
IN PARTNERSHIP WITH:
Université Rennes 1

Activity Report 2019

Project-Team PACAP

Pushing Architecture and Compilation for
Application Performance

IN COLLABORATION WITH: Institut de recherche en informatique et systèmes aléatoires (IRISA)

RESEARCH CENTER
Rennes - Bretagne-Atlantique

THEME
Architecture, Languages and Compi-
lation

Table of contents

1. Team, Visitors, External Collaborators . 2
2. Overall Objectives . 2

2.1.1. Long-Term Goal 2
2.1.2. Approach 3
2.1.3. Latency-oriented Computing 3
2.1.4. Throughput-Oriented Computing 3
2.1.5. Real-Time Systems – WCET 4
2.1.6. Performance Assessment 4
2.1.7. Dealing with Attacks – Security 4
2.1.8. Green Computing – Power Concerns 5

3. Research Program . 5
3.1. Motivation 5

3.1.1. Technological constraints 5
3.1.2. Evolving community 5
3.1.3. Domain constraints 6

3.2. Research Objectives 6
3.2.1. Static Compilation 7
3.2.2. Software Adaptation 7
3.2.3. Research directions in uniprocessor micro-architecture 7
3.2.4. Towards heterogeneous single-ISA CPU-GPU architectures 9
3.2.5. Real-time systems 9
3.2.6. Power efficiency 10
3.2.7. Security 11

4. Application Domains .11
5. Highlights of the Year .11
6. New Software and Platforms . 12

6.1. ATMI 12
6.2. HEPTANE 12
6.3. tiptop 12
6.4. PADRONE 13
6.5. If-memo 13
6.6. Simty 14
6.7. Barra 14
6.8. Memoization 14
6.9. FiPlib 15
6.10. sigmask 15

7. New Results . 15
7.1. Compilation and Optimization 15

7.1.1. Optimization in the Presence of NVRAM 15
7.1.1.1. Checkpoint Placement based Worst-Case Energy Consumption 15
7.1.1.2. Dynamic Adaptive Checkpoint Placement 16

7.1.2. Dynamic Binary Optimization 16
7.1.2.1. Guided just-in-time specialization 16
7.1.2.2. Run-time parallelization and de-parallelization 16

7.1.3. Automatic and Parametrizable Memoization 17
7.1.4. Autotuning 17
7.1.5. Loop splitting 17
7.1.6. Hardware/Software JIT Compiler 17
7.1.7. Scalable program tracing 18

2 Activity Report INRIA 2019

7.1.8. Compiler optimization for quantum architectures 18
7.2. Processor Architecture 18

7.2.1. Value prediction 18
7.2.2. Compressed caches 18
7.2.3. Deep microarchitecture 19
7.2.4. Dynamic thermal management 19
7.2.5. Thread convergence prediction for general-purpose SIMT architectures 19
7.2.6. Exploring the design space of GPU architectures 20

7.3. WCET estimation and optimization 20
7.3.1. WCET estimation for many core processors 20

7.3.1.1. Optimization of WCETs by considering the effects of local caches 20
7.3.1.2. Shared resource contentions and WCET estimation 21
7.3.1.3. Interference-sensitive run-time adaptation of time-triggered schedules 21
7.3.1.4. WCET-Aware Parallelization of Model-Based Applications for Multi-Cores 21

7.3.2. WCET estimation and optimizing compilers 21
7.3.3. WCET estimation and processor micro-architecture 22

7.4. Security 22
7.4.1. Attack detection co-processor for real-time systems 22
7.4.2. Multi-nop fault injection attack 23
7.4.3. Compiler-based automation of side-channel countermeasures 23
7.4.4. Platform for adaptive dynamic protection of programs 23

8. Bilateral Contracts and Grants with Industry . 23
9. Partnerships and Cooperations . 23

9.1. Regional Initiatives 23
9.2. National Initiatives 24

9.2.1. Zero Power Computing Systems (ZEP): Inria Project Lab (2017–2020) 24
9.2.2. NOPE 24
9.2.3. Hybrid SIMD architectures (2018–2019) 24
9.2.4. DGA/PEC ARMOUR (2018–2021) 24
9.2.5. ANR DYVE (31/03/2020 – 30/09/2023) 25

9.3. European Initiatives 25
9.3.1.1. ARGO 25
9.3.1.2. HiPEAC4 NoE 26
9.3.1.3. Eurolab-4-HPC 26

9.4. International Initiatives 27
9.4.1. ANR CHIST-ERA SECODE 2016–2019 27
9.4.2. Informal International Partners 27

10. Dissemination . 27
10.1. Promoting Scientific Activities 27

10.1.1. Scientific Events: Selection 27
10.1.1.1. Member of the Conference Program Committees 27
10.1.1.2. Reviewer 28

10.1.2. Journal 28
10.1.2.1. Member of the Editorial Boards 28
10.1.2.2. Reviewer - Reviewing Activities 28

10.1.3. Invited Talks 28
10.1.4. Leadership within the Scientific Community 28
10.1.5. Research Administration 29

10.2. Teaching - Supervision - Juries 29
10.2.1. Teaching 29
10.2.2. Supervision 29

Project-Team PACAP 3

10.2.3. Juries 30
10.3. Popularization 30

10.3.1. Internal or external Inria responsibilities 30
10.3.2. Articles and contents 31
10.3.3. Education 31
10.3.4. Interventions 31
10.3.5. Internal action 31

11. Bibliography .31

Project-Team PACAP

Creation of the Project-Team: 2016 July 01

Keywords:

Computer Science and Digital Science:
A1.1. - Architectures
A1.1.1. - Multicore, Manycore
A1.1.2. - Hardware accelerators (GPGPU, FPGA, etc.)
A1.1.3. - Memory models
A1.1.4. - High performance computing
A1.1.5. - Exascale
A1.1.9. - Fault tolerant systems
A1.1.10. - Reconfigurable architectures
A1.1.11. - Quantum architectures
A1.6. - Green Computing
A2.2. - Compilation
A2.2.1. - Static analysis
A2.2.2. - Memory models
A2.2.4. - Parallel architectures
A2.2.5. - Run-time systems
A2.2.6. - GPGPU, FPGA...
A2.2.7. - Adaptive compilation
A2.2.8. - Code generation
A2.2.9. - Security by compilation
A2.3.1. - Embedded systems
A2.3.3. - Real-time systems
A4.2. - Correcting codes
A4.4. - Security of equipment and software
A8.9. - Performance evaluation
A8.10. - Computer arithmetic

Other Research Topics and Application Domains:
B1. - Life sciences
B2. - Health
B3. - Environment and planet
B4. - Energy
B5. - Industry of the future
B6. - IT and telecom
B7. - Transport and logistics
B8. - Smart Cities and Territories
B9. - Society and Knowledge

https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2019/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2019

1. Team, Visitors, External Collaborators
Research Scientists

Erven Rohou [Team leader, Inria, Senior Researcher, HDR]
Caroline Collange [Inria, Researcher]
Byron Hawkins [Inria, Starting Research Position]
Pierre Michaud [Inria, Researcher]
André Seznec [Inria, Senior Researcher, HDR]

Faculty Members
Damien Hardy [Univ de Rennes I, Associate Professor]
Isabelle Puaut [Univ de Rennes I, Professor, HDR]

Post-Doctoral Fellows
Pierre-Yves Peneau [Inria]
Stefanos Skalistis [Univ de Rennes I, until Jun 2019]

PhD Students
Nicolas Bellec [Inria, from Sep 2019]
Arthur Blanleuil [Univ de Rennes I]
Niloofar Charmchi [Inria]
Kleovoulos Kalaitzidis [Inria]
Kévin Le Bon [Inria]
Anis Peysieux [Inria, from Oct 2019]
Daniel Rodrigues Carvalho [Inria]
Bahram Yarahmadi [Inria]

Technical staff
Alexandre Kouyoumdjian [Inria, Engineer]
Stefanos Skalistis [Inria, Engineer, from Jul 2019]
Loïc Besnard [CNRS]

Interns and Apprentices
Nicolas Bellec [École normale supérieure de Rennes, from Feb 2019 until Jun 2019]
Piéric Giraud [Inria, from May 2019 until Aug 2019]
Anis Peysieux [Inria, from Mar 2019 until Sep 2019]
Nicolas Poirier [None, Feb 2019]

Administrative Assistant
Virginie Desroches [Inria]

2. Overall Objectives

2.1. Overall Objectives
2.1.1. Long-Term Goal

In brief, the long-term goal of the PACAP project-team is about performance, that is: how fast programs run.
We intend to contribute to the ongoing race for exponentially increasing performance and for performance
guarantees.

Project-Team PACAP 3

Traditionally, the term “performance” is understood as “how much time is needed to complete execution”.
Latency-oriented techniques focus on minimizing the average-case execution time (ACET). We are also
interested in other definitions of performance. Throughput-oriented techniques are concerned with how many
units of computations can be completed per unit of time. This is more relevant on manycores and GPUs where
many computing nodes are available, and latency is less critical. Finally, we also study worst-case execution
time (WCET), which is extremely important for critical real-time systems where designers must guarantee
that deadlines are met, in any situation.

Given the complexity of current systems, simply assessing their performance has become a non-trivial task
which we also plan to tackle.

We occasionally consider other metrics related to performance, such as power efficiency, total energy, overall
complexity, and real-time response guarantee. Our ultimate goal is to propose solutions that make computing
systems more efficient, taking into account current and envisioned applications, compilers, runtimes, operating
systems, and micro-architectures. And since increased performance often comes at the expense of another
metric, identifying the related trade-offs is of interest to PACAP.

The previous decade witnessed the end of the “magically” increasing clock frequency and the introduction of
commodity multicore processors. PACAP is experiencing the end of Moore’s law 1, and the generalization of
commodity heterogeneous manycore processors. This impacts how performance is increased and how it can
be guaranteed. It is also a time where exogenous parameters should be promoted to first-class citizens:

1. the existence of faults, whose impact is becoming increasingly important when the photo-lithography
feature size decreases;

2. the need for security at all levels of computing systems;

3. green computing, or the growing concern of power consumption.

2.1.2. Approach
We strive to address performance in a way as transparent as possible for users. For example, instead of
proposing any new language, we consider existing applications (written for example in standard C), and we
develop compiler optimizations that immediately benefit programmers; we propose microarchitectural features
as opposed to changes in processor instruction sets; we analyze and re-optimize binary programs automatically,
without any user intervention.

The perimeter of research directions of the PACAP project-team derives from the intersection of two axes: on
the one hand, our high-level research objectives, derived from the overall panorama of computing systems, on
the other hand the existing expertise and background of the team members on key technology (see illustration
on Figure 1). Note that it does not imply that we will systematically explore all intersecting points of the figure,
yet all correspond to a sensible research direction. These lists are neither exhaustive, nor final. Operating
systems in particular constitute a promising operating point for several of the issues we plan to tackle. Other
aspects will likely emerge during the lifespan of the project-team.

2.1.3. Latency-oriented Computing
Improving the ACET of general purpose systems has been the “core business” of PACAP’s ancestors (CAPS
and ALF) for two decades. We plan to pursue this line of research, acting at all levels: compilation, dynamic
optimizations, and micro-architecture.

2.1.4. Throughput-Oriented Computing
The goal is to maximize the performance-to-power ratio. We will leverage the execution model of throughput-
oriented architectures (such as GPUs) and extend it towards general purpose systems. To address the memory
wall issue, we will consider bandwidth saving techniques, such as cache and memory compression.

1Moore’s law states that the number of transistors in a circuit doubles (approximately) every two years.

4 Activity Report INRIA 2019

executable
compiler microarch.

assessment
performance

WCET

latency

throughput

security

reliability

green

Figure 1. Perimeter of Research Objectives

2.1.5. Real-Time Systems – WCET
Designers of real-time systems must provide an upper bound of the worst-case execution time of the tasks
within their systems. By definition this bound must be safe (i.e., greater than any possible execution time). To
be useful, WCET estimates have to be as tight as possible. The process of obtaining a WCET bound consists
in analyzing a binary executable, modeling the hardware, and then maximizing an objective function that takes
into account all possible flows of execution and their respective execution times. Our research will consider
the following directions:

1. better modeling of hardware to either improve tightness, or handle more complex hardware (e.g.
multicores);

2. eliminate unfeasible paths from the analysis;

3. consider probabilistic approaches where WCET estimates are provided with a confidence level.

2.1.6. Performance Assessment
Moore’s law drives the complexity of processor micro-architectures, which impacts all other layers: hypervi-
sors, operating systems, compilers and applications follow similar trends. While a small category of experts
is able to comprehend (parts of) the behavior of the system, the vast majority of users are only exposed to –
and interested in – the bottom line: how fast their applications are actually running. In the presence of virtual
machines and cloud computing, multi-programmed workloads add yet another degree of non-determinism to
the measure of performance. We plan to research how application performance can be characterized and pre-
sented to a final user: behavior of the micro-architecture, relevant metrics, possibly visual rendering. Targeting
our own community, we also research techniques appropriate for fast and accurate ways to simulate future
architectures, including heterogeneous designs, such as latency/throughput platforms.

Once diagnosed, the way bottlenecks are addressed depends on the level of expertise of users. Experts can
typically be left with a diagnostic as they probably know better how to fix the issue. Less knowledgeable users
must be guided to a better solution. We plan to rely on iterative compilation to generate multiple versions
of critical code regions, to be used in various runtime conditions. To avoid the code bloat resulting from
multiversioning, we will leverage split-compilation to embed code generation “recipes” to be applied just-
in-time, or even at rutime thanks to dynamic binary translation. Finally, we will explore the applicability of
auto-tuning, where programmers expose which parameters of their code can be modified to generate alternate
versions of the program (for example trading energy consumption for quality of service) and let a global
orchestrator make decisions.

2.1.7. Dealing with Attacks – Security
Computer systems are under constant attack, from young hackers trying to show their skills, to “professional”
criminals stealing credit card information, and even government agencies with virtually unlimited resources.

Project-Team PACAP 5

A vast amount of techniques have been proposed in the literature to circumvent attacks. Many of them
cause significant slowdowns due to additional checks and countermeasures. Thanks to our expertise in micro-
architecture and compilation techniques, we will be able to significantly improve efficiency, robustness and
coverage of security mechanisms, as well as to partner with field experts to design innovative solutions.

2.1.8. Green Computing – Power Concerns
Power consumption has become a major concern of computing systems, at all form factors, ranging from
energy-scavenging sensors for IoT, to battery powered embedded systems and laptops, and up to supercom-
puters operating in the tens of megawatts. Execution time and energy are often related optimization goals.
Optimizing for performance under a given power cap, however, introduces new challenges. It also turns out
that technologists introduce new solutions (e.g. magnetic RAM) which, in turn, result in new trade-offs and
optimization opportunities.

