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2. Overall Objectives
2.1. Control, Transport and Dynamics

Our goal is to develop methods in geometric control theory for finite-dimensional nonlinear systems, as well
as in optimal transport, and to transfer our expertise through real applications of these techniques.

Our primary domain of industrial applications in the past years is space engineering, namely designing
trajectories in space mechanics using optimal control and stabilization techniques: transfer of a satellite
between two Keplerian orbits, rendez-vous problem, transfer of a satellite from the Earth to the Moon or
more complicated space missions. A second field of applications is quantum control with applications to
Nuclear Magnetic Resonance and medical image processing. A third and more recent one is the control of
micro-swimmers, i.e. swimming robots where the fluid-structure coupling has a very low Reynolds number.

There is also a form of transfer to other mathematical fields: some problems in dynamical systems are being
solved thanks to control theory techniques.

3. Research Program
3.1. Control Problems

McTAO’s major field of expertise is control theory in the large sense. Let us give an overview of this field.

Modelling. Our effort is directed toward efficient methods for the control of real (physical) systems, based on
a model of the system to be controlled. Choosing accurate models yet simple enough to allow control design
is in itself a key issue. The typical continuous-time model is of the form dx/dt = f(x, u) where x is the state,
ideally finite dimensional, and u the control; the control is left free to be a function of time, or a function of the
state, or obtained as the solution of another dynamical system that takes x as an input. Modelling amounts to
deciding the nature and dimension of x, as well as the dynamics (roughly speaking the function f ). Connected
to modeling is identification of parameters when a finite number of parameters are left free in “f”.

Controllability, path planning. Controllability is a property of a control system (in fact of a model) that
two states in the state space can be connected by a trajectory generated by some control, here taken as an
explicit function of time. Deciding on local or global controllability is still a difficult open question in general.
In most cases, controllability can be decided by linear approximation, or non-controllability by “physical”
first integrals that the control does not affect. For some critically actuated systems, it is still difficult to decide
local or global controllability, and the general problem is anyway still open. Path planning is the problem of
constructing the control that actually steers one state to another.
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Optimal control. In optimal control, one wants to find, among the controls that satisfy some contraints at
initial and final time (for instance given initial and final state as in path planning), the ones that minimize some
criterion. This is important in many control engineering problems, because minimizing a cost is often very
relevant. Mathematically speaking, optimal control is the modern branch of the calculus of variations, rather
well established and mature [71], [47], [34], but with a lot of hard open questions. In the end, in order to
actually compute these controls, ad-hoc numerical schemes have to be derived for effective computations of
the optimal solutions. See more about our research program in optimal control in section 3.2.

Feedback control. In the above two paragraphs, the control is an explicit function of time. To address in
particular the stability issues (sensitivity to errors in the model or the initial conditions for example), the
control has to be taken as a function of the (measured) state, or part of it. This is known as closed-loop
control; it must be combined with optimal control in many real problems. On the problem of stabilization,
there is longstanding research record from members of the team, in particular on the construction of “Control
Lyapunov Functions”, see [62], [73].

Classification of control systems One may perform various classes of transformations acting on systems,
or rather on models... The simpler ones come from point-to-point transformations (changes of variables) on
the state and control, and more intricate ones consist in embedding an extraneous dynamical system into the
model, these are dynamic feedback transformations, they change the dimension of the state. In most problems,
choosing the proper coordinates, or the right quantities that describe a phenomenon, sheds light on a path to the
solution; these proper choices may sometimes be found from an understanding of the modelled phenomenons,
or it can come from the study of the geometry of the equations and the transformation acting on them. This
justifies the investigations of these transformations on models for themselves. These topics are central in
control theory; they are present in the team, see for instance the classification aspect in [52] or —although this
research has not been active very recently— the study [70] of dynamic feedback and the so-called “flatness”
property [65].

3.2. Optimal Control and its Geometry
Let us detail our research program concerning optimal control. Relying on Hamiltonian dynamics is now
prevalent, instead of the Lagrangian formalism in classical calculus of variations. The two points of view run
parallel when computing geodesics and shortest path in Riemannian Geometry for instance, in that there is a
clear one-to-one correspondance between the solutions of the geodesic equation in the tangent bundle and the
solution of the Pontryagin Maximum Principle in the cotangent bundle. In most optimal control problems, on
the contrary, due to the differential constraints (velocities of feasible trajectories do not cover all directions in
the state space), the Lagrangian formalism becomes more involved, while the Pontryagin Maximum Principle
keeps the same form, its solutions still live in the cotangent bundle, their projections are the extremals, and a
minimizing curve must be the projection of such a solution.

Cut and conjugate loci. The cut locus —made of the points where the extremals lose optimality— is
obviously crucial in optimal control, but usually out of reach (even in low dimensions), and anyway does not
have an analytic characterization because it is a non-local object. Fortunately, conjugate points —where the
extremals lose local optimality— can be effectively computed with high accuracy for many control systems.
Elaborating on the seminal work of the Russian and French schools (see [76], [35], [36] and [53] among
others), efficient algorithms were designed to treat the smooth case. This was the starting point of a series
of papers of members of the team culminating in the outcome of the cotcot software [46], followed by the
Hampath [55] code. Over the years, these codes have allowed for the computation of conjugate loci in a wealth
of situations including applications to space mechanics, quantum control, and more recently swimming at low
Reynolds number. With in mind the two-dimensional analytic Riemannian framework, a heuristic approach
to the global issue of determining cut points is to search for singularities of the conjugate loci; this line is
however very delicate to follow on problems stemming from applications in three or more dimensions (see
e.g. [56] and [43]). In all these situations, the fundamental object underlying the analysis is the curvature
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tensor. In Hamiltonian terms, one considers the dynamics of subspaces (spanned by Jacobi fields) in the
Lagrangian Grassmannian [33]. This point of view withstands generalizations far beyond the smooth case: In
L1-minimization, for instance, discontinuous curves in the Grassmannian have to be considered (instantaneous
rotations of Lagrangian subspaces still obeying symplectic rules [60]). The cut locus is a central object in
Riemannian geometry, control and optimal transport. This is the motivation for a series of conferences on
“The cut locus: A bridge over differential geometry, optimal control, and transport”, co-organized by team
members and Japanese colleagues, the next one should take place in Nice in 2020.

