff [Ecole Normale Supérieure Lyon]
Fabrizio Montesi [University of Southern Denmark]

2. Overall Objectives

2.1. Overall Objectives
Ubiquitous Computing refers to the situation in which computing facilities are embedded or integrated into
everyday objects and activities. Networks are large-scale, including both hardware devices and software
agents. The systems are highly mobile and dynamic: programs or devices may move and often execute
in networks owned and operated by others; new devices or software pieces may be added; the operating
environment or the software requirements may change. The systems are also heterogeneous and open: the
pieces that form a system may be quite different from each other, built by different people or industries, even
using different infrastructures or programming languages; the constituents of a system only have a partial
knowledge of the overall system, and may only know, or be aware of, a subset of the entities that operate on
the system.

A prominent recent phenomenon in Computer Science is the emerging of interaction and communication
as key architectural and programming concepts. This is especially visible in ubiquitous systems. Complex
distributed systems are being thought of and designed as structured composition of computational units,
usually referred to as components. These components are supposed to interact with each other and such
interactions are supposed to be orchestrated into conversations and dialogues. In the remainder, we will write
CBUS for Component-Based Ubiquitous Systems.

In CBUS, the systems are complex. In the same way as for complex systems in other disciplines, such as
physics, economics, biology, so in CBUS theories are needed that allow us to understand the systems, design
or program them, analyze them.

Focus investigates the semantic foundations for CBUS. The foundations are intended as instrumental to
formalizing and verifying important computational properties of the systems, as well as to proposing linguistic
constructs for them. Prototypes are developed to test the implementability and usability of the models and the
techniques. Throughout our work, ‘interaction’ and ’component’ are central concepts.

The members of the project have a solid experience in algebraic and logical models of computation, and related
techniques, and this is the basis for our study of ubiquitous systems. The use of foundational models inevitably
leads to opportunities for developing the foundational models themselves, with particular interest for issues of
expressiveness and for the transplant of concepts or techniques from a model to another one.

Project-Team FOCUS 3

3. Research Program

3.1. Foundations 1: Models
The objective of Focus is to develop concepts, techniques, and possibly also tools, that may contribute to the
analysis and synthesis of CBUS. Fundamental to these activities is modeling. Therefore designing, developing
and studying computational models appropriate for CBUS is a central activity of the project. The models are
used to formalise and verify important computational properties of the systems, as well as to propose new
linguistic constructs.

The models we study are in the process calculi (e.g., the π-calculus) and λ-calculus tradition. Such models,
with their emphasis on algebra, well address compositionality—a central property in our approach to problems.
Accordingly, the techniques we employ are mainly operational techniques based on notions of behavioural
equivalence, and techniques based on algebra, mathematical logics, and type theory.

3.2. Foundations 2: Foundational calculi and interaction
Modern distributed systems have witnessed a clear shift towards interaction and conversations as basic building
blocks for software architects and programmers. The systems are made by components, that are supposed to
interact and carry out dialogues in order to achieve some predefined goal; Web services are a good example of
this. Process calculi are models that have been designed precisely with the goal of understanding interaction
and composition. The theory and tools that have been developed on top of process calculi can set a basis with
which CBUS challenges can be tackled. Indeed industrial proposals of languages for Web services such as
BPEL are strongly inspired by process calculi, notably the π-calculus.

3.3. Foundations 3: Type systems and logics
Type systems and logics for reasoning on computations are among the most successful outcomes in the
history of the research in λ-calculus and (more recently) in process calculi. Type systems can also represent a
powerful means of specifying dialogues among components of CBUS. For instance—again referring to Web
services—current languages for specifying interactions only express basic connectivity, ignoring causality
and timing aspects (e.g., an intended order on the messages), and the alternative is to use Turing Complete
languages that are however undecidable. Types can come at hand here: they can express causality and order
information on messages [53], [49], [54], while remaining decidable systems.

3.4. Foundations 4: Implicit computational complexity
A number of elegant and powerful results have been recently obtained in implicit computational complexity
in the λ-calculus in which ideas from Linear Logics enable a fine-grained control over computations. This
experience can be profitable when tackling issues of CBUS related to resource consumption, such as resources
allocation, access to resources, certification of bounds on resource consumption (e.g., ensuring that a service
will answer to a request in time polynomial with respect to the size of the input data).

4. Application Domains

4.1. Ubiquitous Systems
The main application domain for Focus are ubiquitous systems, broadly systems whose distinctive features
are: mobility, high dynamicity, heterogeneity, variable availability (the availability of services offered by the
constituent parts of a system may fluctuate, and similarly the guarantees offered by single components may not
be the same all the time), open-endedness, complexity (the systems are made by a large number of components,
with sophisticated architectural structures). In Focus we are particularly interested in the following aspects.

4 Activity Report INRIA 2019

• Linguistic primitives for programming dialogues among components.
• Contracts expressing the functionalities offered by components.
• Adaptability and evolvability of the behaviour of components.
• Verification of properties of component systems.
• Bounds on component resource consumption (e.g., time and space consumed).

4.2. Service Oriented Computing and Cloud Computing
Today the component-based methodology often refers to Service Oriented Computing. This is a specialized
form of component-based approach. According to W3C, a service-oriented architecture is “a set of components
which can be invoked, and whose interface descriptions can be published and discovered”. In the early days
of Service Oriented Computing, the term services was strictly related to that of Web Services. Nowadays,
it has a much broader meaning as exemplified by the XaaS (everything as a service) paradigm: based on
modern virtualization technologies, Cloud computing offers the possibility to build sophisticated service
systems on virtualized infrastructures accessible from everywhere and from any kind of computing device.
Such infrastructures are usually examples of sophisticated service oriented architectures that, differently from
traditional service systems, should also be capable to elastically adapt on demand to the user requests.

5. Highlights of the Year
5.1. Highlights of the Year
5.1.1. Awards

• Ugo Dal Lago has been awarded an ERC CoG for his project “Differential Program Semantics”
(DIAPASoN), which started on March 1st, 2019.

• Francesco Gavazzo has received the award for “Best Italian PhD Thesis in Theoretical Computer
Science”, by the Italian Chapter of EATCS (European Association for Theoretical Computer Sci-
ence)

• Raphaëlle Crubillé has been awarded the “prix de thèse Gilles Kahn 2019 (Societé Informatique de
France and Académie des Sciences)

6. New Software and Platforms
6.1. HoCA

Higher-Order Complexity Analysis

KEYWORDS: Ocaml - Verification - Runtime Complexity Analysis

SCIENTIFIC DESCRIPTION: Over the last decade, various tools for the static analysis of resource properties
of programs have emerged. In particular, the rewriting community has recently developed several tools for
the time complexity analysis of term rewrite systems. These tools have matured and are nowadays able
to treat non-trivial programs, in a fully automatic setting. However, none of these automatic complexity
analysers can deal with higher-order functions, a pervasive feature of functional programs. HoCA (Higher-
Order Complexity Analyser) overcomes this limitation by translating higher-order programs – in the form
of side-effect free OCaml programs - into equivalent first-order rewrite systems. At the heart of our tool
lies Reynold’s defunctionalization technique. Defunctionalization however is not enough. Resulting programs
have a recursive structure too complicated to be analysed automatically in all but trivial cases. To overcome
this issue, HoCA integrates a handful of well established program transformation techniques, noteworthy
dead-code elimination, inlining, instantiation and uncurrying. A complexity bound on the resulting first-order
program can be relayed back reliably to the higher-order program of interest. A detailed description of HoCA
is available on http://arxiv.org/abs/1506.05043.

Project-Team FOCUS 5

FUNCTIONAL DESCRIPTION: HoCA is an abbreviation for Higher-Order Complexity Analysis, and is meant
as a laboratory for the automated complexity analysis of higher-order functional programs. Currently, HoCA
consists of one executable pcf2trs which translates a pure subset of OCaml to term rewrite systems, in a
complexity reflecting manner. As a first step, HoCA desugars the given program to a variation of Plotkin’s
PCF with data-constructors. Via Reynold’s defunctionalization, the PCF program is turned into an applicative
term rewrite system (ATRS for short), call-by-value reductions of the PCF program are simulated by the ATRS
step-by-step, on the ATRS, and various complexity reflecting transformations are performed: inlining, dead-
code-elminiation, instantiation of higher-order variables through a call-flow-analysis and finally uncurrying.
This results finally in a first-order rewrite system, whose runtime-complexity reflects the complexity of the
initial program, asymptotically.

• Participants: Martin Avanzini and Ugo Dal Lago

• Contact: Ugo Dal Lago

• URL: http://cbr.uibk.ac.at/tools/hoca/

6.2. JOLIE
Java Orchestration Language Interpreter Engine

KEYWORD: Microservices

SCIENTIFIC DESCRIPTION: Jolie enforces a strict separation of concerns between behaviour, describing the
logic of the application, and deployment, describing the communication capabilities. The behaviour is defined
using the typical constructs of structured sequential programming, communication primitives, and operators
to deal with concurrency (parallel composition and input choice). Jolie communication primitives comprise
two modalities of interaction typical of Service-Oriented Architectures (SOAs), namely one-way (sends an
asynchronous message) and request-response (sends a message and waits for an answer). A main feature of
the Jolie language is that it allows one to switch among many communication media and data protocols in a
simple, uniform way. Since it targets the field of SOAs, Jolie supports the main communication media (TCP/IP
sockets, Bluetooth L2CAP, Java RMI, and Unix local sockets) and data protocols (HTTP, JSON-RPC, XML-
RPC, SOAP and their respective SSL versions) from this area.

FUNCTIONAL DESCRIPTION: Jolie is a language for programming service-oriented and microservice appli-
cations. It directly supports service-oriented abstractions such as service, port, and session. Jolie allows to
program a service behaviour, possibly obtained by composing existing services, and supports the main com-
munication protocols and data formats used in service-oriented architectures. Differently from other service-
oriented programming languages such as WS-BPEL, Jolie is based on a user-friendly Java-like syntax (more
readable than the verbose XML syntax of WS-BPEL). Moreover, the kernel of Jolie is equipped with a formal
operational semantics. Jolie is used to provide proof of concepts around Focus activities.

