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2. Overall Objectives

2.1. Presentation
Algorithmic number theory dates back to the dawn of mathematics itself, cf. Eratosthenes’s sieve to enumerate
consecutive prime numbers. With the arrival of computers, previously unsolvable problems have come into
reach, which has boosted the development of more or less practical algorithms for essentially all number
theoretic problems. The field is now mature enough for a more computer science driven approach, taking into
account the theoretical complexities and practical running times of the algorithms.

Concerning the lower level multiprecision arithmetic, folklore has asserted for a long time that asymptotically
fast algorithms such as SchÃ¶nhage–Strassen multiplication are impractical; nowadays, however, they are used
routinely. On a higher level, symbolic computation provides numerous asymptotically fast algorithms (such as
for the simultaneous evaluation of a polynomial in many arguments or linear algebra on sparse matrices),
which have only partially been exploited in computational number theory. Moreover, precise complexity
analyses do not always exist, nor do sound studies to choose between different algorithms (an exponential
algorithm may be preferable to a polynomial one for a large range of inputs); folklore cannot be trusted in a
fast moving area such as computer science.

Another problem is the reliability of the computations; many number theoretic algorithms err with a small
probability, depend on unknown constants or rely on a Riemann hypothesis. The correctness of their output
can either be ensured by a special design of the algorithm itself (slowing it down) or by an a posteriori
verification. Ideally, the algorithm outputs a certificate, providing an independent fast correctness proof. An
example is integer factorisation, where factors are hard to obtain but trivial to check; primality proofs have
initiated sophisticated generalisations.

One of the long term goals of the LFANT project team is to make an inventory of the major number theoretic
algorithms, with an emphasis on algebraic number theory and arithmetic geometry, and to carry out complexity
analyses. So far, most of these algorithms have been designed and tested over number fields of small degree
and scale badly. A complexity analysis should naturally lead to improvements by identifying bottlenecks,
systematically redesigning and incorporating modern asymptotically fast methods.

Reliability of the developed algorithms is a second long term goal of our project team. Short of proving the
Riemann hypothesis, this could be achieved through the design of specialised, slower algorithms not relying
on any unproven assumptions. We would prefer, however, to augment the fastest unproven algorithms with the
creation of independently verifiable certificates. Ideally, it should not take longer to check the certificate than
to generate it.

All theoretical results are complemented by concrete reference implementations in PARI/GP, which allow to
determine and tune the thresholds where the asymptotic complexity kicks in and help to evaluate practical
performances on problem instances provided by the research community. Another important source for
algorithmic problems treated by the LFANT project team is modern cryptology. Indeed, the security of all
practically relevant public key cryptosystems relies on the difficulty of some number theoretic problem; on the
other hand, implementing the systems and finding secure parameters require efficient algorithmic solutions to
number theoretic problems.

3. Research Program

3.1. Number fields, class groups and other invariants
Participants: Bill Allombert, Jared Guissmo Asuncion, Karim Belabas, Jean-Paul Cerri, Henri Cohen, Jean-
Marc Couveignes, Andreas Enge, Fredrik Johansson, Aurel Page.
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Modern number theory has been introduced in the second half of the 19th century by Dedekind, Kummer,
Kronecker, Weber and others, motivated by Fermat’s conjecture: There is no non-trivial solution in integers
to the equation xn + yn = zn for n > 3. Kummer’s idea for solving Fermat’s problem was to rewrite the
equation as (x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζn−1y) = zn for a primitive n-th root of unity ζ, which seems
to imply that each factor on the left hand side is an n-th power, from which a contradiction can be derived.

The solution requires to augment the integers by algebraic numbers, that are roots of polynomials in Z[X].
For instance, ζ is a root of Xn − 1, 3

√
2 is a root of X3 − 2 and

√
3
5 is a root of 25X2 − 3. A number field

consists of the rationals to which have been added finitely many algebraic numbers together with their sums,
differences, products and quotients. It turns out that actually one generator suffices, and any number field K
is isomorphic to Q[X]/(f(X)), where f(X) is the minimal polynomial of the generator. Of special interest
are algebraic integers, “numbers without denominators”, that are roots of a monic polynomial. For instance,
ζ and 3

√
2 are integers, while

√
3
5 is not. The ring of integers of K is denoted by OK ; it plays the same role in

K as Z in Q.

Unfortunately, elements in OK may factor in different ways, which invalidates Kummer’s argumentation.
Unique factorisation may be recovered by switching to ideals, subsets of OK that are closed under addition
and under multiplication by elements of OK . In Z, for instance, any ideal is principal, that is, generated by
one element, so that ideals and numbers are essentially the same. In particular, the unique factorisation of
ideals then implies the unique factorisation of numbers. In general, this is not the case, and the class group
ClK of ideals of OK modulo principal ideals and its class number hK = |ClK | measure how far OK is from
behaving like Z.

Using ideals introduces the additional difficulty of having to deal with units , the invertible elements of OK :
Even when hK = 1, a factorisation of ideals does not immediately yield a factorisation of numbers, since ideal
generators are only defined up to units. For instance, the ideal factorisation (6) = (2) · (3) corresponds to the
two factorisations 6 = 2 · 3 and 6 = (−2) · (−3). While in Z, the only units are 1 and −1, the unit structure
in general is that of a finitely generated Z-module, whose generators are the fundamental units. The regulator
RK measures the “size” of the fundamental units as the volume of an associated lattice.

One of the main concerns of algorithmic algebraic number theory is to explicitly compute these invariants
(ClK and hK , fundamental units and RK), as well as to provide the data allowing to efficiently compute with
numbers and ideals of OK ; see [36] for a recent account.