3. Research Program
3.1. Motivation

Our research program is naturally driven by the evolution of our ecosystem. Relevant recent changes can be
classified in the following categories: technological constraints, evolving community, and domain constraints.
We hereby summarize these evolutions.

3.1.1. Technological constraints
Until recently, binary compatibility guaranteed portability of programs, while increased clock frequency
and improved micro-architecture provided increased performance. However, in the last decade, advances in
technology and micro-architecture started translating into more parallelism instead. Technology roadmaps
even predict the feasibility of thousands of cores on a chip by 2020. Hundreds are already commercially
available. Since the vast majority of applications are still sequential, or contain significant sequential sections,
such a trend put an end to the automatic performance improvement enjoyed by developers and users. Many
research groups consequently focused on parallel architectures and compiling for parallelism.

Still, the performance of applications will ultimately be driven by the performance of the sequential part.
Despite a number of advances (some of them contributed by members of the team), sequential tasks are still a
major performance bottleneck. Addressing it is still on the agenda of the PACAP project-team.

In addition, due to power constraints, only part of the billions of transistors of a microprocessor can be operated
at any given time (the dark silicon paradigm). A sensible approach consists in specializing parts of the silicon
area to provide dedicated accelerators (not run simultaneously). This results in diverse and heterogeneous
processor cores. Application and compiler designers are thus confronted with a moving target, challenging
portability and jeopardizing performance.

Note on technology.
Technology also progresses at a fast pace. We do not propose to pursue any research on technology per se.
Recently proposed paradigms (non-Silicon, brain-inspired) have received lots of attention from the research
community. We do not intend to invest in those paradigms, but we will continue to investigate compilation
and architecture for more conventional programming paradigms. Still, several technological shifts may have
consequences for us, and we will closely monitor their developments. They include for example non-volatile
memory (impacts security, makes writes longer than loads), 3D-stacking (impacts bandwidth), and photonics
(impacts latencies and connection network), quantum computing (impacts the entire software stack).

3.1.2. Evolving community
The PACAP project-team tackles performance-related issues, for conventional programming paradigms. In
fact, programming complex environments is no longer the exclusive domain of experts in compilation and
architecture. A large community now develops applications for a wide range of targets, including mobile
“apps”, cloud, multicore or heterogeneous processors.

6 Activity Report INRIA 2019

This also includes domain scientists (in biology, medicine, but also social sciences) who started relying
heavily on computational resources, gathering huge amounts of data, and requiring a considerable amount
of processing to analyze them. Our research is motivated by the growing discrepancy between on the one
hand, the complexity of the workloads and the computing systems, and on the other hand, the expanding
community of developers at large, with limited expertise to optimize and to map efficiently computations to
compute nodes.

3.1.3. Domain constraints
Mobile, embedded systems have become ubiquitous. Many of them have real-time constraints. For this class of
systems, correctness implies not only producing the correct result, but also doing so within specified deadlines.
In the presence of heterogeneous, complex and highly dynamic systems, producing tight (i.e., useful) upper
bound to the worst-case execution time has become extremely challenging. Our research will aim at improving
the tightness as well as enlarging the set of features that can be safely analyzed.

The ever growing dependence of our economy on computing systems also implies that security has become
of utmost importance. Many systems are under constant attacks from intruders. Protection has a cost also in
terms of performance. We plan to leverage our background to contribute solutions that minimize this impact.

Note on Applications Domains.
PACAP works on fundamental technologies for computer science: processor architecture, performance-
oriented compilation and guaranteed response time for real-time. The research results may have impact on
any application domain that requires high performance execution (telecommunication, multimedia, biology,
health, engineering, environment...), but also on many embedded applications that exhibit other constraints
such as power consumption, code size and guaranteed response time.

We strive to extract from active domains the fundamental characteristics that are relevant to our research. For
example, big data is of interest to PACAP because it relates to the study of hardware/software mechanisms to
efficiently transfer huge amounts of data to the computing nodes. Similarly, the Internet of Things is of interest
because it has implications in terms of ultra low-power consumption.

3.2. Research Objectives
Processor micro-architecture and compilation have been at the core of the research carried by the members
of the project teams for two decades, with undeniable contributions. They continue to be the foundation of
PACAP.

Heterogeneity and diversity of processor architectures now require new techniques to guarantee that the
hardware is satisfactorily exploited by the software. One of our goals is to devise new static compilation
techniques (cf. Section 3.2.1), but also build upon iterative [1] and split [40] compilation to continuously
adapt software to its environment (Section 3.2.2). Dynamic binary optimization will also play a key role in
delivering adapting software and increased performance.

The end of Moore’s law and Dennard’s scaling 2 offer an exciting window of opportunity, where performance
improvements will no longer derive from additional transistor budget or increased clock frequency, but rather
come from breakthroughs in micro-architecture (Section 3.2.3). Reconciling CPU and GPU designs (Section
3.2.4) is one of our objectives.

Heterogeneity and multicores are also major obstacles to determining tight worst-case execution times of
real-time systems (Section 3.2.5), which we plan to tackle.

Finally, we also describe how we plan to address transversal aspects such as power efficiency (Section 3.2.6),
and security (Section 3.2.7).

2According to Dennard scaling, as transistors get smaller the power density remains constant, and the consumed power remains
proportional to the area.

Project-Team PACAP 7

3.2.1. Static Compilation
Static compilation techniques continue to be relevant in addressing the characteristics of emerging hardware
technologies, such as non-volatile memories, 3D-stacking, or novel communication technologies. These
techniques expose new characteristics to the software layers. As an example, non-volatile memories typically
have asymmetric read-write latencies (writes are much longer than reads) and different power consumption
profiles. PACAP studies new optimization opportunities and develops tailored compilation techniques for
upcoming compute nodes. New technologies may also be coupled with traditional solutions to offer new
trade-offs. We study how programs can adequately exploit the specific features of the proposed heterogeneous
compute nodes.

We propose to build upon iterative compilation [1] to explore how applications perform on different con-
figurations. When possible, Pareto points are related to application characteristics. The best configuration,
however, may actually depend on runtime information, such as input data, dynamic events, or properties that
are available only at runtime. Unfortunately a runtime system has little time and means to determine the best
configuration. For these reasons, we also leverage split-compilation [40]: the idea consists in pre-computing
alternatives, and embedding in the program enough information to assist and drive a runtime system towards
to the best solution.

3.2.2. Software Adaptation
More than ever, software needs to adapt to its environment. In most cases, this environment remains unknown
until runtime. This is already the case when one deploys an application to a cloud, or an “app” to mobile
devices. The dilemma is the following: for maximum portability, developers should target the most general
device; but for performance they would like to exploit the most recent and advanced hardware features. JIT
compilers can handle the situation to some extent, but binary deployment requires dynamic binary rewriting.
Our work has shown how SIMD instructions can be upgraded from SSE to AVX transparently [2]. Many more
opportunities will appear with diverse and heterogeneous processors, featuring various kinds of accelerators.

On shared hardware, the environment is also defined by other applications competing for the same compu-
tational resources. It becomes increasingly important to adapt to changing runtime conditions, such as the
contention of the cache memories, available bandwidth, or hardware faults. Fortunately, optimizing at runtime
is also an opportunity, because this is the first time the program is visible as a whole: executable and libraries
(including library versions). Optimizers may also rely on dynamic information, such as actual input data, pa-
rameter values, etc. We have already developed a software platform [46] to analyze and optimize programs
at runtime, and we started working on automatic dynamic parallelization of sequential code, and dynamic
specialization.

We started addressing some of these challenges in ongoing projects such as Nano2017 PSAIC Collaborative
research program with STMicroelectronics, as well as within the Inria Project Lab MULTICORE. The H2020
FET HPC project ANTAREX also addresses these challenges from the energy perspective. We further leverage
our platform and initial results to address other adaptation opportunities. Efficient software adaptation requires
expertise from all domains tackled by PACAP, and strong interaction between all team members is expected.

3.2.3. Research directions in uniprocessor micro-architecture
Achieving high single-thread performance remains a major challenge even in the multicore era (Amdahl’s
law). The members of the PACAP project-team have been conducting research in uniprocessor micro-
architecture research for about 20 years covering major topics including caches, instruction front-end, branch
prediction, out-of-order core pipeline, and value prediction. In particular, in recent years they have been
recognized as world leaders in branch prediction [50] [44] and in cache prefetching [6] and they have revived
the forgotten concept of value prediction [9][8]. This research was supported by the ERC Advanced grant
DAL (2011-2016) and also by Intel. We pursue research on achieving ultimate unicore performance. Below
are several non-orthogonal directions that we have identified for mid-term research:

1. management of the memory hierarchy (particularly the hardware prefetching);
2. practical design of very wide issue execution cores;

8 Activity Report INRIA 2019

3. speculative execution.

Memory design issues:
Performance of many applications is highly impacted by the memory hierarchy behavior. The interactions
between the different components in the memory hierarchy and the out-of-order execution engine have high
impact on performance.

The last Data Prefetching Contest held with ISCA 2015 has illustrated that achieving high prefetching
efficiency is still a challenge for wide-issue superscalar processors, particularly those featuring a very large
instruction window. The large instruction window enables an implicit data prefetcher. The interaction between
this implicit hardware prefetcher and the explicit hardware prefetcher is still relatively mysterious as illustrated
by Pierre Michaud’s BO prefetcher (winner of DPC2) [6]. The first research objective is to better understand
how the implicit prefetching enabled by the large instruction window interacts with the L2 prefetcher and then
to understand how explicit prefetching on the L1 also interacts with the L2 prefetcher.

The second research objective is related to the interaction of prefetching and virtual/physical memory. On real
hardware, prefetching is stopped by page frontiers. The interaction between TLB prefetching (and on which
level) and cache prefetching must be analyzed.

The prefetcher is not the only actor in the hierarchy that must be carefully controlled. Significant benefits can
also be achieved through careful management of memory access bandwidth, particularly the management of
spatial locality on memory accesses, both for reads and writes. The exploitation of this locality is traditionally
handled in the memory controller. However, it could be better handled if larger temporal granularity was
available. Finally, we also intend to continue to explore the promising avenue of compressed caches. In
particular we recently proposed the skewed compressed cache [11]. It offers new possibilities for efficient
compression schemes.

Ultra wide-issue superscalar.
To effectively leverage memory level parallelism, one requires huge out-of-order execution structures as well
as very wide issue superscalar processors. For the two past decades, implementing ever wider issue superscalar
processors has been challenging. The objective of our research on the execution core is to explore (and revisit)
directions that allow the design of a very wide-issue (8-to-16 way) out-of-order execution core while mastering
its complexity (silicon area, hardware logic complexity, power/energy consumption).

The first direction that we are exploring is the use of clustered architectures [7]. Symmetric clustered
organization allows to benefit from a simpler bypass network, but induce large complexity on the issue
queue. One remarkable finding of our study [7] is that, when considering two large clusters (e.g. 8-wide),
steering large groups of consecutive instructions (e.g. 64 µops) to the same cluster is quite efficient. This
opens opportunities to limit the complexity of the issue queues (monitoring fewer buses) and register files
(fewer ports and physical registers) in the clusters, since not all results have to be forwarded to the other
cluster.

The second direction that we are exploring is associated with the approach that we developed with Sembrant et
al. [47]. It reduces the number of instructions waiting in the instruction queues for the applications benefiting
from very large instruction windows. Instructions are dynamically classified as ready (independent from any
long latency instruction) or non-ready, and as urgent (part of a dependency chain leading to a long latency
instruction) or non-urgent. Non-ready non-urgent instructions can be delayed until the long latency instruction
has been executed; this allows to reduce the pressure on the issue queue. This proposition opens the opportunity
to consider an asymmetric micro-architecture with a cluster dedicated to the execution of urgent instructions
and a second cluster executing the non-urgent instructions. The micro-architecture of this second cluster
could be optimized to reduce complexity and power consumption (smaller instruction queue, less aggressive
scheduling...)

Speculative execution.
Out-of-order (OoO) execution relies on speculative execution that requires predictions of all sorts: branch,
memory dependency, value...

Project-Team PACAP 9

The PACAP members have been major actors of branch prediction research for the last 20 years; and their
proposals have influenced the design of most of the hardware branch predictors in current microprocessors.
We will continue to steadily explore new branch predictor designs, as for instance [48].

In speculative execution, we have recently revisited value prediction (VP) which was a hot research topic
between 1996 and 2002. However it was considered until recently that value prediction would lead to a huge
increase in complexity and power consumption in every stage of the pipeline. Fortunately, we have recently
shown that complexity usually introduced by value prediction in the OoO engine can be overcome [9][8]
[50] [44]. First, very high accuracy can be enforced at reasonable cost in coverage and minimal complexity
[9]. Thus, both prediction validation and recovery by squashing can be done outside the out-of-order engine,
at commit time. Furthermore, we propose a new pipeline organization, EOLE ({Early | Out-of-order | Late}
Execution), that leverages VP with validation at commit to execute many instructions outside the OoO core,
in-order [8]. With EOLE, the issue-width in OoO core can be reduced without sacrificing performance, thus
benefiting the performance of VP without a significant cost in silicon area and/or energy. In the near future,
we will explore new avenues related to value prediction. These directions include register equality prediction
and compatibility of value prediction with weak memory models in multiprocessors.

3.2.4. Towards heterogeneous single-ISA CPU-GPU architectures
Heterogeneous single-ISA architectures have been proposed in the literature during the 2000’s [43] and are
now widely used in the industry (Arm big.LITTLE, NVIDIA 4+1...) as a way to improve power-efficiency
in mobile processors. These architectures include multiple cores whose respective micro-architectures offer
different trade-offs between performance and energy efficiency, or between latency and throughput, while
offering the same interface to software. Dynamic task migration policies leverage the heterogeneity of the
platform by using the most suitable core for each application, or even each phase of processing. However,
these works only tune cores by changing their complexity. Energy-optimized cores are either identical cores
implemented in a low-power process technology, or simplified in-order superscalar cores, which are far from
state-of-the-art throughput-oriented architectures such as GPUs.

We investigate the convergence of CPU and GPU at both architecture and compiler levels.

Architecture.
The architecture convergence between Single Instruction Multiple Threads (SIMT) GPUs and multicore
processors that we have been pursuing [42] opens the way for heterogeneous architectures including latency-
optimized superscalar cores and throughput-optimized GPU-style cores, which all share the same instruction
set. Using SIMT cores in place of superscalar cores will enable the highest energy efficiency on regular sections
of applications. As with existing single-ISA heterogeneous architectures, task migration will not necessitate
any software rewrite and will accelerate existing applications.