RELEASE FUNCTIONAL DESCRIPTION: There are many fixes to the HTTP extension, improvements to the
embedding engine for Javascript programs, and improvements to the support tools jolie2java and wsdl2jolie.

NEWS OF THE YEAR: During 2019 the Jolie project saw three major actions.

The first action regards the build system used for the development of the language, which has been transitioned
to Maven, the main build automation tool used for Java projects. The move to Maven is dictated by two
needs. The first is to streamline the development and release processes of Jolie, as Maven greatly helps in
obtaining, updating, and managing library dependencies. The second necessity addressed by Maven is helping
in partitioning the many sub-projects that constitute the Jolie codebase, reducing development and testing
times. Having Jolie as a Maven project also helps in providing Jolie sub-components (as Maven libraries) to
other projects. Finally, the move to Maven is set within a larger effort to expedite the inclusion in the main
Jolie development branch of contributions by new members of its growing community.

http://cbr.uibk.ac.at/tools/hoca/

6 Activity Report INRIA 2019

The second action regards the transition to Netty as a common framework to support communication protocols
and data formats in Jolie. Netty is a widely-adopted Java framework for the development of network
applications, and it was used in 2018 to successfully support several IoT communication protocols and
data formats in a Jolie spin-off project, called JIoT. The work in 2019 integrated into the Jolie codebase
the protocols and data format developed within the JIoT project and pushed towards the integration of the
Netty development branch into the main branch of the Jolie project (i.e., re-implementing using Netty the
many protocol and data-formats already supported by Jolie). The Netty development branch is currently in a
beta phase and it is subject to thorough in-production tests, to ensure consistent behaviour with the previous
implementation.

The third action regards the development and support for a new official IDE for Jolie. Hence, along with the
ones already existing for the Atom and Sublime Text text editors, Jolie developers can use the Jolie plugin
(based on the Language Server Protocol) for the Visual Studio Code text editor to obtain syntax highlighting,
documentation aids, file navigation, syntax checking, semantic checking, and quick-run shortcuts for their
Jolie programs.

In addition to the above actions, in 2019 Jolie transitioned through three minor releases and a major one, from
1.7.1 to 1.8.2. The minor releases mainly fixed bugs, improved performance, and included new protocol/data-
format functionalities. The major release included a slim-down of the notation for the composition of
statements, types definitions, and tree structures, for a terser codebase. Upgrades to 1.8.2 also introduced:
timeouts for solicit-response invocations to handle the interruption of long-standing requests, more user-
friendly messages from the Jolie interpreter, including easier-to-parse errors and the pretty-printing of data
structures, for a more effective development and debugging experience.

In 2019 Jolie also saw the development of a new Jolie library, called TQuery, which is a query framework
integrated into the Jolie language for the data handling/querying of Jolie trees. Tquery is based on a tree-based
instantiation (language and semantics) of MQuery, a sound variant of the Aggregation Framework, the query
language of the most popular document-oriented database: MongoDB. Usage scenarios for Tquery are (but
not limited to) eHealth, the Internet-of-Things, and Edge Computing, where data should be handled in an
ephemeral way, i.e., in a real-time manner but with the constraint that data shall not persist in the system.

• Participants: Claudio Guidi, Fabrizio Montesi, Maurizio Gabbrielli, Saverio Giallorenzo and Ivan
Lanese

• Contact: Fabrizio Montesi
• URL: http://www.jolie-lang.org/

6.3. NightSplitter
KEYWORD: Constraint-based programming

FUNCTIONAL DESCRIPTION: Nightsplitter deals with the group preference optimization problem. We pro-
pose to split users into subgroups trying to optimize members’ satisfaction as much as possible. In a large
city with a huge volume of activity information, designing subgroup activities and avoiding time conflict is a
challenging task. Currently, the Demo is available only for restaurant and movie activities in the city of Paris.

• Contact: Tong Liu
• URL: http://cs.unibo.it/t.liu/nightsplitter/

6.4. AIOCJ
Adaptive Interaction-Oriented Choreographies in Jolie

KEYWORD: Dynamic adaptation

SCIENTIFIC DESCRIPTION: AIOCJ is an open-source choreographic programming language for developing
adaptive systems. It allows one to describe a full distributed system as a unique choreographic program and
to generate code for each role avoiding by construction errors such as deadlocks. Furthermore, it supports
dynamic adaptation of the distributed system via adaptation rules.

http://www.jolie-lang.org/
http://cs.unibo.it/t.liu/nightsplitter/

Project-Team FOCUS 7

FUNCTIONAL DESCRIPTION: AIOCJ is a framework for programming adaptive distributed systems based
on message passing. AIOCJ comes as a plugin for Eclipse, AIOCJ-ecl, allowing to edit descriptions of
distributed systems written as adaptive interaction-oriented choreographies (AIOC). From interaction-oriented
choreographies the description of single participants can be automatically derived. Adaptation is specified by
rules allowing one to replace predetermined parts of the AIOC with a new behaviour. A suitable protocol
ensures that all the participants are updated in a coordinated way. As a result, the distributed system follows
the specification given by the AIOC under all changing sets of adaptation rules and environment conditions.
In particular, the system is always deadlock free. AIOCJ can interact with external services, seen as functions,
by specifying their URL and the protocol they support (HTTP, SOAP, ...). Deadlock-freedom guarantees of
the application are preserved provided that those services do not block.

NEWS OF THE YEAR: In 2019 we performed a major upgrade to AIOCJ: the possibility to introduce new
roles, absent from a running choreography, within a given adaptation rule. The inclusion of new roles is
supported by a slight, incremental change in the AIOCJ syntax and by a new component of the AIOCJ runtime
environment.

• Participants: Ivan Lanese, Jacopo Mauro, Maurizio Gabbrielli, Mila Dalla Preda and Saverio
Giallorenzo

• Contact: Saverio Giallorenzo
• URL: http://www.cs.unibo.it/projects/jolie/aiocj.html

6.5. CauDEr
Causal-consistent Debugger for Erlang

KEYWORDS: Debug - Reversible computing

SCIENTIFIC DESCRIPTION: The CauDEr reversible debugger is based on the theory of causal-consistent
reversibility, which states that any action can be undone provided that its consequences, if any, are undone
beforehand. This theory relies on a causal semantic for the target language, and can be used even if different
processes have different notions of time

FUNCTIONAL DESCRIPTION: CauDEr is a debugger allowing one to explore the execution of concurrent
Erlang programs both forward and backward. Notably, when going backward, any action can be undone
provided that its consequences, if any, are undone beforehand. The debugger also provides commands to
automatically find relevant past actions (e.g., send of a given message) and undo them, including their
consequences. Forward computation can be driven by a log taken from a computation in the standard
Erlang/OTP environment. An action in the log can be selected and replayed together with all and only its
causes. The debugger enables one to find a bug by following the causality links from the visible misbehaviour
to the bug. The debugger takes an Erlang program but debugging is done on its translation into Core Erlang.

NEWS OF THE YEAR: Work in 2019 consisted in maintenance, bug fixing and some minor refinements, in
particular on the logging part.

• Partner: Universitat Politècnica de València
• Contact: Ivan Lanese
• URL: https://github.com/mistupv/cauder

6.6. SUNNY-AS
SUNNY FOR ALGORITHM SELECTION

KEYWORDS: Optimisation - Machine learning

FUNCTIONAL DESCRIPTION: SUNNY-AS is a portfolio solver derived from SUNNY-CP for Algorithm
Selection Problems (ASLIB). The goal of SUNNY-AS is to provide a flexible, configurable, and usable
portfolio solver that can be set up and executed just like a regular individual solver.

• Contact: Tong Liu
• URL: https://github.com/lteu/oasc

http://www.cs.unibo.it/projects/jolie/aiocj.html
https://github.com/mistupv/cauder
https://github.com/lteu/oasc

8 Activity Report INRIA 2019

6.7. eco-imp
Expected Cost Analysis for Imperative Programs

KEYWORDS: Software Verification - Automation - Runtime Complexity Analysis - Randomized algorithms

FUNCTIONAL DESCRIPTION: Eco-imp is a cost analyser for probabilistic and non-deterministic imperative
programs. Particularly, it features dedicated support for sampling from distributions, and can thereby accu-
rately reason about the average case complexity of randomized algorithms, in a fully automatic fashion. The
tool is based on an adaption of the ert-calculus of Kaminski et al., extended to the more general setting of
cost analysis where the programmer is free to specify a (non-uniform) cost measure on programs. The main
distinctive feature of eco-imp, though, is the combination of this calculus with an expected value analysis.
This provides the glue to analyse program components in complete independence, that is, the analysis is mod-
ular and thus scalable. As a consequence, confirmed by our experiments, eco-imp runs on average orders of
magnitude faster than comparable tools: execution times of several seconds become milliseconds.

• Contact: Martin Avanzini

• URL: http://www-sop.inria.fr/members/Martin.Avanzini/software/eco-imp/

7. New Results

7.1. Service-Oriented and Cloud Computing
Participants: Mario Bravetti, Maurizio Gabbrielli, Saverio Giallorenzo, Claudio Guidi, Ivan Lanese, Cosimo
Laneve, Fabrizio Montesi, Gianluigi Zavattaro, Stefano Pio Zingaro.

7.1.1. Service-Oriented Computing and Internet of Things
Session types, i.e. types for structuring service communication, are recently being integrated into mainstream
programming languages. In practice, a very important notion for dealing with such types is that of subtyping,
since it allows for typing larger classes of system, where a program has not precisely the expected behavior
but a similar one. We recently showed that, when asynchronous communication is considered, unfortunately,
such a subtyping relation is undecidable. In [27] we present an algorithm (the first one that does not restrict
type syntax or limit communication) and a tool for checking asynchronous subtyping which is sound, but not
complete: in some cases it terminates without returning a final verdict. In [29] we discuss the relationship
between session types and service behavioural contracts and we show the existence of a fully abstract
interpretation of session types into a fragment of contracts, mapping subtyping into binary compliance-
preserving contract refinement. This also yields an original undecidability result for asynchronous contract
refinement.

