

[image: cover]

 PARSIFAL

 Proof search and reasoning with logic specifications

 2019 Project-Team Activity Report
	

 Research centre:
 Saclay - Île-de-France

 Field: Algorithmics, Programming, Software and Architecture
Theme: Proofs and Verification

 Computer Science and Digital Science:

 	A2.1. - Programming Languages

 	A2.1.1. - Semantics of programming languages

 	A2.1.4. - Functional programming

 	A2.1.5. - Constraint programming

 	A2.1.10. - Domain-specific languages

 	A2.2.1. - Static analysis

 	A2.4.3. - Proofs

 	A2.5.4. - Software Maintenance & Evolution

 	A7.2.1. - Decision procedures

 	A7.2.2. - Automated Theorem Proving

 	A7.2.3. - Interactive Theorem Proving

 	A7.3.1. - Computational models and calculability

 	A9.8. - Reasoning

 Other Research Topics and Application Domains:

 	B9.5.1. - Computer science

 	B9.5.2. - Mathematics

 	B9.8. - Reproducibility

 Project-Team Parsifal

 Team, Visitors, External Collaborators

 Overall Objectives	Main themes

 Research Program	General overview
	Inductive and co-inductive reasoning
	Developing a foundational
approach to defining proof evidence
	Deep inference
	Proof nets, atomic flows, and combinatorial proofs
	Cost Models and Abstract Machines for Functional Programs

 Application Domains	Automated Theorem Proving
	Proof-assistants
	Programming language design

 Highlights of the Year

 New Software and Platforms	Abella
	Bedwyr
	Checkers
	Psyche
	Maetning
	OCaml

 New Results	Functional programming with λ-tree syntax
	Mechanized metatheory revisited
	New applications of Foundational Proof Certificates
	Historical reflections on proof theory
and logic programming
	Intuitionistic proofs without syntax
	Towards a combinatorial proof theory
	Combinatorial Proofs for Logics of Relevance and Entailment
	On combinatorial proofs for modal logic
	Deep inference and expansion trees for second-order multiplicative linear logic
	A fully labelled proof system for intuitionistic modal logics
	Types by Need
	Sharing Equality is Linear
	Crumbling Abstract Machines
	Factorization and Normalization, Essentially
	A Fresh Look at the ł-Calculus
	Abstract Machines for Open Call-by-Value

 Bilateral Contracts and Grants with Industry	Bilateral Grants with Industry

 Partnerships and Cooperations	Regional Initiatives
	National Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Project-Team: 2007 July 01, end of the Project-Team: 2019 November 30
Section: Team, Visitors, External Collaborators
Research Scientists
Dale Miller [Team leader, Inria, Senior Researcher, HDR]
Beniamino Accattoli [Inria, Researcher]
Kaustuv Chaudhuri [Inria, Researcher]
François Lamarche [Inria, Senior Researcher]
Stéphane Lengrand [Researcher, until Dec 2019, HDR]
Ian Mackie [CNRS, Researcher]
Gabriel Scherer [Inria, Researcher]
Lutz Strassburger [Inria, Researcher, HDR]
Post-Doctoral Fellows
Marianna Girlando [Inria, Post-Doctoral Fellow, from Nov 2019]
Luc Pellissier [Inria, Post-Doctoral Fellow, from Nov 2019]
Benjamin Ralph [Inria, Post-Doctoral Fellow, from Feb 2019]
PhD Students
Ulysse Gerard [Université Paris-Diderot (Paris 7), PhD Student, until Oct 2019]
Maico Carlos Leberle [Inria, PhD Student]
Matteo Manighetti [Inria, PhD Student]
Emilie Grienenberger [Inria, PhD Student, until Oct 2022]
Marianela Morales [Inria, PhD Student, from Aug 2019]
Technical staff
Matteo Acclavio [Telecom ParisTech, Engineer, from Dec 2019]
Intern and Apprentice
Francesco Mecca [Inria, from Sep 2019]
Administrative Assistant
Maeva Jeannot [Inria, Administrative Assistant, until Oct 2019]
Visiting Scientist
Claudio Sacerdoti Coen [Università di Bologna, from Aug 2019 until Sep 2019]
External Collaborator
Andrea Condoluci [Università di Bologna, until Jul 2019]

 Overall Objectives

 	Overall Objectives	Main themes

 Section:
 Overall Objectives

 Main themes

 The aim of the Parsifal team is to develop and exploit proof
theory and type theory in the specification,
verification, and analysis of computational systems.

 	
 Expertise: the team conducts basic research in proof
theory and type theory. In particular, the team is developing
results that help with automated deduction and with the
manipulation and communication of formal proofs.

 	
 Design: based on experience with computational systems
and theoretical results, the team develops new logical principles,
new proof systems, and new theorem proving environments.

 	
 Implementation: the team builds prototype systems to
help validate basic research results.

 	
 Examples: the design and implementation efforts are
guided by examples of specification and verification problems.
These examples not only test the success of the tools but also
drive investigations into new principles and new areas of proof
theory and type theory.

 The foundational work of the team focuses on structural and
analytic proof theory, i.e., the study of formal
proofs as algebraic and combinatorial structures and the study of
proof systems as deductive and computational formalisms. The main
focus in recent years has been the study of the sequent
calculus and of the deep inference formalisms.

 An important research question is how to reason about computational
specifications that are written in a relational style. To
this end, the team has been developing new approaches to dealing
with induction, co-induction, and generic quantification. A second
important question is of canonicity in deductive systems,
i.e., when are two derivations “essentially the same”? This
crucial question is important not only for proof search, because it
gives an insight into the structure and an ability to manipulate the
proof search space, but also for the communication of proof
objects between different reasoning agents such as automated
theorem provers and proof checkers.

 Important application areas currently include:

 	
 Meta-theoretic reasoning on functional programs, such as terms
in the λ-calculus

 	
 Reasoning about behaviors in systems with concurrency and
communication, such as the π-calculus, game semantics,
etc.

 	
 Combining interactive and automated reasoning methods for
induction and co-induction

 	
 Verification of distributed, reactive, and real-time
algorithms that are often specified using modal and temporal
logics

 	
 Representing proofs as documents that can be printed,
communicated, and checked by a wide range of computational logic
systems.

 	
 Development of cost models for the evaluation of proofs and programs.

 Research Program

 	Research Program	General overview
	Inductive and co-inductive reasoning
	Developing a foundational
approach to defining proof evidence
	Deep inference
	Proof nets, atomic flows, and combinatorial proofs
	Cost Models and Abstract Machines for Functional Programs

 Section:
 Research Program

 General overview

 There are two broad approaches for computational specifications. In
the computation as model approach, computations are encoded as
mathematical structures containing nodes, transitions, and state.
Logic is used to describe these structures, that is, the
computations are used as models for logical expressions. Intensional
operators, such as the modals of temporal and dynamic logics or the
triples of Hoare logic, are often employed to express propositions
about the change in state.

 The computation as deduction approach, in contrast, expresses
computations logically, using formulas, terms, types, and proofs as
computational elements. Unlike the model approach, general logical
apparatus such as cut-elimination or automated deduction becomes
directly applicable as tools for defining, analyzing, and animating
computations. Indeed, we can identify two main aspects of logical
specifications that have been very fruitful:

 	
 Proof normalization, which treats the state of a
computation as a proof term and computation as normalization of the
proof terms. General reduction principles such as β-reduction
or cut-elimination are merely particular forms of proof
normalization. Functional programming is based on
normalization [51], and normalization in different
logics can justify the design of new and different functional
programming languages [32].