Riemann and Finsler geometry. Studying the distance and minimising geodesics in Riemannian Geometry
or Finsler Geometry is a particular case of optimal control, simpler because there are no differential constraints;
it is studied in the team for the following two reasons. On the one hand, after some tranformations, like
averaging (see section 3.2) or reduction, some more difficult optimal control problems lead to a Riemann
or Finsler geometry problem. On the other hand, optimal control, mostly the Hamiltonian setting, brings a
fresh viewpoint on problems in Riemann and Finsler geometry. On Riemannian ellipsoids of revolution, the
optimal control approach allowed to decide on the convexity of the injectivity domain, which, associated with
non-negativity of the Ma-Trudinger-Wang curvature tensor, ensures continuity of the optimal transport on the
ambient Riemannian manifold [64], [63]. The analysis in the oblate geometry [44] was completed in [59] in the
prolate one, including a preliminary analysis of non-focal domains associated with conjugate loci. Averaging
in systems coming from space mechanics control (see sections 3.2 and 4.1) with L2-minimization yields a
Riemannian metric, thoroughly computed in [42] together with its geodesic flow; in reduced dimension, its
conjugate and cut loci were computed in [45] with Japanese Riemannian geometers. Averaging the same
systems for minimum time yields a Finsler Metric, as noted in [41]. In [51], the geodesic convexity properties
of these two types of metrics were compared. When perturbations (other than the control) are considered, they
introduce a “drift”, i.e. the Finsler metric is no longer symmetric.

Sub-Riemannian Geometry. Optimal control problems that pertain to sub-Riemannian Geometry bear all
the difficulties of optimal control, like the role of singular/abnormal trajectories, while having some useful
structure. They lead to many open problems, like smoothness of minimisers, see the recent monograph [69]
for an introduction. Let us detail one open question related to these singular trajectories: the Sard conjecture
in sub-Riemannian geometry. Given a totally non-holonomic distribution on a smooth manifold, the Sard
Conjecture is concerned with the size of the set of points that can be reached by singular horizontal paths
starting from a given point. In the setting of rank-two distributions in dimension three, the Sard conjecture
is that this set should be a subset of the so-called Martinet surface, indeed small both in measure and in
dimension. In [39], it has been proved that the conjecture holds in the case where the Martinet surface is
smooth. Moreover, the case of singular real-analytic Martinet surfaces was also addressed. In this case, it
was shown that the Sard Conjecture holds true under an assumption of non-transversality of the distribution
on the singular set of the Martinet surface. It is, of course, very intersting to get rid of the remaining
technical assumption, or to go to higher dimension. Note that any Sard-type result has strong consequences
on the regularity of sub-Riemannian distance functions and in turn on optimal transport problems in the sub-
Riemannian setting.

Small controls and conservative systems, averaging. Using averaging techniques to study small perturba-
tions of integrable Hamiltonian systems is as old an idea as celestial mechanics. It is very subtle in the case of
multiple periods but more elementary in the single period case, here it boils down to taking the average of the
perturbation along each periodic orbit [37], [75]. This line of research stemmed out of applications to space
engineering (see section 4.1): the control of the super-integrable Keplerian motion of a spacecraft orbiting
around the Earth is an example of a slow-fast controlled system. Since weak propulsion is used, the control
itself acts as a perturbation, among other perturbations of similar magnitudes: higher order terms of the Earth
potential (including J2 effect, first), potential of more distant celestial bodies (such as the Sun and the Moon),
atmospheric drag, or even radiation pressure. Properly qualifying the convergence properties (when the small
parameter goes to zero) is important and is made difficult by the presence of control. In [41], convergence is
seen as convergence to a differential inclusion; this applies to minimum time; a contribution of this work is to
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put forward the metric character of the averaged system by yielding a Finsler metric (see section 3.2). Prov-
ing convergence of the extremals (solutions of the Pontryagin Maximum Principle) is more intricate. In [58],
standard averaging ( [37], [75]) is performed on the minimum time extremal flow after carefully identifying
slow variables of the system thanks to a symplectic reduction. This alternative approach allows to retrieve the
previous metric approximation, and to partly address the question of convergence. Under suitable assumptions
on a given geodesic of the averaged system (disconjugacy conditions, namely), one proves existence of a fam-
ily of quasi-extremals for the original system that converge towards the geodesic when the small perturbation
parameter goes to zero. This needs to be improved, but convergence of all extremals to extremals of an “aver-
aged Pontryagin Maximum Principle” certainly fails. In particular, one cannot hope for C1-regularity on the
value function when the small parameter goes to zero as swallowtail-like singularities due to the structure of
local minima in the problem are expected. (A preliminary analysis has been made in [57].)

Optimality of periodic solutions/periodic controls. When seeking to minimize a cost with the constraint
that the controls and/or part of the states are periodic (and with other initial and final conditions), the notion
of conjugate points is more difficult than with straightforward fixed initial point. In [48], for the problem
of optimizing the efficiency of the displacement of some micro-swimmers (see section 4.3) with periodic
deformations, we used the sufficient optimality conditions established by R. Vinter’s group [80], [66] for
systems with non unique minimizers due to the existence of a group of symmetry (always present with a
periodic minimizer-candidate control). This takes place in a long term collaboration with P. Bettiol (Univ.
Bretagne Ouest) on second order sufficient optimality conditions for periodic solutions, or in the presence of
higher dimensional symmetry groups, following [80], [66]. Another question relevant to locomotion is the
following. Observing animals (or humans), or numerically solving the optimal control problem associated
with driftless micro-swimmers for various initial and final conditions, we remark that the optimal strategies
of deformation seem to be periodic, at least asymptotically for large distances. This observation is the starting
point for characterizing dynamics for which some optimal solutions are periodic, and asymptotically attract
other solutions as the final time grows large; this is reminiscent of the “turnpike theorem” (classical, recently
applied to nonlinear situations in [79]).

Software. These applications (but also the development of theory where numerical experiments can be
very enlightening) require many algorithmic and numerical developments that are an important side of the
team activity. The software Hampath (see section 6.1) is maintained by former members of the team in close
collaboration with McTAO. We also use direct discretization approaches (such as the Bocop solver developed
by COMMANDS) in parallel. Apart from this, we develop on-demand algorithms and pieces of software, for
instance we have to interact with a production software developed by Thales Alenia Space. A strong asset
of the team is the interplay of its expertise in geometric control theory with applications and algorithms (see
sections 4.1 to 4.3) on one hand, and with optimal transport, and more recently Hamiltonian dynamics, on the
other. In 2019, the ADT ct (Control Toolbox) has started with a first sprint in "AMDT mode" with Sophia
SED during spring 2019. In addition to McTAO, researchers from the CAGE team (Inria Paris) and the APO
team (CNRS Toulouse) are involved. The idea is to put together the efforts on BOCOP and HamPath to go
towards a reference toolbox in optimal control. After the first sprint cycle (24 months being planned on the
whole action), some starting points have been addressed including: continuous integration for BOCOP and
HamPath, refresh on collaborative development tools, first steps of software refactoring, first test of a high-
end interface (throught scripting, notebooks, or an ad hoc GUI). The next sprint is planned during spring
2020.