In [43] we elaborate on our previous work on choreographies, which specify in a single artefact the expected
behaviour of all the participants in a service oriented system. In particular, we extend dynamic choreographies,
which model system updates at runtime, with the feature of dynamic inclusion of new unforeseen participants.
In [30] we propose, in the context of platooning (a freight organization system where a group of vehicles
follows a predefined trajectory maintaining a desired spatial pattern), a two layered, composable technical
solution for federated platooning: a decentralized overlay network that regulates the interactions among the
stakeholders, useful to mitigate issues linked to data safety and trustworthiness; and a dynamic federation
platform, needed to monitor and interrupt deviant behaviors of federated members.

Finally, in [44] we focused on the use of our service-oriented language Jolie in an Internet of Things
(IoT) setting. Technically, a key feature of Jolie is that it supports uniform linguistic abstractions to exploit
heterogeneous communication stacks, i.e. for service oriented computing, protocols such as TCP/IP, Bluetooth,
and RMI at transport level, and HTTP and SOAP at application level. We extend Jolie in order to support,
uniformly as well, also the two most adopted protocols for IoT communication, i.e. CoAP and MQTT, and we
report our experience on a case study on home automation.

http://www-sop.inria.fr/members/Martin.Avanzini/software/eco-imp/

Project-Team FOCUS 9

7.1.2. Cloud Computing
In [18] we investigate the problem of modeling the optimal and automatic deployment of cloud applications
and we experiment such an approach by applying it to the Abstract Behavioural Specification language ABS.
In [28] we show that automated deployment, proven undecidable in the general case, is, instead, algorithmi-
cally treatable for the specific case of microservices: we implement an automatic optimal deployment tool
and compute deployment plans for a realistic microservice architecture. In [35] we propose a core formal pro-
gramming model (combining features from λ-calculus and π-calculus) for serverless computing, also known
as Functions-as-a-Service: a recent paradigm aimed at simplifying the programming of cloud applications.
The idea is that developers design applications in terms of functions and the infrastructure deals automatically
with cloud deployment in terms of distribution and scaling.

7.2. Models for Reliability
Participants: Ivan Lanese, Doriana Medic.

7.2.1. Reversibility
We have continued the study of reversibility started in the past years. First, we continued to study reversibility
in the context of the Erlang programming language. In particular, we devised a technique to record a program
execution and replay it [37] inside the causal-consistent reversible debugger for Erlang we developed in the
last years. More precisely, we may not replay the exact same execution, but any execution which is causal-
consistent to it. We proved that this is enough to replay misbehaviours, hence to look for the bugs causing
them. Second, we compared [48] various approaches to causal-consistent reversibility in CCS and π-calculus.
In CCS, we showed that the two main approaches for causal-consistent reversibility, namely the ones of RCCS
[51] and of CCSk [55] give rise to isomorphic LTSs (up to some structural rules). In π-calculus, we showed
that one can define a causal semantics for π-calculus parametric on the data structure used to track extruded
names, and that different instances capture causal semantics from the literature. All such semantics can be used
to define (different) causal-consistent reversible semantics. As a final contribution, we studied reversibility in
the context of Petri nets [41]. There, we do not considered causal-consistent reversibility, but a notion of
local reversibility typical of Petri nets. In particular, we say that a transition is reversible if one can add a set of
effect-reverses (an effect-reverse, if it can trigger, undoes the effect of the transition) to undo it in each marking
reachable by it, without changing the set of reachable markings. We showed that, contrarily to what happens
in bounded nets, transition reversibility is not decidable in general unbounded nets. It is however decidable
in some significant subclasses of Petri nets, in particular all transitions of cyclic nets (nets where the initial
marking is reachable from any state) are reversible. Finally, we show how to restructure nets by adding new
places so to make their transitions reversible without altering their behaviour.

7.3. Probabilistic Systems and Resource Control
Participants: Martin Avanzini, Mario Bravetti, Raphaelle Crubillé, Ugo Dal Lago, Francesco Gavazzo,
Gabriele Vanoni, Akira Yoshimizu.

7.3.1. Probabilistic Programming and Static Analysis
In FoCUS, we are interested in studying probabilistic higher-order programming languages and, more
generally, the fundamental properties of probabilistic computation when placed in an interactive scenario,
for instance concurrency. One of the most basic but nevertheless desirable properties of programs is of course
termination. Termination can be seen as a minimal guarantee about the time complexity of the underlying
program. When probabilistic choice comes into play, termination can be defined by stipulating that a program
is terminating if its probability of convergence is 1, this way giving rise to the notion of almost sure
termination. Alternatively, a probabilistic program is said to be positively almost surely terminating if its
average runtime is finite. The latter condition easily implies the former. Termination, already undecidable for
deterministic (universal) programming languages, remains so in the presence of probabilistic choice, even
becoming provably harder.

10 Activity Report INRIA 2019

The FoCUS team has been the first in advocating the use of types to guarantee probabilistic termination,
in the form of a monadic sized-type system [17]. Developed in collaboration with Grellois by Dal Lago,
this system substantially generalises usual sized-types, and allows this way to capture probabilistic, higher-
order programs which terminate almost surely. Complementary, in collaboration with Ghyselen, Avanzini
and Dal Lago have recently defined a formal system for reasoning about the expected runtime of higher-
order probabilistic programs, through a refinement type system capable of modeling probabilistic effects with
exceptional accuracy [26]. To the best of our knowledge, this provides the first formal methodology for average
case complexity analysis of higher-order programs. Remarkably, the system is also extensionally complete.

In 2018, we have started to investigate the foundations for probabilistic abstract reduction systems (proba-
bilistic ARSs), which constitute a general framework to study fundamental properties of probabilistic compu-
tations, such as termination or confluence. In 2019, we have significantly revised this initial development [11].
Particularly, we have refined Lyapunov ranking functions by conceiving them as probabilistic embeddings.
The ramifications of this work are two-fold. First, we obtain a sound and complete method for reasoning about
strong positive almost sure termination. Second, this method has been instantiated in the setting of (first-order)
probabilistic rewrite systems, giving rise to the notion of barycentric algebras, generalising the well-known
interpretation method. Barycentric algebras have been integrated in the termination prover NaTT 1, confirming
the feasibility of the approach.

We have also worked on higher-order model checking as a way to prove termination of probabilsitic variations
on higher-order recursion schemes [36], obtaining encouraging results. More specifically, an algorithm for
approximating the probability of convergence of any such scheme has been designed and proved sound,
although the problem of precisely computing the probability of convergence is shown to be undecidable at
order 2 or higher. Finally, we have published a new version of a contribution we wrote in 2017 about how
implicit computational complexity could help in proving that certain cryptographic constructions have the
desired complexity-theoretic properties [12].

7.3.2. Higher-Order end Effectful Programs: Relational Reasoning
In FoCUS, we are also interested in relational reasoning about programs written in higher-order programming
languages. In the recent years, this research has been directed to effectful programs, namely programs whose
behaviour is not purely functional. Moreover, there has recently been a shift in our interests, driven by the
projects REPAS and DIAPASoN, towards quantitative kinds of relational reasoning, in which programs are
not necessarily dubbed equivalent (or not), but rather put at a certain distance.

The first contribution we had in this direction is due to Dal Lago and Gavazzo [31], who generalized the
so-called open normal-form bisimilarity technique to higher-order programs exhibiting any kind of monadic
effect. The key ingredient here is that of a relator, and allows to lift relations on a set to relations on monadic
extensions to the same set. This allows to define open normal-form bisimilarity, and to prove it correct. This,
together, with other contributions, have also appeared in Gavazzo’s PhD Thesis, which has been successfully
defended in April 2019 [10], and which has been awarder the Prize for the Best PhD Thesis in Theoretical
Computer Science by the Italian Chapter of the EATCS.

We have also given the notion of differential logical relations [33], a generalization of Plotkin’s logical
relations in which programs are dubbed being at a certain distance rather than being just equivalent.
Noticeably, this distance is not necessarily numeric, but is itself functional if the compared programs have
a non-ground type. This allows to evaluate the distance between programs taking into account the possible
actions the environment can make on the compared programs.

7.3.3. Alternative Probabilistic Models
We are also interested in exploring probabilistic models going beyond the usual ones, in which determinisitic
programming languages are endowed with discrete probabilistic choice.

1See https://www.trs.css.i.nagoya-u.ac.jp/NaTT/.

https://www.trs.css.i.nagoya-u.ac.jp/NaTT/

Project-Team FOCUS 11

We have first of all studied bayesian λ-calculi, namely λ-calculi in which not only an operator for probabilistic
choice is available, but also one for scoring, which serves as the basis to model conditioning in probabilistic
programming. We give a geometry of interaction model for such a typed λ-calculus [34], namely a paradig-
matic calculus for higher-order Bayesian programming in the style of PCF. The model is based on the cat-
egory of measurable spaces and partial measurable functions, and is proved adequate with respect to both a
distribution-based and a sampling-based operational semantics.

We have also introduced a probabilistic extension of a framework to specify and analyze software product
lines [15]. We define a syntax of the language including probabilistic operators and define operational and
denotational semantics for it. We prove that the expected equivalence between these two semantic frameworks
holds. Our probabilistic framework is supported by a set of scripts to show the model behavior.

7.4. Verification Techniques
Participants: Ugo Dal Lago, Adrien Durier, Daniel Hirschkoff, Ivan Lanese, Cosimo Laneve, Davide
Sangiorgi, Akira Yoshimizu, Gianluigi Zavattaro.