 	
 Proof search, which views the state of a computation as a
a structured collection of formulas, known as a sequent, and
proof search in a suitable sequent calculus as encoding the dynamics
of the computation. Logic programming is based on proof
search [55], and different proof search
strategies can be used to justify the design of new and different
logic programming languages [54].

 While the distinction between these two aspects is somewhat informal,
it helps to identify and classify different concerns that arise in
computational semantics. For instance, confluence and termination of
reductions are crucial considerations for normalization, while
unification and strategies are important for search. A key challenge
of computational logic is to find means of uniting or reorganizing
these apparently disjoint concerns.

 An important organizational principle is structural proof theory,
that is, the study of proofs as syntactic, algebraic and
combinatorial objects. Formal proofs often have equivalences in
their syntactic representations, leading to an important research
question about canonicity in proofs – when are two proofs
“essentially the same?” The syntactic equivalences can be used to
derive normal forms for proofs that illuminate not only the proofs
of a given formula, but also its entire proof search space. The
celebrated focusing theorem of
Andreoli [34] identifies one such normal form
for derivations in the sequent calculus that has many important
consequences both for search and for computation. The combinatorial
structure of proofs can be further explored with the use of
deep inference; in particular, deep inference allows access
to simple and manifestly correct cut-elimination procedures with
precise complexity bounds.

 Type theory is another important organizational principle, but most
popular type systems are generally designed for either search or for
normalization. To give some examples, the Coq
system [60] that implements the Calculus of Inductive
Constructions (CIC) is designed to facilitate the expression of
computational features of proofs directly as executable functional
programs, but general proof search techniques for Coq are rather
primitive. In contrast, the Twelf system [57]
that is based on the LF type theory (a subsystem of the CIC), is
based on relational specifications in canonical form (i.e.,
without redexes) for which there are sophisticated automated
reasoning systems such as meta-theoretic analysis tools, logic
programming engines, and inductive theorem provers. In recent years,
there has been a push towards combining search and normalization in
the same type-theoretic framework. The Beluga
system [58], for example, is an extension of
the LF type theory with a purely computational meta-framework where
operations on inductively defined LF objects can be expressed as
functional programs.

 The Parsifal team investigates both the search and the normalization
aspects of computational specifications using the concepts, results,
and insights from proof theory and type theory.

 Section:
 Research Program

 Inductive and co-inductive reasoning

 The team has spent a number of years in designing a strong new logic
that can be used to reason (inductively and co-inductively) on
syntactic expressions containing bindings. This work is based on
earlier work by McDowell, Miller, and Tiu [53]
[52] [56]
[61], and on more recent work by Gacek, Miller, and
Nadathur [41] [40]. The Parsifal
team, along with our colleagues in Minneapolis, Canberra,
Singapore, and Cachan, have been building two tools that exploit the
novel features of this logic. These two systems are the following.

 	
 Abella, which is an interactive theorem prover for the full logic.

 	
 Bedwyr, which is a model checker for the “finite” part of the logic.

 We have used these systems to provide formalize reasoning of a number
of complex formal systems, ranging from programming languages to the
λ-calculus and π-calculus.

 Since 2014, the Abella system has been extended with a number of new
features. A number of new significant examples have been implemented
in Abella and an extensive tutorial for it has been
written [1].

 Section:
 Research Program

 Developing a foundational
approach to defining proof evidence

 The team is developing a framework for defining the semantics of proof
evidence. With this framework, implementers of theorem provers can
output proof evidence in a format of their choice: they will only need
to be able to formally define that evidence's semantics. With such
semantics provided, proof checkers can then check alleged proofs for
correctness. Thus, anyone who needs to trust proofs from various
provers can put their energies into designing trustworthy checkers that
can execute the semantic specification.

 In order to provide our framework with the flexibility that this
ambitious plan requires, we have based our design on the most recent
advances within the theory of proofs. For a number of years, various
team members have been contributing to the design and theory of
focused proof systems [35]
[37] [38] [39]
[43] [49] [50] and we have
adopted such proof systems as the corner stone for our framework.

 We have also been working for a number of years on the implementation
of computational logic systems, involving, for example, both
unification and backtracking search. As a result, we are also
building an early and reference implementation of our semantic
definitions.

 Section:
 Research Program

 Deep inference

 Deep inference [44], [46]
is a novel methodology for presenting deductive
systems. Unlike traditional formalisms like the sequent calculus, it
allows rewriting of formulas deep inside arbitrary contexts. The new
freedom for designing inference rules creates a richer proof
theory. For example, for systems using deep inference, we have a
greater variety of normal forms for proofs than in sequent calculus or
natural deduction systems. Another advantage of deep inference systems
is the close relationship to category-theoretic proof theory. Due to the deep
inference design one can directly read off the morphism from the
derivations. There is no need for a counter-intuitive translation.

 The following research problems are investigated by members of the
Parsifal team:

 	
 Find deep inference system for richer logics. This is necessary
for making the proof theoretic results of deep inference accessible
to applications as they are described in the previous sections of
this report.

 	
 Investigate the possibility of focusing proofs in deep
inference. As described before, focusing is a way to reduce the
non-determinism in proof search. However, it is well investigated
only for the sequent calculus. In order to apply deep inference in
proof search, we need to develop a theory of focusing for deep
inference.

 Section:
 Research Program

 Proof nets, atomic flows, and combinatorial proofs

 Proof nets graph-like presentations of sequent calculus proofs such
that all "trivial rule permutations" are quotiented away. Ideally
the notion of proof net should be independent from any syntactic
formalism, but most notions of proof nets proposed in the past were
formulated in terms of their relation to the sequent calculus.
Consequently we could observe features like “boxes” and explicit
“contraction links”. The latter appeared not only in Girard's
proof nets [42] for linear logic but also in
Robinson's proof nets [59] for classical
logic. In this kind of proof nets every link in the net corresponds
to a rule application in the sequent calculus.

 Only recently, due to the rise of deep inference, new kinds of proof
nets have been introduced that take the formula trees of the
conclusions and add additional “flow-graph” information (see e.g.,
[48][2] leading to the notion of
atomic flow and [45]. On one side, this
gives new insights in the essence of proofs and their normalization.
But on the other side, all the known correctness criteria are no
longer available.

 Combinatorial proofs [47] are another form
syntax-independent proof presentation which separates the
multiplicative from the additive behaviour of classical connectives.

 The following research questions investigated
by members of the Parsifal team:

 	
 Finding (for classical and intuitionistic logic) a notion of
canonical proof presentation that is deductive, i.e., can
effectively be used for doing proof search.

 	
 Studying the normalization of proofs using
atomic flows and combinatorial proofs, as they simplify the normalization
procedure for proofs in deep inference, and additionally allow to
get new insights in the complexity of the normalization.

 	
 Studying the size of proofs in the combinatorial proof formalism.

 Section:
 Research Program

 Cost Models and Abstract Machines for Functional Programs

 In the proof normalization approach, computation is usually reformulated as the evaluation of functional programs, expressed as terms in a variation over the λ-calculus. Thanks to
its higher-order nature, this approach provides very concise and abstract
specifications. Its strength is however also its weakness: the abstraction
from physical machines is pushed to a level where it is no longer
clear how to measure the complexity of an algorithm.