Compilers for emerging heterogeneous architectures.
Single-ISA CPU+GPU architectures will provide the necessary substrate to enable efficient heterogeneous
processing. However, it will also introduce substantial challenges at the software and firmware level. Task
placement and migration will require advanced policies that leverage both static information at compile time
and dynamic information at run-time. We are tackling the heterogeneous task scheduling problem at the
compiler level.

3.2.5. Real-time systems
Safety-critical systems (e.g. avionics, medical devices, automotive...) have so far used simple unicore hardware
systems as a way to control their predictability, in order to meet timing constraints. Still, many critical
embedded systems have increasing demand in computing power, and simple unicore processors are not
sufficient anymore. General-purpose multicore processors are not suitable for safety-critical real-time systems,
because they include complex micro-architectural elements (cache hierarchies, branch, stride and value
predictors) meant to improve average-case performance, and for which worst-case performance is difficult to
predict. The prerequisite for calculating tight WCET is a deterministic hardware system that avoids dynamic,
time-unpredictable calculations at run-time.

10 Activity Report INRIA 2019

Even for multi and manycore systems designed with time-predictability in mind (Kalray MPPA manycore
architecture 3, or the Recore manycore hardware 4) calculating WCETs is still challenging. The following two
challenges will be addressed in the mid-term:

1. definition of methods to estimate WCETs tightly on manycores, that smartly analyze and/or control
shared resources such as buses, NoCs or caches;

2. methods to improve the programmability of real-time applications through automatic parallelization
and optimizations from model-based designs.

3.2.6. Power efficiency
PACAP addresses power-efficiency at several levels. First, we design static and split compilation techniques
to contribute to the race for Exascale computing (the general goal is to reach 1018 FLOP/s at less than
20 MW). Second, we focus on high-performance low-power embedded compute nodes. Within the ANR
project Continuum, in collaboration with architecture and technology experts from LIRMM and the SME
Cortus, we research new static and dynamic compilation techniques that fully exploit emerging memory
and NoC technologies. Finally, in collaboration with the CAIRN project-team, we investigate the synergy
of reconfigurable computing and dynamic code generation.

Green and heterogeneous high-performance computing.
Concerning HPC systems, our approach consists in mapping, runtime managing and autotuning applications
for green and heterogeneous High-Performance Computing systems up to the Exascale level. One key
innovation of the proposed approach consists of introducing a separation of concerns (where self-adaptivity
and energy efficient strategies are specified aside to application functionalities) promoted by the definition
of a Domain Specific Language (DSL) inspired by aspect-oriented programming concepts for heterogeneous
systems. The new DSL will be introduced for expressing adaptivity/energy/performance strategies and to
enforce at runtime application autotuning and resource and power management. The goal is to support the
parallelism, scalability and adaptability of a dynamic workload by exploiting the full system capabilities
(including energy management) for emerging large-scale and extreme-scale systems, while reducing the Total
Cost of Ownership (TCO) for companies and public organizations.

High-performance low-power embedded compute nodes.
We will address the design of next generation energy-efficient high-performance embedded compute nodes. It
focuses at the same time on software, architecture and emerging memory and communication technologies in
order to synergistically exploit their corresponding features. The approach of the project is organized around
three complementary topics: 1) compilation techniques; 2) multicore architectures; 3) emerging memory and
communication technologies. PACAP will focus on the compilation aspects, taking as input the software-
visible characteristics of the proposed emerging technology, and making the best possible use of the new
features (non-volatility, density, endurance, low-power).

Hardware Accelerated JIT Compilation.
Reconfigurable hardware offers the opportunity to limit power consumption by dynamically adjusting the
number of available resources to the requirements of the running software. In particular, VLIW processors
can adjust the number of available issue lanes. Unfortunately, changing the processor width often requires
recompiling the application, and VLIW processors are highly dependent of the quality of the compilation,
mainly because of the instruction scheduling phase performed by the compiler. Another challenge lies in the
high constraints of the embedded system: the energy and execution time overhead due to the JIT compilation
must be carefully kept under control.

We started exploring ways to reduce the cost of JIT compilation targeting VLIW-based heterogeneous many-
core systems. Our approach relies on a hardware/software JIT compiler framework. While basic optimizations
and JIT management are performed in software, the compilation back-end is implemented by means of special-
ized hardware. This back-end involves both instruction scheduling and register allocation, which are known to
be the most time-consuming stages of such a compiler.

3http://www.kalrayinc.com
4http://www.recoresystems.com/

http://www.kalrayinc.com
http://www.recoresystems.com/

Project-Team PACAP 11

3.2.7. Security
Security is a mandatory concern of any modern computing system. Various threat models have led to a
multitude of protection solutions. Members of PACAP already contributed in the past, thanks to the HAVEGE
[49] random number generator, and code obfuscating techniques (the obfuscating just-in-time compiler [41],
or thread-based control flow mangling [45]). Still, security is not core competence of PACAP members.

Our strategy consists in partnering with security experts who can provide intuition, know-how and expertise,
in particular in defining threat models, and assessing the quality of the solutions. Our expertise in compilation
and architecture helps design more efficient and less expensive protection mechanisms.

Examples of collaborations so far include the following:

Compilation: We partnered with experts in security and codes to prototype a platform that demonstrates
resilient software. They designed and proposed advanced masking techniques to hide sensitive data
in application memory. PACAP’s expertise is key to select and tune the protection mechanisms de-
veloped within the project, and to propose safe, yet cost-effective solutions from an implementation
point of view.

Dynamic Binary Rewriting: Our expertise in dynamic binary rewriting combines well with the expertise
of the CIDRE team in protecting application. Security has a high cost in terms of performance, and
static insertion of counter measures cannot take into account the current threat level. In collaboration
with CIDRE, we propose an adaptive insertion/removal of countermeasures in a running application
based of dynamic assessment of the threat level.

WCET Analysis: Designing real-time systems requires computing an upper bound of the worst-case
execution time. Knowledge of this timing information opens an opportunity to detect attacks on
the control flow of programs. In collaboration with CIDRE, we are developing a technique to detect
such attacks thanks to a hardware monitor that makes sure that statically computed time information
is preserved (CAIRN is also involved in the definition of the hardware component).

4. Application Domains

4.1. Domains
The PACAP team is working on the fundamental technologies for computer science: processor architecture,
performance-oriented compilation and guaranteed response time for real-time. The research results may have
impact on any application domain that requires high performance execution (telecommunication, multimedia,
biology, health, engineering, environment...), but also on many embedded applications that exhibit other
constraints such as power consumption, code size and guaranteed response time. Our research activity implies
the development of software prototypes.

5. Highlights of the Year

5.1. Highlights of the Year
5.1.1. Awards

Benjamin Rouxel, Stefanos Skalistis, Steven Derrien and Isabelle Puaut received an Outstanding paper award
for their paper entitled “Hiding Communication Delays in Contention-Free Execution for SPM-based Multi-
Core Architectures” at the Euromicro conference on real time systems .

BEST PAPER AWARD:

[28]

12 Activity Report INRIA 2019

B. ROUXEL, S. SKALISTIS, S. DERRIEN, I. PUAUT. Hiding Communication Delays in Contention-Free
Execution for SPM-Based Multi-Core Architectures, in "ECRTS 2019 - 31st Euromicro Conference on Real-
Time Systems", Stuttgart, Germany, July 2019, pp. 1-24 [DOI : 10.4230/LIPICS.ECRTS.2019.25], https://
hal.archives-ouvertes.fr/hal-02190271

6. New Software and Platforms

6.1. ATMI
KEYWORDS: Analytic model - Chip design - Temperature

SCIENTIFIC DESCRIPTION: Research on temperature-aware computer architecture requires a chip temper-
ature model. General purpose models based on classical numerical methods like finite differences or finite
elements are not appropriate for such research, because they are generally too slow for modeling the time-
varying thermal behavior of a processing chip.

ATMI (Analytical model of Temperature in MIcroprocessors) is an ad hoc temperature model for studying
thermal behaviors over a time scale ranging from microseconds to several minutes. ATMI is based on an
explicit solution to the heat equation and on the principle of superposition. ATMI can model any power
density map that can be described as a superposition of rectangle sources, which is appropriate for modeling
the microarchitectural units of a microprocessor.

FUNCTIONAL DESCRIPTION: ATMI is a library for modelling steady-state and time-varying temperature in
microprocessors. ATMI uses a simplified representation of microprocessor packaging.

• Participant: Pierre Michaud

• Contact: Pierre Michaud

• URL: https://team.inria.fr/pacap/software/atmi/

6.2. HEPTANE
KEYWORDS: IPET - WCET - Performance - Real time - Static analysis - Worst Case Execution Time

SCIENTIFIC DESCRIPTION: WCET estimation

The aim of Heptane is to produce upper bounds of the execution times of applications. It is targeted at
applications with hard real-time requirements (automotive, railway, aerospace domains). Heptane computes
WCETs using static analysis at the binary code level. It includes static analyses of microarchitectural elements
such as caches and cache hierarchies.

FUNCTIONAL DESCRIPTION: In a hard real-time system, it is essential to comply with timing constraints, and
Worst Case Execution Time (WCET) in particular. Timing analysis is performed at two levels: analysis of the
WCET for each task in isolation taking account of the hardware architecture, and schedulability analysis of all
the tasks in the system. Heptane is a static WCET analyser designed to address the first issue.

• Participants: Benjamin Lesage, Loïc Besnard, Damien Hardy, François Joulaud, Isabelle Puaut and
Thomas Piquet

• Partner: Université de Rennes 1

• Contact: Isabelle Puaut

• URL: https://team.inria.fr/pacap/software/heptane/

6.3. tiptop
KEYWORDS: Instructions - Cycles - Cache - CPU - Performance - HPC - Branch predictor

https://hal.archives-ouvertes.fr/hal-02190271
https://hal.archives-ouvertes.fr/hal-02190271
https://team.inria.fr/pacap/software/atmi/
https://team.inria.fr/pacap/software/heptane/

Project-Team PACAP 13

SCIENTIFIC DESCRIPTION: Tiptop is a new simple and flexible user-level tool that collects hardware counter
data on Linux platforms (version 2.6.31+) and displays them in a way simple to the Linux "top" utility. The
goal is to make the collection of performance and bottleneck data as simple as possible, including simple
installation and usage. No privilege is required, any user can run tiptop.

Tiptop is written in C. It can take advantage of libncurses when available for pseudo-graphic display.
Installation is only a matter of compiling the source code. No patching of the Linux kernel is needed, and
no special-purpose module needs to be loaded.

Current version is 2.3.1, released October 2017. Tiptop has been integrated in major Linux distributions, such
as Fedora, Debian, Ubuntu, CentOS.

FUNCTIONAL DESCRIPTION: Today’s microprocessors have become extremely complex. To better under-
stand the multitude of internal events, manufacturers have integrated many monitoring counters. Tiptop can be
used to collect and display the values from these performance counters very easily. Tiptop may be of interest
to anyone who wants to optimise the performance of their HPC applications.

• Participant: Erven Rohou

• Contact: Erven Rohou

• URL: http://tiptop.gforge.inria.fr

6.4. PADRONE
KEYWORDS: Legacy code - Optimization - Performance analysis - Dynamic Optimization

FUNCTIONAL DESCRIPTION: Padrone is new platform for dynamic binary analysis and optimization. It
provides an API to help clients design and develop analysis and optimization tools for binary executables.
Padrone attaches to running applications, only needing the executable binary in memory. No source code or
debug information is needed. No application restart is needed either. This is especially interesting for legacy
or commercial applications, but also in the context of cloud deployment, where actual hardware is unknown,
and other applications competing for hardware resources can vary. The profiling overhead is minimum.

• Participants: Emmanuel Riou and Erven Rohou

• Contact: Erven Rohou

• URL: https://team.inria.fr/pacap/software/padrone

6.5. If-memo
KEYWORD: Performance

SCIENTIFIC DESCRIPTION: We propose a linker based technique for enabling software memorizing of any
dynamically linked pure function by function interception and we illustrate our framework using a set of
computationally expensive pure functions - the transcendental functions.

FUNCTIONAL DESCRIPTION: If-memo is a linker-based technique for enabling software memorizing of any
dynamically linked pure function by function interception. Typically, this framework is useful to intercept the
computationally expensive pure functions - the transcendental functions from the math library. Our technique
does not need the availability of source code and thus can even be applied to commercial applications as
well as applications with legacy codes. As far as users are concerned, enabling memoization is as simple as
setting an environment variable. Our framework does not make any specific assumptions about the underlying
architecture or compiler too-chains, and can work with a variety of current architectures.

• Participants: Arjun Suresh and Erven Rohou

• Contact: Erven Rohou

• URL: https://team.inria.fr/pacap/software/if-memo/

http://tiptop.gforge.inria.fr
https://team.inria.fr/pacap/software/padrone
https://team.inria.fr/pacap/software/if-memo/

14 Activity Report INRIA 2019

6.6. Simty
KEYWORDS: GPU - Softcore - FPGA - SIMT - Multi-threading - RISC-V

FUNCTIONAL DESCRIPTION: Simty is a massively multi-threaded processor core that dynamically assembles
SIMD instructions from scalar multi-thread code. It runs the RISC-V (RV32-I) instruction set. Unlike existing
SIMD or SIMT processors like GPUs, Simty takes binaries compiled for general-purpose processors without
any instruction set extension or compiler changes. Simty is described in synthesizable VHDL.

• Author: Caroline Collange

• Contact: Caroline Collange

• URL: https://gforge.inria.fr/projects/simty

6.7. Barra
KEYWORDS: GPU - GPGPU - Tesla ISA - Debug - Computer architecture - Performance - Profiling -
Simulator - HPC - CUDA

SCIENTIFIC DESCRIPTION: Research on throughput-oriented architectures demands accurate and representa-
tive models of GPU architectures in order to be able to evaluate new architectural ideas, explore design spaces
and characterize applications. The Barra project is a simulator of the NVIDIA Tesla GPU architecture.

Barra builds upon knowledge acquired through micro-benchmarking, in order to provide a baseline model
representative of industry practice. The simulator provides detailed statistics to identify optimization opportu-
nities and is fully customizable to experiment ideas of architectural modifications. Barra incorporates both a
functional model and a cycle-level performance model.

FUNCTIONAL DESCRIPTION: Barra is a Graphics Processing Unit (GPU) architecture simulator. It simulates
NVIDIA CUDA programs at the assembly language level. Barra is a tool for research on computer architecture,
and can also be used to debug, profile and optimize CUDA programs at the lowest level.