Extensional properties are those properties that constrain the behavioural descriptions of a system (i.e., how
a system looks like from the outside). Examples of such properties include classical functional correctness,
deadlock freedom and resource usage.

In the last year of the Focus project, we have worked on three main topics: (i) name mobility and coinductive
techniques, (ii) deadlock analysis, and (iii) cost analysis of properties of languages for actors and for smart
contracts.

7.4.1. Name Mobility and Coinductive Techniques
In [19], we propose proof techniques for bisimilarity based on unique solution of equations. The results
essentially state that an equation (or a system of equations) whose infinite unfolding never produces a
divergence has the unique-solution property. We distinguishing between different forms of divergence; derive
an abstract formulation of the theorems, on generic LTSs; adapt the theorems to other equivalences such
as trace equivalence, and to preorders such as trace inclusion; we compare the resulting techniques to
enhancements of the bisimulation proof method (the ‘up-to techniques’). In [20], we study how to adapt such
techniques to higher-order languages. In such languages proving behavioural equivalences is known to be hard,
because interactions involve complex values, namely terms of the language. The soundness of proof techniques
is usually delicate and difficult to establish. The language considered is the Higher-Order π-calculus.

The contribution [42] studies the representation of the call-by-need λ-calculus in the pure message-passing
concurrency of the π-calculus, precisely the Local Asynchronous π-calculus, that has sharper semantic
properties than the ordinary π-calculus. We exploit such properties to study the validity of of β-reduction
(meaning that the source and target terms of a beta-reduction are mapped onto behaviourally equivalent
processes). Nearly all results presented fail in the ordinary π-calculus.

In [45], we investigate basic properties of the Erlang concurrency model. This model is based on asynchronous
communication through mailboxes accessed via pattern matching. In particular, we consider Core Erlang
(which is an intermediate step in Erlang compilation) and we define, on top of its operational semantics, an
observational semantics following the approach used to define asynchronous bisimulation for the π-calculus.
Our work allows us to shed some light on the management of process identifiers in Erlang, different from the
various forms of name mobility already studied in the literature. In fact, we need to modify standard definitions
to cope with such specific features of Erlang.

The paper [25] reviews the origins and the history of enhancements of the bisimulation and coinduction proof
methods.

12 Activity Report INRIA 2019

7.4.2. Deadlock Analysis
The contributions [22] and [50] address deadlock analysis of Java-like programs. The two papers respectively
cover two relevant features of these languages: (i) multi-threading and reentrant locks and (ii) co-ordination
primitives (wait, notify and notifyAll). In both cases, we define a behavioral type system that associates
abstract models to programs (lams and Petri Nets with inhibitor arcs) and define an algorithm for detecting
deadlocks. The two systems are consistent and our technique is intended to be an effective tool for the deadlock
analysis of programming languages.

The paper [16] addresses the π-calculus. It defines a type system for guaranteing that typable processes never
produce a run-time error and, even if they may diverge, there is always a chance for them to finish their work,
i.e., to reduce to an idle process (a stronger property than deadlock freedom). The type system uses so-called
non-idempotent intersections and, therefore, applies to a large class of processes. Indeed, despite the fact that
the underlying property is

∏0
2-complete, there is a way to show that the system is complete, i.e., that any well-

behaved process is typable, although for obvious reasons infinitely many derivations need to be considered.

7.4.3. Static Analysis of Properties of Concurrent Programs
We have analyzed the computational time of actor programs, following a technique similar to [52], and we
have begun a new research direction that deals with the analysis of Solidity smart contracts.

In [23], we propose a technique for estimating the computational time of programs in an actor model. To this
aim, we define a compositional translation function returning cost equations, which are fed to an automatic
off-the-shelf solver for obtaining the time bounds. Our approach is based on so-called synchronization sets
that capture possible difficult synchronization patterns between actors and helps make the analysis efficient
and precise. The approach is proven to correctly over-approximate the worst computational time of an actor
model of concurrent programs. The technique is complemented by a prototype analyzer that returns upper
bound of costs for the actor model.

In [38], we analyze the bahaviour of smart contracts, namely programs stored on some blockchain that control
the transfer of assets between parties under certain conditions. In particular, we focus on the interactions
of smart contracts and external actors (usually, humans) in order to maximize objective functions. 5 To this
aim, we define a core language of programs, which is reminiscent of Solidity, with a minimal set of smart
contract primitives and we describe the whole system as a parallel composition of smart contracts and users.
We therefore express the system behaviour as a first order logic formula in Presburger arithmetics and study
the maximum profit for each actor by solving arithmetic constraints.

7.5. Computer Science Education
Participants: Michael Lodi, Simone Martini.

We study why and how to teach computer science principles (nowadays often referred to as “computational
thinking”, CT), in the context of K-12 education. We are interested in philosophical, sociological, and
historical motivations to teach computer science. Furthermore, we study what concepts and skills related to
computer science are not only technical abilities, but have a general value for all students. Finally, we try to
find/produce/evaluate suitable materials (tools, languages, lesson plans...) to teach these concepts, taking into
account: difficulties in learning CS concepts (particularly programming); stereotypes about computer science
(teachers’ and students’ mindset); teacher training (both non-specialist and disciplinary teachers); innovative
teaching methodologies (primarily based on constructivist and constructionist learning theories).

7.5.1. Computational Thinking, Unplugged Activities, and Constructionism
We reviewed some relevant literature related to learning CS and, more specifically, programming in a
constructivist and constructionist light. We investigated some cognitive aspects, for example, the notional
machine and its role in understanding, misunderstanding, and difficulties of learning to program. We reviewed
programming languages for learning to program, with particular focus on educational characteristics of block-
based languages [24].

Project-Team FOCUS 13

We analyzed the widespread but debated pedagogical approach of “unplugged activities”: activities without a
computer, like physical games, used to teach CS concepts. We explicitly connect computational thinking to
the “CS Unplugged” pedagogical approach, by analyzing a representative sample of CS Unplugged activities
in light of CT. We found the activities map well onto commonly accepted CT concepts, although caution must
be taken not to regard CS Unplugged as being a complete approach to CT education [14].

Moreover, we found similarities (e.g., kinesthetic activities) and differences (e.g., structured vs. creative
activities) between Unplugged and constructivism or constructionism. We argue there is a tension between
the constructivist need to link the CS concepts to actual implementations and the challenge of teaching CS
principles without computers, to undermine the misconceptions of CS as “the science of computers” [13].

7.5.2. CS in Primary School
We designed, produced and implemented in a primary school some “unplugged + plugged” teaching materials
and lesson plans [47]. The unplugged activities are structured as an incremental discovery, scaffolded by
the instructors, of the fundamental concepts of structured programming (e.g., sequence, conditionals, loops,
variables) but also complexity in terms of computational steps and generalization of algorithms. The plugged
activities follow the creative learning approach, using Scratch as the primary tool, both for free creative
expression and for learning other disciplines (e.g., drawing regular polygons).

7.5.3. Growth Mindset and Transfer
Every person holds an idea (mindset) about intelligence: someone thinks it is a fixed trait, like eye colour (fixed
mindset), while others believe it can grow like muscles (growth mindset). The latter is beneficial for students
to have better results, particularly in STEM disciplines, and to not being influenced by stereotypes. Computer
science is a subject that can be affected by fixed ideas (“geek gene”), and some (small) studies showed it can
induce fixed ideas. By contrast, some claims stating that studying CS can foster a GM have emerged. However,
educational research shows that the transfer of competences is hard. We measured [40] some indicators (e.g.,
mindset, computer science mindset) at the beginning and the end of a high school year in different classes, both
CS and non-CS oriented. At the end of the year, none of the classes showed a statistically significant change in
their mindset. Interestingly, non-CS oriented classes showed a significant decrease in their computer science
growth mindset, which is not desirable.

7.6. Constraint Programming
Participants: Maurizio Gabbrielli, Liu Tong.

In Focus, we sometimes make use of constraint solvers (e.g., cloud computing, service-oriented computing).
Since a few years we have thus began to develop tools based on constraints and constraint solvers.

In [39] we have used constraints in the setting of Service Function Chaining (SFC) deployment. SFCs represent
sequences of Virtual Network Functions that compose a service. They are found within Network Function
Virtualization (NFV) and Software Defined Networking (SDN) technologies, that recently acquired a great
momentum thanks to their promise of being a flexible and cost-effective solution for replacing hardware-based,
vendor-dependent network middleboxes with software appliances running on general purpose hardware in the
cloud.

We employ constraint programming to solve the SFC design problem. Indeed we argue that constraint
programming can be effectively used to address this kind of problems because it provides expressive
and flexible modeling languages which come with powerful solvers, thus providing efficient and scalable
performance.

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry

14 Activity Report INRIA 2019

In 2019 we have started the Innovation Lab on Blockchain and New Technologies (https://site.unibo.it/
blockchain-and-newtechnologies/en). The Lab is a new joint laboratory of the Computer Science and En-
gineering Department of the University of Bologna and KPMG Advisory S.p.A. that is committed to scientific
research and technology transfer of systems based on blockchain and new technologies. The laboratory joins
the efforts of several researchers of the Department and uses the experience in technology transfer of KPMG
Advisory S.p.A.

The Lab has received a grant of 10KE from KPMG and a grant of 10KE from CIRFOOD, one of the biggest
Italian companies in organised commercial and collective catering.

9. Partnerships and Cooperations
9.1. National Initiatives

• DCore (Causal debugging for concurrent systems) is a 4-years ANR project that started on March
2019. The overall objective of the project is to develop a semantically well-founded, novel form
of concurrent debugging, which we call “causal debugging”. Causal debugging will comprise and
integrate two main engines: (i) a reversible execution engine that allows programmers to backtrack
and replay a concurrent or distributed program execution and (ii) a causal analysis engine that allows
programmers to analyze concurrent executions to understand why some desired program properties
could be violated. Main persons involved: Lanese, Medic.