 Models like Turing machines or RAM rely on atomic computational steps and thus admit quite obvious cost models for time and space. The λ-calculus instead relies on a single non-atomic operation, β-reduction, for which costs in terms of time and space are far from evident.

 Nonetheless, it turns out that the number of β-steps is a reasonable time cost model, i.e.,it is polynomially related to those of Turing machines and RAM. For the special case of weak evaluation (i.e., reducing only β-steps that are not under abstractions)—which is used to model functional programming languages—this is a relatively old result due to Blelloch and Greiner [36] (1995). It is only very recently (2014) that the strong case—used in the implementation models of proof assistants—has been solved by Accattoli and Dal Lago [33].

 With the recent recruitment of Accattoli, the team's research has expanded in this direction. The topics under investigations are:

 	
 Complexity of Abstract Machines. Bounding and comparing the overhead of different abstract machines for different evaluation schemas (weak/strong call-by-name/value/need λ-calculi) with respect to the cost model. The aim is the development of a complexity-aware theory of the implementation of functional programs.

 	
 Reasonable Space Cost Models. Essentially nothing is known about reasonable space cost models. It is known, however, that environment-based execution model—which are the mainstream technology for functional programs—do not provide an answer. We are exploring the use of the non-standard implementation models provided by Girard's Geometry of Interaction to address this question.

 Application Domains

 	Application Domains	Automated Theorem Proving
	Proof-assistants
	Programming language design

 Section:
 Application Domains

 Automated Theorem Proving

 The Parsifal team studies the structure of mathematical proofs, in
ways that often makes them more amenable to automated theorem
proving – automatically searching the space of proof candidates for
a statement to find an actual proof – or a counter-example.

 (Due to fundamental computability limits, fully-automatic proving is
only possible for simple statements, but this field has been making
a lot of progress in recent years, and is in particular interested
with the idea of generating verifiable evidence for the proofs that
are found, which fits squarely within the expertise of Parsial.)

 Section:
 Application Domains

 Proof-assistants

 The team work on the structure of proofs also suggests ways that
they could be presented to a user, edited and maintained, in
particular in “proof assistants”, automated tool to assist the
writing of mathematical proofs with automatic checking of their
correctness.

 Section:
 Application Domains

 Programming language design

 Our work also gives insight on the structure and properties of
programming languages. We can improve the design or implementation
of programming languages, help programmers or language implementors
reason about the correctness of the programs in a given language, or
reason about the cost of execution of a program.

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 	
 The journal Mathematical Structures in Computer Science published
“A special issue on structural proof theory, automated
reasoning and computation in celebration of Dale Miller’s 60th
birthday” – volume 29, Special issue 8, September 2019.

 	
 Accattoli was invited speaker at the international conference FSCD 2019.

 New Software and Platforms

 	New Software and Platforms	Abella
	Bedwyr
	Checkers
	Psyche
	Maetning
	OCaml

 Section:
 New Software and Platforms

 Abella

 Functional Description: Abella is an interactive theorem prover for reasoning about computations given as relational specifications. Abella is particuarly well suited for reasoning about binding constructs.

 	
 Participants: Dale Miller, Gopalan Nadathur, Kaustuv Chaudhuri, Mary Southern, Matteo Cimini, Olivier Savary-Bélanger and Yuting Wang

 	
 Partner: Department of Computer Science and Engineering, University of Minnesota

 	
 Contact: Kaustuv Chaudhuri

 	
 URL: http://abella-prover.org/

 Section:
 New Software and Platforms

 Bedwyr

 Bedwyr - A proof search approach to model checking

 Keyword: Model Checker

 Functional Description: Bedwyr is a generalization of logic programming that allows model checking directly on syntactic expressions that possibly contain bindings. This system, written in OCaml, is a direct implementation of two recent advances in the theory of proof search.

 It is possible to capture both finite success and finite failure in a sequent calculus. Proof search in such a proof system can capture both may and must behavior in operational semantics.
Higher-order abstract syntax is directly supported using term-level lambda-binders, the nabla quantifier, higher-order pattern unification, and explicit substitutions. These features allow reasoning directly on expressions containing bound variables.

 The distributed system comes with several example applications, including the finite pi-calculus (operational semantics, bisimulation, trace analyses, and modal logics), the spi-calculus (operational semantics), value-passing CCS, the lambda-calculus, winning strategies for games, and various other model checking problems.

 	
 Participants: Dale Miller, Quentin Heath and Roberto Blanco Martinez

 	
 Contact: Dale Miller

 	
 URL: http://slimmer.gforge.inria.fr/bedwyr/

 Section:
 New Software and Platforms

 Checkers

 Checkers - A proof verifier

 Keywords: Proof - Certification - Verification

 Functional Description: Checkers is a tool in Lambda-prolog for the certification of proofs. Checkers consists of a kernel which is based on LKF and is based on the notion of ProofCert.

 	
 Participants: Giselle Machado Nogueira Reis, Marco Volpe and Tomer Libal

 	
 Contact: Tomer Libal

 	
 URL: https://github.com/proofcert/checkers

 Section:
 New Software and Platforms

 Psyche

 Proof-Search factorY for Collaborative HEuristics

 Keyword: Automated theorem proving

 Functional Description: Psyche is a modular platform for automated or interactive theorem proving, programmed in OCaml and built on an architecture (similar to LCF) where a trusted kernel interacts with plugins. The kernel offers an API of proof-search primitives, and plugins are programmed on top of the API to implement search strategies. This architecture is set up for pure logical reasoning as well as for theory-specific reasoning, for various theories.

 Release Functional Description: It is now equipped with the machinery to handle quantifiers and quantifier-handling techniques. Concretely, it uses meta-variables to delay the instantiation of existential variables, and constraints on meta-variables are propagated through the various branches of the search-space, in a way that allows local backtracking. The kernel, of about 800 l.o.c., is purely functional.

 	
 Participants: Assia Mahboubi, Jean-Marc Notin and Stéphane Graham-Lengrand

 	
 Contact: Stéphane Graham-Lengrand

 	
 URL: http://www.csl.sri.com/users/sgl/

 Section:
 New Software and Platforms

 Maetning

 Functional Description: Mætning is an automated theorem prover for intuitionistic predicate logic that is designed to disprove non-theorems.

 	
 Contact: Kaustuv Chaudhuri

 	
 URL: https://github.com/chaudhuri/maetning/

 Section:
 New Software and Platforms

 OCaml

 Keywords: Functional programming - Static typing - Compilation

 Functional Description: The OCaml language is a functional programming language that combines safety with expressiveness through the use of a precise and flexible type system with automatic type inference. The OCaml system is a comprehensive implementation of this language, featuring two compilers (a bytecode compiler, for fast prototyping and interactive use, and a native-code compiler producing efficient machine code for x86, ARM, PowerPC and System Z), a debugger, a documentation generator, a compilation manager, a package manager, and many libraries contributed by the user community.