The analytic class number formula links the invariants hK andRK (unfortunately, only their product) to the ζ-
function of K, ζK(s) :=

∏
p prime ideal of OK

(1−N p−s)
−1, which is meaningful when R(s) > 1, but which

may be extended to arbitrary complex s 6= 1. Introducing characters on the class group yields a generalisation
of ζ- to L-functions. The generalised Riemann hypothesis (GRH), which remains unproved even over the
rationals, states that any such L-function does not vanish in the right half-plane R(s) > 1/2. The validity of
the GRH has a dramatic impact on the performance of number theoretic algorithms. For instance, under GRH,
the class group admits a system of generators of polynomial size; without GRH, only exponential bounds are
known. Consequently, an algorithm to compute ClK via generators and relations (currently the only viable
practical approach) either has to assume that GRH is true or immediately becomes exponential.

When hK = 1 the number fieldK may be norm-Euclidean, endowing OK with a Euclidean division algorithm.
This question leads to the notions of the Euclidean minimum and spectrum of K, and another task in
algorithmic number theory is to compute explicitly this minimum and the upper part of this spectrum, yielding
for instance generalised Euclidean gcd algorithms.

3.2. Function fields, algebraic curves and cryptology
Participants: Karim Belabas, Guilhem Castagnos, Jean-Marc Couveignes, Andreas Enge, Damien Robert,
Jean Kieffer, Razvan Barbulescu.
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Algebraic curves over finite fields are used to build the currently most competitive public key cryptosystems.
Such a curve is given by a bivariate equation C(X,Y ) = 0 with coefficients in a finite field Fq . The
main classes of curves that are interesting from a cryptographic perspective are elliptic curves of equation
C = Y 2 − (X3 + aX + b) and hyperelliptic curves of equation C = Y 2 − (X2g+1 + · · ·) with g > 2.

The cryptosystem is implemented in an associated finite abelian group, the Jacobian JacC. Using the language
of function fields exhibits a close analogy to the number fields discussed in the previous section. Let Fq(X)
(the analogue of Q) be the rational function field with subring Fq[X] (which is principal just as Z). The
function field of C is KC = Fq(X)[Y ]/(C); it contains the coordinate ring OC = Fq[X,Y ]/(C). Definitions
and properties carry over from the number field case K/Q to the function field extension KC/Fq(X).
The Jacobian JacC is the divisor class group of KC, which is an extension of (and for the curves used in
cryptography usually equals) the ideal class group of OC.

The size of the Jacobian group, the main security parameter of the cryptosystem, is given by an L-
function. The GRH for function fields, which has been proved by Weil, yields the Hasse–Weil bound
(
√
q − 1)

2g 6 | JacC | 6 (
√
q + 1)

2g
, or | JacC | ≈qg , where the genus g is an invariant of the curve that cor-

relates with the degree of its equation. For instance, the genus of an elliptic curve is 1, that of a hyperelliptic
one is degX C−1

2 . An important algorithmic question is to compute the exact cardinality of the Jacobian.

The security of the cryptosystem requires more precisely that the discrete logarithm problem (DLP) be difficult
in the underlying group; that is, given elementsD1 andD2 = xD1 of JacC, it must be difficult to determine x.
Computing x corresponds in fact to computing JacC explicitly with an isomorphism to an abstract product of
finite cyclic groups; in this sense, the DLP amounts to computing the class group in the function field setting.

For any integer n, the Weil pairing en on C is a function that takes as input two elements of order n of JacC
and maps them into the multiplicative group of a finite field extension Fqk with k = k(n) depending on n. It
is bilinear in both its arguments, which allows to transport the DLP from a curve into a finite field, where it is
potentially easier to solve. The Tate-Lichtenbaum pairing, that is more difficult to define, but more efficient to
implement, has similar properties. From a constructive point of view, the last few years have seen a wealth of
cryptosystems with attractive novel properties relying on pairings.

For a random curve, the parameter k usually becomes so big that the result of a pairing cannot even be output
any more. One of the major algorithmic problems related to pairings is thus the construction of curves with a
given, smallish k.

3.3. Complex multiplication
Participants: Jared Guissmo Asuncion, Karim Belabas, Henri Cohen, Jean-Marc Couveignes, Andreas Enge,
Fredrik Johansson, Chloe Martindale, Damien Robert.

Complex multiplication provides a link between number fields and algebraic curves; for a concise introduction
in the elliptic curve case, see [38], for more background material, [37]. In fact, for most curves C over a finite
field, the endomorphism ring of JacC, which determines its L-function and thus its cardinality, is an order in
a special kind of number field K, called CM field. The CM field of an elliptic curve is an imaginary-quadratic
field Q(

√
D) with D < 0, that of a hyperelliptic curve of genus g is an imaginary-quadratic extension of a

totally real number field of degree g. Deuring’s lifting theorem ensures that C is the reduction modulo some
prime of a curve with the same endomorphism ring, but defined over the Hilbert class field HK of K.

Algebraically, HK is defined as the maximal unramified abelian extension of K; the Galois group of HK/K
is then precisely the class group ClK . A number field extension H/K is called Galois if H ' K[X]/(f) and
H contains all complex roots of f . For instance, Q(

√
2) is Galois since it contains not only

√
2, but also the

second root −
√

2 of X2 − 2, whereas Q( 3
√

2) is not Galois, since it does not contain the root e2πi/3 3
√

2 of
X3 − 2. The Galois group GalH/K is the group of automorphisms of H that fix K; it permutes the roots of f .
Finally, an abelian extension is a Galois extension with abelian Galois group.



