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2. Overall Objectives
2.1. Programming securely with cryptography

In recent years, an increasing amount of sensitive data is being generated, manipulated, and accessed online,
from bank accounts to health records. Both national security and individual privacy have come to rely on
the security of web-based software applications. But even a single design flaw or implementation bug in an
application may be exploited by a malicious criminal to steal, modify, or forge the private records of innocent
users. Such attacks are becoming increasingly common and now affect millions of users every year.
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The risks of deploying insecure software are too great to tolerate anything less than mathematical proof,
but applications have become too large for security experts to examine by hand, and automated verification
tools do not scale. Today, there is not a single widely-used web application for which we can give a proof
of security, even against a small class of attacks. In fact, design and implementation flaws are still found in
widely-distributed and thoroughly-vetted security libraries designed and implemented by experts.

Software security is in crisis. A focused research effort is needed if security programming and analysis tech-
niques are to keep up with the rapid development and deployment of security-critical distributed applications
based on new cryptographic protocols and secure hardware devices. The goal of our team PROSECCO is to
draw upon our expertise in cryptographic protocols and program verification to make decisive contributions in
this direction.

Our vision is that, over its lifetime, PROSECCO will contribute to making the use of formal techniques
when programming with cryptography as natural as the use of a software debugger. To this end, our
long-term goals are to design and implement programming language abstractions, cryptographic models,
verification tools, and verified security libraries that developers can use to deploy provably secure distributed
applications. Our target applications include cryptographic protocol implementations, hardware-based security
APIs, smartphone- and browser-based web applications, and cloud-based web services. In particular, we aim
to verify the full application: both the cryptographic core and the high-level application code. We aim to verify
implementations, not just models. We aim to account for computational cryptography, not just its symbolic
abstraction.

We identify five key focus areas for our research in the short- to medium term.

2.1.1. New programming languages for verified software
Building realistic verified applications requires new programming languages that enable the systematic
development of efficient software hand-in-hand with their proofs of correctness. Our current focus is on
designing and implementing the programming language F*, in collaboration with Microsoft Research. F*
(pronounced F star) is a general-purpose functional programming language with effects aimed at program
verification. Its type system includes polymorphism, dependent types, monadic effects, refinement types, and
a weakest precondition calculus. Together, these features allow expressing precise and compact specifications
for programs, including functional correctness and security properties. The F* type-checker aims to prove
that programs meet their specifications using a combination of SMT solving and interactive proofs. Programs
written in F* can be translated to efficient OCaml, F#, or C for execution. The main ongoing use case of F* is
building a verified, drop-in replacement for the whole HTTPS stack in Project Everest (a larger collaboration
with Microsoft Research). This includes verified implementations of TLS 1.2 and 1.3 and of the underlying
cryptographic primitives.

2.1.2. Symbolic verification of cryptographic applications
We aim to develop our own security verification tools for models and implementations of cryptographic
protocols and security APIs using symbolic cryptography. Our starting point is the tools we have previously
developed: the specialized cryptographic prover ProVerif, the reverse engineering and formal test tool Tookan,
and the F* verification system. These tools are already used to verify industrial-strength cryptographic protocol
implementations and commercial cryptographic hardware. We plan to extend and combine these approaches
to capture more sophisticated attacks on applications consisiting of protocols, software, and hardware, as well
as to prove symbolic security properties for such composite systems.

2.1.3. Computational verification of cryptographic applications
We aim to develop our own cryptographic application verification tools that use the computational model of
cryptography. The tools include the computational prover CryptoVerif, and the F* verification system. Working
together, we plan to extend these tools to analyze, for the first time, cryptographic protocols, security APIs, and
their implementations under fully precise cryptographic assumptions. We also plan to pursue links between
symbolic and computational verification, such as computational soundness results that enable computational
proofs by symbolic techniques.
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2.1.4. Efficient formally secure compilers for tagged architectures
We aim to leverage emerging hardware capabilities for fine-grained protection to build the first, efficient secure
compilation chains for realistic low-level programming languages (the C language, and Low* a safe subset of
C embedded in F* for verification). These compilation chains will provide a secure semantics for all programs
and will ensure that high-level abstractions cannot be violated even when interacting with untrusted low-level
code. To achieve this level of security without sacrificing efficiency, our secure compilation chains target a
tagged architecture, which associates a metadata tag to each word and efficiently propagates and checks tags
according to software-defined rules.

2.1.5. Building provably secure web applications
We aim to develop analysis tools and verified libraries to help programmers build provably secure web
applications. The tools will include static and dynamic verification tools for client- and server-side JavaScript
web applications, their verified deployment within HTML5 websites and browser extensions, as well as type-
preserving compilers from high-level applications written in F* to JavaScript. In addition, we plan to model
new security APIs in browsers and smartphones and develop the first formal semantics for various HTML5 web
standards. We plan to combine these tools and models to analyze the security of multi-party web applications,
consisting of clients on browsers and smartphones, and servers in the cloud.

3. Research Program

3.1. Symbolic verification of cryptographic applications
Despite decades of experience, designing and implementing cryptographic applications remains dangerously
error-prone, even for experts. This is partly because cryptographic security is an inherently hard problem, and
partly because automated verification tools require carefully-crafted inputs and are not widely applicable.
To take just the example of TLS, a widely-deployed and well-studied cryptographic protocol designed,
implemented, and verified by security experts, the lack of a formal proof about all its details has regularly led to
the discovery of major attacks (including several in PROSECCO) on both the protocol and its implementations,
after many years of unsuspecting use.

As a result, the automated verification for cryptographic applications is an active area of research, with a wide
variety of tools being employed for verifying different kinds of applications.

In previous work, we have developed the following three approaches:

• ProVerif: a symbolic prover for cryptographic protocol models

• Tookan: an attack-finder for PKCS#11 hardware security devices

• F*: a new language that enables the verification of cryptographic applications

3.1.1. Verifying cryptographic protocols with ProVerif
Given a model of a cryptographic protocol, the problem is to verify that an active attacker, possibly with
access to some cryptographic keys but unable to guess other secrets, cannot thwart security goals such
as authentication and secrecy [53]; it has motivated a serious research effort on the formal analysis of
cryptographic protocols, starting with [49] and eventually leading to effective verification tools, such as our
tool ProVerif.
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To use ProVerif, one encodes a protocol model in a formal language, called the applied pi-calculus, and
ProVerif abstracts it to a set of generalized Horn clauses. This abstraction is a small approximation: it just
ignores the number of repetitions of each action, so ProVerif is still very precise, more precise than, say, tree
automata-based techniques. The price to pay for this precision is that ProVerif does not always terminate;
however, it terminates in most cases in practice, and it always terminates on the interesting class of tagged
protocols [44]. ProVerif can handle a wide variety of cryptographic primitives, defined by rewrite rules or by
some equations, and prove a wide variety of security properties: secrecy [42], [30], correspondences (including
authentication) [43], and observational equivalences [41]. Observational equivalence means that an adversary
cannot distinguish two processes (protocols); equivalences can be used to formalize a wide range of properties,
but they are particularly difficult to prove. Even if the class of equivalences that ProVerif can prove is limited
to equivalences between processes that differ only by the terms they contain, these equivalences are useful
in practice and ProVerif has long been the only tool that proves equivalences for an unbounded number of
sessions. (Maude-NPA in 2014 and Tamarin in 2015 adopted ProVerif’s approach to proving equivalences.)

Using ProVerif, it is now possible to verify large parts of industrial-strength protocols, such as TLS [36],
Signal [51], JFK [31], and Web Services Security [40], against powerful adversaries that can run an unlimited
number of protocol sessions, for strong security properties expressed as correspondence queries or equivalence
assertions. ProVerif is used by many teams at the international level, and has been used in more than 120
research papers (references available at http://proverif.inria.fr/proverif-users.html).

