
2020
ACTIVITY REPORT

Project-Team

ANTIQUE

RESEARCH CENTRE

Paris

Static Analysis by Abstract Interpretation

IN COLLABORATION WITH: Département d’Informatique de l’Ecole
Normale Supérieure

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME

Proofs and Verification

Contents

Project-Team ANTIQUE 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 4
3.1 Semantics . 4
3.2 Abstract interpretation and static analysis . 4
3.3 Applications of the notion of abstraction in semantics . 5
3.4 From properties to explanations . 5

4 Application domains 6
4.1 Verification of safety critical embedded software . 6
4.2 Static analysis of software components and libraries . 7
4.3 Models of mechanistic interactions between proteins . 7
4.4 Consensus . 8
4.5 Smart contracts . 8
4.6 Staticanalysis of data science software . 8

5 Social and environmental responsibility 9
5.1 Impact of research results . 9

6 Highlights of the year 9

7 New software and platforms 9
7.1 New software . 9

7.1.1 APRON . 9
7.1.2 Astrée . 9
7.1.3 AstréeA . 10
7.1.4 ClangML . 11
7.1.5 FuncTion . 11
7.1.6 HOO . 11
7.1.7 MemCAD . 12
7.1.8 KAPPA . 12
7.1.9 QUICr . 12
7.1.10 Zarith . 13
7.1.11 PYPPAI . 13

8 New results 13
8.1 Shape Analysis . 13
8.2 Relational Static Analysis . 14
8.3 Reduced product . 14
8.4 Static Analysis of Probabilistic Programming Languages and Optimization Algorithms . . . 15
8.5 Static Analysis of Neural Networks . 16
8.6 Reductions between synchronous and asynchronous programming abstractions 16
8.7 Modeling . 18
8.8 Smart contracts . 19

9 Bilateral contracts and grants with industry 20
9.1 Bilateral contracts with industry . 20

9.1.1 Follow up to the ANASTASEC project . 20
9.1.2 Disco project with Tezos . 20
9.1.3 Exploratory collaboration with Airbus on static analysis for machine learning 21

http://www.di.ens.fr/~feret/anastasec/

10 Partnerships and cooperations 21
10.1 International initiatives . 21

10.1.1 Inria international partners . 21
10.2 International research visitors . 21

10.2.1 Visits of international scientists . 21
10.3 European initiatives . 21

10.3.1 FP7 & H2020 Projects . 21
10.4 National initiatives . 22

10.4.1 ANASTASEC . 22
10.4.2 DCore . 23
10.4.3 REPAS . 24
10.4.4 SAFTA . 24
10.4.5 VERIAMOS . 24

11 Dissemination 25
11.1 Promoting scientific activities . 25

11.1.1 Scientific events: organisation . 25
11.1.2 Scientific events: selection . 25
11.1.3 Journal . 26
11.1.4 Invited talks . 27
11.1.5 Leadership within the scientific community . 27
11.1.6 Research administration . 27

11.2 Teaching - Supervision - Juries . 28
11.2.1 Teaching . 28
11.2.2 Supervision . 28
11.2.3 Juries . 28

11.3 Popularization . 29
11.3.1 Internal or external Inria responsibilities . 29
11.3.2 Articles and contents . 29

12 Scientific production 29
12.1 Major publications . 29
12.2 Publications of the year . 30
12.3 Cited publications . 31

http://www.di.ens.fr/~feret/anastasec/

Project ANTIQUE 1

Project-Team ANTIQUE

Creation of the Team: 2014 January 01, updated into Project-Team: 2015 April 01

Keywords

Computer sciences and digital sciences

A2. – Software

A2.1. – Programming Languages

A2.1.1. – Semantics of programming languages

A2.1.7. – Distributed programming

A2.1.12. – Dynamic languages

A2.2.1. – Static analysis

A2.3. – Embedded and cyber-physical systems

A2.3.1. – Embedded systems

A2.3.2. – Cyber-physical systems

A2.3.3. – Real-time systems

A2.4. – Formal method for verification, reliability, certification

A2.4.1. – Analysis

A2.4.2. – Model-checking

A2.4.3. – Proofs

A2.6.1. – Operating systems

A4.4. – Security of equipment and software

A4.5. – Formal methods for security

Other research topics and application domains

B1.1. – Biology

B1.1.8. – Mathematical biology

B1.1.10. – Systems and synthetic biology

B5.2. – Design and manufacturing

B5.2.1. – Road vehicles

B5.2.2. – Railway

B5.2.3. – Aviation

B5.2.4. – Aerospace

B6.1. – Software industry

B6.1.1. – Software engineering

B6.1.2. – Software evolution, maintenance

B6.6. – Embedded systems

https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Inria Annual Report 2020