Project-Team LFANT 5

Analytically, in the elliptic case HK may be obtained by adjoining to K the singular value j(τ) for a
complex valued, so-called modular function j in some τ ∈ OK ; the correspondence between GalH/K and ClK
allows to obtain the different roots of the minimal polynomial f of j(τ) and finally f itself. A similar, more
involved construction can be used for hyperelliptic curves. This direct application of complex multiplication
yields algebraic curves whose L-functions are known beforehand; in particular, it is the only possible way of
obtaining ordinary curves for pairing-based cryptosystems.

The same theory can be used to develop algorithms that, given an arbitrary curve over a finite field, compute
its L-function.

A generalisation is provided by ray class fields; these are still abelian, but allow for some well-controlled
ramification. The tools for explicitly constructing such class fields are similar to those used for Hilbert class
fields.

4. Highlights of the Year

4.1. Highlights of the Year
Guilhem Castagnos defended his professorial degree (“habilitation à diriger des recherches”) on the topic of
Cryptography based on quadratic fields: cryptanalyses, primitives and protocols[11].

4.1.1. Awards
Fredrik Johansson won the best paper award at the conference ARITH26 — 26th IEEE Symposium on
Computer Arithmetic in Kyoto for his contribution on dot products and matrix multiplication in arbitrary
precision .

BEST PAPER AWARD:

[21]
F. JOHANSSON. Faster arbitrary-precision dot product and matrix multiplication, in "26th IEEE Symposium
on Computer Arithmetic (ARITH26)", Kyoto, Japan, June 2019, https://arxiv.org/abs/1901.04289 , https://hal.
inria.fr/hal-01980399

5. New Software and Platforms

5.1. APIP
Another Pairing Implementation in PARI

KEYWORDS: Cryptography - Computational number theory

SCIENTIFIC DESCRIPTION: Apip , Another Pairing Implementation in PARI, is a library for computing
standard and optimised variants of most cryptographic pairings.

The following pairings are available: Weil, Tate, ate and twisted ate, optimised versions (à la Ver-
cauteren–Hess) of ate and twisted ate for selected curve families.

The following methods to compute the Miller part are implemented: standard Miller double-and-add method,
standard Miller using a non-adjacent form, Boxall et al. version, Boxall et al. version using a non-adjacent
form.

The final exponentiation part can be computed using one of the following variants: naive exponentiation,
interleaved method, Avanzi–Mihailescu’s method, Kato et al.’s method, Scott et al.’s method.

Part of the library has been included into Pari/Gp proper.

https://arxiv.org/abs/1901.04289
https://hal.inria.fr/hal-01980399
https://hal.inria.fr/hal-01980399
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FUNCTIONAL DESCRIPTION: APIP is a library for computing standard and optimised variants of most
cryptographic pairings.

• Participant: Jérôme Milan

• Contact: Andreas Enge

• URL: http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml

5.2. AVIsogenies
Abelian Varieties and Isogenies

KEYWORDS: Computational number theory - Cryptography

FUNCTIONAL DESCRIPTION: AVIsogenies is a Magma package for working with abelian varieties, with a
particular emphasis on explicit isogeny computation.

Its prominent feature is the computation of (l,l)-isogenies between Jacobian varieties of genus-two hyperellip-
tic curves over finite fields of characteristic coprime to l, practical runs have used values of l in the hundreds.

It can also be used to compute endomorphism rings of abelian surfaces, and find complete addition laws on
them.

• Participants: Damien Robert, Gaëtan Bisson and Romain Cosset

• Contact: Damien Robert

• URL: http://avisogenies.gforge.inria.fr/

5.3. CM
KEYWORD: Arithmetic

FUNCTIONAL DESCRIPTION: The Cm software implements the construction of ring class fields of imaginary
quadratic number fields and of elliptic curves with complex multiplication via floating point approximations. It
consists of libraries that can be called from within a C program and of executable command line applications.

RELEASE FUNCTIONAL DESCRIPTION: Features - Precisions beyond 300000 bits are now supported by an
addition chain of variable length for the -function. Dependencies - The minimal version number of Mpfr has
been increased to 3.0.0, that of Mpc to 1.0.0 and that of Pari to 2.7.0.

• Participant: Andreas Enge

• Contact: Andreas Enge

• URL: http://www.multiprecision.org/cm/home.html

5.4. CMH
Computation of Igusa Class Polynomials

KEYWORDS: Mathematics - Cryptography - Number theory

FUNCTIONAL DESCRIPTION: Cmh computes Igusa class polynomials, parameterising two-dimensional
abelian varieties (or, equivalently, Jacobians of hyperelliptic curves of genus 2) with given complex multi-
plication.

• Participants: Andreas Enge, Emmanuel Thomé and Regis Dupont

• Contact: Emmanuel Thomé

• URL: http://cmh.gforge.inria.fr

5.5. CUBIC
KEYWORD: Number theory

http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml
http://avisogenies.gforge.inria.fr/
http://www.multiprecision.org/cm/home.html
http://cmh.gforge.inria.fr
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FUNCTIONAL DESCRIPTION: Cubic is a stand-alone program that prints out generating equations for cubic
fields of either signature and bounded discriminant. It depends on the Pari library. The algorithm has quasi-
linear time complexity in the size of the output.

• Participant: Karim Belabas

• Contact: Karim Belabas

• URL: http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.2.tgz

5.6. Euclid
KEYWORD: Number theory

FUNCTIONAL DESCRIPTION: Euclid is a program to compute the Euclidean minimum of a number field. It
is the practical implementation of the algorithm described in [38] . Some corresponding tables built with the
algorithm are also available. Euclid is a stand-alone program depending on the PARI library.