RELEASE FUNCTIONAL DESCRIPTION: Version 0.5.10 introduces: Timing model, Tesla-like architecture
model, Fermi-like architecture model, New per-PC control-flow divergence management, Support for Simul-
taneous branch and warp interweaving, Support for Affine vector cache.

• Participants: Alexandre Kouyoumdjian, David Defour, Fabrice Mouhartem and Caroline Collange

• Partners: ENS Lyon - UPVD

• Contact: Caroline Collange

• URL: http://barra.gforge.inria.fr/

6.8. Memoization
KEYWORDS: Optimization - Pure function - Memoization

FUNCTIONAL DESCRIPTION: Memoization is a technique used at runtime that consists in caching results of
pure functions and retrieving them instead of computing them when the arguments repeat. It can be applied to
C and C++ programs. To be memoized, the interface of a pure function (or a method) must verify the following
properties: (1) the function/method has at most four arguments of same type T, (2) the function/method returns
a data of type T, (3) T is either ’double’, ’float’, or ’int’.

The memoization operation of a function/method is controlled by several parameters: the size of the internal
table (number of entries), the replacement policy to be used in case of index conflict (whether the value of the
table must be replaced or not), an approximation threshold that allows to not distinguish very close values). It
is also possible to initialize the table with the content of a file, and to save the content of the table to a file at
the end of the execution (the data may be used as input for a future execution).

• Participants: Loïc Besnard, Imane Lasri and Erven Rohou

• Contact: Loïc Besnard

https://gforge.inria.fr/projects/simty
http://barra.gforge.inria.fr/

Project-Team PACAP 15

6.9. FiPlib
KEYWORDS: Compilation - Approximate computing - Fixed-point representation

FUNCTIONAL DESCRIPTION: FiPlib is a C++ library that provides type definition and conversion operations
for computations in fixed-point representation. Basic arithmetic as well as logical operations are transparently
supported thanks to operator overloading. FiPlib also provides optimized implementations of the transcenden-
tal math functions of libm. For convenient integration, FiPlib is released as C++ header files only. Optionally,
FiPlib can detect overflows and compute errors compared to floating point representation.

• Participants: Pierre Le Meur, Imane Lasri and Erven Rohou
• Contact: Erven Rohou

6.10. sigmask
KEYWORDS: Compilation - Side-channel - Masking - Security - Embedded systems

SCIENTIFIC DESCRIPTION: Sigmask is a compiler plugin based on the LLVM infrastructure that automat-
ically protects secret information in programs, such as encryption keys, against side-channel attacks. The
programmer annotates their source code to highlight variables containing sensitive data. The compiler auto-
matically analyzes the program and computes all memory locations potentially derived from the secret. It then
applies a masking scheme to avoid information leakage. Sigmask provides several schemes: OSDM (Orthogo-
nal Direct Sum Masking), IP (Inner Product) Masking, and simple random bit masking. The programmer may
also provide their own masking scheme through a well-defined API.

FUNCTIONAL DESCRIPTION: Sigmask is a compiler plugin based on the LLVM infrastructure that auto-
matically protects secret information in programs, such as encryption keys, against side-channel attacks. The
programmer annotates their source code to highlight variables containing sensitive data. The compiler auto-
matically analyzes the program and computes all memory locations potentially derived from the secret. It then
applies a masking scheme to avoid information leakage. Sigmask provides several schemes: ODSM (Orthogo-
nal Direct Sum Masking), IP (Inner Product) Masking, and simple random bit masking. The programmer may
also provide their own masking scheme through a well-defined API.

• Participants: Nicolas Kiss, Damien Hardy and Erven Rohou
• Contact: Erven Rohou

7. New Results

7.1. Compilation and Optimization
Participants: Loïc Besnard, Caroline Collange, Byron Hawkins, Erven Rohou, Bahram Yarahmadi.

7.1.1. Optimization in the Presence of NVRAM
Participants: Erven Rohou, Bahram Yarahmadi.

A large and increasing number of Internet-of-Things devices are not equipped with batteries and harvest energy
from their environment. Many of them cannot be physically accessed once they are deployed (embedded in
civil engineering structures, sent in the atmosphere or deep in the oceans). When they run out of energy, they
stop executing and wait until the energy level reaches a threshold. Programming such devices is challenging
in terms of ensuring memory consistency and guaranteeing forward progress.

7.1.1.1. Checkpoint Placement based Worst-Case Energy Consumption

Previous work has proposed to insert checkpoints in the program so that execution can resume from well-
defined locations. We propose to define these checkpoint locations based on worst-case energy consumption
of code sections, with limited additional effort for programmers. As our method is based upon worst-case
energy consumption, we can guarantee memory consistency and forward progress.

16 Activity Report INRIA 2019

This work has been presented at the Compas 2019 conference.

7.1.1.2. Dynamic Adaptive Checkpoint Placement

Previous work has proposed to back-up the volatile states which are necessary for resuming the program
execution after power failures. They either do it at compile time by placing checkpoints into the control flow
of the program or at runtime by leveraging voltage monitoring facilities and interrupts, so that execution can
resume from well-defined locations after power failures. We propose for the first time a dynamic checkpoint
placement strategy which delays checkpoint placement and specialization to the runtime and takes decisions
based on the past power failures and execution paths that are taken. We evaluate our work on a TI MSP430
device, with different types of benchmarks as well as different uninterrupted intervals, and we measure the
execution time. We show that our work can outperform compiler-based state-of-the-art with memory footprint
kept under the control.

This research is done within the context of the project IPL ZEP.

7.1.2. Dynamic Binary Optimization
Participant: Erven Rohou.

7.1.2.1. Guided just-in-time specialization

JavaScript’s portability across a vast ecosystem of browsers makes it today a core building block of the
web. Yet, building efficient systems in JavaScript is still challenging. Because this language is so dynamic,
JavaScript programs provide little information that just-in-time compilers can use to carry out safe optimiza-
tions. Motivated by this observation, we propose to guide the JIT compiler in the task of code specialization.
To this end, we have augmented [17] the language with an annotation that indicates which function call sites
are likely to benefit from specialization. To support the automatic annotation of programs, we have intro-
duced a novel static analysis that identifies profitable specialization points. We have implemented our ideas in
JavaScriptCore, the built-in JavaScript engine for WebKit. The addition of guided specialization to this engine
required us to change it in several non-trivial ways. Such changes let us observe speedups of up to 1.7× on
programs present in synthetic benchmarks.

7.1.2.2. Run-time parallelization and de-parallelization

Runtime compilation has opportunities to parallelize code which are generally not available using static
parallelization approaches. However, the parallelized code can possibly slowdown the performance due to
unforeseen parallel overheads such as synchronization and speculation support pertaining to the chosen
parallelization strategy and the underlying parallel platform. Moreover, with the wide usage of heterogeneous
architectures, such choice options become more pronounced. We consider [22] an adaptive form of the
parallelization operation, for the first time. We propose a method for performing on-stack de-parallelization
for a parallelized binary loop at runtime, thereby allowing for rapid loop replacement with a more optimized
one. We consider a loop parallelization strategy and propose a corresponding de-parallelization method. The
method relies on stopping the execution at safe points, gathering threads’ states, producing a corresponding
serial code, and continuing execution serially. The decision to de-parallelize or not is taken based on the
anticipated speedup. To assess the extent of our approach, we have conducted an initial study on a small set
of programs with various parallelization overheads. Results show up to 4× performance improvement for a
synchronization intense program on a 4-core Intel processor.

With the multicore trend, the need for automatic parallelization is more pronounced, especially for legacy
and proprietary code where no source code is available and/or the code is already running and restarting is
not an option. We engineer [21] a mechanism for transforming at runtime a frequent for-loop with no data
dependencies in a binary program into a parallel loop, using on-stack replacement. With our mechanism, there
is no need for source code, debugging information or restarting the program. Also, the mechanism needs no
static instrumentation or information. The mechanism is implemented using the Padrone binary modification
system and pthreads, where the remaining iterations of the loop are executed in parallel. The mechanism
keeps the running program state by extracting the targeted loop into a separate function and copying the
current stack frame into the corresponding frames of the created threads. Initial study is conducted on a set of

Project-Team PACAP 17

kernels from the Polybench workload. Experimental results show from 2× to 3.5× speedup from sequential
to parallelized code on four cores, which is similar to source code level parallelization.

This research was partially done within the context of the project PHC IMHOTEP.

7.1.3. Automatic and Parametrizable Memoization
Participants: Loïc Besnard, Erven Rohou.

Improving execution time and energy efficiency is needed for many applications and usually requires sophis-
ticated code transformations and compiler optimizations. One of the optimization techniques is memoization,
which saves the results of computations so that future computations with the same inputs can be avoided.
We propose [16] a framework that automatically applies memoization techniques to C/C++ applications. The
framework is based on automatic code transformations using a source-to-source compiler and on a memo-
ization library. With the framework users can select functions to memoize as long as they obey to certain
restrictions imposed by our current memoization library. We show the use of the framework and associated
memoization technique and the impact on reducing the execution time and energy consumption of four rep-
resentative benchmarks. The support library is available at https://gforge.inria.fr/projects/memoization (regis-
tered with APP under number IDDN.FR.001.250029.000.S.P.2018.000.10800).

7.1.4. Autotuning
Participants: Loïc Besnard, Erven Rohou.

The ANTAREX FET HPC project relies on a Domain Specific Language (DSL) based on Aspect Oriented
Programming (AOP) concepts to allow applications to enforce extra functional properties such as energy-
efficiency and performance and to optimize Quality of Service (QoS) in an adaptive way. The DSL approach
allows the definition of energy-efficiency, performance, and adaptivity strategies as well as their enforcement
at runtime through application autotuning and resource and power management. We present [20] an overview
of the key outcome of the project, the ANTAREX DSL, and some of its capabilities through a number of
examples, including how the DSL is applied in the context of the project use cases. We demonstrated [30]
tools and techniques in two domains: computational drug discovery, and online vehicle navigation.

7.1.5. Loop splitting
The loop splitting technique takes advantage of long running loops to explore the impact of several optimiza-
tion sequences at once, thus reducing the number of necessary runs. We rely on a variant of loop peeling
which splits a loop into into several loops, with the same body, but a subset of the iteration space. New loops
execute consecutive chunks of the original loop. We then apply different optimization sequences on each loop
independently. Timers around each chunk observe the performance of each fragment. This technique may be
generalized to combine compiler options and different implementations of a function called in a loop. It is
useful when, for example, the profiling of the application shows that a function is critical in term of time of
execution. In this case, the user must try to find the best implementation of their algorithm.

This research was partially done within the context of the ANTAREX FET HPC collaborative project,
collaboration is currently ongoing with University of Porto, Portugal.

7.1.6. Hardware/Software JIT Compiler
Participant: Erven Rohou.

Single-ISA heterogeneous systems (such as ARM big.LITTLE) are an attractive solution for embedded
platforms as they expose performance/energy trade-offs directly to the operating system. Recent works have
demonstrated the ability to increase their efficiency by using VLIW cores, supported through Dynamic
Binary Translation (DBT) to maintain the illusion of a single-ISA system. However, VLIW cores cannot rival
with Out-of-Order (OoO) cores when it comes to performance, mainly because they do not use speculative
execution. We study [27] how it is possible to use memory dependency speculation during the DBT process.
Our approach enables fine-grained speculation optimizations thanks to a combination of hardware and
software. Our results show that our approach leads to a geo-mean speed-up of 10 % at the price of a 7 %
area overhead.

https://gforge.inria.fr/projects/memoization

18 Activity Report INRIA 2019

Our previous work on Hybrid-DBT was also presented at the RISC-V workshop in Zürich, Switzerland [38].

This work is a collaboration with the CAIRN team.

7.1.7. Scalable program tracing
Participants: Byron Hawkins, Erven Rohou.

The initial goal of scalable tracing is to record long executions at under 5× overhead (ideally 2×), but it
is equally important for analysis of the compressed trace to be efficient. This requires careful organization
of the recorded data structures so that essential factors can be accessed without decompressing the trace or
comprehensively iterating its paths. Precise context sensitivity is especially important for both optimization
and security applications of trace-based program analysis, but scalability becomes challenging for frequently
invoked functions that have a high degree of internal complexity. To avoid state space explosion in the context
graph, such a function can be represented as a singleton while its complexity is preserved orthogonally. The
current efforts focus mainly on developing an integration strategy to simplify program analysis over these two
orthogonal dimensions of the trace.

7.1.8. Compiler optimization for quantum architectures
Participant: Caroline Collange.

In 2016, the first quantum processors have been made available to the general public. The possibility of
programming an actual quantum device has elicited much enthusiasm [34]. Yet, such possibility also brought
challenges. One challenge is the so called Qubit Allocation problem: the mapping of a virtual quantum circuit
into an actual quantum architecture. There exist solutions to this problem; however, in our opinion, they fail to
capitalize on decades of improvements on graph theory.

In collaboration with the Federal University of Minas Gerais, Brazil, we show how to model qubit allocation
as the combination of Subgraph Isomorphism and Token Swapping [31]. This idea has been made possible by
the publication of an approximative solution to the latter problem in 2016. We have compared our algorithm
against five other qubit allocators, all independently designed in the last two years, including the winner of the
IBM Challenge. When evaluated in “Tokyo”, a quantum architecture with 20 qubits, our technique outperforms
these state-of-the-art approaches in terms of the quality of the solutions that it finds and the amount of memory
that it uses, while showing practical runtime.

7.2. Processor Architecture
Participants: Arthur Blanleuil, Niloofar Charmchi, Caroline Collange, Kleovoulos Kalaitzidis, Pierre
Michaud, Anis Peysieux, Daniel Rodrigues Carvalho, André Seznec.

7.2.1. Value prediction
Participants: Kleovoulos Kalaitzidis, André Seznec.

Modern context-based value predictors tightly associate recurring values with instructions and contexts by
building confidence upon them [9]. However, when execution monotony exists in the form of intervals, the
potential prediction coverage is limited, since prediction confidence is reset at the beginning of each new
interval. In [25], we address this challenge by introducing the notion of Equality Prediction (EP), which
represents the binary facet of value prediction. Following a two fold decision scheme (similar to branch
prediction), EP makes use of control-flow history to determine equality between the last committed result
read at fetch time, and the result of the fetched occurrence. When equality is predicted with high confidence,
the read value is used. Our experiments show that this technique obtains the same level of performance as
previously proposed state-of-the-art context-based predictors. However, by virtue of better exploiting patterns
of interval equality, our design complements the established way that value prediction is performed, and when
combined with contemporary prediction models, improves the delivered speedup by 19 % on average.