• REPAS (Reliable and Privacy-Aware Software Systems via Bisimulation Metrics) is an ANR Project
that started on October 2016 and that will finish on October 2020. The project aims at investigating
quantitative notions and tools for proving program correctness and protecting privacy. In particular,
the focus will be put on bisimulation metrics, which are the natural extension of bisimulation to
quantitative systems. As a key application, we will develop a mechanism to protect the privacy of
users when their location traces are collected. Main persons involved: Dal Lago, Gavazzo, Sangiorgi.

• COCAHOLA (Cost models for Complexity Analyses of Higher-Order Languages) is an ANR
Project that started on October 2016 and that finished on October 2019. The project aims at
developing complexity analyses of higher-order computations. The focus is not on analyzing fixed
programs, but whole programming languages. The aim is the identification of adequate units of
measurement for time and space, i.e. what are called reasonable cost models. Main persons involved:
Dal Lago, Martini.

• PROGRAMme (“What is a program? Historical and philosophical perspectives”), is an ANR project
started on October 2017 and that will finish on October 2022; PI: Liesbeth De Mol (CNRS/Université
de Lille3). The aim of this project is to develop a coherent analysis and pluralistic understanding of
“computer program” and its implications to theory and practice. Main person involved: Martini.

9.2. European Initiatives
9.2.1. FP7 & H2020 Projects

• BEHAPI (Behavioural Application Program Interfaces) is an European Project H2020-MSCA-
RISE-2017, running in the period March 2018 - February 2022. The topic of the project is be-
havioural types, as a suite of technologies that formalise the intended usage of API interfaces. In-
deed, currently APIs are typically flat structures, i.e. sets of service/method signatures specifying the
expected service parameters and the kind of results one should expect in return. However, correct
API usage also requires the individual services to be invoked in a specific order. Despite its im-
portance, the latter information is either often omitted, or stated informally via textual descriptions.
The expected benefits of behavioural types include guarantees such as service compliance, deadlock
freedom, dynamic adaptation in the presence of failure, load balancing etc. The project aims to bring
the existing prototype tools based on these technologies to mainstream programming languages and
development frameworks used in industry.

https://site.unibo.it/blockchain-and-newtechnologies/en
https://site.unibo.it/blockchain-and-newtechnologies/en

Project-Team FOCUS 15

• ICT COST Action IC1405 (Reversible computation - extending horizons of computing). Initiated at
the end of April 2015 and with a 4-year duration, this COST Action studies reversible computation
and its potential applications, which include circuits, low-power computing, simulation, biological
modeling, reliability and debugging. Reversible computation is an emerging paradigm that extends
the standard forwards-only mode of computation with the ability to execute in reverse, so that
computation can run backwards as naturally as it can go forwards.

Main persons involved: Lanese (vice-chair of the action).

9.2.2. Collaborations with Major European Organizations
We list here the cooperations and contacts with other groups, without repeating those already listed in previous
sections.

• ENS Lyon (on concurrency models and resource control). Contact person(s) in Focus: Dal Lago,
Martini, Sangiorgi. Some visit exchanges during the year, in both directions. A joint PhD (Adrien
Durier).

• University of Innsbruck (on termination and complexity analysis of probabilistic programs). Contact
person(s) in Focus: Avanzini. Some short visits during the year.

• University of Southern Denmark (on service-oriented computing). Contact person(s) in Focus:
Gabbrielli, Lanese, Zavattaro.

• Universitat Politecnica de Valencia, Spain (on reversibility for Erlang). Contact person(s) in Focus:
Lanese. Some visit exchanges during the year, in both directions.

• Laboratoire d’Informatique, Université Paris Nord, Villetaneuse (on implicit computational com-
plexity). Contact person(s) in Focus: Dal Lago, Martini.

• Institut de Mathématiques de Luminy, Marseille (on lambda-calculi, linear logic and semantics).
Contact person(s) in Focus: Dal Lago, Martini.

• Team PPS, IRIF Lab, University of Paris-Diderot Paris 7 (on logics for processes, resource control).
Contact person(s) in Focus: Dal Lago, Martini, Sangiorgi. Some short visits in both directions during
the year.

• IRILL Lab, Paris (on models for the representation of dependencies in distributed package based
software distributions). Contact person(s) in Focus: Gabbrielli, Zavattaro. Some short visits in both
directions during the year.

• IMDEA Software, Madrid (G. Barthe) (on implicit computational complexity for cryptography).
Contact person(s) in Focus: Dal Lago. Some visits during the year.

9.3. International Initiatives
9.3.1. Inria Associate Teams Not Involved in an Inria International Lab
9.3.1.1. CRECOGI

Title: Concurrent, Resourceful and Effectful Computation by Geometry of Interaction
International Partner (Institution - Laboratory - Researcher):

Kyoto (Japan) - Research Institute for Mathematical Sciences - Naohiko Hoshino
Start year: 2018
See also: http://crecogi.cs.unibo.it
The field of denotational semantics has successfully produced useful compositional reasoning
principles for program correctness, such as program logics, fixed-point induction, logical relations,
etc. The limit of denotational semantics was however that it applies only to high-level languages
and to extensional properties. The situation has changed after the introduction of game semantics
and the geometry of interaction (GoI), in which the meaning of programs is formalized in terms of
movements of tokens, through which programs "talk to" or "play against" each other, thus having

http://crecogi.cs.unibo.it

16 Activity Report INRIA 2019

an operational flavour which renders them suitable as target language for compilers. The majority
of the literature on GoI and games only considers sequential functional languages. Moreover,
computational effects (e.g. state or I/O) are rarely taken into account, meaning that they are far from
being applicable to an industrial scenario. This project’s objective is to develop a semantic framework
for concurrent, resourceful, and effectful computation, with particular emphasis on probabilistic
and quantum effects. This is justified by the greater and greater interest which is spreading around
these two computation paradigms, motivated by applications to AI and by the efficiency quantum
parallelism induces.

9.3.2. Participation in Other International Programs
Focus has taken part in the creation of the Microservices Community (http://microservices.sdu.dk/), an
international community interested in the software paradigm of Microservices. Main aims of the community
are: i) sharing knowledge and fostering collaborations about microservices among research institutions, private
companies, universities, and public organisations (like municipalities); ii) discussing open issues and solutions
from different points of view, to create foundations for both innovation and basic research.

U. Dal Lago is “Partner Investigator” in the project “Verification and analysis of quantum programs”, whose
Chief Investigator is Prof Yuan Feng, University of Technology Sydney. The project is funded by the Australian
Research Council.

9.4. International Research Visitors
9.4.1. Visits of International Scientists

The following researchers have visited Focus for short periods; we list them together with the title of the talk
they have given during their stay, or the topic discussed during their stay.

• Ornela Dardha (University of Glasgow) and Laura Bocchi (University of Kent): collaboration within
BehAPI RISE H2020 project, September 2019.

• Guilhem Jaber (University of Nantes): “Game semantics for higher-order functions with state”,
December 2019.

• Naohiko Hoshino, April 2019 and October 2019.

• Gilles Barthe, May 2019.

• Boaz Barak, July 2019.

• Francesco Dagnino, “Generalizing Inference Systems by Corules", November 2019.

9.4.1.1. Sabbatical programme

Simone Martini has been Fellow at the Collegium - Lyon Institute for Advanced Studies, since September
2018 and until June 2019 https://collegium.universite-lyon.fr.

9.4.1.2. Research Stays Abroad

• Ugo Dal Lago has spent overall a few weeks in Japan: RIMS (Kyoto) and NII (Tokyo), as part of
ongoing collaborations with Naohiko Hoshino and Shin-ya Katsumata.

• Ivan Lanese has visited Xibis Limited and University of Leicester, UK (in particular Irek Ulidowski
and Emilio Tuosto) from 3/7/2019 to 2/8/2019, to work on choreographies, and the University of
Torun, Poland (in particular Lukasz Mikulski and Kamila Barylska), from 13/8/2019 to 29/8/2019,
to work on reversible Petri nets.

• Cosimo Laneve and Gianluigi Zavattaro have spent overall a few weeks in Malta visit to Prof. Adrian
Francalanza at the University of Malta within the BehAPI RISE H2020 project.

• Michael Lodi has visited Prof. Tim Bell and the Computer Science Education Research Group at the
Department of Computer Science and Software Engineering, University of Canterbury, Christchurch,
New Zealand, from 26th of October 2018 to 17th of April 2019, as part of his Ph.D. course.

http://microservices.sdu.dk/
https://collegium.universite-lyon.fr

Project-Team FOCUS 17

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events: Organisation
10.1.1.1. General Chair, Scientific Chair

Mario Bravetti has been scientfiic co-organizer for Int. PhD School and Bootcamp on Behavioural Application
Program Interfaces (BehAPI 2019), Leicester, UK.

Ugo Dal Lago has organized the Second Workshop on Probabilistic Interactive and Higher-Order Computation
(6-7 February 2019) http://pihoc2019.cs.unibo.it/.

10.1.1.2. Member of the Organizing Committees

Local Organising Committee:

Michael Lodi has been a member of the Local Organising Committee of the 13th Conference of European
Science Education Research Association (ESERA ’19). Bologna, 26th - 30th August 2019

Steering Committee membership:

I. Lanese: Conference on Reversible Computation (RC); IFIP Int. Conference on Formal Techniques for
Distributed Objects, Components and Systems (FORTE); Interaction and Concurrency Experience (ICE)

D. Sangiorgi: Int. Conference on Concurrency Theory (CONCUR)

10.1.2. Scientific Events: Selection
10.1.2.1. Member of the Conference Program Committees

M. Bravetti: 22nd International Conference on Fundamental Approaches to Software Engineering
(FASE/ETAPS 2019); IEEE International Conference on Big Data (BigData 2019); 19th IEEE Inter-
national Conference on Software Quality, Reliability, and Security (QRS 2019); 8th IPM International
Conference on Fundamentals of Software Engineering (FSEN 2019)

U. Dal Lago: Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019; 47th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL 2020); 28th European Symposium
on Programming (ESOP 2019); 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019)

I. Lanese: 11th Conference on Reversible Computation (RC 2019); 12th Interaction and Concurrency Expe-
rience (ICE 2019); 16th International Conference on Formal Aspects of Component Software (FACS 2019);
12th IEEE International Conference on Service-Oriented Computing and Applications (SOCA 2019); First
Workshop on Artificial Intelligence and fOrmal VERification, Logic, Automata, and sYnthesis (OVERLAY
2019); 4th Workshop on Formal Reasoning about Causation, Responsibility, and Explanations in Science and
Technology (CREST 2019); 2nd International Conference on Microservices (MICROSERVICES 2019); 12th
Innovations in Software Engineering Conference (ISEC 2019)

S. Martini: Workshop on History of Formal Methods (HFM2019); Fifth International Conference on History
and Philosophy of Computing (HAPOC 5).