3.1.2. Verifying security APIs using Tookan
Security application programming interfaces (APIs) are interfaces that provide access to functionality while
also enforcing a security policy, so that even if a malicious program makes calls to the interface, certain security
properties will continue to hold. They are used, for example, by cryptographic devices such as smartcards and
Hardware Security Modules (HSMs) to manage keys and provide access to cryptographic functions whilst
keeping the keys secure. Like security protocols, their design is security critical and very difficult to get right.
Hence formal techniques have been adapted from security protocols to security APIs.

The most widely used standard for cryptographic APIs is RSA PKCS#11, ubiquitous in devices from
smartcards to HSMs. A 2003 paper highlighted possible flaws in PKCS#11 [46], results which were extended
by formal analysis work using a Dolev-Yao style model of the standard [47]. However at this point it was
not clear to what extent these flaws affected real commercial devices, since the standard is underspecified
and can be implemented in many different ways. The Tookan tool, developed by Steel in collaboration with
Bortolozzo, Centenaro and Focardi, was designed to address this problem. Tookan can reverse engineer the
particular configuration of PKCS#11 used by a device under test by sending a carefully designed series of
PKCS#11 commands and observing the return codes. These codes are used to instantiate a Dolev-Yao model
of the device’s API. This model can then be searched using a security protocol model checking tool to find
attacks. If an attack is found, Tookan converts the trace from the model checker into the sequence of PKCS#11
queries needed to make the attack and executes the commands directly on the device. Results obtained by
Tookan are remarkable: of 18 commercially available PKCS#11 devices tested, 10 were found to be susceptible
to at least one attack.

3.1.3. Verifying cryptographic applications using F*
Verifying the implementation of a protocol has traditionally been considered much harder than verifying its
model. This is mainly because implementations have to consider real-world details of the protocol, such as
message formats [55], that models typically ignore. So even a protocol has been proved secure in theory, its
implementation may be buggy and insecure. However, with recent advances in both program verification and
symbolic protocol verification tools, it has become possible to verify fully functional protocol implementations
in the symbolic model. One approach is to extract a symbolic protocol model from an implementation and
then verify the model, say, using ProVerif. This approach has been quite successful, yielding a verified
implementation of TLS in F# [39]. However, the generated models are typically quite large and whole-program
symbolic verification does not scale very well.

http://proverif.inria.fr/proverif-users.html
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An alternate approach is to develop a verification method directly for implementation code, using well-known
program verification techniques. Our current focus is on designing and implementing the programming lan-
guage F* [57], [34], [52], in collaboration with Microsoft Research. F* (pronounced F star) is an ML-like
functional programming language aimed at program verification. Its type system includes polymorphism, de-
pendent types, monadic effects, refinement types, and a weakest precondition calculus. Together, these features
allow expressing precise and compact specifications for programs, including functional correctness and secu-
rity properties. The F* type-checker aims to prove that programs meet their specifications using a combination
of SMT solving and interactive proofs[23]. Programs written in F* can be translated to efficient OCaml, F#,
or C for execution [54]. The main ongoing use case of F* is building a verified, drop-in replacement for the
whole HTTPS stack in Project Everest [37] (a larger collaboration with Microsoft Research). This includes a
verified implementation of TLS 1.2 and 1.3 [38] and of the underlying cryptographic primitives [58].

3.2. Computational verification of cryptographic applications
Proofs done by cryptographers in the computational model are mostly manual. Our goal is to provide computer
support to build or verify these proofs. In order to reach this goal, we have designed the automatic tool
CryptoVerif, which generates proofs by sequences of games. We already applied it to important protocols
such as TLS [36] and Signal [51] but more work is still needed in order to develop this approach, so that it
is easier to apply to more protocols. We also design and implement techniques for proving implementations
of protocols secure in the computational model. In particular, CryptoVerif can generate implementations from
CryptoVerif specifications that have been proved secure [45]. We plan to continue working on this approach.

A different approach is to directly verify cryptographic applications in the computational model by typing. A
recent work [50] shows how to use refinement typechecking in F7 to prove computational security for protocol
implementations. In this method, henceforth referred to as computational F7, typechecking is used as the main
step to justify a classic game-hopping proof of computational security. The correctness of this method is based
on a probabilistic semantics of F# programs and crucially relies on uses of type abstraction and parametricity
to establish strong security properties, such as indistinguishability.

In principle, the two approaches, typechecking and game-based proofs, are complementary. Understanding
how to combine these approaches remains an open and active topic of research.

An alternative to direct computation proofs is to identify the cryptographic assumptions under which symbolic
proofs, which are typically easier to derive automatically, can be mapped to computational proofs. This line
of research is sometimes called computational soundness and the extent of its applicability to real-world
cryptographic protocols is an active area of investigation.

3.3. F*: A Higher-Order Effectful Language for Program Verification
F* [57], [34] is a verification system for effectful programs developed collaboratively by Inria and Microsoft
Research. It puts together the automation of an SMT-backed deductive verification tool with the expressive
power of a proof assistant based on dependent types. After verification, F* programs can be extracted
to efficient OCaml, F#, or C code [54]. This enables verifying the functional correctness and security of
realistic applications. F*’s type system includes dependent types, monadic effects, refinement types, and a
weakest precondition calculus. Together, these features allow expressing precise and compact specifications
for programs, including functional correctness and security properties. The F* type-checker aims to prove
that programs meet their specifications using a combination of SMT solving and interactive proofs. The main
ongoing use case of F* is building a verified, drop-in replacement for the whole HTTPS stack in Project
Everest. This includes verified implementations of TLS 1.2 and 1.3 [38] and of the underlying cryptographic
primitives [58].

3.4. Efficient Formally Secure Compilers to a Tagged Architecture
Severe low-level vulnerabilities abound in today’s computer systems, allowing cyber-attackers to remotely
gain full control. This happens in big part because our programming languages, compilers, and architectures
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were designed in an era of scarce hardware resources and too often trade off security for efficiency. The
semantics of mainstream low-level languages like C is inherently insecure, and even for safer languages,
establishing security with respect to a high-level semantics does not guarantee the absence of low-level attacks.
Secure compilation using the coarse-grained protection mechanisms provided by mainstream hardware
architectures would be too inefficient for most practical scenarios.

We aim to leverage emerging hardware capabilities for fine-grained protection to build the first, efficient secure
compilation chains for realistic low-level programming languages (the C language, and Low* a safe subset
of C embedded in F* for verification [54]). These compilation chains will provide a secure semantics for all
programs and will ensure that high-level abstractions cannot be violated even when interacting with untrusted
low-level code. To achieve this level of security without sacrificing efficiency, our secure compilation chains
target a tagged architecture [35], which associates a metadata tag to each word and efficiently propagates and
checks tags according to software-defined rules. We hope to experimentally evaluate and carefully optimize the
efficiency of our secure compilation chains on realistic workloads and standard benchmark suites. We are also
using property-based testing and formal verification to provide high confidence that our compilation chains
are indeed secure. Formally, we are constructing machine-checked proofs of a new security criterion we call
robustly safe compilation, which is defined as the preservation of safety properties even against an adversarial
context [32], [33]. This strong criterion complements compiler correctness and ensures that no machine-code
attacker can do more harm to securely compiled components than a component already could with respect to
a secure source-level semantics.

3.5. Provably secure web applications
Web applications are fast becoming the dominant programming platform for new software, probably because
they offer a quick and easy way for developers to deploy and sell their apps to a large number of customers.
Third-party web-based apps for Facebook, Apple, and Google, already number in the hundreds of thousands
and are likely to grow in number. Many of these applications store and manage private user data, such as
health information, credit card data, and GPS locations. To protect this data, applications tend to use an ad
hoc combination of cryptographic primitives and protocols. Since designing cryptographic applications is
easy to get wrong even for experts, we believe this is an opportune moment to develop security libraries and
verification techniques to help web application programmers.