3.3. Optimal Transport
Given two measures, and calling transport maps the maps that transport the first measure into the second one,
the Monge-Kantorovich problem of Optimal Transport is the search of the minimum of some cost on the set of
transport maps. The cost of a map usually comes from some point to point cost and the transport measure. This
topic attracted renewed attention in the last decade, and has ongoing applications of many types. Matching
optimal transport with geometric control theory is one originality of our team. Let us sketch an important

http://www.bocop.org
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class of open problems. In collaboration with R. McCann [68], we worked towards identifying the costs that
admit unique optimizers in the Monge-Kantorovich problem of optimal transport between arbitrary probability
densities. For smooth costs and densities on compact manifolds, the only known examples for which the
optimal solution is always unique require at least one of the two underlying spaces to be homeomorphic to
a sphere. We have introduced a multivalued dynamics induced by the transportation cost between the target
and source space, for which the presence or absence of a sufficiently large set of periodic trajectories plays a
role in determining whether or not optimal transport is necessarily unique. This insight allows us to construct
smooth costs on a pair of compact manifolds with arbitrary topology, so that the optimal transport between
any pair of probability densities is unique. We investigated further this problem of uniquely minimizing costs
and obtained in collaboration with Abbas Moameni [10] a result of density of uniquely minimizing costs in
the C0-topology. The results in higher topology should be the subject of some further research.

4. Application Domains

4.1. Aerospace Engineering
Participants: Bernard Bonnard, Jean-Baptiste Caillau, Thierry d’Argent, Lamberto Dell’Elce, Jean-Baptiste
Pomet, Jérémy Rouot.

Space engineering is very demanding in terms of safe and high-performance control laws. It is therefore prone
to fruitful industrial collaborations. McTAO now has an established expertise in space and celestial mechanics.
Our collaborations with industry are mostly on orbit transfer problems with low-thrust propulsion. It can be
orbit transfer to put a commercial satellite on station, in which case the dynamics are a Newtonian force field
plus perturbations and the small control. There is also, currently, a renewed interest in low-thrust missions
such as Lisa Pathfinder (ESA mission towards a Lagrange point of the Sun-Earth system) or BepiColombo
(joint ESA-JAXA mission towards Mercury). Such missions look more like a controlled multibody system.
In all cases the problem involves long orbit transfers, typically with many revolutions around the primary
celestial body. When minimizing time, averaging techniques provide a good approximation. Another important
criterion in practice is fuel consumption minimization (crucial because only a finite amount of fuel is onboard
a satellite for all its “life”), which amounts to L1-minimization. Both topics are studied by the team. We have
a steady relationships with CNES and Thales Alenia Space (Cannes), that have financed or co-financed 3
PhDs and 2 post-docs in the Sophia location of the team in the decade and are a source of inspiration even
at the methodological level. Team members also have close connections with Airbus-Safran (Les Mureaux)
on launchers. Some of the authoritative papers in the field were written by team members, with an emphasis
on the geometric analysis and on algorithms (coupling of shooting and continuation methods). There are
also connections with peers more on the applied side, like D. Scheeres (Colorado Center for Astrodynamics
Research at Boulder), the group of F. Bernelli (Politecnico Milano), and colleagues from U. Barcelona (A.
Farrès, A. Jorba).

4.2. Magnetic resonance imaging (MRI)
Participants: Bernard Bonnard, Alice Nolot [Professeur Classes Préparatoires Troyes], Jérémy Rouot, Joseph
Gergaud, Olivier Cots [ENSEEIHT, Toulouse], Stephen Glaser [TU München, Germany], Dominique Sugny
[Univ. de Bourgogne].

The starting point of our interest in optimal control for quantum systems was a collaboration with physicist
from ICB, University of Burgundy (Dominique Sugny), motivated by an ANR project where we worked on the
control of molecular orientation in a dissipative environment using a laser field, and developed optimal control
tools, combined with numerical simulations, to analyze the problem for Qubits. This was related to quantum
computing rather than MRI. Using this expertise and under the impulse of Prof. S. Glaser and his group
(Chemistry, TU München), we investigated Nuclear Magnetic resonance (NMR) for medical imaging (MRI),
where the model is the Bloch equation describing the evolution of the Magnetization vector controlled by a
magnetic field, but in fine is a specific Qubit model without decoherence. We worked on, and brought strong

https://icb.u-bourgogne.fr/
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contributions to, the contrast problem: typically, given two chemical substances that have an importance in
medicine, like oxygenated and de-oxygenated blood, find the (time-dependent) magnetic field that will produce
the highest difference in brightness between these two species on the image resulting from Nuclear Magnetic
Resonance. This has immediate and important industrial applications in medical imaging. Our contacts are
with the above mentioned physics academic labs, who are themselves in contact with major companies. The
team has produced and is producing important work on this problem. One may find a good overview in [50],
a reference book has been published on the topic [54], a very complete numerical study comparing different
optimization techniques was performed in [49]. We conduct this project in parallel with S. Glaser team, which
validated experimentally the pertinence of the methods, the main achievement being the in vivo experiments
realized at the Creatis team of Insa Lyon showing the interest to use optimal control methods implemented
in modern softwares in MRI in order to produce a better image in a shorter time. A goal is to arrive to
a cartography of the optimal contrast with respect to the relaxation parameters using LMI techniques and
numerical simulations with the Hamapth and Bocop code; note that the theoretical study is connected to the
problem of understanding the behavior of the extremal solutions of a controlled pair of Bloch equations, and
this is an ambitious task. Also, one of the difficulties to go from the obtained results, checkable on experiments,
to practical control laws for production is to deal with magnetic field space inhomogeneities.

4.3. Swimming at low-Reynolds number
Participants: Bernard Bonnard, Yacine El Alaoui-Faris, Laetitia Giraldi, Clément Moreau, Alice Nolot, Jean-
Baptiste Pomet, Jérémy Rouot.