D. Sangiorgi: 22nd International Conference on Foundations of Software Science and Computation Structures
(FOSSACS); 44th International Symposium on Mathematical Foundations of Computer Science (MFCS);
12th A.P. Ershov Informatics Conference (PSI); Workshop on History of Formal Methods (HFM2019); 15th
International Conference on Software Technologies (ICSOFT)

G. Zavattaro: 17th International Conference on Service Oriented Computing (ICSOC’19); International Con-
ference TOOLS 50+1: Technology of Object-Oriented Languages and Systems (TOOLS’19); 30th Interna-
tional Conference on Concurrency Theory (CONCUR’19); 34th ACM/SIGAPP Symposium On Applied Com-
puting – track on Microservices, DevOps, and Service-Oriented Architecture (ACM-SAC 2019)

http://pihoc2019.cs.unibo.it/

18 Activity Report INRIA 2019

10.1.3. Journals
10.1.3.1. Member of the Editorial Boards

M. Bravetti: Journal of Universal Computer Science.

U. Dal Lago: Logical Methods in Computer Science; Mathematical Structures in Computer Science; Acta
Informatica.

M. Gabbrielli: Int. Journal Theory and Practice of Logic Programming.

C. Laneve: Frontiers in ICT (Section Formal Methods).

I. Lanese: Editor in chief of the Open Journal of Communications and Software (Scientific Online).

D. Sangiorgi: Acta Informatica, Distributed Computing, RAIRO Theoretical Informatics and Applications.

10.1.4. Invited Talks

U. Dal Lago: Bellairs Workshop on Higher-Order Probabilistic Computation; 1st Computer Science Work-
shop; “Mission 10000 Conference: Quantum Science and Technologies”

D. Sangiorgi: International Conference TOOLS 50+1: Technology of Object-Oriented Languages and Systems
(TOOLS’19)

Schools:

M. Avanzini: International School on Rewriting, Paris, France, 1–6 July, 2019

U. Dal Lago: 1st “Caleidoscope” Summer School

G. Zavattaro: BehAPI Summer School: Behavioural Approaches for API-Economy with Applications, Leices-
ter, UK, 8–12 July, 2019

10.1.5. Leadership within the Scientific Community
U. Dal Lago has been elected member of the Scientific Council of the Italian Chapter IC-EATCS (November
2017).

S. Martini is a member of the Council of the Commission on History and Philosophy of Computing, an
organism of the International Union for History and Philosophy of Science, 2017-2021.

G. Zavattaro is member of the scientific committee of GRIN (GRuppo INformatici), Italy.

10.1.6. Administration duties
M. Gabbrielli is Deputy Head of the Department of Computer Science and Engineering, University of Bologna,
since May 2018.

D. Sangiorgi is coordinator of postgraduate studies at the Department of Computer Science and Engineering,
University of Bologna.

G. Zavattaro is coordinator of undergraduate studies at the Department of Computer Science and Engineering,
University of Bologna.

Project-Team FOCUS 19

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

• Mario Bravetti

Master: “Linguaggi, Compilatori e Modelli Computazionali”, 120 hours, 1st year, Univer-
sity of Bologna, Italy.

• Ugo Dal Lago

Undergraduate: “Algorithms and Data Structures for Biology”, 60 hours, 2nd year, Univer-
sity of Bologna, Italy. 20 hours, 1st year, University of Bologna, Italy.

Undergraduate: “Optimization”, 36 hours, 2nd year, University of Bologna, Italy.

Master: “Foundations of Logic for Computer Science”, 24 Hours, 2nd year. University of
Bologna, Italy.

Master: “Cryptography”, 40 Hours, 2nd year, University of Bologna, Italy’.

Master: “Languages and Algorithms for AI: Machine Learning Theory”, 32 Hours, 1st
year, University of Bologna, Italy’.

• Maurizio Gabbrielli

Undergraduate: “Programming languages”, 40 hours, 2nd year, University of Bologna,
Italy.

Master: “Artificial Intelligence”, 60 hours, 2nd year, University of Bologna, Italy.

• Francesco Gavazzo

Undergraduate: “Programming languages”, 30 hours, 2nd year, University of Bologna,
Italy.

Undergraduate: “Basic Computer Skills”. 30 hours, BSc Medical Chemistry and Pharma-
ceutical Technology, BSc Biology, University of Bologna.

• Ivan Lanese

Undergraduate: “Architettura degli Elaboratori”, 66 hours, 1st year, University of Bologna,
Italy.

Master: “Ingegneria del Software Orientata ai Servizi”, 22 hours, 2nd year, University of
Bologna, Italy.

Master: “Algorithms and data structures for computational biology”, 36 hours, 1at year,
University of Bologna, Italy.

Master: “Programming for bioinformatics”, 30 hours, 1st year, University of Bologna,
Italy.

• Cosimo Laneve

Undergraduate: “Programmazione”, 70 hours, 1st year, University of Bologna, Italy.

Master: “Analisi di Programmi”, 42 hours, 1st year, University of Bologna, Italy.

• Simone Martini

Master: “Introduction to Algorithms and Programming”, 32 hours, 1st year, University of
Bologna, Italy.

• Davide Sangiorgi

Undergraduate: “Operating Systems”, 110 hours, 2nd year, University of Bologna, Italy.

Undergraduate: “Computer abilities for biologists”, 8 hours, 1st year, University of
Bologna, Italy.

• Gianluigi Zavattaro

20 Activity Report INRIA 2019

Master: “Scalable and Cloud Programming”, 50 hours, 2nd year, University of Bologna,
Italy.

Undergraduate: “Algoritmi e strutture dati”, 60 hours, 2nd year, University of Bologna,
Italy.

Master: “Languages and Algorithms for Artificial Intelligence”, 32 hours, 1st year, Uni-
versity of Bologna, Italy (Master in Artificial Intelligence).

10.2.2. Supervision
Below are the details on the PhD students in Focus: starting date, topic or provisional title of the thesis,
supervisor(s).

• Melissa Antonellii, November 2019. “Probabilistic Arithmetic and Almost-sure Termination”. Su-
pervisor Ugo Dal Lago.

• Adrien Durier, September 2016, "Proving behavioural properties of higher-order concurrent lan-
guages", ENS de Lyon and University of Bologna. Supervisors: Daniel Hirschkoff and Davide San-
giorgi.

• Michael Lodi, January 2017, “Introducing Computational Thinking in K-12 Education: Historical,
Epistemological, Cognitive and Affective Aspects”. Supervisor: S. Martini.

• Gabriele Vanoni, November 2018. “Optimal Reduction, Geometry of Interaction, and the Space-
Time Tradeoff”. Supervisor Ugo Dal Lago.

• Stefano Pio Zingaro, November 2016, “High level languages for Internet of Things applications”.
Supervisor: Maurizio Gabbrielli.

PhD thesis completed in 2018:

• Raphaelle Crubillé, October 2015, “Bisimulation Metrics and Probabilistic Lambda Calculi”, Uni-
versité Denis Diderot and University of Bologna. Supervisors Thomas Ehrhard and Ugo Dal Lago.

• Francesco Gavazzo, October 2015, “Coinductive Techniques for Effectful Lambda Calculi”. Super-
visor U. Dal Lago.

• Tong Liu, November 2015, “Constraint based languages for Software Defined Networks”. Supervi-
sor: Maurizio Gabbrielli.

10.2.3. Juries
G. Zavattaro has been member of the PhD evaluation committee of Doriana Medic, supervisor Claudio Antares
Mezzina, IMT Lucca, Italy.

10.3. Popularization
Michael Lodi and Simone Martini have carried out extended work of scientific popularization, including the
following.

• They are members of the technical committee of Olimpiadi del Problem Solving (at Italian Ministry
of Education), http://www.olimpiadiproblemsolving.com; this involves preparation of material and
supervision and jury during the finals.