• Participants: Jean-Paul Cerri and Pierre Lezowski

• Contact: Jean-Paul Cerri

• URL: http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php

5.7. KleinianGroups
KEYWORDS: Computational geometry - Computational number theory

FUNCTIONAL DESCRIPTION: KleinianGroups is a Magma package that computes fundamental domains of
arithmetic Kleinian groups.

• Participant: Aurel Page

• Contact: Aurel Page

• URL: http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html

5.8. GNU MPC
KEYWORD: Arithmetic

FUNCTIONAL DESCRIPTION: Mpc is a C library for the arithmetic of complex numbers with arbitrarily high
precision and correct rounding of the result. It is built upon and follows the same principles as Mpfr. The
library is written by Andreas Enge, Philippe Théveny and Paul Zimmermann.

RELEASE FUNCTIONAL DESCRIPTION: Fixed mpc_pow, see http://lists.gforge.inria.fr/pipermail/mpc-
discuss/2014-October/001315.html - #18257: Switched to libtool 2.4.5.

• Participants: Andreas Enge, Mickaël Gastineau, Paul Zimmermann and Philippe Théveny

• Contact: Andreas Enge

• URL: http://www.multiprecision.org/

5.9. MPFRCX
KEYWORD: Arithmetic

FUNCTIONAL DESCRIPTION: Mpfrcx is a library for the arithmetic of univariate polynomials over arbitrary
precision real (Mpfr ) or complex (Mpc ) numbers, without control on the rounding. For the time being, only
the few functions needed to implement the floating point approach to complex multiplication are implemented.
On the other hand, these comprise asymptotically fast multiplication routines such as Toom-Cook and the FFT.

http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.2.tgz
http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php
http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html
http://lists.gforge.inria.fr/pipermail/mpc-discuss/2014-October/001315.html
http://lists.gforge.inria.fr/pipermail/mpc-discuss/2014-October/001315.html
http://www.multiprecision.org/
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RELEASE FUNCTIONAL DESCRIPTION: - new function product_and_hecke - improved memory consump-
tion for unbalanced FFT multiplications

• Participant: Andreas Enge

• Contact: Andreas Enge

• URL: http://www.multiprecision.org/mpfrcx/home.html

5.10. PARI/GP
KEYWORD: Computational number theory

FUNCTIONAL DESCRIPTION: Pari/Gp is a widely used computer algebra system designed for fast computa-
tions in number theory (factorisation, algebraic number theory, elliptic curves, modular forms ...), but it also
contains a large number of other useful functions to compute with mathematical entities such as matrices,
polynomials, power series, algebraic numbers, etc., and many transcendental functions.

• Participants: Andreas Enge, Hamish Ivey-Law, Henri Cohen and Karim Belabas

• Partner: CNRS

• Contact: Karim Belabas

• URL: http://pari.math.u-bordeaux.fr/

5.11. Platforms
5.11.1. SageMath

Following the article [19], Xavier Caruso and Thibaut Verron proposed an implementation of Tate algebras
and ideals in Tate algebras (including an implementation of Buchberger algorithm) for SageMath; their
implementation is now part of the standard distribution.

Xavier Caruso implemented a new unified framework for dealing with ring extensions and field extensions in
SageMath. This code will be integrated soon in the standard distribution.

5.11.2. ARB
Fredrik Johansson released a new version, 2.17, of ARB.

6. New Results

6.1. Cryptographic Protocols
Participants: Guilhem Castagnos, Ida Tucker.

In [20], G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta and I. Tucker propose a new cryptographic
protocol to compute ECDSA signatures with two parties.

ECDSA (Elliptic Curves Digital Signature Algorithm) is a widely adopted standard for electronic signatures.
For instance, it is used in the TLS (Transport Layer Security) protocol and in many cryptocurrencies such
as Bitcoin. For cryptocurrencies, ECDSA is used in order to sign the transactions: if Alice wants to give n
bitcoins to Bob, she uses her secret key to sign with ECDSA a bit string encoding this information.

As a result, if the secret key of Alice is stolen, for example if her computer is compromised, an attacker can
stole all her bitcoins. A common solution to this problem is to share the key on multiple devices, for example a
laptop and a mobile phone. Both devices must collaborate in order to issue a signature, and if only one device
is compromised, no information on the key is leaked. This setting belongs to the area of secure multiparty
computation.

http://www.multiprecision.org/mpfrcx/home.html
http://pari.math.u-bordeaux.fr/


Project-Team LFANT 9

There have been recent proposals to construct 2 party variants of ECDSA signatures but constructing efficient
protocols proved to be much harder than for other signature schemes. The main reason comes from the
fact that the ECDSA signing protocol involves a complex equation compared to other signatures schemes.
Lindell recently managed to get an efficient solution using the linearly homomorphic cryptosystem of Paillier.
However his solution has some drawbacks, for example the security proof resorts to a non-standard interactive
assumption.

By using another approach based on hash proofs systems we obtain a proof that relies on standard assumptions.
Moving to concrete constructions, we show how to instantiate our framework using class groups of imaginary
quadratic fields. Our implementations show that the practical impact of dropping such interactive assumptions
is minimal. Indeed, while for 128-bit security our scheme is marginally slower than Lindell’s, for 256-bit
security it turns out to be better both in key generation and signing time. Moreover, in terms of communication
cost, our implementation significantly reduces both the number of rounds and the transmitted bits without
exception.

This paper was presented at the CRYPTO Conference 2019, and is part of the ALAMBIC project.