1 Team members, visitors, external collaborators

Research Scientists

• Xavier Rival [Team leader, Inria, Senior Researcher, HDR]

• Vincent Danos [CNRS, Senior Researcher, HDR]

• Cezara Dragoi [Inria, Researcher, until Aug 2020]

• Jérôme Feret [Inria, Researcher]

• Caterina Urban [Inria, Researcher]

Post-Doctoral Fellows

• Hamza El Khalloufi [Inria, from Oct 2020]

• Adrien Husson [Inria]

PhD Students

• Marc Chevalier [École Normale Supérieure de Paris, until Nov 2020]

• Josselin Giet [École Normale Supérieure de Paris, from Sep 2020]

• Patricio Inzaghi [Inria]

• Denis Mazzucato [Inria, from Oct 2020]

• Olivier Nicole [CEA]

• Albin Salazar [Inria]

• Ignacio Tiraboschi [Inria, from Sep 2020]

Technical Staff

• Tie Cheng [Inria, Engineer]

• Yves Stan Le Cornec [Inria, Engineer, until Mar 2020]

• Sebastien Légaré [Inria, Engineer, from Mar 2020]

• Thierry Martinez [Inria, Engineer]

• Anfu Tang [Inria, Engineer, Feb 2020]

Interns and Apprentices

• Alain Delaet–Tixeuil [École Normale Supérieure de Lyon, from Mar 2020 until Jul 2020]

• Serge Durand [École Normale Supérieure de Paris, from Jun 2020 until Aug 2020]

• Noémie Fong [École Normale Supérieure de Paris, Intern, From October 2020 until July 2021, Part
time]

• Noémie Fong [École Normale Supérieure de Paris, Intern, From March 2020 until July 2020]

• Octave Hazard [École Normale Supérieure de Paris, Intern, From April 2020 until August 2020]

Project ANTIQUE 3

Administrative Assistant

• Nathalie Gaudechoux [Inria]

Visiting Scientist

• Marco Zanella [Université de Padoue - Italie, from May 2020 until Aug 2020]

External Collaborator

• Pierre Boutillier [Self-employed]

2 Overall objectives

Our group focuses on developing automated techniques to compute semantic properties of programs and
other systems with a computational semantics in general. Such properties include (but are not limited to)
important classes of correctness properties.

Verifying safety critical systems (such as avionics systems) is an important motivation to compute
such properties. Indeed, a fault in an avionics system, such as a runtime error in the fly-by-wire command
software, may cause an accident, with loss of life. As these systems are also very complex and are
developed by large teams and maintained over long periods, their verification has become a crucial
challenge. Safety critical systems are not limited to avionics: software runtime errors in cruise control
management systems were recently blamed for causing unintended acceleration in certain Toyota models
(the case was settled with a 1.2 billion dollars fine in March 2014, after years of investigation and several
trials). Similarly, other transportation systems (railway), energy production systems (nuclear power plants,
power grid management), medical systems (pacemakers, surgery and patient monitoring systems), and
value transfers in decentralized systems (smart contracts), rely on complex software, which should be
verified.

Beyond the field of embedded systems, other pieces of software may cause very significant harm in the
case of bugs, as demonstrated by the Heartbleed security hole: due to a wrong protocol implementation,
many websites could leak private information, over years.

An important example of semantic properties is the class of safety properties. A safety property
typically specifies that some (undesirable) event will never occur, whatever the execution of the program
that is considered. For instance, the absence of runtime error is a very important safety property. Other
important classes of semantic properties include liveness properties (i.e., properties that specify that
some desirable event will eventually occur) such as termination and security properties, such as the
absence of information flows from private to public channels.

All these software semantic properties are not decidable, as can be shown by reduction to the halting
problem. Therefore, there is no chance to develop any fully automatic technique able to decide, for any
system, whether or not it satisfies some given semantic property.

The classic development techniques used in industry involve testing, which is not sound, as it
only gives information about a usually limited test sample: even after successful test-based validation,
situations that were untested may generate a problem. Furthermore, testing is costly in the long term,
as it should be re-done whenever the system to verify is modified. Machine-assisted verification is
another approach which verifies human specified properties. However, this approach also presents a
very significant cost, as the annotations required to verify large industrial applications would be huge.