• Simone Martini has given the following talks, among others:

– De la création d’une “théorie mathématique du calcul” à la “pensée informatique”. Qua-
trième journée académique sur l’enseignement de l’informatique, Marseille (avril 2019)

– To code or not to code: the school curriculum facing the digital revolution. Col-
legium—Lyon Institute for Advanced Studies (Juin 2019)

– Logic and computing in Italy at the birth of the Italian Computer Science, Roma Tre,
September 2019

http://www.olimpiadiproblemsolving.com

Project-Team FOCUS 21

11. Bibliography
Major publications by the team in recent years

[1] M. BRAVETTI, G. ZAVATTARO. A Foundational Theory of Contracts for Multi-party Service Composition, in
"Fundam. Inform.", 2008, vol. 89, no 4, pp. 451-478

[2] N. BUSI, M. GABBRIELLI, G. ZAVATTARO. On the expressive power of recursion, replication and iteration in
process calculi, in "Mathematical Structures in Computer Science", 2009, vol. 19, no 6, pp. 1191-1222

[3] P. COPPOLA, S. MARTINI. Optimizing optimal reduction: A type inference algorithm for elementary affine
logic, in "ACM Trans. Comput. Log.", 2006, vol. 7, no 2, pp. 219-260

[4] M. GABBRIELLI, S. MARTINI. Programming Languages: Principles and Paradigms, Springer, 2010

[5] D. HIRSCHKOFF, É. LOZES, D. SANGIORGI. On the Expressiveness of the Ambient Logic, in "Logical Methods
in Computer Science", 2006, vol. 2, no 2

[6] U. D. LAGO, M. GABOARDI. Linear Dependent Types and Relative Completeness, in "Proceedings of the 26th
Annual IEEE Symposium on Logic in Computer Science, LICS 2011", IEEE Computer Society, 2011, pp.
133-142

[7] I. LANESE, C. A. MEZZINA, J. STEFANI. Reversibility in the higher-order π-calculus, in "Theor. Comput.
Sci.", 2016, vol. 625, pp. 25–84, https://doi.org/10.1016/j.tcs.2016.02.019

[8] F. MONTESI, C. GUIDI, G. ZAVATTARO. Composing Services with JOLIE, in "Fifth IEEE European Confer-
ence on Web Services (ECOWS 2007)", 2007, pp. 13-22

[9] D. SANGIORGI. An introduction to Bisimulation and Coinduction, Cambridge University Press, 2012

Publications of the year
Doctoral Dissertations and Habilitation Theses

[10] F. GAVAZZO. Coinductive Equivalences and Metrics for Higher-order Languages with Algebraic Effects,
Alma Mater Studiorum Università di Bologna, April 2019, https://hal.inria.fr/tel-02386201

Articles in International Peer-Reviewed Journals

[11] M. AVANZINI, U. DAL LAGO, A. YAMADA. On probabilistic term rewriting, in "Science of Computer
Programming", January 2020, vol. 185, 102338 p. [DOI : 10.1016/J.SCICO.2019.102338], https://hal.inria.
fr/hal-02381877

[12] P. BAILLOT, G. BARTHE, U. DAL LAGO. Implicit Computational Complexity of Subrecursive Definitions and
Applications to Cryptographic Proofs, in "Journal of Automated Reasoning", December 2019, vol. 63, no 4,
pp. 813-855 [DOI : 10.1007/978-3-662-48899-7_15], https://hal.archives-ouvertes.fr/hal-01197456

https://doi.org/10.1016/j.tcs.2016.02.019
https://hal.inria.fr/tel-02386201
https://hal.inria.fr/hal-02381877
https://hal.inria.fr/hal-02381877
https://hal.archives-ouvertes.fr/hal-01197456

22 Activity Report INRIA 2019

[13] T. BELL, M. LODI. Authors’ Response: Keeping the “Computation” in “Computational Thinking” Through
Unplugged Activities, in "Constructivist foundations", July 2019, vol. 14, no 3, pp. 357-359, https://hal.inria.
fr/hal-02378782

[14] T. BELL, M. LODI. Constructing Computational Thinking Without Using Computers, in "Constructivist
foundations", July 2019, vol. 14, no 3, pp. 342-351, https://hal.inria.fr/hal-02378761

[15] C. CAMACHO, L. LLANA, A. NÚÑEZ, M. BRAVETTI. Probabilistic Software product lines, in "Journal of
Logical and Algebraic Methods in Programming", October 2019 [DOI : 10.1016/J.JLAMP.2019.05.007],
https://hal.inria.fr/hal-02387462

[16] U. DAL LAGO, M. DE VISME, D. MAZZA, A. YOSHIMIZU. Intersection Types and Runtime Errors in the
Pi-Calculus, in "Proceedings of the ACM on Programming Languages", January 2019, vol. 3, no POPL, pp.
1-29 [DOI : 10.1145/3290320], https://hal.archives-ouvertes.fr/hal-02399565

[17] U. DAL LAGO, C. GRELLOIS. Probabilistic Termination by Monadic Affine Sized Typing, in "ACM
Transactions on Programming Languages and Systems (TOPLAS)", June 2019, vol. 41, no 2, pp. 1-65
[DOI : 10.1145/3293605], https://hal.archives-ouvertes.fr/hal-02399423

[18] S. DE GOUW, J. MAURO, G. ZAVATTARO. On the modeling of optimal and automatized cloud application
deployment, in "Journal of Logical and Algebraic Methods in Programming", October 2019, vol. 107, pp.
108-135 [DOI : 10.1016/J.JLAMP.2019.06.001], https://hal.inria.fr/hal-02401380

[19] A. DURIER, D. HIRSCHKOFF, D. SANGIORGI. Divergence and unique solution of equations, in "Logical
Methods in Computer Science", August 2019, https://arxiv.org/abs/1806.11354 - This is an extended version
of the paper with the same title published in the proceedings of CONCUR’17 [DOI : 10.23638/LMCS-
15(3:12)2019], https://hal.archives-ouvertes.fr/hal-02376814

[20] A. DURIER, D. HIRSCHKOFF, D. SANGIORGI. Towards ’up to context’ reasoning about higher-order
processes, in "Theoretical Computer Science", 2019, forthcoming [DOI : 10.1016/J.TCS.2019.09.036],
https://hal.archives-ouvertes.fr/hal-01857391

[21] M. FALASCHI, M. GABBRIELLI, C. OLARTE, C. PALAMIDESSI. Dynamic slicing for Concurrent Constraint
Languages, in "Fundamenta Informaticae", 2019, forthcoming, https://hal.archives-ouvertes.fr/hal-02423973

[22] C. LANEVE. A lightweight deadlock analysis for programs with threads and reentrant locks, in "Science of
Computer Programming", 2019, vol. 181, pp. 64 - 81 [DOI : 10.1016/J.SCICO.2019.06.002], https://hal.
inria.fr/hal-02392938

[23] C. LANEVE, M. LIENHARDT, K. I. PUN, G. ROMÁN-DÍEZ. Time analysis of actor programs,
in "Journal of Logical and Algebraic Methods in Programming", 2019, vol. 105, pp. 1 - 27
[DOI : 10.1016/J.JLAMP.2019.02.007], https://hal.inria.fr/hal-02392909

[24] M. LODI, D. MALCHIODI, M. MONGA, A. MORPURGO, B. SPIELER. Constructionist Attempts at Sup-
porting the Learning of Computer Programming: A Survey, in "Olympiads in Informatics: An International
Journal", July 2019, vol. 13, pp. 99-121 [DOI : 10.15388/IOI.2019.07], https://hal.inria.fr/hal-02379084

https://hal.inria.fr/hal-02378782
https://hal.inria.fr/hal-02378782
https://hal.inria.fr/hal-02378761
https://hal.inria.fr/hal-02387462
https://hal.archives-ouvertes.fr/hal-02399565
https://hal.archives-ouvertes.fr/hal-02399423
https://hal.inria.fr/hal-02401380
https://arxiv.org/abs/1806.11354
https://hal.archives-ouvertes.fr/hal-02376814
https://hal.archives-ouvertes.fr/hal-01857391
https://hal.archives-ouvertes.fr/hal-02423973
https://hal.inria.fr/hal-02392938
https://hal.inria.fr/hal-02392938
https://hal.inria.fr/hal-02392909
https://hal.inria.fr/hal-02379084

Project-Team FOCUS 23

[25] D. POUS, D. SANGIORGI. Bisimulation and Coinduction Enhancements: A Historical Perspective, in "Formal
Aspects of Computing", December 2019, vol. 31, no 6, pp. 733-749 [DOI : 10.1007/S00165-019-00497-
W], https://hal.archives-ouvertes.fr/hal-02393949

International Conferences with Proceedings

[26] M. AVANZINI, U. DAL LAGO, A. GHYSELEN. Type-Based Complexity Analysis of Probabilistic Functional
Programs, in "2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)", Vancouver,
Canada, IEEE, June 2019, pp. 1-13 [DOI : 10.1109/LICS.2019.8785725], https://hal.inria.fr/hal-02381829

[27] M. BRAVETTI, M. CARBONE, J. LANGE, N. YOSHIDA, G. ZAVATTARO. A Sound Algorithm for Asyn-
chronous Session Subtyping, in "CONCUR 2019 - 30th International Conference on Concurrency Theory",
Amsterdam, Netherlands, August 2019 [DOI : 10.4230/LIPICS.CONCUR.2019.38], https://hal.inria.fr/
hal-02387473

[28] M. BRAVETTI, S. GIALLORENZO, J. MAURO, I. TALEVI, G. ZAVATTARO. Optimal and Automated
Deployment for Microservices, in "Fundamental Approaches to Software Engineering - 22nd International
Conference, FASE 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings", Prague, Czech Republic, April 2019
[DOI : 10.1007/978-3-030-16722-6_21], https://hal.inria.fr/hal-02387483

[29] M. BRAVETTI, G. ZAVATTARO. Relating Session Types and Behavioural Contracts: the Asynchronous Case,
in "Software Engineering and Formal Methods - 17th International Conference, SEFM 2019, Oslo, Norway,
September 18-20, 2019, Proceedings", Oslo, Norway, September 2019, https://hal.inria.fr/hal-02387456

[30] F. CALLEGATI, M. GABBRIELLI, S. GIALLORENZO, A. MELIS, M. PRANDINI. Federated Platooning:
Insider Threats and Mitigations, in "Hawaii International Conference on System Sciences", Grand Wailea,
Maui, Hawaii, USA„ United States, January 2019 [DOI : 10.24251/HICSS.2019.389], https://hal.inria.fr/
hal-02400010

[31] U. DAL LAGO, F. GAVAZZO. Effectful Normal Form Bisimulation, in "European Symposium on Program-
ming", Prague, Czech Republic, April 2019, https://hal.inria.fr/hal-02386004

[32] U. DAL LAGO, F. GAVAZZO. On Bisimilarity in Lambda Calculi with Continuous Probabilistic Choice,
in "Mathematical Foundations of Programming Semantics XXXV", London, United Kingdom, June 2019,
https://hal.inria.fr/hal-02386083