 	
 Participants: Damien Doligez, Xavier Leroy, Fabrice Le Fessant, Luc Maranget, Gabriel Scherer, Alain Frisch, Jacques Garrigue, Marc Shinwell, Jeremy Yallop and Leo White

 	
 Contact: Damien Doligez

 	
 URL: https://ocaml.org/

 New Results

 	New Results	Functional programming with λ-tree syntax
	Mechanized metatheory revisited
	New applications of Foundational Proof Certificates
	Historical reflections on proof theory
and logic programming
	Intuitionistic proofs without syntax
	Towards a combinatorial proof theory
	Combinatorial Proofs for Logics of Relevance and Entailment
	On combinatorial proofs for modal logic
	Deep inference and expansion trees for second-order multiplicative linear logic
	A fully labelled proof system for intuitionistic modal logics
	Types by Need
	Sharing Equality is Linear
	Crumbling Abstract Machines
	Factorization and Normalization, Essentially
	A Fresh Look at the ł-Calculus
	Abstract Machines for Open Call-by-Value

 Section:
 New Results

 Functional programming with λ-tree syntax

 Participants :
	Ulysse Gerard, Dale Miller, Gabriel Scherer.

 We have been designing a new functional programming language, MLTS,
that uses the λ-tree syntax approach to encoding
bindings that appear within data structures
[20]. In this setting, bindings never become
free nor escape their scope: instead, binders in data structures are
permitted to move into binders within programs phrases. The
design of MLTS—whose concrete syntax is based on that of
OCaml—includes additional sites within programs that directly
support this movement of bindings. Our description of MLTS includes
a typing discipline that naturally extends the typing of OCaml
programs.

 In addition to the natural semantics for MLTS that we proposed in
2018, we also have a small-step operational semantics which gives in
particular a fine-grained description of the runtime behavior of the
∇ operator in patterns. It leads in particular to a direct
implementation in Lambda-Prolog (which does not contain a native
∇ operator) that allows more expressive constructs
(higher-arity types) than our previous presentation.

 Section:
 New Results

 Mechanized metatheory revisited

 Participant :
	Dale Miller.

 When proof assistants and theorem provers implement the metatheory of
logical systems, they must deal with a range of syntactic expressions
(e.g., types, formulas, and proofs) that involve variable bindings.
Since most mature proof assistants do not have built-in methods to
treat bindings, they have been extended with various packages and
libraries that allow them to encode such syntax using, for example, De
Bruijn numerals. In the paper, [10], Miller
puts forward the argument that bindings are such an intimate aspect of
the structure of expressions that they should be accounted for
directly in the underlying programming language support for proof
assistants and not via packages and libraries. He presents an
approach to designing programming languages and proof assistants that
directly supports bindings in syntax. The roots of this approach can
be found in the mobility of binders between term-level
bindings, formula-level bindings (quantifiers), and proof-level
bindings (eigenvariables). In particular, the combination of Church's
approach to terms and formulas (found in his Simple Theory of Types)
and Gentzen's approach to proofs (found in his sequent calculus)
yields a framework for the interaction of bindings with a full range
of logical connectives and quantifiers. Miller also illustrates how
that framework provides a direct and semantically clean treatment of
computation and reasoning with syntax containing bindings.

 Section:
 New Results

 New applications of Foundational Proof Certificates

 Participants :
	Kaustuv Chaudhuri, Matteo Manighetti, Dale Miller.

 The formal framework of Foundational Proof Certificates (FPC)
was developed in previous years within the Parsifal team. We continue
to push on their applications in a number of settings in computational
logic. In 2019, we developed two such new applications.

 In order to apply FPCs to the conventional setting of classical logic
theorem provers, the FPC setting needed to treat proof evidence
containing Skolem functions. Using FPC directly meant that we
needed to do such certification without using the mathematical
concepts of model-theoretic semantics (i.e., preservation of
satisfiability) and choice principles (i.e., epsilon terms). Instead,
our proof checking kernel is an implementation of Gentzen’s sequent
calculus, which directly supports quantifier alternation by using
eigenvariables. In [19], we described
deskolemization as a mapping from client-side terms, used in proofs
generated by theorem provers, into kernel-side terms, used within our
proof checking kernel. This mapping which associates skolemized terms
to eigenvariables relies on using outer skolemization.

 Property-based testing (PBT) is a technique for validating code
against an executable specification by automatically generating
test-data. In the paper [18], we presented a
proof-theoretical reconstruction of this style of testing for
relational specifications and employ FPCs to describe test generators.
We did this by presenting certain kinds of “proof outlines” that can
be used to describe various common generation strategies in the PBT
literature, ranging from random to exhaustive, including their
combination. We also address the shrinking of counterexamples as a
first step towards their explanation. Once generation is accomplished,
the testing phase boils down to a standard logic programming search.
We could also we lift our techniques to treat data structures
containing bindings using λ-tree syntax. The
λProlog programming language is capable of performing both the
generation and checking of tests. We validated this approach by
tackling benchmarks in the metatheory of programming languages coming
from related tools such as PLT-Redex Property-Based Testing via Proof
Reconstruction. This work was done in collaboration with Roberto
Blanco, a postdoc from Inria Paris, and Alberto Momigliano, a
professor from the University of Milan.

 Section:
 New Results

 Historical reflections on proof theory
and logic programming

 Participant :
	Dale Miller.

 Miller has been working in the area of logic programming and proof
theory for more than three decades. Some of his historical
reflections on how these two topics influenced each other are
contained in the paper [11]. While it is widely
known that proof theory has been helpful in shaping the development of
logic programming, particular of extensions to conventional Prolog,
this paper also documents a few specific examples where logic
programming influenced the development of some topics in proof
theory.

 Section:
 New Results

 Intuitionistic proofs without syntax

 Participant :
	Lutz Straßburger.

 We present Intuitionistic Combinatorial Proofs (ICPs), a concrete
geometric semantics of intuitionistic logic based on the principles of
classical combinatorial proofs. An ICP naturally factorizes into a
linear fragment, a graphical abstraction of an IMLL proof net (an
arena net), and a parallel contraction-weakening fragment (a skew
fibration). ICPs relate to game semantics, and can be seen as a
strategy in a Hyland-Ong arena, generalized from a tree-like to a
dag-like strategy. Our first main result, Polynomial Full
Completeness, is thatICPs as a semantics are complexity-aware: the
translations to and from sequent calculus are size-preserving (up to a
polynomial). By contrast, lambda-calculus and game semantics incur an
exponential blowup. Our second main result, Local Canonicity, is that
ICPs abstract fully and faithfully over the non-duplicating
permutations of the sequent calculus. These results have been
presented at the LICS 2019 conference [23].

 Section:
 New Results

 Towards a combinatorial proof theory

 Participants :
	Lutz Straßburger, Benjamin Ralph.

 The main part of a classical combinatorial proof is a skew fibration,
which precisely captures the behavior of weakening and
contraction. Relaxing the presence of these two rules leads to certain
substructural logics and substructural proof theory. We investigated
what happens if we replace the skew fibration by other kinds of graph
homomorphism. This leads us to new logics and proof systems that we
call combinatorial. This has been presented at the TABLEAUX 2019
conference [22].

 Section:
 New Results

 Combinatorial Proofs for Logics of Relevance and Entailment

 Participants :
	Lutz Straßburger, Matteo Acclavio.

 In this work (presented at the WoLLIC 2019
conference [16]) we characterize classical
combinatorial proofs which also represent valid proofs for relevant
logic with and without the mingle axiom. Moreover, we extend our
syntax in order to represent combinatorial proofs for the more
restrictive framework of entailment logic.

 Section:
 New Results

 On combinatorial proofs for modal logic

 Participants :
	Lutz Straßburger, Matteo Acclavio.