By contrast, the antique group focuses on the design of semantic analysis techniques that should be
sound (i.e., compute semantic properties that are satisfied by all executions) and automatic (i.e., with no
human interaction), although generally incomplete (i.e., not able to compute the best —in the sense of:
most precise— semantic property). As a consequence of incompleteness, we may fail to verify a system
that is actually correct. For instance, in the case of verification of absence of runtime error, the analysis
may fail to validate a program, which is safe, and emit false alarms (that is reports that possibly dangerous
operations were not proved safe), which need to be discharged manually. Even in this case, the analysis
provides information about the alarm context, which may help disprove it manually or refine the analysis.

4 Inria Annual Report 2020

The methods developed by the antique group are not limited to the analysis of software. We also
consider complex biological systems (such as models of signaling pathways, i.e. cascades of protein
interactions, which enable signal communication among and within cells), described in higher level
languages, and use abstraction techniques to reduce their combinatorial complexity and capture key
properties so as to get a better insight in the underlying mechanisms of these systems.

3 Research program

3.1 Semantics

Semantics plays a central role in verification since it always serves as a basis to express the properties
of interest, that need to be verified, but also additional properties, required to prove the properties of
interest, or which may make the design of static analysis easier.

For instance, if we aim for a static analysis that should prove the absence of runtime error in some
class of programs, the concrete semantics should define properly what error states and non error states
are, and how program executions step from a state to the next one. In the case of a language like C, this
includes the behavior of floating point operations as defined in the IEEE 754 standard. When considering
parallel programs, this includes a model of the scheduler, and a formalization of the memory model.

In addition to the properties that are required to express the proof of the property of interest, it
may also be desirable that semantics describe program behaviors in a finer manner, so as to make
static analyses easier to design. For instance, it is well known that, when a state property (such as the
absence of runtime error) is valid, it can be established using only a state invariant (i.e., an invariant
that ignores the order in which states are visited during program executions). Yet searching for trace
invariants (i.e., that take into account some properties of program execution history) may make the static
analysis significantly easier, as it will allow it to make finer case splits, directed by the history of program
executions. To allow for such powerful static analyses, we often resort to a non standard semantics, which
incorporates properties that would normally be left out of the concrete semantics.

3.2 Abstract interpretation and static analysis

Once a reference semantics has been fixed and a property of interest has been formalized, the definition
of a static analysis requires the choice of an abstraction. The abstraction ties a set of abstract predicates to
the concrete ones, which they denote. This relation is often expressed with a concretization function that
maps each abstract element to the concrete property it stands for. Obviously, a well chosen abstraction
should allow one to express the property of interest, as well as all the intermediate properties that are
required in order to prove it (otherwise, the analysis would have no chance to achieve a successful
verification). It should also lend itself to an efficient implementation, with efficient data-structures
and algorithms for the representation and the manipulation of abstract predicates. A great number of
abstractions have been proposed for all kinds of concrete data types, yet the search for new abstractions is
a very important topic in static analysis, so as to target novel kinds of properties, to design more efficient
or more precise static analyses.

Once an abstraction is chosen, a set of sound abstract transformers can be derived from the concrete
semantics and that account for individual program steps, in the abstract level and without forgetting
any concrete behavior. A static analysis follows as a result of this step by step approximation of the
concrete semantics, when the abstract transformers are all computable. This process defines an abstract
interpretation [30]. The case of loops requires a bit more work as the concrete semantics typically relies
on a fixpoint that may not be computable in finitely many iterations. To achieve a terminating analysis we
then use widening operators [30], which over-approximate the concrete union and ensure termination.

A static analysis defined that way always terminates and produces sound over-approximations of the
programs behaviors. Yet, these results may not be precise enough for verification. This is where the art of
static analysis design comes into play through, among others:

• the use of more precise, yet still efficient enough abstract domains;

• the combination of application-specific abstract domains;

Project ANTIQUE 5

• the careful choice of abstract transformers and widening operators.

3.3 Applications of the notion of abstraction in semantics

In the previous subsections, we sketched the steps in the design of a static analyzer to infer some family
of properties, which should be implementable, and efficient enough to succeed in verifying non trivial
systems.