Following the historical reference for low Reynolds number locomotion [72], the study of the swimming
strategies of micro-organisms is attracting increasing attention in the recent literature. This is both because
of the intrinsic biological interest, and for the possible implications these studies may have on the design
of bio-inspired artificial replicas reproducing the functionalities of biological systems. In the case of micro-
swimmers, the surrounding fluid is dominated by the viscosity effects of the water and becomes reversible. In
this regime, it turns out that the infinite dimensional dynamics of the fluid do not have to be retained as state
variables, so that the dynamics of a micro-swimmer can be expressed by ordinary differential equations if its
shape has a finite number of degrees of freedom. Assuming this finite dimension, and if the control is the rate
of deformation, one obtains a control system that is linear (affine without drift) with respect to the controls, i.e.
the optimal control problem with a quadratic cost defines a sub-Riemannian structure (see section 3.2). This
is the case where the shape is “fully actuated”, i.e. if all the variables describing the shape are angles, there is
an actuator on each of these angles. For artificial micro-swimmers, this is usually unrealistic, hence (artificial)
magneto-elastic micro-swimmers, that are magnetized in order to be deformed by an external magnetic field.
In this case, the control functions are the external magnetic field. In both cases, questions are controllability
(straightforward in the fully actuated case), optimal control, possibly path planning. We collaborate with teams
that have physical experiments for both.

• In collaboration with D. Takagi and M. Chyba (Univ of Hawaii), this approach is currently at the
experimental level for copepod-like swimmer at the university of Hawaii: on the one hand, this
zooplankton and its locomotion can be observed, and a robot micro swimmer mimicking a copepod
has been constructed, but in fact large enough for direct actuation to be possible, and the low
Reynolds number is achieved by using a more viscous fluid. This gives possibilities, through an
inverse optimization problem, to determine what cost can be optimised by these crustaceans, see
[40], [78], and to validate models on the robot.

• For magneto-elastic micro-robots, Y. El-Alaoui’s PhD is co-advised with Stéphane Régnier from
the robotics lab ISIR, Univ. Paris 6. Magneto-elastic micro-robots and their magnetic actuation are
actually built at ISIR and the aim of the collaboration is to validate models and improve the existing
control laws both in performance and in energy; of course, the micro scale does make things difficult.

The questions about optimality of periodic controls raised in section 3.2 are related to these applications for
periodic deformations, or strokes, playan important role in locomotion.



8 Activity Report INRIA 2019

4.4. Stability of high frequency amplifiers
Participants: Sébastien Fueyo, Gilles Lebeau, Jean-Baptiste Pomet, Laurent Baratchart [FACTAS project-
team].

Nonlinear hyper-frequency amplifiers are ubiquitous in cell phone relays and many other devices. They must
be as compact as possible, yielding a more complicated design. Computer Assisted Design tools are exten-
sively used; for a given amplifier design, they provide frequency responses but fail to provide information
of the stability of the response for each frequency. This stability is crucial for an unstable response will not
be observed in practice; the actual device should not be built before stability is asserted. Predicting stabil-
ity/instability from “simulations” in the Computer Assisted Design tool is of utmost importance (simulation
between quotation marks because these simulations are in fact computations in the frequency domain). Poten-
tial transfer is important.

Some techniques do exist, see [77], based on creating some virtual perturbations and treating them as the
input of a (linearized) control system to be “simulated” using the same tools. In an ongoing collaboration
between McTAO and the project-team FACTAS, we work on the mathematical ground of these methods and in
particular of the relation between stability and the property of the identified time-varying infinite dimensional
systems. See recent developments in Section 7.14.

4.5. Optimal control of microbial cells
Participants: Jean-Baptiste Caillau, Walid Djema [BIOCORE project-team], Laetitia Giraldi, Jean-Luc
Gouzé [BIOCORE project-team], Sofya Maslovskaya, Jean-Baptiste Pomet, Agustín Yabo.

The growth of microorganisms is fundamentally an optimization problem which consists in dynamically
allocating resources to cellular functions so as to maximize growth rate or another fitness criterion. Simple
ordinary differential equation models, called self-replicators, have been used to formulate this problem in
the framework of optimal and feedback control theory, allowing observations in microbial physiology to be
explained. The resulting control problems are very challenging due to the nonlinearity of the models, parameter
uncertainty, the coexistence of different time-scales, a dynamically changing environment, and various other
physical and chemical constraints. In the framework of the ANR Maximic (PI Hidde de Jong, Inria Grenoble
Rhône-Alpes) we aim at developing novel theoretical approaches for addressing these challenges in order
to (i) study natural resource allocation strategies in microorganisms and (ii) propose new synthetic control
strategies for biotechnological applications. In order to address (i), we develop extended self-replicator models
accounting for the cost of regulation and energy metabolism in bacterial cells. We study these models by a
combination of analytical and numerical approaches to derive optimal control solutions and a control synthesis,
dealing with the bang-bang-singular structure of the solutions. Moreover, we define quasi-optimal feedback
control strategies inspired by known regulatory mechanisms in the cell. To test whether bacteria follow the
predicted optimal strategies, we quantify dynamic resource allocation in the bacterium Escherichia coli by
monitoring, by means of time-lapse fluorescent microscopy, the expression of selected genes in single cells
growing in a microfluidics device. In order to address (ii), we build self-replicator models that include a
pathway for the production of a metabolite of interest. We also add a mechanism to turn off microbial
growth by means of an external input signal, at the profit of the production of the metabolite. We formulate
the maximization of the amount of metabolite produced as an optimal control problem, and derive optimal
solutions and a control synthesis, as well as quasi-optimal feedback strategies satisfying chemical and physical
design constraints. The proposed synthetic control strategies are being tested experimentally by growing E.
coli strains capable of producing glycerol from glucose in a mini-bioreactor system. We aim at quantifying
the amount of glucose consumed and glycerol produced, in the case of a predefined input signal (open-
loop control) and the adaptive regulation of the input signal based on on-line measurements of the growth
rate and the expression of fluorescent reporters of selected genes (closed-loop control). Currently, one PhD
(A. Yabo) and one postdoc (S. Maslovskaya) are involved in these tasks and jointly supervised by colleagues
from McTAO and Biocore teams at Sophia. Preliminary results concern the definition on extended (higher
dimensional) models for the bacteria dynamics, check of second order optimality conditions on the resulting
optimal control problem, and study of the turnpike phenomenon for these optimization problems.
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5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Awards

Laetita Giraldi has been awarded the price "My Innovation is" by SATT Sud & Corse for her research project
on the control of swimming microbots.