7.2.2. Compressed caches
Participants: Daniel Rodrigues Carvalho, Niloofar Charmchi, Caroline Collange, André Seznec.

Project-Team PACAP 19

The speed gap between CPU and memory is impairing performance. Cache compression and hardware
prefetching are two techniques that could confront this bottleneck by decreasing last level cache misses.
However, compression and prefetching have positive interactions, as prefetching benefits from higher cache
capacity and compression increases the effective cache size. We propose Compressed cache Layout Aware
Prefetching (CLAP) to leverage the recently proposed sector-based compressed cache layouts such as SCC or
YACC to create a synergy between compressed cache and prefetching. The idea of this approach is to prefetch
contiguous blocks that can be compressed and co-allocated together with the requested block on a miss access
[33]. Prefetched blocks that share storage with existing blocks do not need to evict a valid existing entry;
therefore, CLAP avoids cache pollution. In order to decide the co-allocatable blocks to prefetch, we propose a
compression predictor. Based on our experimental evaluations, CLAP reduces the number of cache misses by
12 % and improves performance by 4 % on average, comparing to a compressed cache [23].

7.2.3. Deep microarchitecture
Participants: Anis Peysieux, André Seznec.

The design of an efficient out-of-order execution core is particularly challenging. When the issue-width
increases, the cost of the extra logic required by out-of-core execution increases dramatically. The silicon area
occupied by this OoO core tends to grow quasi-quadratically with the issue-width (e.g. issue logic, register file
and result bypass). At the same time, the power requirement and the energy consumption of the out-of–order
core grow super-linearly with issue width. On wide-issue out-of-order execution cores, issue logic response
time, register file access time, as well as result bypass delays represent potential critical paths that might impair
cycle time or might necessitate further deepening of the execution pipeline. The objective of the PhD thesis of
Anis Peysieux will be to reduce the number of instructions that enter the OoO core, and therefore to master
the hardware complexity while still achieving the performance promises of a very wide issue processor.

7.2.4. Dynamic thermal management
Participant: Pierre Michaud.

As power dissipation and circuit temperature constrain their performance, modern processors feature turbo
control mechanisms to adjust the voltage and clock frequency dynamically so that circuit temperature stays
below a certain limit. In particular, turbo control exploits the fact that, after a long period of low processor
activity, the thermal capacity of the chip, its package and the heatsink can absorb heat at a relatively fast
rate during a certain time, before the temperature limit constrains that rate. Hence power dissipation can be
temporarily boosted above the average sustainable value. The turbo control must monitor circuit temperature
continuously to maximize the clock frequency. Temperature can be monitored by reading the integrated
thermal sensors. However, making the clock frequency depend on thermal sensor readings implies that
processor performance depends on ambient temperature. Yet this form of performance non-determinism is
a problem for certain processor makers. A possible solution is to determine the clock frequency not from the
true temperature but from a thermal model based on the nominal ambient temperature. Such model should be
as accurate as possible in order to prevent sensor-based protection from triggering but sporadically, without
hurting performance by overestimating temperature too much. The model should also be simple enough to
provide calculated temperature in real time. We propose a thermal model possessing these qualities, and a new
turbo control algorithm based on that model [37].

7.2.5. Thread convergence prediction for general-purpose SIMT architectures
Participants: Arthur Blanleuil, Caroline Collange.

GPUs group threads of SPMD programs in warps and synchronize them to execute the same instruction at the
same time. This execution model, referred to as Single-Instruction, Multiple-Thread (SIMT), enables the use
of energy-efficient SIMD execution units by factoring out control logic such as instruction fetch and decode
pipeline stages for a whole warp. SIMT execution is the key enabler for the energy efficiency of GPUs. We
seek to generalize the SIMT execution model to general-purpose superscalar cores.

20 Activity Report INRIA 2019

As threads within a warp may follow different directions through conditional branches in the program, the
warp must follow each taken path in turn, while disabling individual threads that do not participate. Following
divergence, current GPU architectures attempt to restore convergence at the earliest program point following
static annotations in the binary. However, this policy has been shown to be suboptimal in many cases, in which
later convergence improves performance. In fact, optimal convergence points depend on dynamic program
behavior, so static decisions are unable to capture them.

The goal of the thesis of Arthur Blanleuil is to design predictors that enable the microarchitecture to infer
dynamic code behavior and place convergence points appropriately. Convergence predictors have analogies
with branch predictors and control independence predictors studied in superscalar processor architecture,
but they present one additional challenge: the thread runaway problem. Although a branch misprediction
will be identified and repaired locally, a wrong thread scheduling decision may go unnoticed and delay
convergence by thousands of instructions. To address the thread runaway problem, we plan to explore
promise-based speculation and recovery strategies. When no information is available, we follow the traditional
conservative earliest-convergence scheduling policy. Once the predictor has enough information to make a
more aggressive prediction, it generates assumptions about the prediction. The microarchitecture then keeps
checking dynamically whether the assumptions actually hold true in the near future. If assumptions turn out to
be wrong, the prediction will be reconsidered by changing back priorities to conservative. Such promise-based
speculation policies can address the thread runaway problem by fixing a bound on the worst-case performance
degradation of an aggressive scheduling policy against the conservative baseline.

Accurate thread convergence policies will enable dynamic vectorization to adapt to application characteristics
dynamically. They will both improve performance and simplify programming of many-core architectures by
alleviating the need for advanced code tuning by expert programmers.

7.2.6. Exploring the design space of GPU architectures
Participants: Alexandre Kouyoumdjian, Caroline Collange.

We study tradeoffs in the internal organization of GPUs in the context of general-purpose parallel processing
[35]. In particular, we analyze the performance impact of having a few wide streaming multiprocessors
compared to many narrow ones. Although we find narrow configurations usually give higher performance
for an equal number of execution units, they require more hardware resources and energy. On the other hand,
our evaluation show that the optimal streaming multiprocessor width varies across applications. This study
motivates adaptive GPU architectures that would support configurable internal organization.

7.3. WCET estimation and optimization
Participants: Loïc Besnard, Damien Hardy, Isabelle Puaut, Stefanos Skalistis.

7.3.1. WCET estimation for many core processors
Participants: Damien Hardy, Isabelle Puaut, Stefanos Skalistis.

7.3.1.1. Optimization of WCETs by considering the effects of local caches

The overall goal of this research is to define WCET estimation methods for parallel applications running on
many-core architectures, such as the Kalray MPPA machine. Some approaches to reach this goal have been
proposed, but they assume the mapping of parallel applications on cores is already done. Unfortunately, on
architectures with caches, task mapping requires a priori known WCETs for tasks, which in turn requires
knowing task mapping (i.e., co-located tasks, co-running tasks) to have tight WCET bounds. Therefore,
scheduling parallel applications and estimating their WCET introduce a chicken-and-egg situation.

We addressed this issue by developing both optimal and heuristic techniques for solving the scheduling
problem, whose objective is to minimize the WCET of a parallel application. Our proposed static partitioned
non-preemptive mapping strategies address the effect of local caches to tighten the estimated WCET of the
parallel application. Experimental results obtained on real and synthetic parallel applications show that co-
locating tasks that reuse code and data improves the WCET by 11 % on average for the optimal method and
by 9 % on average for the heuristic method. An implementation on the Kalray MPPA machine allowed to
identify implementation-related overheads. All results are described in [18].

Project-Team PACAP 21

7.3.1.2. Shared resource contentions and WCET estimation

Accurate WCET analysis for multi-cores is known to be challenging, because of concurrent accesses to shared
resources, such as communication through busses or Networks on Chips (NoC). Since it is impossible in
general to guarantee the absence of resource conflicts during execution, current WCET techniques either
produce pessimistic WCET estimates or constrain the execution to enforce the absence of conflicts, at the
price of a significant hardware under-utilization. In addition, the large majority of existing works consider
that the platform workload consists of independent tasks. As parallel programming is the most promising
solution to improve performance, we envision that within only a few years from now, real-time workloads will
evolve toward parallel programs. The WCET behavior of such programs is challenging to analyze because
they consist of dependent tasks interacting through complex synchronization/communication mechanisms.

In [28], we propose a scheduling technique that jointly selects Scratchpad Memory (SPM) contents off-line, in
such a way that the cost of SPM loading/unloading is hidden. Communications are fragmented to augment
hiding possibilities. Experimental results show the effectiveness of the proposed technique on streaming
applications and synthetic task-graphs. The overlapping of communications with computations allows the
length of generated schedules to be reduced by 4 % on average on streaming applications, with a maximum
of 16 %, and by 8 % on average for synthetic task graphs. We further show on a case study that generated
schedules can be implemented with low overhead on a predictable multi-core architecture (Kalray MPPA).

7.3.1.3. Interference-sensitive run-time adaptation of time-triggered schedules

In time-critical systems, run-time adaptation is required to improve the performance of time-triggered execu-
tion, derived based on Worst-Case Execution Time (WCET) of tasks. By improving performance, the systems
can provide higher Quality-of-Service, in safety-critical systems, or execute other best-effort applications, in
mixed-critical systems. To achieve this goal, we propose in [32] a parallel interference-sensitive run-time adap-
tation mechanism that enables a fine-grained synchronisation among cores. Since the run-time adaptation of
offline solutions can potentially violate the timing guarantees, we present the Response-Time Analysis (RTA)
of the proposed mechanism showing that the system execution is free of timing-anomalies. The RTA takes
into account the timing behavior of the proposed mechanism and its associated WCET. To support our contri-
bution, we evaluate the behavior and the scalability of the proposed approach for different application types
and execution configurations on the 8-core Texas Instruments TMS320C6678 platform. The obtained results
show significant performance improvement compared to state-of-the-art centralized approaches.

7.3.1.4. WCET-Aware Parallelization of Model-Based Applications for Multi-Cores

Parallel architectures are nowadays not only confined to the domain of high performance computing, they are
also increasingly used in embedded time-critical systems.

The Argo H2020 project provides a programming paradigm and associated tool flow to exploit the full potential
of architectures in terms of development productivity, time-to-market, exploitation of the platform computing
power and guaranteed real-time performance. The Argo toolchain operates on Scilab and XCoS inputs, and
targets ScratchPad Memory (SPM)-based multi-cores. Data-layout and loop transformations play a key role in
this flow as they improve SPM efficiency and reduce the number of accesses to shared main memory.

In [19] we present the overall results of the project, a compiler tool-flow for automated parallelization of
model-based real-time software, which addresses the shortcomings of multi-core architectures in real-time
systems. The flow is demonstrated using a model-based Terrain Awareness and Warning Systems (TAWS)
and an edge detection algorithm from the image-processing domain. Model-based applications are first
transformed into real-time C code and from there into a well-predictable parallel C program. Tight bounds for
the Worst-Case Execution Time (WCET) of the parallelized program can be determined using an integrated
multi-core WCET analysis. Thanks to the use of an architecture description language, the general approach
is applicable to a wider range of target platforms. An experimental evaluation for a research architecture with
network-on-chip (NoC) interconnect shows that the parallel WCET of the TAWS application can be improved
by factor 1.77 using the presented compiler tools.

7.3.2. WCET estimation and optimizing compilers
Participants: Isabelle Puaut, Stefanos Skalistis.

22 Activity Report INRIA 2019

Static Worst-Case Execution Time (WCET) estimation techniques operate upon the binary code of a program
in order to provide the necessary input for schedulability analysis techniques. Compilers used to generate
this binary code include tens of optimizations, that can radically change the flow information of the program.
Such information is hard to be maintained across optimization passes and may render automatic extraction
of important flow information, such as loop bounds, impossible. Thus, compiler optimizations, especially
the sophisticated optimizations of mainstream compilers, are typically avoided. We explore [24] for the first
time iterative-compilation techniques that reconcile compiler optimizations and static WCET estimation. We
propose a novel learning technique that selects sequences of optimizations that minimize the WCET estimate
of a given program. We experimentally evaluate the proposed technique using an industrial WCET estimation
tool (AbsInt aiT) over a set of 46 benchmarks from four different benchmarks suites, including reference
WCET benchmark applications, image processing kernels and telecommunication applications. Experimental
results show that WCET estimates are reduced on average by 20.3 % using the proposed technique, as
compared to the best compiler optimization level applicable.

7.3.3. WCET estimation and processor micro-architecture
Participant: Isabelle Puaut.

Cache memories in modern embedded processors are known to improve average memory access performance.
Unfortunately, they are also known to represent a major source of unpredictability for hard real-time workload.
One of the main limitations of typical caches is that content selection and replacement is entirely performed
in hardware. As such, it is hard to control the cache behavior in software to favor caching of blocks that are
known to have an impact on an application’s worst-case execution time (WCET). In [26], we consider a cache
replacement policy, namely DM-LRU, that allows system designers to prioritize caching of memory blocks
that are known to have an important impact on an application’s WCET. Considering a single-core, single-level
cache hierarchy, we describe an abstract interpretation-based timing analysis for DM-LRU. We implement
the proposed analysis in a self-contained toolkit and study its qualitative properties on a set of representative
benchmarks. Apart from being useful to compute the WCET when DM-LRU or similar policies are used, the
proposed analysis can allow designers to perform WCET impact-aware selection of content to be retained in
cache.

Long pipelines need good branch predictors to keep the pipeline running. Current branch predictors are
optimized for the average case, which might not be a good fit for real-time systems and worst-case execution
time analysis. We present [29] a time-predictable branch predictor co-designed with the associated worst-
case execution time analysis. Thee branch predictor uses a fully-associative cache to track branch outcomes
and destination addresses. The fully-associative cache avoids any false sharing of entries between branches.
Therefore, we can analyze program scopes that contain a number of branches lower than or equal to the number
of branches in the prediction table. Experimental results show that the worst-case execution time bounds of
programs using the proposed predictor are lower than using static branch predictors at a moderate hardware
cost.

7.4. Security
Participants: Nicolas Bellec, Damien Hardy, Kévin Le Bon, Isabelle Puaut, Erven Rohou.

7.4.1. Attack detection co-processor for real-time systems
Participants: Nicolas Bellec, Isabelle Puaut.

Real-time embedded systems (RTES) are required to interact more and more with their environment, thereby
increasing their attack surface. Recent security breaches on car brakes and other critical components, have
already proven the feasibility of attacks on RTES. Such attacks may change the control-flow of the programs,
which may lead to violations of the timing constraints of the system. In this ongoing work, we design a
technique to detect attacks in RTES based on timing information. Our technique is based on a monitor,
implemented in hardware to preserve the predictability of instrumented programs. The monitor uses timing
information (Worst-Case Execution Time – WCET – of code regions) to detect attacks. An algorithm for the

Project-Team PACAP 23

region selection, optimal when the monitoring memory is not limited is presented and provides guarantees
on attack detection latency. An implementation of the hardware monitor and its simulation demonstrates
the practicality of our approach. An experimental study evaluates the maximum attack detection latency for
different monitor memory budgets.