As a typical example, consider commercial password managers, such as LastPass, RoboForm, and 1Password.
They are implemented as browser-based web applications that, for a monthly fee, offer to store a user’s
passwords securely on the web and synchronize them across all of the user’s computers and smartphones. The
passwords are encrypted using a master password (known only to the user) and stored in the cloud. Hence,
no-one except the user should ever be able to read her passwords. When the user visits a web page that has
a login form, the password manager asks the user to decrypt her password for this website and automatically
fills in the login form. Hence, the user no longer has to remember passwords (except her master password) and
all her passwords are available on every computer she uses.

Password managers are available as browser extensions for mainstream browsers such as Firefox, Chrome,
and Internet Explorer, and as downloadable apps for Android and Apple phones. So, seen as a distributed
application, each password manager application consists of a web service (written in PHP or Java), some
number of browser extensions (written in JavaScript), and some smartphone apps (written in Java or Objective
C). Each of these components uses a different cryptographic library to encrypt and decrypt password data.
How do we verify the correctness of all these components?

We propose three approaches. For client-side web applications and browser extensions written in JavaScript,
we propose to build a static and dynamic program analysis framework to verify security invariants. To this
end, we have developed two security-oriented type systems for JavaScript, Defensive JavaScript [48] and
TS* [56], and used them to guarantee security properties for a number of JavaScript applications. For Android
smartphone apps and web services written in Java, we propose to develop annotated JML cryptography
libraries that can be used with static analysis tools like ESC/Java to verify the security of application code. For
clients and web services written in F# for the .NET platform, we propose to use F* to verify their correctness.
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We also propose to translate verified F* web applications to JavaScript via a verified compiler that preserves
the semantics of F* programs in JavaScript.

3.6. Design and Verification of next-generation protocols: identity,
blockchains, and messaging
Building on our work on verifying and re-designing pre-existing protocols like TLS and Web Security in
general, with the resources provided by the NEXTLEAP project, we are working on both designing and
verifying new protocols in rapidly emerging areas like identity, blockchains, and secure messaging. These
are all areas where existing protocols, such as the heavily used OAuth protocol, are in need of considerable
re-design in order to maintain privacy and security properties. Other emerging areas, such as blockchains
and secure messaging, can have modifications to existing pre-standard proposals or even a complete ’clean
slate’ design. As shown by Prosecco’s work, newer standards, such as IETF OAuth, W3C Web Crypto, and
W3C Web Authentication API, can have vulnerabilities fixed before standardization is complete and heavily
deployed. We hope that the tools used by Prosecco can shape the design of new protocols even before they are
shipped to standards bodies. We have seen considerable progress in identity with the UnlimitID design and
with messaging via the IETF MLS effort, with new work on blockchain technology underway.

4. Application Domains

4.1. Cryptographic Protocol Libraries
Cryptographic protocols such as TLS, SSH, IPSec, and Kerberos are the trusted base on which the security of
modern distributed systems is built. Our work enables the analysis and verification of such protocols, both in
their design and implementation. Hence, for example, we build and verify models and reference implementa-
tions for well-known protocols such as TLS and SSH, as well as analyze their popular implementations such
as OpenSSL.

4.2. Hardware-based security APIs
Cryptographic devices such as Hardware Security Modules (HSMs) and smartcards are used to protect long-
terms secrets in tamper-proof hardware, so that even attackers who gain physical access to the device cannot
obtain its secrets. These devices are used in a variety of scenarios ranging from bank servers to transportation
cards (e.g. Navigo). Our work investigates the security of commercial cryptographic hardware and evaluates
the APIs they seek to implement.

4.3. Web application security
Web applications use a variety of cryptographic techniques to securely store and exchange sensitive data for
their users. For example, a website may serve pages over HTTPS, authenticate users with a single sign-on
protocol such as OAuth, encrypt user files on the server-side using XML encryption, and deploy client-side
cryptographic mechanisms using a JavaScript cryptographic library. The security of these applications depends
on the public key infrastructure (X.509 certificates), web browsers’ implementation of HTTPS and the same
origin policy (SOP), the semantics of JavaScript, HTML5, and their various associated security standards, as
well as the correctness of the specific web application code of interest. We build analysis tools to find bugs
in all these artifacts and verification tools that can analyze commercial web applications and evaluate their
security against sophisticated web-based attacks.
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5. Highlights of the Year

5.1. Highlights of the Year
• We published 12 papers at top-tier conferences and journals such as S&P (1), POPL (2), Euro S&P

(2), ICFP (3), CSF (1), ESOP (1)

• Our cryptographic library HACL* was incorporated within the Linux kernel, Microsoft WinQuic,
mbedTLS, and Concordium, in addition to the prior deployments in Mozilla Firefox and Tezos
Blockchain

• Catalin Hritcu served as Program Chair of the 9th ACM SIGPLAN International Conference on
Certified Programs and Proofs (CPP)

5.1.1. Awards
• EU Horizon Impact Award 2019 for Karthikeyan Bhargavan for his research on TLS 1.3.

• Distinguished Paper Award at CSF’19 for “Journey Beyond Full Abstraction”

• Distinguished Paper Award at POPL’19 for “Gradual Parametricity, Revisited”

BEST PAPERS AWARDS:

[17]
C. ABATE, R. BLANCO, D. GARG, C. HRIŢCU, M. PATRIGNANI, J. THIBAULT. Journey Beyond Full
Abstraction: Exploring Robust Property Preservation for Secure Compilation, in "CSF 2019 - 32nd IEEE
Computer Security Foundations Symposium", Hoboken, United States, IEEE, June 2019, pp. 256-271, https://
arxiv.org/abs/1807.04603 [DOI : 10.1109/CSF.2019.00025], https://hal.archives-ouvertes.fr/hal-02398915

[16]
M. TORO, E. LABRADA, É. TANTER. Gradual Parametricity, Revisited, in "Proceedings of the ACM on Pro-
gramming Languages", 2019, vol. 3, no POPL, https://arxiv.org/abs/1807.04596 [DOI : 10.1145/3290330],
https://hal.archives-ouvertes.fr/hal-01960553

6. New Software and Platforms

6.1. Cryptosense Analyzer
SCIENTIFIC DESCRIPTION: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool
for cryptographic devices such as smartcards, security tokens and Hardware Security Modules that support the
most widely-used industry standard interface, RSA PKCS#11. Each device implements PKCS#11 in a slightly
different way since the standard is quite open, but finding a subset of the standard that results in a secure device,
i.e. one where cryptographic keys cannot be revealed in clear, is actually rather tricky. Cryptosense Analyzer
analyses a device by first reverse engineering the exact implementation of PKCS#11 in use, then building a
logical model of this implementation for a model checker, calling a model checker to search for attacks, and in
the case where an attack is found, executing it directly on the device. It has been used to find at least a dozen
previously unknown flaws in commercially available devices.

FUNCTIONAL DESCRIPTION: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool
for cryptographic devices such as smartcards,

• Participants: Graham Steel and Romain Bardou

• Contact: Graham Steel

• URL: https://cryptosense.com/

https://arxiv.org/abs/1807.04603
https://arxiv.org/abs/1807.04603
https://hal.archives-ouvertes.fr/hal-02398915
https://arxiv.org/abs/1807.04596
https://hal.archives-ouvertes.fr/hal-01960553
https://cryptosense.com/
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6.2. CryptoVerif
Cryptographic protocol verifier in the computational model

KEYWORDS: Security - Verification - Cryptographic protocol

FUNCTIONAL DESCRIPTION: CryptoVerif is an automatic protocol prover sound in the computational model.
In this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing machine.
CryptoVerif can prove secrecy and correspondences, which include in particular authentication. It provides
a generic mechanism for specifying the security assumptions on cryptographic primitives, which can handle
in particular symmetric encryption, message authentication codes, public-key encryption, signatures, hash
functions, and Diffie-Hellman key agreements. It also provides an explicit formula that gives the probability
of breaking the protocol as a function of the probability of breaking each primitives, this is the exact security
framework.