6.2. Coding Theory
Participants: Xavier Caruso, Aurel Page.

In [29], Xavier Caruso developed a theory of residues for skew rational functions (which are, by definition,
the quotients of two skew polynomials), proving in particular a skew analogue of the residue formula and a
skew analogue of the classical formula of change of variables for residues. He then used his theory to define
and study a linearized version of Goppa codes. He showed that these codes meet the Singleton bound (for the
sum-rank metric) and are the duals of the linearized Reed–Solomon codes defined recently by Martínez-Peñas.
Efficient encoding and decoding algorithms are also designed.

C. Maire and A. Page updated the preprint Error-correcting codes based on non-commutative algebras [33]
according to the comments of referees.

6.3. Number fields
Participants: Razvan Barbulescu, Jean-Marc Couveignes, Jean-Paul Cerri, Pierre Lezowski.

In [30], Jean-Marc Couveignes constructs small models of number fields and deduces a better bound for the
number of number fields of given degree n and discriminant bounded by H . This work improves on previous
results by Schmidt and Ellenberg-Venkatesh. Schmidt obtains a bound H

n+2
4 times a function of n. Ellenberg

and Venkatesh obtain a bound Hexp(O(
√
logn)) times a function of n. The new idea is to combine geometry of

numbers and interpolation theory to produces small projective models and lower the exponent of H down to
O(log3 n). A key point is to look for local equations rather than a full set of generators of the ideal of these
models.

In [12], Razvan Barbulescu in a joint work with Jishnu Ray (University of British Columbia, Vancouver)
brings elements to support Greenberg’s p-rationality conjecture. On the theoretical side, they propose a new
family proven to be p-rational. On the algorithmic side, the compare the tools to enumerate number fields
of given abelian Galois group and of computing class numbers, and extend the experiments on the Cohen-
Lenstra-Martinet conjectures.

In collaboration with Pierre Lezowski, Jean-Paul Cerri has studied in [15] norm-Euclidean properties of totally
definite quaternion fields over number fields. Building on their previous work about number fields, they have
proved that the Euclidean minimum and the inhomogeneous minimum of orders in such quaternion fields are
always equal. Additionally, they are rational under the hypothesis that the base number field is not quadratic.
This single remaning open case corresponds to the similar open case remaining for real number fields.
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They also have extended Cerri’s algorithm for the computation of the upper part of the norm-Euclidean
spectrum of a number field to this non-commutative context. This algorithm has allowed to compute the exact
value of the norm-Euclidean minimum of orders in totally definite quaternion fields over a quadratic number
field. This has provided the first known values of this minimum when the base number field has degree strictly
greater than 1.

6.4. Modular forms and L-functions
Participant: Henri Cohen.

Members of the team have taken part in an international autumn school on computational number theory at
the Izmir Institute of Technology (IZTECH) in 2017. Henri Cohen has transformed his two lectures in book
chapters. The text on modular forms [23] presents the (of course extremely condensed) view of the book [6]
he has coauthored. The chapter on L-functions [24] is closely related to new developments in PARI/GP.

In [25] the same author explains how to compute Fourier expansions at all cusps of any modular form of
integral or half-integral weight thanks to a theorem of Borisov–Gunnells and explicit expansions of Eisenstein
series at all cusps. Using this, he gives a number of methods for computing arbitrary Petersson products.
Implementations in our PARI/GP software are also described.

A complementary approach using modular symbols is used in [14] by Karim Belabas, Dominique Bernardi
and Bernadette Perrin-Riou to compute Manin’s constant and the modular degree of elliptic curves defined
over Q.

6.5. p-adic rings and geometry
Participant: Xavier Caruso.

In [19], Xavier Caruso, Tristan Vaccon and Thibaut Verron laid the foundations of an algorithmic treatment of
rigid p-adic geometry by introducting and studing Gröbner bases over Tate algebras. In addition, they designed
a Buchberger-like and a F4-like algorithm for computing such Gröbner bases.

In [22], Xavier Caruso presents a survey on Fontaine’s theory of p-adic period rings. These notes are based
on a course given jointly by Laurent Berger and Xavier Caruso in Rennes in 2014; their aim is to detail the
construction of the rings Bcrys and BdR (and some of their variants) and state several comparison theorems
between étale and crystalline or de Rham cohomologies for p-adic algebraic varieties.

6.6. Geometry
Participant: Aurel Page.

The paper [13], Can you hear the homology of 3-dimensional drums? by A. Bartel and A. Page was published
in Commentarii Mathematici Helvetici.

6.7. Complex multiplication of abelian varieties and elliptic curves
Participants: Razvan Barbulescu, Sorina Ionica, Chloe Martindale, Enea Milio, Damien Robert.

In [16], Sorina Ionica, former postdoc of the team, and Emmanuel Thomé look at the structure of isogeny
graphs of genus 2 Jacobians with maximal real multiplication. They generalise a result of Kohel’s describing
the structure of the endomorphism rings of the isogeny graph of elliptic curves. Their setting considers
genus 2 jacobians with complex multiplication, with the assumptions that the real multiplication subring is
maximal and has class number 1. Over finite fields, they derive a depth first search algorithm for computing
endomorphism rings locally at prime numbers, if the real multiplication is maximal.

Antonin Riffaut examines in [18] whether there are relations defined over Q that link (additively or multiplica-
tively) different singular moduli j(τ), invariants of elliptic curves with complex multiplication by different
quadratic rings.
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In [34], Chloe Martindale presents an algorithm to compute higher dimensional Hilbert modular polynomials.
She also explains applications of this algorithm to point counting, walking on isogeny graphs, and computing
class polynomials.