This work is done in collaboration with the CIDRE and CAIRN teams.

7.4.2. Multi-nop fault injection attack
Participants: Damien Hardy, Erven Rohou.

The CIDRE team has developed a platform named Traitor that allows to perform multiple fault injection
attack by replacing instructions by nops during the execution of a program. In this context, we are defining a
program model where each instruction can be replaced by a nop at runtime. On this model we plan to apply
compilation techniques on the binary to automatically determine where nops have to be inserted at runtime
to perform sophisticated attacks such as dump of memory, modification of the memory, memory protection
deactivation, execution of code in RAM.

This work is done in collaboration with the CIDRE team.

7.4.3. Compiler-based automation of side-channel countermeasures
Participants: Damien Hardy, Erven Rohou.

Masking is a popular protection against side-channel analysis exploiting the power consumption or electro-
magnetic radiations. Besides the many schemes based on simple Boolean encoding, some alternative schemes
such as Orthogonal Direct Sum Masking (ODSM) or Inner Product Masking (IP) aim to provide more security,
reduce the entropy or combine masking with fault detection. The practical implementation of those schemes
is done manually at assembly or source-code level, some of them even stay purely theoretical. We proposed
a compiler extension to automatically apply different masking schemes for block cipher algorithms. We in-
troduced a generic approach to describe the schemes and we inserted three of them at compile-time on an
AES implementation. Currently, a practical side-channel analysis is performed in collaboration with TAMIS
to assess the correctness and the performance of the code inserted.

This work is done in collaboration with the TAMIS team.

7.4.4. Platform for adaptive dynamic protection of programs
Participants: Kévin Le Bon, Erven Rohou.

Memory corruption attacks are a serious threat for system integrity. Many techniques have been developed in
order to protect systems from these attacks. However, the deployment of heavy protections often degrades the
performance of programs. We propose [36] a dynamic approach that adapts the protection level of the target
process during its execution depending on the observed behavior.

8. Bilateral Contracts and Grants with Industry
8.1. Bilateral Grants with Industry
8.1.1. Intel research grant INTEL2016-11174

Participants: Niloofar Charmchi, Kleovoulos Kalaitzidis, Anis Peysieux, André Seznec.

Intel is supporting the research of the PACAP project-team on “Design tradeoffs for extreme cores”.

9. Partnerships and Cooperations
9.1. Regional Initiatives

The Brittany Region is partially funding the PhD fellowship for Niloofar Charmchi on the topic “Hardware
prefetching and related issues” and Nicolas Bellec on the topic “Security in real-time embedded systems”.

24 Activity Report INRIA 2019

9.2. National Initiatives
9.2.1. Zero Power Computing Systems (ZEP): Inria Project Lab (2017–2020)

Participants: Erven Rohou, Bahram Yarahmadi.

This proposal addresses the issue of designing tiny wireless, batteryless, computing objects, harvesting energy
in the environment. The energy level harvested being very low, very frequent energy shortages are expected.
In order for the new system to maintain a consistent state, it will be based on a new architecture embedding
non-volatile RAM (NVRAM). In order to benefit from the hardware innovations related to energy harvesting
and NVRAM, software mechanisms will be designed. On the one hand, a compilation pass will compute a
worst-case energy consumption. On the other hand, dedicated runtime mechanisms will allow:

1. to manage efficiently and correctly the NVRAM-based hardware architecture;
2. to use energy intelligently, by computing the worst-case energy consumption.

The ZEP project gathers four Inria teams that have a scientific background in architecture, compilation,
operating systems together with the CEA Lialp and Lisan laboratories of CEA LETI & LIST [39]. The main
application target is Internet of Things (IoT).

9.2.2. NOPE
Participants: Piéric Giraud, Erven Rohou, Bahram Yarahmadi.

NOPE is a one-year exploratory action funded by the Labex Cominlabs. This project aimed at being a first
step, and served to elaborate more ambitious future works. Through this project, the consortium was able to
grow its knowledge on a topical research theme and lay the foundations of an innovative hardware-software
approach. The short term goals were:

• building and sharing across the consortium a strong expertise in state-of-the art results and tools on
transient computing, and identifying challenges that should be focused on;

• initiating collaborations between the participants in order to identify opportunities at the hardware-
software interface;

• building the foundations of a shared experimental platform for transient computing.

An intern, Piéric Giraud, was hired thanks to NOPE. He ported our WCET infrastructure Heptane to the
MSP430 instruction set.

The NOPE project gathers teams PACAP, IETR Syscom and LS2N STR.
9.2.3. Hybrid SIMD architectures (2018–2019)

Participants: Caroline Collange, Alexandre Kouyoumdjian, Erven Rohou.

The project objective is to define new parallel computer architectures that offer high parallel performance on
high-regularity workloads while keeping the flexibility to run more irregular parallel workloads. inspired by
both GPU and SIMD or vector architectures.

This project is funded by the French Ministry of Armed Forces (Ministère des Armées).
9.2.4. DGA/PEC ARMOUR (2018–2021)

Participants: Kévin Le Bon, Erven Rohou.

ARMOUR (dynAmic binaRy optiMizatiOn cyber-secURity) aims at improving the security of computing
systems at the software level. Our contribution will be twofold: (1) identify vulnerabilities in existing software,
and (2) develop adaptive countermeasure mechanisms against attacks. We will rely on dynamic binary
rewriting (DBR) which consists in observing a program and modifying its binary representation in memory
while it runs. DBR does not require the source code of the programs it manipulates, making it convenient for
commercial and legacy applications. We will study the feasibility of an adaptive security agent that monitors
target applications and deploys (or removes) countermeasures based on dynamic conditions. Lightweight
monitoring is appropriate when the threat condition is low, heavy countermeasures will be dynamically woven
into the code when an attack is detected. Vulnerability analysis will be based on advanced fuzzing. DBR makes
it possible to monitor and modify deeply embedded variables, inaccessible to traditional monitoring systems,
and also to detect unexpected/suspicious values taken by variables and act before the application crashes.

Project-Team PACAP 25

ARMOUR is funded by DGA (Direction Générale de l’Armement) and PEC (Pôle d’Excellence Cyber).

9.2.5. ANR DYVE (31/03/2020 – 30/09/2023)
Participants: Arthur Blanleuil, Caroline Collange, Pierre-Yves Peneau.

Most of today’s computer systems have CPU cores and GPU cores on the same chip. Though both are general-
purpose, CPUs and GPUs still have fundamentally different software stacks and programming models, starting
from the instruction set architecture. Indeed, GPUs rely on static vectorization of parallel applications, which
demands vector instruction sets instead of CPU scalar instruction sets. In the DYVE project, we advocate a
disruptive change in both CPU and GPU architecture by introducing Dynamic Vectorization at the hardware
level.

Dynamic Vectorization will combine the efficiency of GPUs with the programmability and compatibility of
CPUs by bringing them together into heterogeneous general-purpose multicores. It will enable processor
architectures of the next decades to provide (1) high performance on sequential program sections thanks to
latency-optimized cores, (2) energy-efficiency on parallel sections thanks to throughput-optimized cores, (3)
programmability, binary compatibility and portability.

DYVE is funded by the ANR through the JCJC funding instrument.

9.3. European Initiatives
9.3.1. FP7 & H2020 Projects
9.3.1.1. ARGO

Participants: Damien Hardy, Isabelle Puaut, Stefanos Skalistis.
Title: Argo: WCET-Aware Parallelization of Model-Based Applications for Heterogeneous Parallel
Systems
Program: H2020
Type: RIA
Duration: Jan 2016 – Mar 2019
Coordinator: Karlsruhe Institut für Technologie (Germany)
Université de Rennes 1 contact: Steven Derrien
Partners:

Karlsruher Institut für Technologie (Germany)
SCILAB enterprises SAS (France)
Université de Rennes 1 (France)
Technologiko Ekpaideftiko Idryma (TEI) Dytikis Elladas (Greece)
Absint GmbH (Germany)
Deutsches Zentrum für Luft- und Raumfahrt EV (Germany)
Fraunhofer (Germany)

Increasing performance and reducing costs, while maintaining safety levels and programmability are
the key demands for embedded and cyber-physical systems in European domains, e.g. aerospace, au-
tomation, and automotive. For many applications, the necessary performance with low energy con-
sumption can only be provided by customized computing platforms based on heterogeneous many-
core architectures. However, their parallel programming with time-critical embedded applications
suffers from a complex toolchain and programming process. Argo (WCET-Aware PaRallelization
of Model-Based Applications for HeteroGeneOus Parallel Systems) will address this challenge with
a holistic approach for programming heterogeneous multi- and many-core architectures using au-
tomatic parallelization of model-based real-time applications. Argo will enhance WCET-aware au-
tomatic parallelization by a crosslayer programming approach combining automatic tool-based and
user-guided parallelization to reduce the need for expertise in programming parallel heterogeneous
architectures. The Argo approach will be assessed and demonstrated by prototyping comprehensive
time-critical applications from both aerospace and industrial automation domains on customized
heterogeneous many-core platforms.

26 Activity Report INRIA 2019

Argo also involves Steven Derrien and Angeliki Kritikakou from the CAIRN team.

9.3.1.2. HiPEAC4 NoE
Participants: Pierre Michaud, Erven Rohou, André Seznec, Isabelle Puaut.

P. Michaud, A. Seznec and E. Rohou are members of the European Network of Excellence HiPEAC4.

HiPEAC4 addresses the design and implementation of high-performance commodity computing devices in
the 10+ year horizon, covering both the processor design, the optimizing compiler infrastructure, and the
evaluation of upcoming applications made possible by the increased computing power of future devices.

9.3.1.3. Eurolab-4-HPC
Participant: Erven Rohou.

Title: EuroLab-4-HPC: Foundations of a European Research Center of Excellence in High Perfor-
mance Computing Systems

Program: H2020

Duration: September 2018 – September 2020

Coordinator: Chalmers Tekniska Hoegskola AB (Sweden)

Partners:

Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (Spain)

Chalmers Tekniska Hoegskola (Sweden)

Foundation for Research and Technology Hellas (Greece)

Universität Stuttgart (Germany)

The University of Manchester (United Kingdom)

Inria (France)

Universität Augsburg (Germany)

ETH Zürich (Switzerland)

École Polytechnique Federale de Lausanne (Switzerland)

Technion - Israel Institute of Technology (Israel)

The University of Edinburgh (United Kingdom)

Rheinisch-Westfaelische Technische Hochschule Aachen (Germany)

Universiteit Gent (Belgium)

Inria contact: Albert Cohen (Inria Paris)

Europe has built momentum in becoming a leader in large parts of the HPC ecosystem. It has brought
together technical and business stakeholders from application developers via system software to
exascale systems. Despite such gains, excellence in high performance computing systems is often
fragmented and opportunities for synergy missed. To compete internationally, Europe must bring
together the best research groups to tackle the long-term challenges for HPC. These typically cut
across layers, e.g., performance, energy efficiency and dependability, so excellence in research must
target all the layers in the system stack. The EuroLab-4-HPC project’s bold overall goal is to build
connected and sustainable leadership in high-performance computing systems by bringing together
the different and leading performance oriented communities in Europe, working across all layers of
the system stack and, at the same time, fueling new industries in HPC.

Project-Team PACAP 27

9.4. International Initiatives
9.4.1. ANR CHIST-ERA SECODE 2016–2019

Participants: Damien Hardy, Erven Rohou.

Title: SECODE – Secure Codes to Thwart Cyber-Physical Attacks

CHIST-ERA - RTCPS

Duration: January 2016 – December 2019 (one year extension)

Coordinator: Télécom Paris Tech (France)

Partners:

Télécom Paris Tech (France)

Inria (France)

Université Paris 8 (France)

Sabancı Üniversitesi (Turkey)

Université Catholique de Louvain (Belgium)

Inria contact: Erven Rohou

In this project, we specify and design error correction codes suitable for an efficient protection
of sensitive information in the context of Internet of Things (IoT) and connected objects. Such
codes mitigate passive attacks, like memory disclosure, and active attacks, like stack smashing. The
innovation of this project is to leverage these codes for protecting against both cyber and physical
attacks. The main advantage is a full coverage of attacks of the connected embedded systems, which
is considered as a smart connected device and also a physical device. The outcome of the project
is first a method to generate and execute cyber-resilient software, and second to protect data and its
manipulation from physical threats like side-channel attacks.

9.4.2. Informal International Partners
Caroline Collange has collaborated with Marcos Yukio Siraichi, Vinicius Fernandes dos Santos and Fernando
Magno Quintão Pereira from UFMG, Brazil [31].

Isabelle Puaut has collaborated with Renato Mancuso (University of Boston, USA) and Heechul Yun (Uni-
versity of Kansas, USA) on predictable memory hierarchies [26]. She has collaborated with Martin Schoeberl
(Technical University of Denmark) on predictable branch predictors [29].

Erven Rohou has been collaborating with Prof. Ahmed El-Mahdy (Egypt-Japan University of Science and
Technology, Alexandria, Egypt) and his group [21], [22].

Erven Rohou and Loïc Besnard have been collaborating with Prof. João Cardoso (University of Porto, Porto,
Portugal) and his group [16].

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events: Selection
10.1.1.1. Member of the Conference Program Committees

• Caroline Collange is a member of the program committee of the DATE 2020 conference

• Pierre Michaud was a member of the program committee of the International Conference on
Computer Design (ICCD 2019)

28 Activity Report INRIA 2019

• Pierre Michaud was a member of the program committee of the Third Data Prefetching Champi-
onship (DPC3)

• Isabelle Puaut was a member of the program committee of the Euromicro Conference on Real Time
Systems (ECRTS) 2019 and 2020, IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) 2020, Real Time Systems Symposium (RTSS) in 2019.

• Isabelle Puaut was a member of the program committee of the “Real-Time and (Networked)
Embedded Systems” track of IEEE ETFA 2019.

• Isabelle Puaut was a member of the program committee of the International Conference on Real-
Time Networks and Systems (RTNS) 2019 and 2020.

• Isabelle Puaut was a member of the program committee of the 18th Workshop on Worst-Case
Execution Time Analysis (WCET 2019).

• Erven Rohou and Caroline Collange were members of the program committee of the French
Conférence francophone en informatique autour des thématiques du parallélisme, de l’architecture
et des systèmes (Compas 2019).

• Erven Rohou was a member of the program committee of the Special Session on Compiler
Architecture, Design and Optimization (CADO) of HPCS 2019.