NEWS OF THE YEAR: We implemented the following features in CryptoVerif:

1) We added to the library of cryptographic primitives several variants of the PRF-ODH (pseudo-random
function oracle Diffie-Hellman) assumption, pre-image resistant and second-preimage resistant hash functions,
IND-CPA encryption with a nonce, IND-CPA and INT-CTXT encryption with a nonce, encryption schemes
that satisfy IND$-CPA instead of IND-CPA.

2) To facilitate modular proofs, we allow querying indistinguishability properties with exactly the same syntax
as the one used to specify indistinguishability assumptions on primitives.

3) To simplify declarations of assumptions on primitives, replications (which model any number of copies of
processes or oracles) can be omitted at the root of indistinguishability assumptions. CryptoVerif adds them
internally, thus inferring the assumption for N independent copies from the assumption for one copy. For
instance, it infers the assumption for encryption with N keys from the assumption for encryption with a single
key.

4) When we delay random number generations, we allow the user to specify expressions for which it is not
necessary to generate the random value, so that the generation of the moved random value can be delayed
further. In particular, we used this extension to prove that the OAEP scheme is IND-CCA2 assuming the
underlying permutation is partial-domain one-way (a famous cryptographic result).

5) CryptoVerif can now remove parts of the code cannot be executed in case the adversary wins the game, by
replacing them with event "AdversaryLoses". That is specially helpful in order to deal with complex cases of
key compromise, e.g. for forward secrecy, by proving authentication by ignoring the compromise, showing
that authentication is preserved in case the key is compromised (because the adversary never wins against
the considered authentication property in case of compromise), and using the authentication to prove secrecy
even in case of compromise. For instance, that allows us to show that the PSK-DHE handshake of TLS 1.3
preserves forward secrecy in case of compromise of the PSK.

6) After a cryptographic transformation, CryptoVerif expands terms into processes, which leads to duplicating
code until the end of the protocol for each test that is expanded. The cryptographic transformation and
the expansion were initially considered as a single transformation. There are now considered as separate
transformations, so that other transformations can be performed in between, in particular to cut some branches
of the code and reduce the code duplication.

These changes are included in CryptoVerif version 2.02 available at https://cryptoverif.inria.fr.

• Participants: Bruno Blanchet and David Cadé

• Contact: Bruno Blanchet

• Publications: Composition Theorems for CryptoVerif and Application to TLS 1.3 - Composition
Theorems for CryptoVerif and Application to TLS 1.3 - A Mechanised Cryptographic Proof of
the WireGuard Virtual Private Network Protocol - A Mechanised Cryptographic Proof of the
WireGuard Virtual Private Network Protocol - Proved Implementations of Cryptographic Protocols
in the Computational Model - Proved Generation of Implementations from Computationally Secure

https://hal.inria.fr/hal-01947959
https://hal.inria.fr/hal-01764527
https://hal.inria.fr/hal-01764527
https://hal.inria.fr/hal-02396640
https://hal.inria.fr/hal-02396640
https://hal.inria.fr/hal-02100345
https://hal.inria.fr/hal-02100345
https://hal.inria.fr/tel-01112630
https://hal.inria.fr/tel-01112630
https://hal.inria.fr/hal-01102382
https://hal.inria.fr/hal-01102382
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Protocol Specifications - Verified Models and Reference Implementations for the TLS 1.3 Standard
Candidate - Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate
- Symbolic and Computational Mechanized Verification of the ARINC823 Avionic Protocols -
Automated Verification for Secure Messaging Protocols and Their Implementations: A Symbolic
and Computational Approach

• URL: http://cryptoverif.inria.fr/

6.3. F*
FStar

KEYWORDS: Programming language - Software Verification

FUNCTIONAL DESCRIPTION: F* is a new higher order, effectful programming language (like ML) designed
with program verification in mind. Its type system is based on a core that resembles System Fw (hence
the name), but is extended with dependent types, refined monadic effects, refinement types, and higher
kinds. Together, these features allow expressing precise and compact specifications for programs, including
functional correctness properties. The F* type-checker aims to prove that programs meet their specifications
using an automated theorem prover (usually Z3) behind the scenes to discharge proof obligations. Programs
written in F* can be translated to OCaml, F#, or JavaScript for execution.

• Participants: Antoine Delignat-Lavaud, Catalin Hritcu, Cedric Fournet, Chantal Keller, Karthikeyan
Bhargavan and Pierre-Yves Strub

• Contact: Catalin Hritcu

• URL: https://www.fstar-lang.org/

6.4. miTLS
KEYWORDS: Cryptographic protocol - Software Verification

FUNCTIONAL DESCRIPTION: miTLS is a verified reference implementation of the TLS protocol. Our code
fully supports its wire formats, ciphersuites, sessions and connections, re-handshakes and resumptions, alerts
and errors, and data fragmentation, as prescribed in the RFCs, it interoperates with mainstream web browsers
and servers. At the same time, our code is carefully structured to enable its modular, automated verification,
from its main API down to computational assumptions on its cryptographic algorithms.

• Participants: Alfredo Pironti, Antoine Delignat-Lavaud, Cedric Fournet, Jean-Karim Zinzindohoué,
Karthikeyan Bhargavan, Pierre-Yves Strub and Santiago Zanella

• Contact: Karthikeyan Bhargavan

• URL: https://github.com/mitls/mitls-fstar

6.5. ProVerif
KEYWORDS: Security - Verification - Cryptographic protocol

FUNCTIONAL DESCRIPTION: ProVerif is an automatic security protocol verifier in the symbolic model (so
called Dolev-Yao model). In this model, cryptographic primitives are considered as black boxes. This protocol
verifier is based on an abstract representation of the protocol by Horn clauses. Its main features are:

It can verify various security properties (secrecy, authentication, process equivalences).

It can handle many different cryptographic primitives, specified as rewrite rules or as equations.

It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded message
space.

https://hal.inria.fr/hal-01102382
https://hal.inria.fr/hal-01102382
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01575923
http://cryptoverif.inria.fr/
https://www.fstar-lang.org/
https://github.com/mitls/mitls-fstar
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NEWS OF THE YEAR: Vincent Cheval and Bruno Blanchet worked on several extensions of ProVerif:
1) support for integer counters, with incrementation and inequality tests, 2) lemmas and axioms to give
intermediate results to ProVerif, which it exploits to help proving subsequent queries, by deriving additional
information in the Horn clauses that it uses to perform the proofs, 3) proofs by induction on the length of the
trace, by giving as lemma the property to prove, but obviously for strictly shorter traces. Detailed soundness
proofs for these extensions are in progress. These features are not released yet.

• Participants: Bruno Blanchet, Marc Sylvestre and Vincent Cheval
• Contact: Bruno Blanchet
• Publications: Automated reasoning for equivalences in the applied pi calculus with barriers - Auto-

mated Reasoning for Equivalences in the Applied Pi Calculus with Barriers - Automated reasoning
for equivalences in the applied pi calculus with barriers - Modeling and Verifying Security Protocols
with the Applied Pi Calculus and ProVerif - Automatic Verification of Security Protocols in the Sym-
bolic Model: The Verifier ProVerif - Verified Models and Reference Implementations for the TLS
1.3 Standard Candidate - Verified Models and Reference Implementations for the TLS 1.3 Standard
Candidate - Automated Verification for Secure Messaging Protocols and Their Implementations: A
Symbolic and Computational Approach - Symbolic and Computational Mechanized Verification of
the ARINC823 Avionic Protocols - Symbolic and Computational Mechanized Verification of the
ARINC823 Avionic Protocols

• URL: http://proverif.inria.fr/

6.6. HACL*
High Assurance Cryptography Library

KEYWORDS: Cryptography - Software Verification

FUNCTIONAL DESCRIPTION: HACL* is a formally verified cryptographic library in F*, developed by the
Prosecco team at Inria Paris in collaboration with Microsoft Research, as part of Project Everest.

HACL stands for High-Assurance Cryptographic Library and its design is inspired by discussions at the
HACS series of workshops. The goal of this library is to develop verified C reference implementations for
popular cryptographic primitives and to verify them for memory safety, functional correctness, and secret
independence.