6. New Software and Platforms

6.1. Hampath
KEYWORDS: Optimal control - Second order conditions - Differential homotopy - Ordinary differential
equations

FUNCTIONAL DESCRIPTION: Hampath is a software developped to solve optimal control problems by a
combination of Hamiltonian et path following methods. Hampath includes shooting and computation of
conjugate points. It is an evolution of the software cotcot (apo.enseeiht.fr/cotcot). It has a Fortran kernel, uses
Tapenade (www-sop.inria.fr/tropics/tapenade.html) for automatic differentiation and has a Matlab interface.

• Participants: Jean-Baptiste Caillau, Joseph Gergaud and Olivier Cots

• Contact: Jean-Baptiste Caillau

• URL: http://www.hampath.org

7. New Results

7.1. Analysis of singularities in minimum time control problems
Participants: Jean-Baptiste Caillau, Jacques Féjoz [Université Paris-Dauphine & Observatoire de Paris],
Michaël Orieux [SISSA], Robert Roussarie [Université de Bourgogne-Franche Comté].

An important class of problems is affine control problems with control on the disk (or the Euclidean ball, in
higher dimensions). Such problems show up for instance in space mechanics and have been quite extensively
studied from the mathematical (geometric) and numerical point of view. Still, even for the simplest cost,
namely time minimization, the analysis of singularities occuring was more or less open. Building on previous
results of the team and on recent studies of Agrachev and his collaborators, we give a detailed account of the
behaviour of minimum time extremals crossing the so-called singular locus (typically a switching surface).
The result is twofold. First, we show that there the set of initial conditions of the Hamiltonian flow can be
stratified, and that the flow is smooth on each stratum, one of them being the codimension stratum leading to the
singular locus. This generalizes in higher codimension the known case of switching conditions of codimension
one encountered, for instance, in L1-minimization (consumption minimization, in aerospace applications). We
give a clear geometric interpretation of this first result in terms of normally hyperbolic invariant manifold.
Secondly, we provide a model for the singularity on the flow when strata are crossed, proving that it is of
logarithmic type. This paves the way for ad hoc numerical methods to treat this kind of extremal flow. The
crucial tool for the analysis is a combination of blow-up and normal form techniques for dynamical systems.

7.2. The Sard Conjecture in sub-Riemannian Geometry
Participants: Ludovic Rifford, André Belotto Da Silva [Univ. Aix-Marseille], Adam Parusinski [Univ. Côte
d’Azur].

http://www.hampath.org


10 Activity Report INRIA 2019

In a work in progress, we address the Sard conjecture for sub-Riemannian structures on analytic manifolds and
related problems. We present a description of singular horizontal curves of a totally nonholonomic analytic
distribution in term of the projections of the orbits of some integrable and isotropic subanalytic distribution
in the cotangent bundle. In the generic smooth case, we obtain a extension of an important result by Chitour,
Jean and Trélat by showing that singular curves are the projection of a Hamiltonian singular vector field. As a
by-product of our first result, we obtain a proof of the so-called minimal rank Sard conjecture in some analytic
cases. It establishes that from a given point the set of points accessible through singular horizontal curves of
minimal rank, which corresponds to the rank of the distribution, has Lebesgue measure zero under additional
technical assumptions.

7.3. Local controllability of magnetic micro-swimmers and more general
classes of control systems
Participants: Laetitia Giraldi, Pierre Lissy [Univ. Paris Dauphine], Clément Moreau, Jean-Baptiste Pomet.

As a part of Clément Moreau’s PhD, we gave fine results on local controlability of magnetized micro swimmers
actuated by an external magnetic field. We had shown that the “two-link” magnetic swimmer had some local
controllability around its straight configuration but that it was not Small Time Locally Controllable” (STLC)
in the classical sense that asks that poin ts close to the initial condition can be reached using “small” controls.

We derived in [30] some necessary conditions for STLC of affine control systems with two scalar controls,
around an equlibrium where not only the drift vector field vanishes but one of the two control vector fields
vanishes too; we state various necessary conditions (involving the value at the equilibrium of some iterated Lie
brackets of the system vector fields), where the “smallness” of the controls is intended in the L∞ (classical)
or W 1,∞ (less classical, used in recent work by K. Beauchard and F. Marbach).

We also arrived to local controllability results in higher dimension than the “two-link” micro-robots, see [9].
This relies on the following remark: classical STLC does not hold, but STLC is concerned with small controls,
hence with variations around the zero control... but, due to one of the control fields vanishing, the system also
rests at the equilibrium for (infinitely many) nozero constant values of the control. It is proved that there is
one nonzero value of the control such that STLC holds when considered around this constant control and not
around the zero control. In other terms, classical STLC holds after a constant feedback transformation.

7.4. Time-optimal deorbiting maneuvers of solar sails
Participants: Jean-Baptiste Caillau, Lamberto Dell’Elce, Jean-Baptiste Pomet.

Increasing interest in optimal low-thrust orbital transfers was triggered in the last decade by technological
progress in electric propulsion and by the ambition of efficiently leveraging on orbital perturbations to enhance
the maneuverability of small satellites. This work was aimed at investigating time optimal propellantless
deorbiting maneuvers in low-Earth orbit using solar sails. The solution of this problem was achieved by
doubly averaging the optimal control Hamiltonian with respect to both satellite and Sun longitudes. Initial
conditions for the osculating trajectory were inferred via a near-identity transformation that approximates the
quasi-periodic oscillations of both state and adjoint variables [61]. The outcomes of the study were presented
at the 4th KePASSA meeting in Logrono [18].

7.5. Long-term evolution of quasi-satellite orbits
Participants: Lamberto Dell’Elce, Nicola Baresi [Univ. of Surrey, UK], Josué Cardoso Dos Santos [Sao Paulo
State Univ., Brazil], Yasuhiro Kawakatsu [JAXA, Japan].
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The Martian Moons eXploration mission is currently under development at the Japan space agency (JAXA)
and will be the first spacecraft mission to retrieve pristine samples from the surface of Phobos. In preparation
for the sampling operations, MMX will collect observations of Phobos from stable retrograde relative
trajectories, which are referred to as quasi-satellite orbits (QSOs). This study, started in 2018 in collaboration
with JAXA, investigates the navigability of mid- and high-altitude QSOs in terms of relative orbit element. Our
developments are based on the Yamanaka-Ankersen solution of the Tschauner-Hempel equations and capture
the effects of the secondary’s gravity and orbital eccentricity on the shape and orientation of near-equatorial
retrograde relative orbits. The analytic solution that we obtained by averaging the equations of motion with
respect to the longitude of the satellite is suitable to gain insight into the long-term evolution of QSOs. These
results were recently published in [38].