• André Seznec was a member of program committee of ACM/IEEE Micro 2019 conference
• André Seznec is a member of program committee of ACM/IEEE ISCA 2020 conference
• André Seznec is a member of program committee of the IPDPS 2020 conference

10.1.1.2. Reviewer

Members of PACAP routinely review submissions to numerous international conferences and events.

10.1.2. Journal
10.1.2.1. Member of the Editorial Boards

• Isabelle Puaut is Associate Editor of IEEE Transactions on Computers (IEEE TC) and Springer
International Journal of Time-Critical Computing Systems.

• André Seznec is a member of the editorial boards of ACM Transactions on Architecture and
Compiler Optimization.

10.1.2.2. Reviewer - Reviewing Activities

Members of PACAP routinely review submissions to numerous international journals.

10.1.3. Invited Talks
Erven Rohou and Byron Hawkins gave invited talks at the 13th rencontres de la communauté française de
compilation.

Erven Rohou gave an invited talk at the GDR SOC2 day in Nantes.

Erven Rohou gave a talk at the Compas 2019 conference.

André Seznec was an invited speaker at the RISC V workshop in Paris.

10.1.4. Leadership within the Scientific Community
Caroline Collange is a member of the steering committee of the Conférence francophone en informatique
autour des thématiques du parallélisme, de l’architecture et des systèmes (Compas 2019).

Isabelle Puaut is member of the steering committee of RTNS (Real-Time Networks and Systems).

Isabelle Puaut is member of the steering committee of the Worst Case Execution Time (WCET) workshop,
held in conjunction with the Euromicro Conference on Real Time Systems (ECRTS).

Isabelle Puaut is member of the steering committee of the Euromicro Conference on Real Time Systems
(ECRTS).

Project-Team PACAP 29

10.1.5. Research Administration
Isabelle Puaut is member of the Research Council (Commission Recherche) of the Université de Rennes 1.
She is member of the working group “Habilitation à Diriger des Recherches”.

Isabelle Puaut is member of the board of directors (Conseil d’Administration) of ISTIC (computer science and
electrical engineering departement of Université de Rennes 1).

Erven Rohou is “correspondant scientifique des relations internationales” for Inria Rennes Bretagne Atlan-
tique. As such he is a member of the Inria COST GTRI (Groupe de Travail “Relations Internationales”).

Erven Rohou is a member of the steering committee of the high security research laboratory (LHS).

Erven Rohou is a member of the “Comité de Centre” of the Inria Rennes Research Center.

André Seznec is an elected member of the Administration Council of Inria.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

• Licence: Nicolas Bellec, Système, 14 hours, L3, Université de Rennes 1, France
• License: Nicolas Bellec, Informatique, 14 hours, L1, Lycée Chateaubriand (Rennes), France
• Arthur Blanleuil, SYS1 (Systèmes mono-utilisateur), 18 hours, M1, Université Rennes 1, France
• Arthur Blanleuil, NOY (Systèmes d’exploitation – implémentation de noyaux de systèmes), 22

hours, M1, Université Rennes 1, France
• Arthur Blanleuil, SE (Système d’Exploitation), 24 hours, M1, Université Rennes 1, France
• Master: C. Collange, GPU programming, 20 hours, M1, Université de Rennes 1, France
• Licence: D. Hardy, Real-time systems, 68 hours, L3, Université de Rennes 1, France
• Master: D. Hardy, Operating systems, 59 hours, M1, Université de Rennes 1, France
• Master: Kévin Le Bon, Architecture à Objet Canonique, 20 hours, M2, Université de Rennes 1,

France
• Licence: Kévin Le Bon, SI2, 40, L1, Université de Rennes 1, France
• Master: I. Puaut, Operating systems: concepts and system programming under Linux (SEL), 77

hours, M1, Université de Rennes 1, France
• Master: I. Puaut, Operating systems kernels (NOY), 54 hours, M1, Université de Rennes 1, France
• Master: I. Puaut, Real-time systems, 40 hours, M1, Université de Rennes 1, France
• Master: I. Puaut, Optimizing and Parallelizing Compilers (OPC), 9 hours, M2, Université de Rennes

1, France
• Master: I. Puaut, Writing of scientific publications, 9 hours, M2 and PhD students, Université de

Rennes 1, France
• Master: A. Seznec, Advanced Design and Architectures, 12 hours, M2 SIF, Université de Rennes 1.

10.2.2. Supervision
PhD: Arif Ali Ana-Pparakkal, Performance Centric Dynamic Function Level Binary Transformation
[15], Université de Rennes 1, 9 Dec 2019, advisor E. Rohou
PhD in progress : Nicolas Bellec, Security in real-time embedded systems, started Dec 2019, advisors
I. Puaut (50 %), G. Hiet from CIDRE (25 %), F. Tronel from CIDRE (25 %)
PhD in progress: Arthur Blanleuil, Thread convergence prediction for SIMT architectures, Université
de Rennes 1, started Oct 2018, advisor C. Collange and A. Seznec
PhD in progress: Niloofar Charmchi, Hardware prefetching and related issue, Université de Rennes
1, started Jan 2017, advisors A. Seznec and C. Collange

30 Activity Report INRIA 2019

PhD in progress: Kleovoulos Kalaitzidis, Ultrawide Issue Superscalar Processors, Université de
Rennes 1, started Dec 2016, advisor A. Seznec

PhD in progress : Kévin Le Bon, Dynamic Binary Analysis and Optimization for Cyber-Security,
started Dec 2018, advisors E. Rohou (30 %), G. Hiet from CIDRE (35 %), F. Tronel from CIDRE
(35 %)

PhD in progress: Daniel Rodrigues Carvalho, Towards a compressed memory hierarchy, Université
de Rennes 1, started Oct 2017, advisor A. Seznec

PhD in progress : Bahram Yarahmadi, Compiler Optimizations and Worst-Case Energy Consump-
tion, started Feb 2018, advisor E. Rohou

10.2.3. Juries
Isabelle Puaut was a member of the following PhD thesis and habilitation thesis committees:

• Muhammad Refaat Sedky Soliman (PhD thesis), Automated Compilation Framework for
Scratchpad-based Real-Time Systems, University of Waterloo, Canada, Juin 2019 (reviewer)

• Amine Naji (PhD thesis), Timing Analysis for Time-Predictable Architectures, Sorbonne Université,
June 2019 (reviewer)

• Luca Santinelli (habilitation), Mixed Criticality Modeling and Analysis Paradigms for Real Time Em-
bedded Systems, Habilitation à diriger des recherches, Institut National Polytechnique de Toulouse,
May 2019 (reviewer)

• Roberto Medina (PhD thesis), Deployment of Mixed-Criticality and Data-Driven Systems on Multi-
core Architectures, Université de Paris Saclay, January 2019

Isabelle Puaut was a member of the following hiring committees of assistant professors/professors:

• Professor, Université de Bretagne Occidentale, “methods and tools for the design of embedded
systems, Systems on Chips, embedded systems and architectures”

• Professor, ENS Lyon

• Assistant professor, Université de Strasbourg, “performance, modeling and simulation”

• Assistant professor, ISAE-ENSMA Poitiers, “embedded real-time systems, data and model engi-
neering”

Erven Rohou was a member of the following hiring committee (comités de sélection):

• Assistant professor position at Université de Grenoble on cloud and edge computing

Erven Rohou was a member of the following PhD thesis committees:

• Julien Proy, Sécurisation systématique d’applications embarquées contre les attaques physiques,
June 2019 (reviewer).

• Nicolas Belleville, Compilation pour l’application de contre-mesures contre les attaques par canal
auxiliaire, Université Grenoble Alpes, Nov 2019 (reviewer).

• Patryk Kiepas, Performance analyses and code transformations for MATLAB applications, Dec 2019
(reviewer).

• Paul Godard, Parallélisation et passage à l’échelle durable d’une chaîne de traitement graphique
pour l’impression professionnelle, Université de Strasbourg, Dec 2019 (reviewer).

10.3. Popularization
10.3.1. Internal or external Inria responsibilities

Caroline Collange is a member of the committee of the Gilles Kahn PhD prize of Société Informatique de
France.

Project-Team PACAP 31

10.3.2. Articles and contents
• Erven Rohou gave an interview in the Émergences magazine on (volume 56, Mar 22nd 2019) on

automatically masking sensitive information to protect against side-channel attacks.

10.3.3. Education
Nicolas Bellec and Isabelle Puaut taught Basics of computer architecture, a training of high school teachers as
part of the opening of the new computer science option in the two final years before Baccalauréat, 10 hours.

Erven Rohou was invited to present the life of a researcher in computer science to middle school students
(Collège de Cesson-Sévigné)

10.3.4. Interventions
Erven Rohou was present at the International Cybersecurity Forum in Lille (FIC https://www.forum-fic.com/
en/home.htm). He presented a demo on compiler-generated countermeasures against side-channel attacks,
developed within the context of the CHIST-ERA SECODE project.

10.3.5. Internal action
Erven Rohou presented the activities of PACAP at the SecDays event organized at Inria Rennes and IRISA.

11. Bibliography
Major publications by the team in recent years

[1] F. BODIN, T. KISUKI, P. M. W. KNIJNENBURG, M. F. P. O’BOYLE, E. ROHOU. Iterative Compilation in
a Non-Linear Optimisation Space, in "Workshop on Profile and Feedback-Directed Compilation (FDO-1), in
conjunction with PACT ’98", October 1998

[2] N. HALLOU, E. ROHOU, P. CLAUSS, A. KETTERLIN. Dynamic Re-Vectorization of Binary Code, in
"SAMOS", July 2015, https://hal.inria.fr/hal-01155207

[3] D. HARDY, I. PUAUT. Static probabilistic Worst Case Execution Time Estimation for architectures with Faulty
Instruction Caches, in "21st International Conference on Real-Time Networks and Systems", Sophia Antipolis,
France, October 2013 [DOI : 10.1145/2516821.2516842], https://hal.inria.fr/hal-00862604

[4] D. HARDY, I. SIDERIS, N. LADAS, Y. SAZEIDES. The performance vulnerability of architectural and non-
architectural arrays to permanent faults, in "MICRO 45", Vancouver, Canada, December 2012, https://hal.
inria.fr/hal-00747488

[5] S. KALATHINGAL, S. COLLANGE, B. SWAMY, A. SEZNEC. DITVA: Dynamic Inter-Thread Vec-
torization Architecture, in "Journal of Parallel and Distributed Computing", October 2018, pp. 1-32
[DOI : 10.1016/J.JPDC.2017.11.006], https://hal.archives-ouvertes.fr/hal-01655904

[6] P. MICHAUD. Best-Offset Hardware Prefetching, in "International Symposium on High-Performance Computer
Architecture", Barcelona, Spain, March 2016 [DOI : 10.1109/HPCA.2016.7446087], https://hal.inria.fr/
hal-01254863

[7] P. MICHAUD, A. MONDELLI, A. SEZNEC. Revisiting Clustered Microarchitecture for Future Superscalar
Cores: A Case for Wide Issue Clusters, in "ACM Transactions on Architecture and Code Optimization
(TACO)", August 2015, vol. 13, no 3, 22 p. [DOI : 10.1145/2800787], https://hal.inria.fr/hal-01193178

https://www.forum-fic.com/en/home.htm
https://www.forum-fic.com/en/home.htm
https://hal.inria.fr/hal-01155207
https://hal.inria.fr/hal-00862604
https://hal.inria.fr/hal-00747488
https://hal.inria.fr/hal-00747488
https://hal.archives-ouvertes.fr/hal-01655904
https://hal.inria.fr/hal-01254863
https://hal.inria.fr/hal-01254863
https://hal.inria.fr/hal-01193178

32 Activity Report INRIA 2019

[8] A. PERAIS, A. SEZNEC. EOLE: Paving the Way for an Effective Implementation of Value Prediction, in
"International Symposium on Computer Architecture", Minneapolis, MN, United States, ACM/IEEE, June
2014, vol. 42, pp. 481-492 [DOI : 10.1109/ISCA.2014.6853205], https://hal.inria.fr/hal-01088130

[9] A. PERAIS, A. SEZNEC. Practical data value speculation for future high-end processors, in "International
Symposium on High Performance Computer Architecture", Orlando, FL, United States, IEEE, February 2014,
pp. 428-439 [DOI : 10.1109/HPCA.2014.6835952], https://hal.inria.fr/hal-01088116

[10] E. ROHOU, B. NARASIMHA SWAMY, A. SEZNEC. Branch Prediction and the Performance of Interpreters
- Don’t Trust Folklore, in "International Symposium on Code Generation and Optimization", Burlingame,
United States, February 2015, https://hal.inria.fr/hal-01100647

[11] S. SARDASHTI, A. SEZNEC, D. A. WOOD. Skewed Compressed Caches, in "47th Annual IEEE/ACM
International Symposium on Microarchitecture, 2014", Minneapolis, United States, December 2014, https://
hal.inria.fr/hal-01088050

[12] S. SARDASHTI, A. SEZNEC, D. A. WOOD. Yet Another Compressed Cache: a Low Cost Yet Effective
Compressed Cache, in "ACM Transactions on Architecture and Code Optimization", September 2016, 25
p. , https://hal.inria.fr/hal-01354248

[13] A. SEZNEC, P. MICHAUD. A case for (partially)-tagged geometric history length branch prediction, in
"Journal of Instruction Level Parallelism", February 2006, http://www.jilp.org/vol8

[14] D. D. C. TEIXEIRA, S. COLLANGE, F. M. QUINTÃO PEREIRA. Fusion of calling sites, in "International
Symposium on Computer Architecture and High-Performance Computing (SBAC-PAD)", Florianópolis,
Santa Catarina, Brazil, October 2015 [DOI : 10.1109/SBAC-PAD.2015.16], https://hal.archives-ouvertes.
fr/hal-01410221

Publications of the year
Doctoral Dissertations and Habilitation Theses

[15] A. A. ANAPPARAKKAL. Performance Centric Dynamic Function Level Binary Transformation, Université
de Rennes 1 [UR1], December 2019, https://hal.inria.fr/tel-02394383

Articles in International Peer-Reviewed Journals

[16] L. BESNARD, P. PINTO, I. LASRI, J. BISPO, E. ROHOU, J. M. P. CARDOSO. A framework
for automatic and parameterizable memoization, in "SoftwareX", July 2019, vol. 10, 100322 p.
[DOI : 10.1016/J.SOFTX.2019.100322], https://hal.inria.fr/hal-02305415

[17] C. LIMA, J. CEZAR, G. VIEIRA LEOBAS, E. ROHOU, F. M. QUINTÃO PEREIRA. Guided just-
in-time specialization, in "Science of Computer Programming", November 2019, vol. 185, 41 p.
[DOI : 10.1016/J.SCICO.2019.102318], https://hal.inria.fr/hal-02314442