In [28], Razvan Barbulescu and Sudarshan Shinde (Sorbonne Université) make a complete list of the 1525
infinite families of elliptic curves without CM which have a particular behaviour in the ECM factoring
algorithm, the 20 previously known families having been found by ad-hoc methods. The new idea was to
use the characterisation of ECM-friendly families in terms of their Galois image and to use the recent progress
in the topic of Mazur’s program. In particular, for some of the families mentioned theoretical in the literature
the article offers the first publication of explicite equations.

E. Milio and D. Robert updated their paper [35] on computing cyclic modular polynomials.

6.8. Pairings
Participant: Razvan Barbulescu.

In [27], Razvan Barbulescu in a joint work with Nadia El Mrabet (École des Mines de Saint-Étienne) et Loubna
Ghammam (Bosch) makes a review of the families of elliptic curves for pairing-based cryptology. This was
necessary after the invention of a new variant of the NFS algorithm in 2016 by Barbulescu and Taechan Kim,
which showed that the previously used key sizes for pairings were insecure. The novelty of this review article
is double : first they consider a large number of families, some of which were never analysed in the literature
because they were not likely to be the best and secondly they combine in the same article the security analysis
of each family with a non-optimized implementation. This allows the industry to select a different family for
each type of utilisation of pairings.

6.9. Multiprecision arithmetic
Participant: Fredrik Johansson.

In [17], F. Johansson and I. Blagouchine devise an efficient algorithm to compute the generalized Stieltjes
constants γn(a) to arbitrary precision with rigorous error bounds, for the first time achieving this with low
complexity with respect to the order n. The algorithm consists of locating an approximate steepest descent
contour and then evaluating the integral numerically in ball arithmetic using the Petras algorithm with a Taylor
expansion for bounds near the saddle point. An implementation is provided in the Arb library.

In [26], F. Johansson describes algorithms to compute elliptic functions and their relatives (Jacobi theta
functions, modular forms, elliptic integrals, and the arithmetic-geometric mean) numerically to arbitrary
precision with rigorous error bounds for arbitrary complex variables. Implementations in ball arithmetic
are available in the Arb library. This overview article discusses the standard algorithms from a concrete
implementation point of view, and also presents some improvements.

In [21], Fredrik Johansson develops algorithms for real and complex dot product and matrix multiplication
in arbitrary-precision floating-point and ball arithmetic. The new methods are implemented in Arb and
significantly speed up polynomial operations and linear algebra in high precision.

7. Partnerships and Cooperations

7.1. National Initiatives
7.1.1. ANR Alambic – AppLicAtions of MalleaBIlity in Cryptography

Participant: Guilhem Castagnos.

https://crypto.di.ens.fr/projects:alambic:main

https://crypto.di.ens.fr/projects:alambic:main
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The ALAMBIC project is a research project formed by members of the Inria Project-Team CASCADE of ENS
Paris, members of the AriC Inria project-team of ENS Lyon, and members of the CRYPTIS of the university
of Limoges. G. Castagnos is an external member of the team of Lyon for this project.

Non-malleability is a security notion for public key cryptographic encryption schemes that ensures that it
is infeasible for an adversary to modify ciphertexts into other ciphertexts of messages which are related to
the decryption of the first ones. On the other hand, it has been realized that, in specific settings, malleability
in cryptographic protocols can actually be a very useful feature. For example, the notion of homomorphic
encryption allows specific types of computations to be carried out on ciphertexts and generate an encrypted
result which, when decrypted, matches the result of operations performed on the plaintexts. The homomorphic
property can be used to create secure voting systems, collision-resistant hash functions, private information
retrieval schemes, and for fully homomorphic encryption enables widespread use of cloud computing by
ensuring the confidentiality of processed data.

The aim of the ALAMBIC project to investigate further theoretical and practical applications of malleability in
cryptography. More precisely, this project focuses on three different aspects: secure computation outsourcing
and server-aided cryptography, homomorphic encryption and applications and << paradoxical >> applications
of malleability.

7.1.2. ANR CLap–CLap – The p-adic Langlands correspondence: a constructive and
algorithmical approach
Participants: Xavier Caruso, Jean-Marc Couveignes.

The p-adic Langlands correspondence has become nowadays one of the deepest and the most stimulating
research programs in number theory. It was initiated in France in the early 2000’s by Breuil and aims at
understanding the relationships between the p-adic representations of p-adic absolute Galois groups on the
one hand and the p-adic representations of p-adic reductive groups on the other hand. Beyond the case of
GL2(Qp) which is now well established, the p-adic Langlands correspondence remains quite obscure and
mysterious new phenomena enter the scene; for instance, on the GLn(F )-side one encounters a vast zoology
of representations which seems extremely difficult to organize.

The CLap–CLap ANR project aims at accelerating the expansion of the p-adic Langlands program beyond the
well-established case of GL2(Qp). Its main originality consists in its very constructive approach mostly based
on algorithmics and calculations with computers at all stages of the research process. We shall pursue three
different objectives closely related to our general aim:

1. draw a conjectural picture of the (still hypothetical) p-adic Langlands correspondence in the case of
GLn,

2. compute many deformation spaces of Galois representations and make the bridge with deformation
spaces of representations of reductive groups,

3. design new algorithms for computations with Hilbert and Siegel modular forms and their associated
Galois representations.

This project will also be the opportunity to contribute to the development of the mathematical software
SAGEMATH and to the expansion of computational methodologies.

7.1.3. ANR Ciao – Cryptography, Isogenies and Abelian varieties Overwhelming
Participants: Jean-Marc Couveignes, Jean Kieffer, Aurel Page, Damien Robert.

The CIAO ANR project is a young researcher ANR project led by Damien Robert October 2019.