 In this work [17], we extend combinatorial proofs to modal logics. The
crucial ingredient for modeling the modalities is the use of a
self-dual non-commutative operator that has first been observed by
Retoré through pomset logic. Consequently, we had to generalize the
notion of skew fibration from cographs to Guglielmi’s relation
webs. Our main result is a sound and complete system of combinatorial
proofs for all normal and non-normal modal logics in the
S4-tesseract. The proof of soundness and completeness is based on the
sequent calculus with some added features from deep inference.

 Section:
 New Results

 Deep inference and expansion trees for second-order multiplicative linear logic

 Participant :
	Lutz Straßburger.

 In this work, we introduce the notion of expansion tree for linear
logic. As in Miller's original work, we have a shallow reading of an
expansion tree that corresponds to the conclusion of the proof, and a
deep reading which is a formula that can be proved by propositional
rules. We focus our attention to MLL2, and we also present a deep
inference system for that logic. This allows us to give a syntactic
proof to a version of Herbrand's theorem. This has been published in
an special issue of MSCS [12].

 Section:
 New Results

 A fully labelled proof system for intuitionistic modal logics

 Participants :
	Lutz Straßburger, Marianela Morales.

 In this paper we present a labelled sequent system for intuitionistic
modal logics such that there is not only one, but two relation symbols
appearing in sequents: one for the accessibility relation associated
with the Kripke semantics for normal modal logics and one for the
preorder relation associated with the Kripke semantics for
intuitionistic logic. This puts our system in close correspondence
with the standard birelational Kripke semantics for intuitionistic
modal logics. As a consequence it can encompass a wider range of
intuitionistic modal logics than existing labelled systems. We also
show an internal cut elimination proof for our system [30].

 Section:
 New Results

 Types by Need

 Participants :
	Beniamino Accattoli, Maico Leberle.

 This joint work with Giulio Guerrieri (Post-doc at Bath University) [27] develops a multi type system for call-by-need evaluation of the ł-calculus. The type system is obtained by combining features by well-known systems for call-by-name and call-by-value. It characterizes termination, and, moreover, its type derivations provide precise information about the number of steps to reach the result. The novelty is that, while the systems for call-by-name and call-by-value are obtained by the linear logic interpretation of these evaluation schemes, call-by-need has no linear logic interpretation.

 Section:
 New Results

 Sharing Equality is Linear

 Participants :
	Beniamino Accattoli, Andrea Condoluci, Claudio Sacerdoti Coen.

 This work [28] studies how to compare higher-order programs with sharing for sharing equality, that is, for equality of their unshared underlying programs. The point, of course, is to do it efficiently, without unsharing the programs, that would otherwise introduce an exponential blow-up. We develop the first algorithm linear in the size of the shared terms, by adapting the famous Patterson and Wegman algorithm for first-order unification.

 Section:
 New Results

 Crumbling Abstract Machines

 Participants :
	Beniamino Accattoli, Andrea Condoluci, Claudio Sacerdoti Coen.

 This joint work with Giulio Guerrieri (Post-doc at Bath University) [26] studies a new compilation technique for functional programs, dubbed crumbling and resembling the transformation into administrative normal form of Flanagan, Sabry, Duba, and Felleisen. It is shown that it simplifies the design of abstract machines without altering the complexity of the overhead. Moreover, it smoothly scales up to open terms and it does not suffer of the slowdowns of administrative normal forms pointed out by Kennedy.

 Section:
 New Results

 Factorization and Normalization, Essentially

 Participant :
	Beniamino Accattoli.

 This joint work with Claudia Faggian (CNRS researcher at Paris Diderot) and Giulio Guerrieri (Post-doc at Bath University) [15] refines a rewriting technique for proving factorization and normalization theorems for λ-calculi, that are theorems providing foundations to the design of functional programming languages and proof assistants. We both simplify and extend the scope of a widely used technique by Takahashi. At the concrete level, the new abstract technique is applied to four relevant case studies.

 Section:
 New Results

 A Fresh Look at the ł-Calculus

 Participant :
	Beniamino Accattoli.

 This paper [25] is the trace of the invited talk given by Accattoli at FSCD 2019. More than just an abstract, the paper is a lengthy overview of the research on λ-calculus, cost models, sharing, and abstract machines pursued by Accattoli and his co-authors in the last 10 years.

 Section:
 New Results

 Abstract Machines for Open Call-by-Value

 Participant :
	Beniamino Accattoli.

 This journal paper in collaboration with Giulio Guerrieri (Post-doc at Bath University) [4] outlines a theory of abstract machines for the call-by-value ł-calculus with open terms. It refines and extends the results by the same authors from 2017, which were among the selected ones from the international conference FSEN 2017 for publication in a journal.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Grants with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Grants with Industry

 OCaml Software Foundation

 Participant :
	Gabriel Scherer.

 The OCaml Software Foundation (OCSF), (http://ocaml-sf.org/) established in 2018 under the umbrella of the Inria Foundation,
aims to promote, protect, and advance the OCaml programming language and its ecosystem, and to support
and facilitate the growth of a diverse and international community of OCaml users.

 Gabriel Scherer serves as the director of the foundation.

 Funding from Nomadic Labs

 Participant :
	Gabriel Scherer.

 Nomadic Labs, a Paris-based company, has implemented the Tezos
blockchain and cryptocurrency entirely in OCaml. This year, Nomadic
Labs and Inria have signed a framework agreement (“contrat-cadre”)
that allows Nomadic Labs to fund multiple research efforts carried out
by Inria groups. Within this framework, we participate to two 3-year
grants, in collaboration with the Cambium team at Inria Paris:

 	
 “Évolution d’OCaml”. This grant is intended to fund a number of
improvements to OCaml, including the addition of new features and
a possible re-design of the OCaml type-checker.

 	
 “Maintenance d’OCaml”. This grant is intended to fund the
day-to-day maintenance of OCaml as well as the considerable work
involved in managing the release cycle.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific Events: Organisation

 General Chair, Scientific Chair

 Dale Miller is currently General Chair for the ACM/IEEE Symposium
on Logic in Computer Science (LICS).

 Member of the Organizing Committees

 Dale Miller is member of the Steering Committee for CPP, FSCD, and
LFMTP and is a member of the Executive Committee of the ACM Special
Interest Group on Logic and Compuation (SIGLOG).

 Gabriel Scherer is part of the Steering Committee of the ML Family
Workshop and the OCaml Workshop.

 Scientific Events: Selection

 Chair of Conference Program Committees

 Dale Miller was program committee co-chair for the workshop on Logical
Frameworks and Meta Languages: Theory and Practice (LFMTP), 2019,
Vancouver, Canada.

 Member of the Conference Program Committees

 	
 Gabriel Scherer: JFLA 2020.

 	
 Beniamino Accattoli: LSFA 2019.

 	
 Dale Miller is a PC member for the 10th International Joint Conference
on Automated Reasoning (IJCAR-2020), the 23rd International Conference on
Logic for Programming, Artificial Intelligence and Reasoning
(LPAR-23), and the Workshop on Trends, Extensions, Applications and
Semantics of Logic Programming (TEASE-LP).

 Reviewer

 	
 Gabriel Scherer: POPL 2020, ESOP 2020.

 	
 Lutz Straßburger: FoSSaCS 2020, CSL 2020, TABLEAUX 2019, WoLLIC 2019, LICS 2019.

 	
 Beniamino Accattoli: FoSSaCS 2020, POPL 2020, ICALP 2019, ICTAC 2019, PPDP 2019, FSCD 2019, CSL 2019, LSFA 2019.