[18] V. A. NGUYEN, D. HARDY, I. PUAUT. Cache-conscious Off-Line Real-Time Scheduling for Multi-
Core Platforms: Algorithms and Implementation, in "Real-Time Systems", 2019, pp. 1-37, forthcoming
[DOI : 10.4230/LIPICS.ECRTS.2017.14], https://hal.inria.fr/hal-02044110

https://hal.inria.fr/hal-01088130
https://hal.inria.fr/hal-01088116
https://hal.inria.fr/hal-01100647
https://hal.inria.fr/hal-01088050
https://hal.inria.fr/hal-01088050
https://hal.inria.fr/hal-01354248
http://www.jilp.org/vol8
https://hal.archives-ouvertes.fr/hal-01410221
https://hal.archives-ouvertes.fr/hal-01410221
https://hal.inria.fr/tel-02394383
https://hal.inria.fr/hal-02305415
https://hal.inria.fr/hal-02314442
https://hal.inria.fr/hal-02044110

Project-Team PACAP 33

[19] S. REDER, F. KEMPF, H. BUCHER, J. BECKER, P. ALEFRAGIS, N. S. VOROS, S. SKALISTIS, S. DERRIEN,
I. PUAUT, O. OEY, T. STRIPF, C. FERDINAND, C. DAVID, P. ULBIG, D. MUELLER, U. DURAK. Worst-
Case Execution-Time-Aware Parallelization of Model-Based Avionics Applications, in "Journal of Aerospace
Information Systems", November 2019, vol. 16, no 11, pp. 521-533 [DOI : 10.2514/1.I010749], https://hal.
archives-ouvertes.fr/hal-02383381

[20] C. SILVANO, G. AGOSTA, A. BARTOLINI, A. R. BECCARI, L. BENINI, L. BESNARD, J. BISPO, R.
CMAR, J. M. P. CARDOSO, C. CAVAZZONI, D. CESARINI, S. CHERUBIN, F. FICARELLI, D. GADI-
OLI, M. GOLASOWSKI, A. LIBRI, J. MARTINOVIČ, G. PALERMO, P. PINTO, E. ROHOU, K. SLANI-
NOVÁ, E. VITALI. The ANTAREX domain specific language for high performance computing, in "Mi-
croprocessors and Microsystems: Embedded Hardware Design (MICPRO)", July 2019, vol. 68, pp. 58-73
[DOI : 10.1016/J.MICPRO.2019.05.005], https://hal.inria.fr/hal-02189586

[21] M. YUSUF, A. EL-MAHDY, E. ROHOU. Runtime On-Stack Parallelization of Dependence-Free For-Loops
in Binary Programs, in "IEEE Letters of the Computer Society", March 2019, vol. 2, no 1, pp. 1-4
[DOI : 10.1109/LOCS.2019.2896559], https://hal.inria.fr/hal-02061340

[22] M. YUSUF, A. EL-MAHDY, E. ROHOU. Towards Automatic Binary Runtime Loop De-Parallelization
using On-Stack Replacement, in "Information Processing Letters", May 2019, vol. 145, pp. 53-57
[DOI : 10.1016/J.IPL.2019.01.009], https://hal.inria.fr/hal-02002812

International Conferences with Proceedings

[23] N. CHARMCHI, C. COLLANGE, A. SEZNEC. Compressed cache layout aware prefetching, in "SBAC-PAD
2019 - International Symposium on Computer Architecture and High Performance Computing", Campo
Grande, MS, Brazil, October 2019, pp. 1-4, https://hal.inria.fr/hal-02316773

[24] M. DARDAILLON, S. SKALISTIS, I. PUAUT, S. DERRIEN. Reconciling Compiler Optimizations and WCET
Estimation Using Iterative Compilation, in "RTSS 2019 - 40th IEEE Real-Time Systems Symposium", Hong
Kong, China, IEEE, December 2019, pp. 1-13, https://hal.archives-ouvertes.fr/hal-02286164

[25] K. KALAITZIDIS, A. SEZNEC. Value Speculation through Equality Prediction, in "ICCD 2019 - 37th IEEE
International Conference on Computer Design", Abu Dhabi, United Arab Emirates, IEEE, November 2019,
pp. 1-4, https://hal.archives-ouvertes.fr/hal-02383480

[26] R. MANCUSO, H. YUN, I. PUAUT. Impact of DM-LRU on WCET: A Static Analysis Approach, in
"ECRTS 2019 - 31st Euromicro Conference on Real-Time Systems", Stuttgart, Germany, July 2019, pp. 1-
25 [DOI : 10.4230/LIPICS.ECRTS.2019.17], https://hal.archives-ouvertes.fr/hal-02190255

[27] S. ROKICKI, E. ROHOU, S. DERRIEN. Aggressive Memory Speculation in HW/SW Co-Designed Machines,
in "DATE 2019 - 22nd IEEE/ACM Design, Automation and Test in Europe", Florence, Italy, IEEE, March
2019, pp. 332-335 [DOI : 10.23919/DATE.2019.8715010], https://hal.archives-ouvertes.fr/hal-01941876

[28] Best Paper
B. ROUXEL, S. SKALISTIS, S. DERRIEN, I. PUAUT. Hiding Communication Delays in Contention-Free
Execution for SPM-Based Multi-Core Architectures, in "ECRTS 2019 - 31st Euromicro Conference on Real-
Time Systems", Stuttgart, Germany, July 2019, pp. 1-24 [DOI : 10.4230/LIPICS.ECRTS.2019.25], https://
hal.archives-ouvertes.fr/hal-02190271.

https://hal.archives-ouvertes.fr/hal-02383381
https://hal.archives-ouvertes.fr/hal-02383381
https://hal.inria.fr/hal-02189586
https://hal.inria.fr/hal-02061340
https://hal.inria.fr/hal-02002812
https://hal.inria.fr/hal-02316773
https://hal.archives-ouvertes.fr/hal-02286164
https://hal.archives-ouvertes.fr/hal-02383480
https://hal.archives-ouvertes.fr/hal-02190255
https://hal.archives-ouvertes.fr/hal-01941876
https://hal.archives-ouvertes.fr/hal-02190271
https://hal.archives-ouvertes.fr/hal-02190271

34 Activity Report INRIA 2019

[29] M. SCHOEBERL, B. ROUXEL, I. PUAUT. A Time-predictable Branch Predictor, in "SAC 2019 -
34th ACM/SIGAPP Symposium on Applied Computing", Limassol, Cyprus, April 2019, pp. 1-10
[DOI : 10.1145/3297280.3297337], https://hal.inria.fr/hal-01976187

[30] C. SILVANO, G. AGOSTA, A. BARTOLINI, A. R. BECCARI, L. BENINI, L. BESNARD, J. BISPO, R.
CMAR, J. M. P. CARDOSO, C. CAVAZZONI, D. CESARINI, S. CHERUBIN, F. FICARELLI, D. GADIOLI,
M. GOLASOWSKI, I. LASRI, A. LIBRI, J. MARTINOVIČ, G. PALERMO, P. PINTO, E. ROHOU, N. SANNA,
K. SLANINOVÁ, E. VITALI. Adaptive Optimization and Enforcement of Extra-Functional Properties in High
Performance Computing: The ANTAREX Project, in "PDP 2019 - 27th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing", Pavia, Italy, IEEE, February 2019, pp. 116-123
[DOI : 10.1109/EMPDP.2019.8671584], https://hal.inria.fr/hal-02197811

[31] M. Y. SIRAICHI, V. F. D. SANTOS, C. COLLANGE, F. M. QUINTÃO PEREIRA. Qubit allocation as a
combination of subgraph isomorphism and token swapping, in "OOPSLA", Athens, Greece, October 2019,
vol. 3, pp. 1-29 [DOI : 10.1145/3360546], https://hal.inria.fr/hal-02316820

[32] S. SKALISTIS, A. KRITIKAKOU. Timely Fine-grained Interference-sensitive Run-time Adaptation of Time-
triggered Schedules, in "RTSS 2019 - 40th IEEE Real-Time Systems Symposium", Hong Kong, China, IEEE,
December 2019, pp. 1-13, https://hal.archives-ouvertes.fr/hal-02316392

Conferences without Proceedings

[33] N. CHARMCHI, C. COLLANGE. Toward compression-aware prefetching, in "COMPAS 2019 - Conférence
d’informatique en Parallélisme, Architecture et Système", Anglet, France, June 2019, pp. 1-9, https://hal.inria.
fr/hal-02351461

[34] C. COLLANGE. Ordinateurs quantiques : ouvrons la boîte, in "COMPAS 2019 - Conférence d’informatique en
Parallélisme, Architecture et Système", Anglet, France, June 2019, pp. 1-9, https://hal.inria.fr/hal-02318324

[35] A. KOUYOUMDJIAN, C. COLLANGE, E. ROHOU. Vers la reconfiguration adaptative de GPU pour chaque
application, in "COMPAS 2019 - Conférence d’informatique en Parallélisme, Architecture et Système",
Anglet, France, June 2019, pp. 1-6, https://hal.inria.fr/hal-02390821

[36] K. LE BON, B. HAWKINS, E. ROHOU, G. HIET, F. TRONEL. Plateforme de protection de binaires config-
urable et dynamiquement adaptative, in "RESSI 2019 - Rendez-Vous de la Recherche et de l’Enseignement de
la Sécurité des Systèmes d’Information", Erquy, France, May 2019, pp. 1-3, https://hal.inria.fr/hal-02385216

Research Reports

[37] P. MICHAUD. A Simple Model of Processor Temperature for Deterministic Turbo Clock Frequency, Inria
Rennes, December 2019, no RR-9308, https://hal.inria.fr/hal-02391970

Other Publications

[38] S. ROKICKI, E. ROHOU, S. DERRIEN. Hybrid-DBT: Hardware Accelerated Dynamic Binary Translation,
June 2019, 1 p. , RISC-V 2019 - Workshop Zurich, Poster, https://hal.archives-ouvertes.fr/hal-02155019

References in notes

https://hal.inria.fr/hal-01976187
https://hal.inria.fr/hal-02197811
https://hal.inria.fr/hal-02316820
https://hal.archives-ouvertes.fr/hal-02316392
https://hal.inria.fr/hal-02351461
https://hal.inria.fr/hal-02351461
https://hal.inria.fr/hal-02318324
https://hal.inria.fr/hal-02390821
https://hal.inria.fr/hal-02385216
https://hal.inria.fr/hal-02391970
https://hal.archives-ouvertes.fr/hal-02155019

Project-Team PACAP 35

[39] G. BERTHOU, A. CARER, H.-P. CHARLES, S. DERRIEN, K. MARQUET, I. MIRO-PANADES, D. PALA, I.
PUAUT, F. RASTELLO, T. RISSET, E. ROHOU, G. SALAGNAC, O. SENTIEYS, B. YARAHMADI. The Inria
ZEP project: NVRAM and Harvesting for Zero Power Computations, March 2018, 1 p. , NVMW 2018 - 10th
Annual Non-Volatile Memories Workshop, Poster, https://hal.inria.fr/hal-01941766

[40] A. COHEN, E. ROHOU. Processor Virtualization and Split Compilation for Heterogeneous Multicore Embed-
ded Systems, in "DAC", June 2010, pp. 102–107

[41] M. HATABA, A. EL-MAHDY, E. ROHOU. OJIT: A Novel Obfuscation Approach Using Standard Just-In-Time
Compiler Transformations, in "International Workshop on Dynamic Compilation Everywhere", January 2015

[42] S. KALATHINGAL, S. COLLANGE, B. NARASIMHA SWAMY, A. SEZNEC. Dynamic Inter-Thread Vector-
ization Architecture: extracting DLP from TLP, in "International Symposium on Computer Architecture and
High-Performance Computing (SBAC-PAD)", Los Angeles, United States, October 2016, https://hal.inria.fr/
hal-01356202

[43] R. KUMAR, D. M. TULLSEN, N. P. JOUPPI, P. RANGANATHAN. Heterogeneous chip multiprocessors, in
"IEEE Computer", nov. 2005, vol. 38, no 11, pp. 32–38

[44] P. MICHAUD, A. SEZNEC. Pushing the branch predictability limits with the multi-poTAGE+SC predictor :
Champion in the unlimited category, in "4th JILP Workshop on Computer Architecture Competitions (JWAC-
4): Championship Branch Prediction (CBP-4)", Minneapolis, United States, June 2014, https://hal.archives-
ouvertes.fr/hal-01087719

[45] R. OMAR, A. EL-MAHDY, E. ROHOU. Arbitrary control-flow embedding into multiple threads for obfusca-
tion: a preliminary complexity and performance analysis, in "Proceedings of the 2nd international workshop
on Security in cloud computing", ACM, 2014, pp. 51–58

[46] E. RIOU, E. ROHOU, P. CLAUSS, N. HALLOU, A. KETTERLIN. PADRONE: a Platform for Online Profiling,
Analysis, and Optimization, in "Dynamic Compilation Everywhere", Vienna, Austria, January 2014

[47] A. SEMBRANT, T. CARLSON, E. HAGERSTEN, D. BLACK-SHAFFER, A. PERAIS, A. SEZNEC, P.
MICHAUD. Long Term Parking (LTP): Criticality-aware Resource Allocation in OOO Processors, in "Inter-
national Symposium on Microarchitecture, Micro 2015", Honolulu, United States, Proceeding of the Interna-
tional Symposium on Microarchitecture, Micro 2015, ACM, December 2015, https://hal.inria.fr/hal-01225019

[48] A. SEZNEC, J. SAN MIGUEL, J. ALBERICIO. The Inner Most Loop Iteration counter: a new dimension in
branch history , in "48th International Symposium On Microarchitecture", Honolulu, United States, ACM,
December 2015, 11 p. , https://hal.inria.fr/hal-01208347

[49] A. SEZNEC, N. SENDRIER. HAVEGE: A user-level software heuristic for generating empirically strong
random numbers, in "ACM Transactions on Modeling and Computer Simulation (TOMACS)", 2003, vol.
13, no 4, pp. 334–346

[50] A. SEZNEC. TAGE-SC-L Branch Predictors: Champion in 32Kbits and 256 Kbits category, in "JILP -
Championship Branch Prediction", Minneapolis, United States, June 2014, https://hal.inria.fr/hal-01086920

https://hal.inria.fr/hal-01941766
https://hal.inria.fr/hal-01356202
https://hal.inria.fr/hal-01356202
https://hal.archives-ouvertes.fr/hal-01087719
https://hal.archives-ouvertes.fr/hal-01087719
https://hal.inria.fr/hal-01225019
https://hal.inria.fr/hal-01208347
https://hal.inria.fr/hal-01086920