The same principles can be applied successfully to other goals. In particular, the abstract interpreta-
tion framework should be viewed as a very general tool to compare different semantics, not necessarily
with the goal of deriving a static analyzer. Such comparisons may be used in order to prove two semantics
equivalent (i.e., one is an abstraction of the other and vice versa), or that a first semantics is strictly
more expressive than another one (i.e., the latter can be viewed an abstraction of the former, where
the abstraction actually makes some information redundant, which cannot be recovered). A classical
example of such comparison is the classification of semantics of transition systems [29], which provides
a better understanding of program semantics in general. For instance, this approach can be applied to
get a better understanding of the semantics of a programming language, but also to select which concrete
semantics should be used as a foundation for a static analysis, or to prove the correctness of a program
transformation, compilation or optimization.

3.4 From properties to explanations

In many application domains, we can go beyond the proof that a program satisfies its specification.
Abstractions can also offer new perspectives to understand how complex behaviors of programs emerge
from simpler computation steps. Abstractions can be used to find compact and readable representations
of sets of traces, causal relations, and even proofs. For instance, abstractions may decipher how the col-
lective behaviors of agents emerge from the orchestration of their individual ones in distributed systems
(such as consensus protocols, models of signaling pathways). Another application is the assistance for
the diagnostic of alarms of a static analyzer.

Complex systems and software have often times intricate behaviors, leading to executions that are
hard to understand for programmers and also difficult to reason about with static analyzers. Shared
memory and distributed systems are notorious for being hard to reason about due to the interleaving
of actions performed by different processes and the non-determinism of the network that might lose,
corrupt, or duplicate messages. Reduction theorems, e.g., Lipton’s theorem, have been proposed to
facilitate reasoning about concurrency, typically transforming a system into one with a coarse-grained
semantics that usually increases the atomic sections. We investigate reduction theorems for distributed
systems and ways to compute the coarse-grained counter part of a system automatically. Compared
with shared memory concurrency, automated methods to reason about distributed systems have been
less investigated in the literature. We take a programming language approach based on high-level
programming abstractions. We focus on partially-synchronous communication closed round-based
models, introduced in the distributed algorithms community for its simpler proof arguments. The high-
level language is compiled into a low-level (asynchronous) programming language. Conversely, systems
defined under asynchronous programming paradigms are decompiled into the high-level programming
abstractions. The correctness of the compilation/decompilation process is based on reduction theorems
(in the spirit of Lipton and Elrad-Francez) that preserve safety and liveness properties.

In models of signaling pathways, collective behavior emerges from competition for common resources,
separation of scales (time/concentration), non linear feedback loops, which are all consequences of
mechanistic interactions between individual bio-molecules (e.g., proteins). While more and more details
about mechanistic interactions are available in the literature, understanding the behavior of these models
at the system level is far from easy. Causal analysis helps explaining how specific events of interest
may occur. Model reduction techniques combine methods from different domains such as the analysis
of information flow used in communication protocols, and tropicalization methods that comes from
physics. The result is lower dimension systems that preserve the behavior of the initial system while
focusing of the elements from which emerges the collective behavior of the system.

The abstraction of causal traces offer nice representation of scenarios that lead to expected or un-
expected events. This is useful to understand the necessary steps in potential scenarios in signaling

6 Inria Annual Report 2020

pathways; this is useful as well to understand the different steps of an intrusion in a protocol. Lastly,
traces of computation of a static analyzer can themselves be abstracted, which provides assistance to
classify true and false alarms. Abstracted traces are symbolic and compact representations of sets of
counter-examples to the specification of a system which help one to either understand the origin of bugs,
or to find that some information has been lost in the abstraction leading to false alarms.

4 Application domains

4.1 Verification of safety critical embedded software

The verification of safety critical embedded software is a very important application domain for our group.
First, this field requires a high confidence in software, as a bug may cause disastrous events. Thus, it offers
an obvious opportunity for a strong impact. Second, such software usually have better specifications
and a better design than many other families of software, hence are an easier target for developing new
static analysis techniques (which can later be extended for more general, harder to cope with families of
programs). This includes avionics, automotive and other transportation systems, medical systems . . .

For instance, the verification of avionics systems represent a very high percentage of the cost of an
airplane (about 30 % of the overall airplane design cost). The state of the art development processes
mainly resort to testing in order to improve the quality of software. Depending on the level of criticality
of a software (at the highest levels, any software failure would endanger the flight) a set of software
requirements are checked with test suites. This approach is both costly (due to the sheer amount of
testing that needs to be performed) and unsound (as errors may go unnoticed, if they do not arise on the
test suite).