 Journal

 Member of the Editorial Boards

 Dale Miller is on the editorial board of the Journal of Automated
Reasoning (Springer) and the Jounral of Applied Logic (Elsevier).
He has also been an editor for a special issue of FSCD 2017 for
Logical Methods in Computer Science.

 Reviewer - Reviewing Activities

 	
 Lutz Straßburger: APAL, ToCL, BSL, LMCS.

 	
 Beniamino Accattoli: LMCS, TCS.

 	
 Dale Miller has served on the evaluation committee for the
EATCS Distinguished Dissertation Award and the EACSL Ackermann
Award. He was also the Chair of the Herbrand Award Committee of
the Association for Automated Reasoning.

 Invited Talks

 	
 Beniamino Accattoli has been invited speaker at FSCD 2019.

 	
 Dale Miller has been an invited speaker at the Workshop on Proof
Theory for Automated Deduction, Automated Deduction for Proof Theory
(23-25 October 2019, Funchal, Madeira) and the Third Tübingen
Conference on Proof-Theoretic Semantics, 27-30 March 2019.

 Scientific Expertise

 	
 Lutz Straßburger: reviewer for the Israel Science Foundation.

 	
 Dale Miller has been a member of an international review panel
for the Distinguished Professor Grant at the Swedish Research
Council.

 	
 Gabriel Scherer: reviewer for ANR.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Licence : G. Scherer, “Introduction á la programmation fonctionnelle”,
50h, L1, Paris 8 (Vincennes - Saint Denis), France

 	
 Master: B. Accattoli, “Logique linéaire et paradigmes logiques du calcul”,
18h, M2, Master Parisien de Recherche en Informatique (MPRI), France.

 	
 Master: D. Miller, “Logique linéaire et paradigmes logiques du calcul”,
18h, M2, Master Parisien de Recherche en Informatique (MPRI), France.

 	
 Summer School: G. Scherer, “Programmation fonctionnelle en OCaml”,
12h, public d'ingénieurs de recherche, formation ANF (CNRS), France

 	
 Summer School: L. Straßburger: “Introduction to Deep
Inference”, 10h, ESSLLI 2020, Riga, Latvia

 	
 Summer School: B. Accattoli, “λ-Calculus and Reasonable Cost Models”,
15h, Escuela de Ciencia Informaticas (ECI 2019), Buenos Aires, Argentina.

 Supervision

 	
 PhD in progress: Marianela Morales, “Combinatorial Proof Theory for Modal Logic”, 1/10/2019, Lutz Straßburger.

 	
 PhD in progress: Maico Leberle, “Call-by-need and Reasonable Cost Models”, Beniamino Accattoli.

 	
 PhD completed: Ulysse Gérard, “Computing with relations,
functions, and bindings”, 18 October 2019, Ecole Doctorale de
l’Institut Polytechnique de Paris, advised by Dale Miller.

 	
 PhD in progress: Matteo Manighetti, “Structural proof theory
for induction in linear logic”, advised by Dale Miller since 1/10/2017.

 	
 PhD in progress: Marianela Morales, “Combinatorial Proof Theory for Modal Logic”, 1/10/2019, Lutz Straßburger

 Juries

 Dale Miller was a reportor for the PhD thesis of Aurore Alcolei (ENS Lyon, 17 October 2019).

 Section:
 Dissemination

 Popularization

 Interventions

 G. Scherer and M. Manighetti participated the “Fête de la
Science” exhibit at Inria Saclay on the whole day of October 11th,
2019.

 G. Scherer presented the research domain of certified programming to
an audience of computer security professionals at the “Pass the
Salt” conference in Lille, on Wednesday July 3rd.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, Y. Wang.
Abella: A System for Reasoning about Relational Specifications, in: Journal of Formalized Reasoning, 2014, vol. 7, no 2, pp. 1-89. [
DOI : 10.6092/issn.1972-5787/4650]
https://hal.inria.fr/hal-01102709

 	[2]

 	A. Guglielmi, T. Gundersen, L. Straßburger.
Breaking Paths in Atomic Flows for Classical Logic, in: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science (LICS 2010), Edinburgh, United Kingdom, July 2010, pp. 284–293. [
DOI : 10.1109/LICS.2010.12]
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[3]

 	U. Gérard.
Computing with relations, functions, and bindings, École Polytechnique ; Inria Saclay, October 2019.
https://hal.archives-ouvertes.fr/tel-02414237

 Articles in International Peer-Reviewed Journals

 	[4]

 	B. Accattoli, G. Guerrieri.
Abstract Machines for Open Call-by-Value, in: Science of Computer Programming, 2019, vol. 184. [
DOI : 10.1016/j.scico.2019.03.002]
https://hal.archives-ouvertes.fr/hal-02415780

 	[5]

 	T. Brock-Nannestad, D. Ilik.
An Intuitionistic Formula Hierarchy Based on High-School Identities, in: Mathematical Logic Quarterly, May 2019, vol. 65, no 1, pp. 57-79, https://arxiv.org/abs/1601.04876. [
DOI : 10.1002/malq.201700047]
https://hal.inria.fr/hal-01354181

 	[6]

 	K. Chaudhuri, C. Olarte, E. Pimentel, J. Despeyroux.
Hybrid Linear Logic, revisited, in: Mathematical Structures in Computer Science, 2019, forthcoming. [
DOI : 10.1017/S0960129518000439]
https://hal.inria.fr/hal-01968154

 	[7]

 	J. Courtiel, K. Yeats, N. Zeilberger.
Connected chord diagrams and bridgeless maps, in: The Electronic Journal of Combinatorics, November 2019.
https://hal.archives-ouvertes.fr/hal-01650141

 	[8]

 	Q. Heath, D. Miller.
A proof theory for model checking, in: Journal of Automated Reasoning, December 2019, vol. 63, no 4, pp. 857-885. [
DOI : 10.1007/s10817-018-9475-3]
https://hal.inria.fr/hal-01814006

 	[9]

 	R. Kuznets, L. Straßburger.
Maehara-style modal nested calculi, in: Archive for Mathematical Logic, May 2019, vol. 58, no 3-4, pp. 359-385. [
DOI : 10.1007/s00153-018-0636-1]
https://hal.inria.fr/hal-01942240

 	[10]

 	D. Miller.
Mechanized metatheory revisited, in: Journal of Automated Reasoning, October 2019, vol. 63, no 3, pp. 625-665. [
DOI : 10.1007/s10817-018-9483-3]
https://hal.inria.fr/hal-01884210

 	[11]

 	D. Miller.
Reciprocal Influences Between Proof Theory and Logic Programming, in: Philosophy & Technology, August 2019. [
DOI : 10.1007/s13347-019-00370-x]
https://hal.inria.fr/hal-02368867

 	[12]

 	L. Straßburger.
Deep inference and expansion trees for second-order multiplicative linear logic, in: Mathematical Structures in Computer Science, September 2019, vol. 29, pp. 1030-1060. [
DOI : 10.1017/S0960129518000385]
https://hal.inria.fr/hal-01942410

 	[13]

 	L. Straßburger.
On the decision problem for MELL, in: Theoretical Computer Science, May 2019, vol. 768, pp. 91-98. [
DOI : 10.1016/j.tcs.2019.02.022]
https://hal.inria.fr/hal-02386746

 	[14]

 	L. Straßburger.
The problem of proof identity, and why computer scientists should care about Hilbert's 24th problem, in: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, January 2019, vol. 377, no 2140, 20180038 p. [
DOI : 10.1098/rsta.2018.0038]
https://hal.inria.fr/hal-02475417