• Contact: Karthikeyan Bhargavan
• URL: https://github.com/mitls/hacl-star

7. New Results
7.1. Verification of security protocols

Participants: Bruno Blanchet, Karthikeyan Bhargavan, Benjamin Lipp.

Our verification of the WireGuard open source Virtual Private Network (VPN) with CryptoVerif appears at
EuroS&P 2019 [22], [27].

We continued the development of our protocol verification tools ProVerif and CryptoVerif. The new features
of this year are detailed in the section on software.

In the setting of the ANR AnaStaSec project, we worked on the verification of avionic security protocols. More
specifically, in 2015, we had verified the protocol of the Secure Dialog Service using ProVerif and CryptoVerif
and recommended many changes to the specification. The ICAO started to take into account our remarks, and
this year we analyzed a new version of the specification. Our analysis showed that many recommendations still
need to be taken into account. Additionally, we also commented on the recent choice of using DTLS over UDP
to secure the future ATN/IPS (Aeronautical Telecommunication Network / Internet Protocol Suite) network,
which seems very positive. The details of these results are still confidential; they have been provided to ANR.

https://hal.inria.fr/hal-01947972
https://hal.inria.fr/hal-01423742
https://hal.inria.fr/hal-01423742
https://hal.inria.fr/hal-01306440
https://hal.inria.fr/hal-01306440
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01102136
https://hal.inria.fr/hal-01102136
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01527671
https://hal.inria.fr/hal-01527671
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575861
http://proverif.inria.fr/
https://github.com/mitls/hacl-star
https://www.wireguard.com/
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7.2. Verified Software for Cryptographic Web Applications
Participants: Karthikeyan Bhargavan, Benjamin Beurdouche, Denis Merigoux, Jonathan Protzenko.

WebAssembly in a new language runtime that is now supported by all major web browsers and web
application frameworks. We developed a compiler from the Low* subset of the F* programming language to
WebAssembly and used this compiler to translate our HACL* verified cryptographic library to WebAssembly,
hence obtaining the first verified cryptographic library for the Web. We also used this framework to develop and
verify an implementation of the Signal protocol in WebAssembly, and demonstrated how this implementation
can be used as a drop-in replacement for the libsignal-protocol library used in mainstream messaging
applications like Signal, WhatsApp, and Skype.

Our work was published at the IEEE Security and Privacy conference [24]. Our WebAssembly version of
HACL* and our verified Signal implementation were publicly released as open source on GitHub.

7.3. Journey beyond full abstraction
Participants: Carmine Abate, Roberto Blanco, Deepak Garg [MPI-SWS], Catalin Hritcu, Marco Patrignani
[Stanford and CISPA], Jérémy Thibault.

Even for safe languages, all guarantees are lost when interacting with low-level code, for instance when
using low-level libraries. A compromised or malicious library that gets linked in can easily read and
write data and code, jump to arbitrary instructions, or smash the stack, blatantly violating any source-level
abstraction and breaking any guarantee obtained by source-level reasoning. Our goal is to build formally
secure compartmentalizing compilation chains that defend against such attacks. We started by investigating
what it means for a compilation chain to provide secure interoperability between a safe source language
and linked target-level code that is adversarial. In this model, a secure compilation chain ensures that even
linked adversarial target-level code cannot break the security properties of a compiled program any more
than some linked source-level code could. However, the precise class of security properties one chooses to
preserve crucially impacts not only the supported security goals and the strength of the attacker model, but
also the kind of protections the compilation chain has to introduce and the kind of proof techniques one can
use to make sure that the protections are watertight. We are the first to thoroughly explore a large space of
secure compilation criteria based on the preservation against adversarial contexts of various classes of trace
properties such as safety, of hyperproperties such as noninterference, and of relational hyperproperties such as
trace equivalence [17], [10].

7.4. Principles of Program Verification for Arbitrary Monadic Effects
Participants: Kenji Maillard, Danel Ahman [University of Ljubljana], Robert Atkey [University of Strath-
clyde], Guido Martinez, Catalin Hritcu, Exequiel Rivas, Éric Tanter, Antoine Van Muylder, Cezar Andrici.

We devised a principled semantic framework for verifying programs with arbitrary monadic effects in a generic
way with respect to expressive specifications. The starting point are Dijkstra monads, which are monad-like
structures that classify effectful computations satisfying a specification drawn from a monad. Dijkstra monads
have already proven valuable in practice for verifying effectful code, and in particular, they allow the F*
program verifier to compute verification conditions.

We provide the first semantic investigation of the algebraic structure underlying Dijkstra monads [13], [11]
and unveil a close relationship between Dijkstra monads and effect observations, i.e., mappings between a
computational and a specification monad that respect their monadic structure. Effect observations are flexible
enough to provide various interpretations of effects, for instance total vs partial correctness, or angelic vs
demonic nondeterminism. Our semantic investigation relies on a general theory of specification monads
and effect observations, using an enriched notion of relative monads and relative monad morphisms. We
moreover show that a large variety of specification monads can be obtained by applying monad transformers to
various base specification monads, including predicate transformers and Hoare-style pre- and postconditions.
For defining correct monad transformers, we design a language inspired by the categorical analysis of the
relationship between monad transformers and algebras for a monad.
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We also adapt our framework to relational verification [14], [11], i.e., proving relational properties between
multiple runs of one or more programs, such as noninterference or program equivalence. For this we extend
specification monads and effect observations to the relational setting and use them to derive the semantics and
core rules of a relational program logic generically for any monadic effect. Finally, we identify and overcome
conceptual challenges that prevented previous relational program logics from properly dealing with effects
such as exceptions, and are the first to provide a proper semantic foundation and a relational program logic for
exceptions.

7.5. Meta-F*: Proof automation with SMT, Tactics, and Metaprograms
Participants: Guido Martinez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis [Princeton University],
Chris Hawblitzel [Microsoft Research], Catalin Hritcu, Monal Narasimhamurthy [University of Colorado
Boulder], Zoe Paraskevopoulou [Princeton University], Clément Pit-Claudel [MIT], Jonathan Protzenko
[Microsoft Research], Tahina Ramananandro [Microsoft Research], Aseem Rastogi [Microsoft Research],
Nikhil Swamy [Microsoft Research].

We introduced Meta-F*[23], a tactics and metaprogramming framework for the F* program verifier. The main
novelty of Meta-F* is allowing to use tactics and metaprogramming to discharge assertions not solvable by
SMT, or to just simplify them into well-behaved SMT fragments. Plus, Meta-F* can be used to generate
verified code automatically.

Meta-F* is implemented as an F* effect, which, given the powerful effect system of F*, heavily increases
code reuse and even enables the lightweight verification of metaprograms. Metaprograms can be either
interpreted, or compiled to efficient native code that can be dynamically loaded into the F* type-checker
and can interoperate with interpreted code. Evaluation on realistic case studies shows that Meta-F* provides
substantial gains in proof development, efficiency, and robustness.

8. Bilateral Contracts and Grants with Industry
8.1. Bilateral Grants with Industry
8.1.1. Evolution, Semantics, and Engineering of the F* Verification System

Grant from Nomadic Labs - Inria
PIs: Catalin Hritcu and Exequiel Rivas
Duration: March 2019 - April 2023
Abstract: While the F* verification system shows great promise in practice, many challenging
conceptual problems remain to be solved, many of which can directly inform the further evolution
and design of the language. Moreover, many engineering challenges remain in order to build a
truly usable verification system. This proposal promises to help address this by focusing on the
following 5 main topics: (1) Generalizing Dijkstra monads, i.e., a program verification technique for
arbitrary monadic effects; (2) Relational reasoning in F*: devising scalable verification techniques
for properties of multiple program executions (e.g., confidentiality, noninterference) or of multiple
programs (e.g., program equivalence); (3) Making F*’s effect system more flexible, by supporting
tractable forms of effect polymorphism and allowing some of the effects of a computation to be
hidden if they do not impact the observable behavior; (4) Working out more of the F* semantics and
metatheory; (5) Solving the engineering challenges of building a usable verification system.