By contrast, static analysis can ensure higher software quality at a lower cost. Indeed, a static analyzer
will catch all bugs of a certain kind. Moreover, a static analysis run typically lasts a few hours, and can be
integrated in the development cycle in a seamless manner. For instance, ASTRÉE successfully verified the
absence of runtime error in several families of safety critical fly-by-wire avionic software, in at most a day
of computation, on standard hardware. Other kinds of synchronous embedded software have also been
analyzed with good results.

In the future, we plan to greatly extend this work so as to verify other families of embedded software
(such as communication, navigation and monitoring software) and other families of properties (such as
security and liveness properties).

Embedded software in charge of communication, navigation, and monitoring typically relies on
a parallel structure, where several threads are executed concurrently, and manage different features
(input, output, user interface, internal computation, logging . . .). This structure is also often found in
automotive software. An even more complex case is that of distributed systems, where several separate
computers are run in parallel and take care of several sub-tasks of a same feature, such as braking.
Such a logical structure is not only more complex than the synchronous one, but it also introduces new
risks and new families of errors (deadlocks, data-races...). Moreover, such less well designed, and more
complex embedded software often utilizes more complex data-structures than synchronous programs
(which typically only use arrays to store previous states) and may use dynamic memory allocation, or
build dynamic structures inside static memory regions, which are actually even harder to verify than
conventional dynamically allocated data structures. Complex data-structures also introduce new kinds of
risks (the failure to maintain structural invariants may lead to runtime errors, non termination, or other
software failures). To verify such programs, we will design additional abstract domains, and develop
new static analysis techniques, in order to support the analysis of more complex programming language
features such as parallel and concurrent programming with threads and manipulations of complex data
structures. Due to their size and complexity, the verification of such families of embedded software is a
major challenge for the research community.

Furthermore, embedded systems also give rise to novel security concerns. It is in particular the
case for some aircraft-embedded computer systems, which communicate with the ground through
untrusted communication media. Besides, the increasing demand for new capabilities, such as enhanced
on-board connectivity, e.g. using mobile devices, together with the need for cost reduction, leads to
more integrated and interconnected systems. For instance, modern aircrafts embed a large number of

http://www.astree.ens.fr/

Project ANTIQUE 7

computer systems, from safety-critical cockpit avionics to passenger entertainment. Some systems meet
both safety and security requirements. Despite thorough segregation of subsystems and networks, some
shared communication resources raise the concern of possible intrusions. Because of the size of such
systems, and considering that they are evolving entities, the only economically viable alternative is to
perform automatic analyses. Such analyses of security and confidentiality properties have never been
achieved on large-scale systems where security properties interact with other software properties, and
even the mapping between high-level models of the systems and the large software base implementing
them has never been done and represents a great challenge. Our goal is to prove empirically that the
security of such large scale systems can be proved formally, thanks to the design of dedicated abstract
interpreters.

The long term goal is to make static analysis more widely applicable to the verification of industrial
software.

4.2 Static analysis of software components and libraries

An important goal of our work is to make static analysis techniques easier to apply to wider families of
software. Then, in the longer term, we hope to be able to verify less critical, yet very commonly used
pieces of software. Those are typically harder to analyze than critical software, as their development
process tends to be less rigorous. In particular, we will target operating systems components and libraries.
As of today, the verification of such programs is considered a major challenge to the static analysis
community.

As an example, most programming languages offer Application Programming Interfaces (API) provid-
ing ready-to-use abstract data structures (e.g., sets, maps, stacks, queues, etc.). These APIs, are known
under the name of containers or collections, and provide off-the-shelf libraries of high level operations,
such as insertion, deletion and membership checks. These container libraries give software developers a
way of abstracting from low-level implementation details related to memory management, such as dy-
namic allocation, deletion and pointer handling or concurrency aspects, such as thread synchronization.
Libraries implementing data structures are important building bricks of a huge number of applications,
therefore their verification is paramount. We are interested in developing static analysis techniques that
will prove automatically the correctness of large audience libraries such as Glib and Threading Building
Blocks.