 International Conferences with Proceedings

 	[15]

 	B. Accattoli, C. Faggian, G. Guerrieri.
Factorization and Normalization, Essentially, in: APLAS 2019 - 17th Asian Symposium on Programming Languages and Systems, Bali, Indonesia, Springer, December 2019. [
DOI : 10.1007/978-3-030-34175-6_9]
https://hal.archives-ouvertes.fr/hal-02411556

 	[16]

 	M. Acclavio, L. Straßburger.
On Combinatorial Proofs for Logics of Relevance and Entailment, in: WoLLIC 2019 - 26th International Workshop on Logic, Language, Information, and Computation, Utrecht, Netherlands, June 2019, pp. 1-16. [
DOI : 10.1007/978-3-662-59533-6_1]
https://hal.inria.fr/hal-02390426

 	[17]

 	M. Acclavio, L. Straßburger.
On Combinatorial Proofs for Modal Logic, in: TABLEAUX 2019 - 28t International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, London, United Kingdom, Springer, September 2019, pp. 223-240. [
DOI : 10.1007/978-3-030-29026-9_13]
https://hal.inria.fr/hal-02390400

 	[18]

 	R. Blanco, D. Miller, A. Momigliano.
Property-Based Testing via Proof Reconstruction, in: PPDP 2019 - 21st International Symposium on Principles and Practice of Programming Languages, Porto, Portugal, ACM Press, October 2019, pp. 1-13. [
DOI : 10.1145/3354166.3354170]
https://hal.inria.fr/hal-02368931

 	[19]

 	K. Chaudhuri, M. Manighetti, D. Miller.
A Proof-Theoretic Approach to Certifying Skolemization, in: CPP 2019 - 8th ACM SIGPLAN International Conference, Cascais, Portugal, ACM Press, January 2019, pp. 78-90. [
DOI : 10.1145/3293880.3294094]
https://hal.inria.fr/hal-02368946

 	[20]

 	U. Gérard, D. Miller, G. Scherer.
Functional programming with λ-tree syntax, in: PPDP 2019 - 21st International Symposium on Principles and Practice of Programming Languages, Porto, Portugal, ACM Press, October 2019, pp. 1-16. [
DOI : 10.1145/3354166.3354177]
https://hal.inria.fr/hal-02368906

 	[21]

 	W. Heijltjes, D. J. D. Hughes, L. Straßburger.
Proof Nets for First-Order Additive Linear Logic, in: FSCD 2019 - 4th International Conference on Formal Structures for Computation and Deduction, Dortmund, Germany, Proceedings of 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019), June 2019, vol. 131, pp. 22:1-22:22. [
DOI : 10.4230/LIPIcs.FSCD.2019.22]
https://hal.inria.fr/hal-02386942

 	[22]

 	B. Ralph, L. Straßburger.
Towards a Combinatorial Proof Theory, in: TABLEAUX 2019 - 28th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, London, United Kingdom, August 2019, pp. 259-276. [
DOI : 10.1007/978-3-030-29026-9_15]
https://hal.inria.fr/hal-02390417

 	[23]

 	L. Straßburger, W. Heijltjes, D. J. D. Hughes.
Intuitionistic proofs without syntax, in: LICS 2019 - 34th Annual ACM/IEEE Symposium on Logic in Computer Science, Vancouver, Canada, IEEE, June 2019, pp. 1-13. [
DOI : 10.1109/LICS.2019.8785827]
https://hal.inria.fr/hal-02386878

 National Conferences with Proceedings

 	[24]

 	S. Colin, R. Lepigre, G. Scherer.
Unboxing Mutually Recursive Type Definitions in OCaml, in: JFLA 2019 - 30 èmes journées francophones des langages applicatifs, Les Rousses, France, January 2019, https://arxiv.org/abs/1811.02300.
https://hal.inria.fr/hal-01929508

 Conferences without Proceedings

 	[25]

 	B. Accattoli.
A Fresh Look at the λ-Calculus, in: FSCD 2019 - 4th International Conference on Formal Structures for Computation and Deduction, Dortmund, Germany, June 2019. [
DOI : 10.4230/LIPIcs.FSCD.2019.1]
https://hal.archives-ouvertes.fr/hal-02415786

 	[26]

 	B. Accattoli, A. Condoluci, G. Guerrieri, C. S. Coen.
Crumbling Abstract Machines, in: PPDP 2019 - 21st International Symposium on Principles and Practice of Programming Languages, Porto, Portugal, October 2019. [
DOI : 10.1145/3354166.3354169]
https://hal.archives-ouvertes.fr/hal-02415766

 	[27]

 	B. Accattoli, G. Guerrieri, M. Leberle.
Types by Need, in: ESOP 2019 - 28th European Symposium on Programming, Prague, Czech Republic, April 2019. [
DOI : 10.1007/978-3-030-17184-1_15]
https://hal.archives-ouvertes.fr/hal-02415758

 	[28]

 	A. Condoluci, B. Accattoli, C. S. Coen.
Sharing Equality is Linear, in: PPDP 2019 - 21st International Symposium on Principles and Practice of Programming Languages, Porto, Portugal, October 2019. [
DOI : 10.1145/3354166.3354174]
https://hal.archives-ouvertes.fr/hal-02415769

 Books or Proceedings Editing

 	[29]

 	B. Accattoli, C. Olarte (editors)
Preface, The proceedings of LSFA 2018, the 13th Workshop on Logical and Semantic Frameworks with Applications (LSFA’18), Elsevier, August 2019, vol. 344, pp. 1-2. [
DOI : 10.1016/j.entcs.2019.07.001]
https://hal.archives-ouvertes.fr/hal-02415802

 Other Publications

 	[30]

 	S. Marin, M. Morales, L. Straßburger.
A fully labelled proof system for intuitionistic modal logics, September 2019, working paper or preprint.
https://hal.inria.fr/hal-02390454

 	[31]

 	A. A. Tubella, L. Straßburger.
Introduction to Deep Inference, August 2019, Lecture.
https://hal.inria.fr/hal-02390267

 References in notes

 	[32]

 	S. Abramsky.
Computational Interpretations of Linear Logic, in: Theoretical Computer Science, 1993, vol. 111, pp. 3–57.

 	[33]

 	B. Accattoli, U. Dal Lago.
Beta reduction is invariant, indeed, in: Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS '14, Vienna, Austria, July 14 - 18, 2014, 2014, pp. 8:1–8:10.
http://doi.acm.org/10.1145/2603088.2603105

 	[34]

 	J.-M. Andreoli.
Logic Programming with Focusing Proofs in Linear Logic, in: Journal of Logic and Computation, 1992, vol. 2, no 3, pp. 297–347.