9. Partnerships and Cooperations
9.1. National Initiatives
9.1.1. ANR
9.1.1.1. AnaStaSec
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Title: Static Analysis for Security Properties (ANR générique 2014.)

Other partners: Inria Paris/EPI Antique, Inria Rennes/EPI Celtique, Airbus Operations SAS,
AMOSSYS, CEA-LIST, TrustInSoft

Duration: January 2015 - September 2019.

Coordinator: Jérôme Féret, EPI Antique, Inria Paris (France)

Participant: Bruno Blanchet

Abstract: The project aims at using automated static analysis techniques for verifying security and
confidentiality properties of critical avionics software.

9.1.1.2. AJACS

Title: AJACS: Analyses of JavaScript Applications: Certification and Security

Other partners: Inria-Rennes/Celtique, Inria-Saclay/Toccata, Inria-Sophia Antipolis/INDES, Impe-
rial College London

Duration: October 2014 - March 2019.

Coordinator: Alan Schmitt, Inria (France)

Participants: Karthikeyan Bhargavan, Bruno Blanchet, Nadim Kobeissi

Abstract: The goal of the AJACS project is to provide strong security and privacy guarantees for web
application scripts. To this end, we propose to define a mechanized semantics of the full JavaScript
language, the most widely used language for the Web, to develop and prove correct analyses for
JavaScript programs, and to design and certify security and privacy enforcement mechanisms.

9.1.1.3. SafeTLS

Title: SafeTLS: La sécurisation de l’Internet du futur avec TLS 1.

Other partners: Université Rennes 1, IRMAR, Inria Sophia Antipolis, SGDSN/ANSSI

Duration: October 2016 - September 2020

Coordinator: Pierre-Alain Fouque, Université de Rennes 1 (France)

Participants: Karthikeyan Bhargavan

Abstract: Our project, SafeTLS, addresses the security of both TLS 1.3 and of TLS 1.2 as they are
(expected to be) used, in three important ways: (1) A better understanding: We will provide a better
understanding of how TLS 1.2 and 1.3 are used in real-world applications; (2) Empowering clients:
By developing a tool that will show clients the quality of their TLS connection and inform them of
potential security and privacy risks; (3) Analyzing implementations: We will analyze the soundness
of current TLS 1.2 implementations and use automated verification to provide a backbone of a secure
TLS 1.3 implementation.

9.1.1.4. TECAP

Title: TECAP: Protocol Analysis - Combining Existing Tools (ANR générique 2017.)

Other partners: Inria Nancy/EPI PESTO, Inria Sophia Antipolis/EPI MARELLE, IRISA, LIX, LSV
- ENS Cachan.

Duration: January 2018 - December 2021

Coordinator: Vincent Cheval, EPI PESTO, Inria Nancy (France)

Participants: Bruno Blanchet, Benjamin Lipp

Abstract: A large variety of automated verification tools have been developed to prove or find attacks
on security protocols. These tools differ in their scope, degree of automation, and attacker models.
The aim of this project is to get the best of all these tools, meaning, on the one hand, to improve
the theory and implementations of each individual tool towards the strengths of the others and, on
the other hand, build bridges that allow the cooperations of the methods/tools. We will focus in this
project on the tools CryptoVerif, EasyCrypt, Scary, ProVerif, Tamarin, AKiSs and APTE.
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9.2. European Initiatives
9.2.1. FP7 & H2020 Projects
9.2.1.1. ERC Consolidator Grant: CIRCUS

Title: CIRCUS: An end-to-end verification architecture for building Certified Implementations of
Robust, Cryptographically Secure web applications

Duration: April 2016 - March 2021

Coordinator: Karthikeyan Bhargavan, Inria

The security of modern web applications depends on a variety of critical components including
cryptographic libraries, Transport Layer Security (TLS), browser security mechanisms, and single
sign-on protocols. Although these components are widely used, their security guarantees remain
poorly understood, leading to subtle bugs and frequent attacks. Rather than fixing one attack at a
time, we advocate the use of formal security verification to identify and eliminate entire classes of
vulnerabilities in one go.

CIRCUS proposes to take on this challenge, by verifying the end-to-end security of web applications
running in mainstream software. The key idea is to identify the core security components of web
browsers and servers and replace them by rigorously verified components that offer the same
functionality but with robust security guarantees.

9.2.1.2. ERC Starting Grant: SECOMP

Title: SECOMP: Efficient Formally Secure Compilers to a Tagged Architecture

Duration: Jan 2017 - December 2021

Coordinator: Catalin Hritcu, Inria

Abstract: The SECOMP project is aimed at leveraging emerging hardware capabilities for fine-
grained protection to build the first, efficient secure compilation chains for realistic low-level
programming languages (the C language, and Low* a safe subset of C embedded in F* for
verification). These compilation chains will provide a secure semantics for all programs and will
ensure that high-level abstractions cannot be violated even when interacting with untrusted low-level
code. To achieve this level of security without sacrificing efficiency, our secure compilation chains
target a tagged architecture, which associates a metadata tag to each word and efficiently propagates
and checks tags according to software-defined rules. We will use property-based testing and formal
verification to provide high confidence that our compilers are indeed secure.

9.2.1.3. NEXTLEAP (304)

Title: NEXTLEAP: NEXT generation Legal Encryption And Privacy

Programm: H2020

Duration: January 2016 - December 2018

Coordinator: Harry Halpin, Inria

Other partners: IMDEA, University College London, CNRS, IRI, and Merlinux

The objective of the NEXTLEAP project is to build the fundamental interdisciplinary internet sci-
ence necessary to create decentralized, secure, and rights-preserving protocols for the next genera-
tion of collective awareness platforms. The long-term goal of NEXTLEAP is to have Europe take the
“next leap ahead” of the rest of the world by solving the fundamental challenge of determining how
both to scientifically build and how to help citizens and institutions adopt open-source decentralized
and privacy-preserving digital social platforms in contrast to proprietary centralized cloud-based ser-
vices and pervasive surveillance that function at the expense of rights and technological sovereignty.
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9.3. International Initiatives
9.3.1. Inria International Partners
9.3.1.1. Informal International Partners

We have a range of long- and short-term collaborations with various universities and research labs. We
summarize them by project:

• TLS analysis: Microsoft Research (Cambridge), Mozilla, University of Rennes

• F*: Microsoft Research (Redmond, Cambridge, Bangalore), MSR-Inria, CMU, MIT, University of
Ljubljana, Nomadic Labs, Zen Protocol, Princeton University

• SECOMP: MPI-SWS, CISPA, Stanford University, CMU, University of Pennsylvania, Portland
State University, University of Virginia, University of Iai

• Micro-Policies: University of Pennsylvania, Portland State University, MIT, Draper Labs, Dover
Microsystems

9.3.2. Participation in Other International Programs
9.3.2.1. SSITH/HOPE

Title: Advanced New Hardware Optimized for Policy Enforcement, A New HOPE

Program: DARPA SSITH

Duration: December 2017 - February 2021

Coordinator: Charles Stark Draper Laboratory

Other Participants: Inria Paris, University of Pennsylvania, MIT, Portland State University, Dover
Microsystems, DornerWorks

Participants from Inria Prosecco: Catalin Hritcu, Roberto Blanco, Jérémy Thibault