The aim of the CIAO project is to study the security and improve the efficiency of the SIDH (supersingular
isogenies Diffie Helmann) protocol, which is one of the post-quantum cryptographic project submitted to
NIST, which passed the first round selection.
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The project include all aspects of SIDH, from theoretical ones (computing the endomorphism ring of
supersingular elliptic curves, generalisation of SIDH to abelian surfaces) to more practical aspects like
arithmetic efficiency and fast implementations, and also extending SIDH to more protocols than just key
exchange.

Applications of this project is to improve the security of communications in a context where the currently
used cryptosystems are vulnerable to quantum computers. Beyond post-quantum cryptography, isogeny based
cryptosystems also allow to construct new interesting cryptographic tools, like Verifiable Delay Functions,
used in block chains.

7.2. European Initiatives
7.2.1. FP7 & H2020 Projects

Title: OpenDreamKit
Program: H2020
Duration: January 2016 - December 2019
Coordinator: Nicolas Thiéry
Inria contact: Karim Belabas
Description http://cordis.europa.eu/project/rcn/198334_en.html, http://opendreamkit.org

OpenDreamKit was a Horizon 2020 European Research Infrastructure project (#676541) that
ran for four years, starting from September 2015. It provided substantial funding to the open
source computational mathematics ecosystem, and in particular popular tools such as LinBox,
MPIR, SageMath, GAP, Pari/GP, LMFDB, Singular, MathHub, and the IPython/Jupyter interactive
computing environment.

7.3. International Initiatives
7.3.1. Inria International Labs

International Laboratory for Research in Computer Science and Applied Mathematics
Associate Team involved in the International Lab:

7.3.1.1. FAST
Title: (Harder Better) FAster STronger cryptography
International Partner (Institution - Laboratory - Researcher): and the PRMAIS project

Université des Sciences et Techniques de Masuku (Gabon) - Tony Ezome
Start year: 2017
See also: http://fast.gforge.inria.fr/
The project aims to develop better algorithms for elliptic curve cryptography with prospect of the
two challenges ahead: - securing the internet of things - preparing towards quantum computers.

Elliptic curves are currently the fastest public-key cryptosystem (with a key size that can fit on
embeded devices) while still through a different mode of operation beeing (possibly) able to resist
quantum based computers.

This was the last year of the Fast projet, which was represented at the Journees du Lirimia in Yaounde
by Emmanuel Fouotsa.

In total the project funded one EMA and two CIMPA schools, had 14 publications in journals and
conferences (with three upcoming preprints), two PhD defense with two upcoming.

7.3.2. Inria International Partners
7.3.2.1. Informal International Partners

The team is used to collaborating with Leiden University through the ALGANT programme for joint PhD
supervision.

http://cordis.europa.eu/project/rcn/198334_en.html
http://opendreamkit.org
http://fast.gforge.inria.fr/
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Eduardo Friedman (U. of Chile), long term collaborator of K. Belabas’s and H. Cohen’s, is a regular visitor in
Bordeaux (about 1 month every year).

7.4. International Research Visitors
7.4.1. Visits of International Scientists

Researchers visiting the team to give a talk to the team seminar include David Lubicz (DGA Rennes), Hartmut
Monien (Bethe Center for Theoretical Physics, Bonn), Francesco Battestoni (University of Milan), David Roe
(MIT, Boston), Maria Dostert (EPFL, Lausanne), and Alice Pellet-Mary (KU Leuven).

Abdoulaye Maiga visited the team for one month in December 2019, and Tony Ezome visited for two weeks
in November 2019.

8. Dissemination

8.1. Promoting Scientific Activities
8.1.1. Journal
8.1.1.1. Member of the Editorial Boards

X. Caruso is an editor and one of the founders of the journal Annales Henri Lebesgue.

J.-M. Couveignes is a member of the editorial board (scientific committee) of the Publications mathématiques
de Besançon since 2010.

K. Belabas acts on the editorial board of Journal de Théorie des Nombres de Bordeaux since 2005 and of
Archiv der Mathematik since 2006.

H. Cohen is an editor for the Springer book series Algorithms and Computations in Mathematics (ACM).

A. Enge is an editor of Designs, Codes and Cryptography since 2004.

8.1.2. Invited Talks
F. Johansson, Computing with precision, Tech Talk, Google X, Mountain View, CA, USA (January 2019)

8.1.3. Scientific Expertise
K. Belabas is a member of the “conseil scientifique” of the Société Mathématique de France.

8.1.4. Research Administration
Since January 2015, K. Belabas is vice-head of the Math Institute (IMB). He also leads the computer science
support service (“cellule informatique”) of IMB and coordinates the participation of the institute in the regional
computation cluster PlaFRIM.

He is an elected member of “commission de la recherche” in the academic senate of Bordeaux University.

He was a member of the “Conseil National des Universités” (25th section, pure mathematics) since 2015 until
november 2019.

Since January 2017, A. Enge is “délégué scientifique” of the Inria research centre Bordeaux–Sud-Ouest. As
such, he is also a designated member of the “commission d’évaluation” of Inria.

He is a member of the administrative council of the Société Arithmétique de Bordeaux, qui édite le Journal
de théorie des nombres de Bordeaux et qui soutient des congrès en théorie des nombres.