[33] U. DAL LAGO, F. GAVAZZO, A. YOSHIMIZU. Differential Logical Relations Part I: The Simply-Typed Case,
in "46th International Colloquium on Automata, Languages and Programming", Patras, Greece, July 2019
[DOI : 10.4230/LIPICS.ICALP.2019.XXX], https://hal.inria.fr/hal-02386110

[34] U. DAL LAGO, N. HOSHINO. The Geometry of Bayesian Programming, in "2019 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS)", Vancouver, Canada, IEEE, June 2019, pp. 1-13
[DOI : 10.1109/LICS.2019.8785663], https://hal.archives-ouvertes.fr/hal-02399343

[35] M. GABBRIELLI, S. GIALLORENZO, I. LANESE, F. MONTESI, M. PERESSOTTI, S. P. ZINGARO. No More,
No Less - A Formal Model for Serverless Computing, in "21th International Conference on Coordination
Languages and Models (COORDINATION)", Kongens Lyngby, Denmark, H. R. NIELSON, E. TUOSTO
(editors), Coordination Models and Languages, Springer International Publishing, 2019, vol. LNCS-11533,

https://hal.archives-ouvertes.fr/hal-02393949
https://hal.inria.fr/hal-02381829
https://hal.inria.fr/hal-02387473
https://hal.inria.fr/hal-02387473
https://hal.inria.fr/hal-02387483
https://hal.inria.fr/hal-02387456
https://hal.inria.fr/hal-02400010
https://hal.inria.fr/hal-02400010
https://hal.inria.fr/hal-02386004
https://hal.inria.fr/hal-02386083
https://hal.inria.fr/hal-02386110
https://hal.archives-ouvertes.fr/hal-02399343

24 Activity Report INRIA 2019

pp. 148-157, Part 3: Exploring New Frontiers [DOI : 10.1007/978-3-030-22397-7_9], https://hal.inria.fr/
hal-02365509

[36] N. KOBAYASHI, U. DAL LAGO, C. GRELLOIS. On the Termination Problem for Probabilistic Higher-Order
Recursive Programs, in "2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)",
Vancouver, France, IEEE, June 2019, pp. 1-14 [DOI : 10.1109/LICS.2019.8785679], https://hal.archives-
ouvertes.fr/hal-02399361

[37] I. LANESE, A. PALACIOS, G. VIDAL. Causal-Consistent Replay Debugging for Message Passing Programs,
in "FORTE 2019 - 39th International Conference on Formal Techniques for Distributed Objects, Compo-
nents, and Systems", Copenhagen, Denmark, J. A. PÉREZ, N. YOSHIDA (editors), Formal Techniques for
Distributed Objects, Components, and Systems, Springer International Publishing, 2019, vol. LNCS-11535,
pp. 167-184, Part 1: Full Papers [DOI : 10.1007/978-3-030-21759-4_10], https://hal.inria.fr/hal-02313745

[38] C. LANEVE, C. S. COEN, A. VESCHETTI. On the Prediction of Smart Contracts’ Behaviours, in "SG65
-Colloquium in Honour of Stefania Gnesi", Porto, Portugal, M. H. TER BEEK, A. FANTECHI, L. SEMINI
(editors), Software Engineering to Formal Methods and Tools, and Back - Essays Dedicated to Stefania Gnesi
on the Occasion of Her 65th Birthday, October 2019, vol. 11865, pp. 397–415 [DOI : 10.1007/978-3-030-
30985-5_23], https://hal.inria.fr/hal-02392997

[39] T. LIU, F. CALLEGATI, W. CERRONI, C. CONTOLI, M. GABBRIELLI, S. GIALLORENZO. Constraint pro-
gramming for flexible Service Function Chaining deployment, in "HICS 2019 - 52nd Hawaii International
Conference on System Sciences", Maui, United States, Proceedings of the 52nd Hawaii International Confer-
ence on System Sciences, January 2019, https://hal.inria.fr/hal-02395208

[40] M. LODI. Does Studying CS Automatically Foster a Growth Mindset?, in "ITiCSE ’19 Proceedings of the
2019 ACM Conference on Innovation and Technology in Computer Science Education", Aberdeen, United
Kingdom, ACM Press, July 2019, vol. 7, pp. 147-153 [DOI : 10.1145/3304221.3319750], https://hal.inria.
fr/hal-02379130

[41] L. MIKULSKI, I. LANESE. Reversing Unbounded Petri Nets, in "PETRI NETS 2019", Aachen, Germany, S.
DONATELLI, S. HAAR (editors), June 2019 [DOI : 10.1007/978-3-030-21571-2_13], https://hal.inria.fr/
hal-02376158

[42] D. SANGIORGI. Asynchronous pi-calculus at Work: The Call-by-Need Strategy, in "The Art of Modelling
Computational Systems: A Journey from Logic and Concurrency to Security and Privacy", Paris, France,
Lecture Notes in Computer Science, November 2019, vol. 11760, pp. 33-49 [DOI : 10.1007/978-3-030-
31175-9_3], https://hal.inria.fr/hal-02399695

Scientific Books (or Scientific Book chapters)

[43] M. GABBRIELLI, S. GIALLORENZO, I. LANESE, J. MAURO. Guess Who’s Coming: Runtime Inclusion of
Participants in Choreographies, in "The Art of Modelling Computational Systems: A Journey from Logic and
Concurrency to Security and Privacy", 2019 [DOI : 10.1007/978-3-030-31175-9_8], https://hal.inria.fr/
hal-02376243

[44] M. GABBRIELLI, S. GIALLORENZO, I. LANESE, S. P. ZINGARO. Linguistic Abstractions for Interoperability
of IoT Platforms, in "Towards Integrated Web, Mobile, and IoT Technology", August 2019, pp. 83-114
[DOI : 10.1007/978-3-030-28430-5_5], https://hal.inria.fr/hal-02383918

https://hal.inria.fr/hal-02365509
https://hal.inria.fr/hal-02365509
https://hal.archives-ouvertes.fr/hal-02399361
https://hal.archives-ouvertes.fr/hal-02399361
https://hal.inria.fr/hal-02313745
https://hal.inria.fr/hal-02392997
https://hal.inria.fr/hal-02395208
https://hal.inria.fr/hal-02379130
https://hal.inria.fr/hal-02379130
https://hal.inria.fr/hal-02376158
https://hal.inria.fr/hal-02376158
https://hal.inria.fr/hal-02399695
https://hal.inria.fr/hal-02376243
https://hal.inria.fr/hal-02376243
https://hal.inria.fr/hal-02383918

Project-Team FOCUS 25

[45] I. LANESE, D. SANGIORGI, G. ZAVATTARO. Playing with Bisimulation in Erlang, in "Models, Languages,
and Tools for Concurrent and Distributed Programming", 2019 [DOI : 10.1007/978-3-030-21485-2_6],
https://hal.inria.fr/hal-02376217

Research Reports

[46] M. AVANZINI, U. DAL LAGO, A. GHYSELEN. Type-Based Complexity Analysis of Probabilistic Functional
Programs (Technical Report), Inria Sophia Antipolis ; University of Bologna ; ENS Lyon, April 2019, https://
hal.archives-ouvertes.fr/hal-02103943

Scientific Popularization

[47] M. LODI, R. DAVOLI, R. MONTANARI, S. MARTINI. Informatica senza e con computer nella Scuola
Primaria, in "Coding e oltre: Informatica nella scuola", E. NARDELLI (editor), 2019, forthcoming, https://
hal.inria.fr/hal-02379212

Other Publications

[48] D. MEDIC. Relative expressiveness of calculi for reversible concurrency, October 2019, The Concurrency
Column of EATCS Bulletin, No 129, https://hal.inria.fr/hal-02376279

References in notes

[49] M. CARBONE, K. HONDA, N. YOSHIDA. A Calculus of Global Interaction based on Session Types, in "Electr.
Notes Theor. Comput. Sci.", 2007, vol. 171, no 3, pp. 127–151

[50] L. COSIMO, L. PADOVANI. Deadlock Analysis of Wait-Notify Coordination, University of Bologna ;
University of Torino, 2019, To appear in LNCS 11760, Springer, 2019, https://hal.inria.fr/hal-02166082

[51] V. DANOS, J. KRIVINE. Reversible Communicating Systems, in "CONCUR 2004", P. GARDNER, N.
YOSHIDA (editors), Lecture Notes in Computer Science, Springer, 2004, vol. 3170, pp. 292–307

[52] A. GARCIA, C. LANEVE, M. LIENHARDT. Static analysis of cloud elasticity, in "17th International Sympo-
sium on Principles and Practice of Declarative Programming", Siena, Italy, Proceedings of the 17th Interna-
tional Symposium on Principles and Practice of Declarative Programming, Moreno Falaschi and Elvira Albert,
July 2015, 12 p. [DOI : 10.1145/2790449.2790524], https://hal.inria.fr/hal-01229424

[53] A. IGARASHI, N. KOBAYASHI. Resource usage analysis, in "POPL conference", ACM Press, 2002, pp.
331–342

[54] N. KOBAYASHI, D. SANGIORGI. A hybrid type system for lock-freedom of mobile processes, in "ACM Trans.
Program. Lang. Syst.", 2010, vol. 32, no 5

[55] I. C. C. PHILLIPS, I. ULIDOWSKI. Reversing algebraic process calculi, in "J. Log. Algebr. Program.", 2007,
vol. 73, no 1-2, pp. 70–96, https://doi.org/10.1016/j.jlap.2006.11.002

https://hal.inria.fr/hal-02376217
https://hal.archives-ouvertes.fr/hal-02103943
https://hal.archives-ouvertes.fr/hal-02103943
https://hal.inria.fr/hal-02379212
https://hal.inria.fr/hal-02379212
https://hal.inria.fr/hal-02376279
https://hal.inria.fr/hal-02166082
https://hal.inria.fr/hal-01229424
https://doi.org/10.1016/j.jlap.2006.11.002