Abstract: A New HOPE builds on results from the Inherently Secure Processor (ISP) project that has
been internally funded at Draper. Recent architectural improvements decouple the tagged architec-
ture from the processor pipeline to improve performance and flexibility for new processors. HOPE
securely maintains metadata for each word in application memory and checks every instruction
against a set of installed security policies. The HOPE security architecture exposes tunable param-
eters that support Performance, Power, Area, Software compatibility and Security (PPASS) search
space exploration. Flexible software-defined security policies cover all 7 SSITH CWE vulnerability
classes, and policies can be tuned to meet PPASS requirements; for example, one can trade granular-
ity of security checks against performance using different policy configurations. HOPE will design
and formalize a new high-level domain-specific language (DSL) for defining security policies, based
on previous research and on extensive experience with previous policy languages. HOPE will for-
mally verify that installed security policies satisfy system-wide security requirements. A secure boot
process enables policies to be securely updated on deployed HOPE systems. Security policies can
adapt based on previously detected attacks. Over the multi-year, multi-million dollar Draper ISP
project, the tagged security architecture approach has evolved from early prototypes based on results
from the DARPA CRASH program towards easier integration with external designs, and is better
able to scale from micro to server class implementations. A New HOPE team is led by Draper and
includes faculty from University of Pennsylvania (Penn), Portland State University (PSU), Inria, and
MIT, as well as industry collaborators from DornerWorks and Dover Microsystems. In addition to
Draper’s in-house expertise in hardware design, cyber-security (defensive and offensive, hardware
and software) and formal methods, the HOPE team includes experts from all domains relevant to
SSITH, including (a) computer architecture: DeHon (Penn), Shrobe (MIT); (b) formal methods in-
cluding programming languages and security: Pierce (Penn), Tolmach (PSU), Hritcu (Inria); and (c)
operating system integration (DornerWorks). Dover Microsystems is a spin-out from Draper that
will commercialize concepts from the Draper ISP project.
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9.3.2.2. Everest Expedition

Program: Microsoft Expedition and MSR-Inria Collaborative Research Project

Expedition Participants: Microsoft Research (Cambridge, Redmond, Bangalore), Inria, MSR-Inria,
CMU, University of Edinburgh

Duration of current MSR-Inria Project: October 2017 – October 2020

Participants from Inria Prosecco: Karthikeyan Bhargavan, Catalin Hritcu, Danel Ahman, Benjamin
Beurdouche, Victor Dumitrescu, Nadim Kobeissi, Théo Laurent, Guido Martínez, Denis Merigoux,
Marina Polubelova, Jean-Karim Zinzindohoué

Participants from other Inria teams: David Pichardie (Celtique), Jean-Pierre Talpin (TEA)

Abstract: The HTTPS ecosystem (HTTPS and TLS protocols, X.509 public key infrastructure,
crypto algorithms) is the foundation on which Internet security is built. Unfortunately, this ecosystem
is brittle, with headline-grabbing attacks such as FREAK and LogJam and emergency patches many
times a year.

Project Everest addresses this problem by constructing a high-performance, standards-compliant,
formally verified implementation of components in HTTPS ecosystem, including TLS, the main
protocol at the heart of HTTPS, as well as the main underlying cryptographic algorithms such as
AES, SHA2 or X25519.

At the TLS level, for instance, we are developing new implementations of existing and forthcoming
protocol standards and formally proving, by reduction to cryptographic assumptions on their core
algorithms, that our implementations provide a secure-channel abstraction between the communi-
cating endpoints. Implementations of the core algorithms themselves are also verified, producing
performant portable C code or highly optimized assembly language.

We aim for our verified components to be drop-in replacements suitable for use in mainstream web
browsers, servers, and other popular tools and are actively working with the community at large to
improve the ecosystem.

https://project-everest.github.io

9.4. International Research Visitors
9.4.1. Visits of International Scientists

• Éric Tanter (University of Chile) joined Inria as a Visiting Professor from Jul 2018 to March 2019 and
from August to December 2019; he gave various seminars at Inria including one entitled “Gradual
Parametricity, Revisited”;

• Li-yao Xia (University of Pennsylvania) visited Prosecco on 7 January and gave a talk entitled “From
C to Interaction Trees”;

• Matías Toro (University of Chile) visited Prosecco on 9 January and gave a talk entitled “Type-
Driven Gradual Security with References”;

• Deepak Garg (MPI-SWS) visited Prosecco on 29 January and 20 November;

• Gilles Barthe (MPI-SP) visited Prosecco on various occasions: 29 January, 3–6 June, 9–13 Sept, and
7–9 October 2019;

• Jeremy Siek (Indiana University) visited Prosecco on 21 February and gave a seminar entitled
“Toward Efficient Gradual Typing”;

• Andrew Tolmach (Portland State University) visted Prosecco on 8–12 April and gave a seminar on
“Enforcing C-level security policies using machine-level tags”;

• Guido Martinez (CIFASIS-CONICET Rosario) visited Prosecco on various occasions: April 15–19,
ICFP, 30 September to 12 October

https://project-everest.github.io
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• Nikos Vasilakis (University of Pennsylvania) visited Prosecco on 15–19 July and gave a seminar on
“Retrofitting Security, Module by Module”;

• Clement Pit-Claudel (MPI) visited Prosecco on 14 August;
• Kevin Liao (MPI-SP) visited Prosecco on various occasions and gave a seminar on “ILC: A Calculus

for Composable, Computational Cryptography”;
• Tahina Ramananandro (Microsoft Research) visited Prosecco on 30 September to 15 October and

gave a seminar on “EverParse”;
• Nik Swamy (Microsoft Research) and Aymeric Fromherz (CMU) visited Prosecco from 7–11

October and gave a seminar on “Verifying a mixture of C and assembly code with Low* and Vale”;
• Jonathan Protzenko (Microsoft Research) visited Prosecco on 30 September to 15 October and gave

a seminar on “The EverCrypt verified cryptographic provider”;
• Jakob von Raumer (University of Nottingham) visited Prosecco on 23 October and gave a seminar

on “Indexed Inductive Types”;
• Bas Spitters (COBRA, Aarhus University) visited Prosecco on 25–29 November and gave a seminar

on “ConCert: A Smart Contract Certification Framework in Coq”;
• Adrien Koutsos (MPI-SP) visited Prosecco on 5 November and gave a talk on “5G-AKA authenti-

cation protocol privacy”;
• Akram El-Korashy (MPI-SWS) visited Prosecco on 20 November;
• Shin-ya Katsumata (NII, Tokyo, Japan) visited Prosecco on 25–28 November;
• Ian Miers (Johns Hopkins University) visited Prosecco on 29 November and gave a seminar on

“Zcash, Blockchains, and the possibilities for formal verification with zero-knowledge”;

9.4.1.1. Internships

• Antoine Van Muylder (Paris 7): from April to September 2019 – advised by Catalin Hritcu, Exequiel
Rivas, and Kenji Maillard

• Guillaume Gette: from April to September 2019 – advised by Karthikeyan Bhargavan
• Mikhail Volkhov: from April to August 2019 – advised by Karthikeyan Bhargavan and Prasad

Naldurg

9.4.2. Visits to International Teams
• Catalin Hritcu visited EPFL Lausanne on 25–27 September;
• Catalin Hritcu, Carmine Abate, Roberto Blanco, and Jeremy Thibault visited MPI-SWS in Saar-

brücken on 18–22 October and 1–3 December;
• Catalin Hritcu visited Chalmers University in Gothenburg on 4–6 December;

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events: Organisation
10.1.1.1. General Chair, Scientific Chair

• Catalin Hritcu is the Steering Committee Chair of the Workshop on Principles of Secure Compilation
(PriSC)

• Catalin Hritcu is the main organizer a Dagstuhl Seminar on Secure Compilation (20201)
• Karthikeyan Bhargavan co-chaired the Workshop on Secure Messaging at EUROCRYPT 2019

10.1.1.2. Member of the Organizing Committees
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• Catalin Hritcu is a Steering Committee Member of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs (CPP)

10.1.2. Scientific Events: Selection
10.1.2.1. Chair of Conference Program Committees

• Catalin Hritcu served as Program Chair of the 9th ACM SIGPLAN International Conference on
Certified Programs and Proofs (CPP)

10.1.2.2. Member of the Conference Program Committees

• Karthikeyan Bhargavan was PC member of CCS 2019

• Bruno Blanchet was PC member of CSF 2019

• Catalin Hritcu was PC member of RV 2019, SecDev 2019, CSF 2020

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

Associate Editor

– of the International Journal of Applied Cryptography (IJACT) – Inderscience Publishers:
Bruno Blanchet

10.1.4. Invited Talks
• Karthikeyan Bhargavan gave invited talks at ERCIM Rome, FSTTCS Mumbai, ICISS Hyderabad,

• Catalin Hritcu gave invited talks at EPFL Lausanne, Ruhr University Bochum, MPI-SWS, and
Chalmers University;

10.1.5. Leadership within the Scientific Community
• Catalin Hritcu served as the Artifact Evaluation Co-Chair for POPL 2018 and POPL 2019

10.1.6. Scientific Expertise
• Bruno Blanchet is a member of the specialized temporary scientific committee of ANSM (Agence

nationale de sécurité du médicament et des produits de santé), on the cybersecurity of software
medical devices.