7.6. Non-singular analytical solution of perturbed satellite motion using
Milankovitch elements
Participants: Lamberto Dell’Elce, Pini Gurfil [Technion, Israel], Gianpaolo Izzo [Technion, Israel], Aaron J.
Rosengren [Univ. of Arizona, US].

In the brief span of time after the launch of Sputnik, a whole succession of analyses was devoted to the problem
poised by the drag-free motion of an artificial satellite about an oblate planet, employing almost every known
perturbation method. Although in a sense, the problem is a classic one that also occurred among the natural
satellites, it was necessary in the applications of artificial satellite motion to obtain a more general, detailed,
and accurate solution. In this study, we developed a new formulation of the mean-to-osculating conversion
for first-order oblateness perturbations based on the Milankovitch elements [74] that corrects the critical-
inclination deficiency. We use the direct method of Kozai [67], and present an explicit analytical short-period
correction in vector form that is valid for all orbits with nonzero angular momentum. Preliminary results were
presented at the International Symposium of Space Flight Mechanics (ISSFM) [19].

7.7. Sub-Riemannian Geometry and Micro-Swimmers and Extensions to
Control in Hydrodynamics
Participants: Bernard Bonnard, Piernicola Bettiol [Univ. Bretagne Ouest], Alice Nolot [Univ. de Bourgogne
Franche Conté], Jérémy Rouot.

We pursue our study concerning the 1-copepod swimmer using techniques from SR-geometry and numerical
simulations, see [40] for previously obtained results. Following Takagi model, a 2d-swimmer is currently
analyzed whose aim is to perform a 2d-motion where the copepod swimmer can change its orientation.
Preliminary study concerning this problem was analysed during the internship of A. Lenc in relation with
the motion planning of a car. Under the impulse of O. Cots and B. Wembe an extension of the project is
the developments of the geometric optimal control techniques in hydrodynamics. In particular we studied a
Zermelo navigation problem in a current with a vortex [25] (submitted to ESAIM-COCV). An interesting and
new phenomenon detected in optimal control is the existence for the geodesic flow of a Reeb foliation.

7.8. Swimming at low Reynolds number an optimal control problem
Participants: François Alouges [École Polytechnique], Luca Berti, Antonio Desimone [SISSA Trieste],
Yacine El Alaoui-Faris, Laetitia Giraldi, Yizhar Or [Technion, Israel], Christophe Prud’Homme [Univ. de
Strasbourg], Jean-Baptiste Pomet, Stéphane Régnier [Sorbonne Université], Oren Wiezel [Technion, Israel].
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This part is devoted to study the displacement of micro-swimmers. We attack this problem using numerical
tools and optimal control theory. Micro-scale swimmers move in the realm of negligible inertia, dominated
by viscous drag forces, the fluid is governed by the Stokes equation. We study two types of models. First,
deriving from the PDE system, in [5] we use Feel++, a finite elements library in order to simulate the motion
of a one-hinged swimmer, which obeys to the scallop theorem. Then, we adress the flagellar microswimmers.
In [31] we formulate the leading order dynamics of a 2D slender multi-link microswimmer assuming small-
amplitude undulations about its straight configuration. The energy optimal stroke to achieve a given prescribed
displacement in a given time period is obtained as the largest eigenvalue solution of a constrained optimal
control problem. We prove that the optimal stroke is an ellipse lying within a two-dimensional plane in the
(N − 1) dimensional space of shape variables, where N can be arbitrarily large. If the number of shape
variables is small, we can consider the same problem when the prescribed displacement in one time period
is large, and not attainable with small variations of the joint angles. The fully non-linear optimal control
problem is solved numerically for the cases N = 3 and N = 5 showing that, as the prescribed displacement
becomes small, the optimal solutions obtained using the small-amplitude assumption are recovered. We also
show that, when the prescribed displacements become large, the picture is different. Finally, in [28] we present
an automated procedure for the design of optimal actuation for flagellar magnetic microswimmers based on
numerical optimization. Using this method, a new magnetic actuation method is provided which allows these
devices to swim significantly faster compared to the usual sinusoidal actuation. This leads to a novel swimming
strategy which shows that a faster propulsion is obtained when the swimmer is allowed to go out-of-plane. This
approach is experimentally validated on a scaled-up flexible swimmer.

7.9. Periodic body deformations are optimal for locomotion
Participants: Laetitia Giraldi, Frédéric Jean.

A periodic cycle of body’s deformation is a common strategy for locomotion (see for instance birds, fishes,
humans). The aim of this work (see [29]) is to establish that the auto-propulsion of deformable object is
optimally achieved using periodic strategies of body’s deformations. This property is proved for a simple
model using optimal control theory framework.

7.10. Optimal Control of Chemical Networks by Temperature Control
Participants: Bernard Bonnard, Jérémy Rouot.

The objective of the project is to develop previous results obtained at the end of the 90’s by B. Bonnard and
his collaborators to control the production of batch reactors by temperature control in relation with the Shell
Company. These results were derived to analyze the simple (but relevant for applications) irreversible reaction
scheme A→ B→ C. More complicated weakly reversible scheme like the McKeithan network are currently
under investigation taking into account the bridge phenomenon detected in [7], where complicated optimal
policies with two singular arcs can occur. Preliminary results are presented in [3] where also the geometric
techniques are described. See also the article in the 58th IEEE-CDC Nice conference [11].

7.11. Muscular Isometric Force Contraction by Electric Stimulation
Participants: Bernard Bonnard, Jérémy Rouot, Toufik Bakir [Univ. de Bourgogne Franche Conté].