 	[35]

 	D. Baelde, D. Miller, Z. Snow.
Focused Inductive Theorem Proving, in: Fifth International Joint Conference on Automated Reasoning (IJCAR 2010), J. Giesl, R. Hähnle (editors), LNCS, 2010, no 6173, pp. 278–292. [
DOI : 10.1007/978-3-642-14203-1]
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ijcar10.pdf

 	[36]

 	G. E. Blelloch, J. Greiner.
Parallelism in Sequential Functional Languages, in: Proceedings of the seventh international conference on Functional programming languages and computer architecture, FPCA 1995, La Jolla, California, USA, June 25-28, 1995, 1995, pp. 226–237.
http://doi.acm.org/10.1145/224164.224210

 	[37]

 	K. Chaudhuri.
The Focused Inverse Method for Linear Logic, Carnegie Mellon University, December 2006, Technical report CMU-CS-06-162.
http://reports-archive.adm.cs.cmu.edu/anon/2006/CMU-CS-06-162.pdf

 	[38]

 	K. Chaudhuri, N. Guenot, L. Straßburger.
The Focused Calculus of Structures, in: Computer Science Logic: 20th Annual Conference of the EACSL, Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, September 2011, pp. 159–173. [
DOI : 10.4230/LIPIcs.CSL.2011.159]
http://drops.dagstuhl.de/opus/volltexte/2011/3229/pdf/16.pdf

 	[39]

 	K. Chaudhuri, S. Hetzl, D. Miller.
A Multi-Focused Proof System Isomorphic to Expansion Proofs, in: Journal of Logic and Computation, June 2014. [
DOI : 10.1093/logcom/exu030]
http://hal.inria.fr/hal-00937056

 	[40]

 	A. Gacek, D. Miller, G. Nadathur.
Combining generic judgments with recursive definitions, in: 23th Symp. on Logic in Computer Science, F. Pfenning (editor), IEEE Computer Society Press, 2008, pp. 33–44.
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf

 	[41]

 	A. Gacek, D. Miller, G. Nadathur.
Nominal abstraction, in: Information and Computation, 2011, vol. 209, no 1, pp. 48–73.
http://arxiv.org/abs/0908.1390

 	[42]

 	J.-Y. Girard.
Linear Logic, in: Theoretical Computer Science, 1987, vol. 50, pp. 1–102.

 	[43]

 	S. Graham-Lengrand, R. Dyckhoff, J. McKinna.
A Focused Sequent Calculus Framework for Proof Search in Pure Type Systems, in: Logical Methods in Computer Science, 2011, vol. 7, no 1.
http://www.csl.sri.com/users/sgl/Work/Reports/TTSC09.pdf

 	[44]

 	A. Guglielmi.
A System of Interaction and Structure, in: ACM Trans. on Computational Logic, 2007, vol. 8, no 1.

 	[45]

 	A. Guglielmi, T. Gundersen.
Normalisation Control in Deep Inference Via Atomic Flows, in: Logical Methods in Computer Science, 2008, vol. 4, no 1:9, pp. 1–36.
http://arxiv.org/abs/0709.1205

 	[46]

 	A. Guglielmi, L. Straßburger.
Non-commutativity and MELL in the Calculus of Structures, in: Computer Science Logic, CSL 2001, L. Fribourg (editor), LNCS, Springer-Verlag, 2001, vol. 2142, pp. 54–68.

 	[47]

 	D. Hughes.
Proofs Without Syntax, in: Annals of Mathematics, 2006, vol. 164, no 3, pp. 1065–1076.

 	[48]

 	F. Lamarche, L. Straßburger.
Naming Proofs in Classical Propositional Logic, in: Typed Lambda Calculi and Applications, TLCA 2005, P. Urzyczyn (editor), LNCS, Springer, 2005, vol. 3461, pp. 246–261.

 	[49]

 	C. Liang, D. Miller.
Focusing and Polarization in Linear, Intuitionistic, and Classical Logics, in: Theoretical Computer Science, 2009, vol. 410, no 46, pp. 4747–4768.
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs09.pdf

 	[50]

 	C. Liang, D. Miller.
A Focused Approach to Combining Logics, in: Annals of Pure and Applied Logic, 2011, vol. 162, no 9, pp. 679–697.
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lku.pdf

 	[51]

 	P. Martin-Löf.
Constructive Mathematics and Computer Programming, in: Sixth International Congress for Logic, Methodology, and Philosophy of Science, Amsterdam, North-Holland, 1982, pp. 153–175.

 	[52]

 	R. McDowell, D. Miller.
Reasoning with Higher-Order Abstract Syntax in a Logical Framework, in: ACM Trans. on Computational Logic, 2002, vol. 3, no 1, pp. 80–136.
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mcdowell01.pdf

 	[53]

 	R. McDowell, D. Miller.
A Logic for Reasoning with Higher-Order Abstract Syntax, in: Proceedings, Twelfth Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, G. Winskel (editor), IEEE Computer Society Press, July 1997, pp. 434–445.

 	[54]

 	D. Miller.
Forum: A Multiple-Conclusion Specification Logic, in: Theoretical Computer Science, September 1996, vol. 165, no 1, pp. 201–232.

 	[55]

 	D. Miller, G. Nadathur, F. Pfenning, A. Scedrov.
Uniform Proofs as a Foundation for Logic Programming, in: Annals of Pure and Applied Logic, 1991, vol. 51, pp. 125–157.

 	[56]

 	D. Miller, A. Tiu.
A Proof Theory for Generic Judgments: An extended abstract, in: Proc. 18th IEEE Symposium on Logic in Computer Science (LICS 2003), IEEE, June 2003, pp. 118–127.
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics03.pdf

 	[57]

 	F. Pfenning, C. Schürmann.
System Description: Twelf — A Meta-Logical Framework for Deductive Systems, in: 16th Conference on Automated Deduction, Trento, H. Ganzinger (editor), LNAI, Springer, 1999, no 1632, pp. 202–206.

 	[58]

 	B. Pientka, J. Dunfield.
Beluga: A Framework for Programming and Reasoning with Deductive Systems (System Description), in: Fifth International Joint Conference on Automated Reasoning, J. Giesl, R. Hähnle (editors), LNCS, 2010, no 6173, pp. 15–21.

 	[59]

 	E. P. Robinson.
Proof Nets for Classical Logic, in: Journal of Logic and Computation, 2003, vol. 13, pp. 777–797.

 	[60]

 	The Coq Development Team.
The Coq Proof Assistant Version 8.3 Reference Manual, Inria, October 2010.

 	[61]

 	A. Tiu, D. Miller.
Proof Search Specifications of Bisimulation and Modal Logics for the π-calculus, in: ACM Trans. on Computational Logic, 2010, vol. 11, no 2.
http://arxiv.org/abs/0805.2785

 OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid90.html

 Section:
 Partnerships and Cooperations

 Regional Initiatives

 DIM-RFSI

 Gabriel Scherer obtained funding from the Région Île-de-France to hire
a post-doc, Luc Pellissier, to work on canonical representation of
programs (linking proof theory and category-theory approaches), in
collaboration with Adrien Guatto in IRIF (Université Paris 7).

OEBPS/uid92.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 ANR

 COCA HOLA: Cost Models for Complexity Analyses of Higher-Order
Languages, coordinated by B. Accattoli, 2016–2019.

 FISP: The Fine Structure of Formal Proof Systems and their
Computational Interpretations, coordinated by Lutz Straßburger in
collaboration with Université Paris 7, Universität Innsbruck and
TU Wien, 2016–2019.

 Competitivity Clusters

 UPScale: Universality of Proofs in SaCLay, a Working Group of LabEx
DigiCosme, organized by Chantal Keller (LRI) with regular
participation from Parsifal members and a post-doc co-supervision.

OEBPS/uid95.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 Claudio Sacerdoti Coen (Universita di Bologna, Italy) spent a month
visiting Beniamino Accattoli thanks to funding for short-term
international visits.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2019

Project-Team Parsifal
Proof search and

reasoning with logic
specifications

IN COLLABORATION WITH: Laboratoire dinformatiaue de Icole polytechniaue (LX)