• Bruno Blanchet was a scientific consultant for Nomadic Labs, regarding the development of the
blockchain Tezos.

• Karthikeyan Bhargavan was scientific consultant for Nomadic Labs, regarding verified cryptographic
software.

10.1.7. Research Administration
• Bruno Blanchet was a member of the hiring scientific jury for Inria researchers (chargé de recherche)

of the Inria Paris center.

• Bruno Blanchet was a representative of Inria Paris at the DIM RFSI (Domaine d’Intérêt Majeur,
Réseau Francilien en Sciences Informatiques).

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

• Master: Bruno Blanchet, Cryptographic protocols: formal and computational proofs, 18h equivalent
TD, master M2 MPRI, université Paris VII

• Master: Karthikeyan Bhargavan, Cryptographic protocols: formal and computational proofs, 18h
equivalent TD, master M2 MPRI, université Paris VII



Project-Team PROSECCO 21

• PhD: Karthikeyan Bhargavan, Verified Crypto for Verified Protocols, Sibenik Summer School on
real-world crypto and privacy, 17-21 June, 2019

• PhD: Catalin Hritcu, Program Verification with F* course at Summer School on Verification
Technology, Systems, and Applications, VSTA 2019, 1-5 July 2019 at University of Luxembourg

• PhD: Catalin Hritcu, Writing and Verifying Functional Programs in Coq course at Summer School
on Cryptography, Blockchain, and Program Verification, Mathinfoly 2019, 24-31 August 2019 at
INSA, Lyon

10.2.2. Supervision
• PhD in progress: Benjamin Lipp, On Mechanised Cryptographic Proofs of Protocols and their Link

with Verified Implementations, ENS Paris, since October 2018, supervised by Bruno Blanchet and
Karthikeyan Bhargavan.

• PhD in progress: Benjamin Beurdouche, Formal Verification for Real-World Cryptographic Proto-
cols, PSL, since September 2016, supervised by Karthikeyan Bhargavan.

• PhD in progress: Natalia Kulatova, Formal Analysis of Security Devices, PSL, since September
2017, supervised by Karthikeyan Bhargavan and Graham Steel.

• PhD in progress: Marina Polubelova, Formal Verification of a Cryptographic Library, PSL, since
September 2017, supervised by Karthikeyan Bhargavan.

• PhD in progress: Denis Merigoux, Verification framework for performance-oriented memory-safe
programming languages, since September 2018, supervised by Karthikeyan Bhargavan and Jonathan
Protzenko.

• PhD: Kenji Maillard, on Principles of Program Verification for Arbitrary Monadic Effects, started
January 2017, supervised by Catalin Hritcu

• PhD in progress: Carmine Abate, The Formal Foundations of Secure Compilation, since June 2018,
advised by Catalin Hritcu

• PhD in progress: Jérémy Thibault, Secure Compartmentalizing Compilation to a Tagged Architec-
ture, from August 2018, advised by Catalin Hritcu

• PhD in progress: Guido Martínez (CIFASIS-CONICET Rosario), Metatheory for Semi-Automatic
Verification of Effectful Programs, from April 2017, advised by Mauro Jaskelioff (CIFASIS-
CONICET Rosario) and Catalin Hritcu

10.2.3. Juries
• Bruno Blanchet was member of the PhD jury of Adrien Koutsos (ENS Paris-Saclay).
• Karthikeyan Bhargavan was member of the PhD jury of Joseph Lallemand (Univ. Lorraine) and

Guido Martinez (Univ Stuttgart).
• Catalin Hritcu was a discussion leader for the Licentiate defense of Maximilian Algehed (Chalmers

University);

10.3. Popularization
10.3.1. Articles and contents

• Catalin Hritcu contributed an article on Secure Compilation to the SIGPLAN PL Perspectives blog
• Karthikeyan Bhargavan published a paper in Communications of the ACM
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C. ABATE, R. BLANCO, D. GARG, C. HRIŢCU, M. PATRIGNANI, J. THIBAULT. Journey Beyond Full
Abstraction: Exploring Robust Property Preservation for Secure Compilation, in "CSF 2019 - 32nd IEEE
Computer Security Foundations Symposium", Hoboken, United States, IEEE, June 2019, pp. 256-271, https://
arxiv.org/abs/1807.04603 [DOI : 10.1109/CSF.2019.00025], https://hal.archives-ouvertes.fr/hal-02398915.

[18] R. BLANCO, D. MILLER, A. MOMIGLIANO. Property-Based Testing via Proof Reconstruction, in "PPDP
2019 - 21st International Symposium on Principles and Practice of Programming Languages", Porto, Portugal,
ACM Press, October 2019, pp. 1-13 [DOI : 10.1145/3354166.3354170], https://hal.inria.fr/hal-02368931

[19] R. CRUZ, É. TANTER. Polymorphic Relaxed Noninterference, in "SecDev 2019 : IEEE Secure Development
Conference", McLean, VA, United States, IEEE, 2019, pp. 101-113 [DOI : 10.1109/SECDEV.2019.00021],
https://hal.archives-ouvertes.fr/hal-02399576

[20] T. DÍAZ, F. OLMEDO, É. TANTER. A Mechanized Formalization of GraphQL, in "CPP 2020 - 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs", New Orleans, United States, January
2020 [DOI : 10.1145/3372885.3373822], https://hal.archives-ouvertes.fr/hal-02422532

[21] N. KOBEISSI, G. NICOLAS, K. BHARGAVAN. Noise Explorer: Fully Automated Modeling and Verification
for Arbitrary Noise Protocols, in "EuroS&P 2019 - 4th IEEE European Symposium on Security and Privacy",
Stockholm, Sweden, June 2019, https://hal.inria.fr/hal-01948964

https://hal.archives-ouvertes.fr/hal-02399594
https://arxiv.org/abs/1903.01237
https://arxiv.org/abs/1903.01237
https://hal.archives-ouvertes.fr/hal-02398919
https://arxiv.org/abs/1907.05244
https://arxiv.org/abs/1907.05244
https://hal.archives-ouvertes.fr/hal-02398927
https://hal.inria.fr/hal-02189128
https://arxiv.org/abs/1807.04596
https://hal.archives-ouvertes.fr/hal-01960553
https://arxiv.org/abs/1807.04603
https://arxiv.org/abs/1807.04603
https://hal.archives-ouvertes.fr/hal-02398915
https://hal.inria.fr/hal-02368931
https://hal.archives-ouvertes.fr/hal-02399576
https://hal.archives-ouvertes.fr/hal-02422532
https://hal.inria.fr/hal-01948964


24 Activity Report INRIA 2019

[22] B. LIPP, B. BLANCHET, K. BHARGAVAN. A Mechanised Cryptographic Proof of the WireGuard Virtual
Private Network Protocol, in "4th IEEE European Symposium on Security and Privacy", Stockholm, Sweden,
IEEE Computer Society, June 2019, pp. 231-246, https://hal.inria.fr/hal-02396640

[23] G. MARTÍNEZ, D. AHMAN, V. DUMITRESCU, N. GIANNARAKIS, C. HAWBLITZEL, C. HRIŢCU, M.
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