This project started two years ago under the impulse of T. Bakir (ImVia-UBFC) who defended his HDR on
the subject (November, 2018). The problem is the one of optimizing the train pulses of the FES signal to
produce the muscular contraction. It is based on the Hill model refined by Ding et al to take into account
the variations of the fatigue variable. Preliminary closed loop results were obtained using an MPC-method
where the state variable is estimated with an non linear observer [2]. The problem can be stated in the optimal
sampled-control data framework; with the collaboration of L. Bourdin (Maths Dept Limoges), Pontryagin-
type necessary conditions were derived and partially numerically implemented [1]. The project is supported
by a PEPS 1 AMIES and a PGMO Project. A CIFRE Thesis is planned to start in January, 2020 (Phd Student:
Quentin Arnaud) in the Company SEGULA, supervised by T. Bakir and co-Supervised by B. Bonnard. See
section 8.1.

https://www.segulatechnologies.com/
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7.12. Selection of microalgae
Participants: Walid Djema, Laetitia Giraldi, Olivier Bernard [BIOCORE project-team].

We investigate a minimal-time control problem in a chemostat continuous photo-bioreactor model that
describes the dynamics of two distinct microalgae populations. Our objective is to optimize the time of
separation between two species of microalgae by controlling the dilution rate. We focus on Droop’s model.
Using Pontryagin’s principle, we develop a dilution-based control strategy that steers the model trajectories to
a suitable target in minimal time. Our study reveals that the optimal solution has a turpike property [14] [27].
A numerical optimal-synthesis, based on direct optimal control tools, is performed in [15] and it shows that
the optimal solution is of type bang-singular.

7.13. Extensions of the Zermelo-Markov-Dubins problem in optimal control
Participants: Ahmed Dieng, Jean-Baptiste Caillau, Jean-Baptiste Pomet, Sofya Maslovskaya.

Motivated by a collaboration with CGG in 2018, we continued investigating minimum time problems for
simplified kinematic models of a marine vessel towing some equipments, with various curvature constraints.
These are extensions (by adding the towed equipment) of the so-called Zermelo-Markov-Dubins problem. In
[12], we describe the problem with the simplest possible model of the trailer, and show that the Hamiltonian
system resulting from Pontryagin Principle for minimum time is integrable in that case, both for the “regular”
flow and for the flow giving singular extremals; without giving an explicit analytic soltuon, this drastically
simplifies the computation of optimal solutions; a description of the marine application solution is also given.

Ahmed Dieng’s internship was the opportunity to test more complex models numerically and to have a
qualitative approach of the results from [12].

Note that the collaboration with CGG (we had a short bilateral contract with this company in 2018) did not
continue mainly because they stopped this activity and more generally marine acquisition. This recent press
release details the transactions.

7.14. Stability of nonlinear high frequency amplifiers and stability of linear
time-varying time-delay systems
Participants: Laurent Baratchart [FACTAS project-team], Sébastien Fueyo, Jean-Baptiste Pomet, Gilles
Lebeau.

These amplifiers contain on the one hand nonlinear active components and on the other hand lines, that
induce some sort of delays and make the system infinite-dimensional: they are, for each choice of a periodic
input, a nonlinear infinite dimensional dynamical system. The Computer Aided Design tools mentioned in
Section 4.4 provide a periodic solution under this periodic forcing and may also give the frequency response
of the linearized system along this trajectory with some artificial “small” excitation. The goal is to deduce
stability from these data.

It is an opportunity to build theoretical basis and justification to a stability analysis through harmonic
identification; the latter is one of the specialties of FACTAS, we collaborate on the infinite-dimensional non-
linear stability analysis for periodic solutions and how it works with the results of harmonic identification.
This is the topic of Sébastien Fueyo’s PhD.

On academic examples of simple circuits, we have given full justification (with some possible obstructions) to
the prediction of stability through transfer function identification. The theoretical interest is that the spectrum
of the operator that gives stability is not as elementary as predicted in the literature, but stability can be
predicted nonetheless. Publication in progress on this point, a preliminary version was presented in [17].

It was also the oppoprtunity to re-visit stibility of time-delay time-varying linear system. A new sufficient
condition can be found in [22], and a more general result is the purpose of a publication to come. These
result are important to the domain of linear time-delay systems because the time-varying case has sedom been
touched.

https://www.cgg.com/
https://www.cgg.com/en/Investors/Press-Releases/2020/01/CGG-Completes-its-Exit-from-Marine-Acquisition
https://www.cgg.com/en/Investors/Press-Releases/2020/01/CGG-Completes-its-Exit-from-Marine-Acquisition
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8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Grants with Industry
• A grant “PEPS AMIES”, title: “Conception d’un électrostimulateur intelligent”, was obtained, co-

financed by AMIES and SEGULA.

PI: Bernard Bonnard.

Start: December 2018. Duration: 2 years.

• A grant CIFRE co-financed by and SEGULA, title: “Réalisation d’un prototype d’électrostimulateur
intelligent”, was obtained.

PI: Bernard Bonnard and T. Bakir (IMvia).

Start: January 2020. Duration: 3 years.

9. Partnerships and Cooperations

9.1. National Initiatives
9.1.1. ANR

Sub-Riemannian Geometry and Interactions (SRGI). Started 2015 (decision ANR-15-CE40-0018), dura-
tion: 4 years. L. Rifford is a member.

Intéractions Systèmes Dynamiques Équations d’Évolution et Contrôle (ISDEEC). Started 2016 (decision
ANR-16-CE40-0013), duration: 4 years. L. Rifford is a member.

Maximic: optimal control of microbial cells by natural and synthetic strategies. Started 2017, duration: 4
years. J.-B. Caillau, L. Giraldi, J.-B. Pomet are members.

9.1.2. Others
Défi InfIniti CNRS project, Control and Optimality of Magnetic Microrobots, (PI L. Giraldi). Started 2017,
duration: 2 years. This project involves colleagues from Paris Sorbonne Université S. Régnier and from
University of Strasbourg C. Prud’Homme’s.

PGMO grant (2017-2019) on “Algebro-geometric techniques with applications to global optimal control for
Magnetic Resonance Imaging (MRI)”. B. Bonnard, A. Nolot and J. Rouot participate in this project, the PI is
O. Cots, from ENSEIHHT, Toulouse.

PGMO grant (2019-2021) on "Sampled-Data Control Systems and Applications" (PI B. Bonnard).

The McTAO team participates in the GdR MOA, a CNRS network on Mathematics of Optimization and
Applications.

J.-B. Caillau is associate researcher of the CNRS team Parallel Algorithms & Optimization at ENSEEIHT,
Univ. Toulouse.