J.-P. Cerri is an elected member of the scientific council of the Mathematics Institute of Bordeaux (IMB) and
responsible for the bachelor programme in mathematics and informatics.
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8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Master: G. Castagnos, Cryptanalyse, 60h, M2, University of Bordeaux, France;

Master: G. Castagnos, Cryptologie avancée, 30h, M2, University of Bordeaux, France;

Master: G. Castagnos, Courbes elliptiques, 30h, M2, University of Bordeaux, France;

Licence: G. Castagnos, Arithmétique et Cryptologie, 24h, L3, Université de Bordeaux, France

Master : D. Robert, Courbes elliptiques, 60h, M2, University of Bordeaux, France;

Master: X. Caruso and J.-M. Couveignes, Algorithmique arithmétique, introduction à
l’algorithmique quantique, 60h, M2, University of Bordeaux, France;

Master : K. Belabas, Computer Algebra, 91h, M2, University of Bordeaux, France;

Master: J.-M. Couveignes, Modules, espaces quadratiques, 30h, M1, University of Bordeaux,
France;

Licence : J.-P. Cerri, Arithmétique et Cryptologie, TD, 36h, L3, Université de Bordeaux, France

Licence : J.-P. Cerri, Algèbre linéaire, TD, 51h, L2, Université de Bordeaux, France

Licence : J.-P. Cerri, Topologie, TD, 35h, L3, Université de Bordeaux, France

Master : J.-P. Cerri, Cryptologie, Cours-TD, 60h, M1, Université de Bordeaux, France

Licence: J. Kieffer, Algorithmique Mathématique 2, 32h, L3, Université de Bordeaux, France

Master: R. Barbulescu, Arithmetic algorithms for cryptology, M2, Master Parisien de Recherche
Informatique.

Licence, Master : J.-P. Cerri, 2 TER (L3, M1), 1 Projet (M2), Université de Bordeaux, France

Master : J. Asuncion, Elliptic curves, TD, 16h, M1, Universiteit Utrecht (Mastermath), Pays-Bas

8.2.2. Supervision
Master thesis: Jean-Raphaël Biehler, Functional encryption, supervised by Guilhem Castagnos

Master thesis: Béranger Seguin, Deformations of Galois representations, supervised by Xavier
Caruso

Master thesis: William Dallaporta, Parametrization of ideals and other algebraic structures by
quadratic forms, supervised by Karim Belabas

PhD in progress: Ida Tucker, Design of new advanced cryptosystems from homomorphic building
blocks, since October 2017, supervised by Guilhem Castagnos and Fabien Laguillaumie

PhD in progress: Abdoulaye Maiga, Computing canonical lift of genus 2 hyperelliptic curves,
University Dakar, supervised by Djiby Sow, Abdoul Aziz Ciss and D. Robert.

PhD in progress: Jared Asuncion, Class fields of complex multiplication fields, since September
2017, supervised by A. Enge and Marco Streng (Universiteit Leiden).

PhD in progress: Elie Eid, Computing isogenies between elliptic curves and curves of higher genus,
since September 2018, supervised by Xavier Caruso and Reynald Lercier

PhD in progress: Amaury Durand, Geometric Gabidulin codes, since September 2019, supervised
by Xavier Caruso

PhD in progress: Jean Kieffer, Computing isogenies between abelian surfaces, since September
2018, supervised by Damien Robert and Aurel Page

PhD in progress: Pavel Solomatin Topics on L-functions, since October 2014, supervised by B. de
Smit and K. Belabas.

PhD in progress: Anne-Edgar Wilke Enumerating integral orbits of prehomogeneous representa-
tions, since September 2019, supervised by K. Belabas.
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PhD in progress: Sudarshan Shinde Cryptographic applications of modular curves since October
2016, supervised by R. Barbulescu with Pierre-Vincent Koseleff (Sorbonne Université).

8.2.3. Juries
X. Caruso has written a report for the doctoral dissertation by Léo Poyeton, ÉNS de Lyon: Extensions
de Lie p-adiques et (ϕ,Γ)-modules.
X. Caruso has written a report for the doctoral dissertation by Christopher Doris, University of
Bristol: Aspects of p-adic computation.
X. Caruso has written a report for the doctoral dissertation by Joelle Saade, Université de Limoges:
Méthodes symboliques pour les systèmes différentiels linéaires à singularité irrégulière.
R. Barbulescu was part of the three members jury of the oral examination in mathematics for math-
info the admission examination for ENS de Lyon
D. Robert is a member of the jury of Agregations de Mathematiques. He is also the director of the
option “calcul formel” of the Modelisation part of the oral examination.

8.3. Popularization
8.3.1. Education

Alkindi : R. Barbulescu is one of the three organizers of the Alkindi contest, a contest for 13-to-15 year old
students which gathers more than 60000 participants from France and Switzerland. D. Robert and the other
members invite the winners of the Bordeaux region for a 2 hour visit each year.

8.3.2. Interventions
• from 27/05/2019 to 31/05/2019, X. Caruso supervised a stage at the fablab Coh@bit (at IUT

Gradignan) to build some educational material
• 30/06/2019, X. Caruso: Ramène pas ta science on a physical experiment demonstrating that the

fastest path between two points is an arc of cycloid
• 8-10/10/2019, A. Page: Fête de la Science at Inria Bordeaux, activity on cryptography (8 groups of

students).
• 17/10/2019, X. Caruso and A. Page: Village des 80 ans du CNRS, discussion stand "Quizz des idées

reçues" on research in mathematics.
• 19/10/2019, X. Caruso and M.-L. Chabanol: Village des 80 ans du CNRS on physical experiment

demonstrating that the fastest path between two points is an arc of cycloid
• from 07/04/2019 to 14/04/2019, R. Barbulescu was one of two teachers for a math camp in Kinshasa

of 150 students https://www.cnrs.fr/insmi/spip.php?article3190.
• from 06/07/2019 to 13/07/2019, R. Barbulescu was the main organiser for a math training camp

which gathered the national teams for the International Olympiad of Mathematics of France,
Romania and Bulgaria.

• 5/12/2019, D. Robert: small presentations of cryptography for the student of Ecole Normale
Superieure de Lyon.
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