9.2. International Research Visitors
9.2.1. Visits of International Scientists

Prof. Sorin Sabau (Tokai University) visited Inria during two weeks in May 2019. He gave a talk on "The
calculus of variations on Finsler manifolds".

https://www.agence-maths-entreprises.fr/
https://www.segulatechnologies.com/
https://www.segulatechnologies.com/
https://www.ljll.math.upmc.fr/trelat/SRGI.html
http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE40-0013
http://www.agence-nationale-recherche.fr/Project-ANR-17-CE40-0024
https://www-sop.inria.fr/members/Laetitia.Giraldi/COMM.html
http://www.fondation-hadamard.fr/fr/pgmo
http://www.fondation-hadamard.fr/fr/pgmo
http://gdrmoa.math.cnrs.fr
http://apo.enseeiht.fr
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9.2.1.1. Research Stays Abroad

• Bernard Bonnard visited the University of Hawaii at Manoa, Mars 2019 (1 month, host: M. Chyba).

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events: Organisation
10.1.1.1. General Chair, Scientific Chair

• J.-B. Caillau has been chair (with Didier Auroux, Castor team) of the 19th French-German-Swiss
conference, held in Nice from September 17 to 19, 2019. The conference gathered around 150
researchers in optimization. More information on fgs-2019.sciencesconf.org

• L. Giraldi together with M. Chaves (Biocore) organized an invited session at the Conf. Decision and
Control (Nice, France).

10.1.1.2. Member of the Organizing Committees

J.-B. Caillau has been member of the organizing committee of PGMO days held in Paris Saclay from
December 3 to 4, 2019.

10.1.2. Journal
10.1.2.1. Reviewer - Reviewing Activities

The team members are regular reviewers for the leading journal in control (SIAM J. Control, ESAIM COCV...)
and, more generally, for journals of pure and applied mathematics.

10.1.3. Invited Talks
• L. Rifford gave a plenary talk at the 2nd International Conference of Mathematics in Erbil (Iraq), .

• L. Rifford was a keynote speaker at the 1st International MIPAnet Conference on Science and
Mathematics (Parapat, Indonesia), .

• L. Rifford gave a talk during the workshop Real and Complex Singularities in Cargèse at the IESC
(Cargèse, France). .

• B. Bonnard gave the seminar “Techniques Géométriques pour le Contrôle Optimal des Réacteurs
Chimiques” at the Department of Mathemathics of the Université de Genève, October 2019.

• L. Dell’Elce was a keynote speaker at the 4th International Workshop on Key topics in orbit
Propagation Applied to Space Situational Awareness (Logrono, Spain), .

• L. Dell’Elce gave the seminar “Multi-Phase Averaging of Time-Optimal Low-Thrust Transfers” at
the Surrey Space Center in the Universitéy of Surrey, Octobre 19.

• J.-B. Caillau gave an invited talk at the Learning week if Air France, in Sophia Antipolis, December
2019.

10.1.4. Scientific Expertise
L. Giraldi is reviewer for DFG the Deutsche Forschungsgemeinschaft (German Research Foundation).

https://fgs-2019.sciencesconf.org
https://www.fondation-hadamard.fr/fr/pgmo/pgmodays
https://su.edu.krd/sicme2018/
https://ocs.usu.ac.id/IMC-SciMath/
https://ap60.sciencesconf.org
https://kepassa.unirioja.es/
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10.1.5. Research Administration
J.-B. Caillau is
• member of the Scientific Council of CNRS GdR Calcul Scientifique
• member of the Scientific Council of Programme Gaspard Monge pour l’Optimisation

(PGMO)
• member of the Scientific Council of Institut de Mécanique Céleste et de Calcul des

Ephémérides (Observatoire de Paris)
• member of the Scientific Council of 3IA

Jean-Baptiste Pomet is
• a member of the steering committee of the Center for Planetary Origin (C4PO),
• a member of the scientific council of Académie 2 “Complex system”, both for Université

Côte d’Azur (UCA),
• an elected member of Commission d’Évaluation (Inria permanent evaluation committee).

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

Master in Astrophysics Université Côte Azur (MAUCA): Lamberto Dell’Elce, Build a Nanosatellite
(Attitude Determination and Control System), 6 hours TH, niveau M1, Université Côte Azur, France.
Engineering school: J.-B. Caillau has a full teaching duty of Professor at L3, M1 and M2 level of
the Applied Math. department of Polytech Nice Sophia. (He is the head of the department since
September 2018.)
Licence : L. Giraldi, Colles de mathématiques, 90h (2h en MPSI et 2h en MP par semaine), MPSI-
MP, Lycée internationale de Valbonne, France.
Master : L. Giraldi, Natation à bas nombre de Reynolds, 6h, Master 2 Recherche, Université de
Srasbourg, France.

10.2.2. Supervision
PhD in progress : Sébastien Fueyo, “Testing stability of nonlinear amplifier by frequency-domain
methods”, started October, 2016, co-supervised by J.-B. Pomet and L. Baratchart (FACTAS team).
PhD in progress : Yacine El alaoui-faris, “modeling magnetico-elastic micro-robot from theory to
experiment”, started October, 2017, co-supervised by L. Giraldi, J.-B. Pomet and Stephane Régnier
(Univ. Paris Sorbonne).
PhD in progress : Clément Moreau, “Contrôlabilité de systèmes en dimension finie ou infinie issus
du vivant”, started September, 2017, co-supervised by L. Giraldi, Pierre Lissy and J.-B. Pomet.
PhD in progress : Agustín Yabo, “Optimal control of microbial cells”, started October, 2018, co-
supervised by J.-L. Gouzé (Biocore team) and J.-B. Caillau.

10.2.3. Juries
L. Giraldi is member of the jury of agrégation de mathématiques.
L. Giraldi was examiner of the PhD Thesis of Fatima Tani (supervised by A. Rapaport).
J.-B. Pomet sat in the jury for Armand Koenig’s PhD (Université côte d’Azur).
J.-B. Caillau sat in the PhD jury of Isabelle Santos (Toulouse), HDR jury of Max Cerf (Paris). He is
member of the jury of agrégation de mathématiques.

10.3. Popularization
10.3.1. Internal or external Inria responsibilities
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J.-B. Caillau belongs to the MASTIC initiative at Inria Sophia.

10.3.2. Interventions
Lamberto Dell’Elce is involved in the PoBot challenge promoted by MEDITES. Specifically he
supervises a class in the College Emile Roux in Cannes.

J.-B. Caillau has given several talks at high-school level in Nice and Sophia on application of
mathematics in social choice.
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