4.3 Models of mechanistic interactions between proteins

Computer Science takes a more and more important role in the design and the understanding of biological
systems such as signaling pathways, self assembly systems, DNA repair mechanisms. Biology has gathered
large data-bases of facts about mechanistic interactions between proteins, but struggles to draw an overall
picture of how these systems work as a whole. High level languages designed in Computer Science allow
one to collect these interactions in integrative models, and provide formal definitions (i.e., semantics) for
the behavior of these models. This way, modelers can encode their knowledge, following a bottom-up
discipline, without simplifying a priori the models at the risk of damaging the key properties of the system.
Yet, the systems that are obtained this way suffer from combinatorial explosion (in particular, in the
number of different kinds of molecular components, which can arise at run-time), which prevents from a
naive computation of their behavior.

We develop various analyses based on abstract interpretation, and tailored to different phases of the
modeling process. We propose automatic static analyses in order to detect inconsistencies in the early
phases of the modeling process. These analyses are similar to the analysis of classical safety properties of
programs. They involve both forward and backward reachability analyses as well as causality analyses,
and can be tuned at different levels of abstraction. We also develop automatic static analyses in order to
identify key elements in the dynamics of these models. The results of these analyses are sent to another
tool, which is used to automatically simplify models. The correctness of this simplification process is
proved by the means of abstract interpretation: this ensures formally that the simplification preserves
the quantitative properties that have been specified beforehand by the modeler. The whole pipeline is
parameterized by a large choice of abstract domains which exploits different features of the high level
description of models.

8 Inria Annual Report 2020

4.4 Consensus

Fault-tolerant distributed systems provide a dependable service on top of unreliable computers and
networks. Famous examples are geo-replicated data-bases, distributed file systems, or blockchains.
Fault-tolerant protocols replicate the system and ensure that all (unreliable) replicas are perceived from
the outside as one single reliable machine. To give the illusion of a single reliable machine “consensus”
protocols force replicas to agree on the “current state” before making this state visible to an outside
observer. We are interested in (semi-)automatically proving the total correctness of consensus algorithms
in the benign case (messages are lost or processes crash) or the Byzantine case (processes may lie about
their current state). In order to do this, we first define new reduction theorems to simplify the behaviors
of the system and, second, we introduce new static analysis methods to prove the total correctness
of adequately simplified systems. We focus on static analysis based Satisfiability Modulo Theories
(SMT) solvers which offers a good compromise between automation and expressiveness. Among our
benchmarks are Paxos, PBFT (Practical Byzantine Fault-Tolerance), and blockchain algorithms (Red-Belly,
Tendermint, Algorand). These are highly challenging benchmarks, with a lot of non-determinism coming
from the interleaving semantics and from the adversarial environment in which correct processes execute,
environment that can drop messages, corrupt them, etc. Moreover, these systems were originally designed
for a few servers but today are deployed on networks with thousands of nodes. The “optimizations” for
scalability can no longer be overlooked and must be considered as integral part of the algorithms,
potentially leading to specifications weaker than the so much desired consensus.

4.5 Smart contracts

Blockchain applications in finance have emerged in 2020 as the lead applications. The new field called
decentralised finance (or also open finance) re-creates basic financial functionalities such as ireeversible
and reverible swaps of assets. There are broad goals to our research in this emerging area: structuring
contract languages which guarantee good execution properties by construction, and finding mechanisms
that foster liquidity.

We are investigating several other problems in decentralised finance: protocols for capital-efficient
decentralised exchanges; general convex problems for the optimal routing and arbitrage in the network
of exchange platforms; and the economics of the competition between two-sided exchange platforms.

4.6 Staticanalysis of data science software

Nowadays, thanks to advances in machine learning and the availability of vast amounts of data, computer
software plays an increasingly important role in assisting or even autonomously performing tasks in
our daily lives. As data science software becomes more and more widespread, we become increasingly
vulnerable to programming errors. In particular, programming errors that do not cause failures can have
serious consequences since code that produces an erroneous but plausible result gives no indication
that something went wrong. This issue becomes particularly worrying knowing that machine learning
software, thanks to its ability to efficiently approximate or simulate more complex systems, is slowly
creeping into mission critical scenarios. However, programming errors are not the only concern. Another
important issue is the vulnerability of machine learning models to adversarial examples, that is, small
input perturbations that cause the model to misbehave in unpredictable ways. More generally, a critical
issue is the notorious difficulty to interpret and explain machine learning software. Finally, as we are
witnessing widespread adoption of software with far-reaching societal impact — i.e., to automate decision-
making in fields such as social welfare, criminal justice, and even health care — a number of recent cases
have evidenced the importance of ensuring software fairness as well as data privacy. Going forward, data
science software will be subject to more and more legal regulations (e.g., the European General Data
Protection Regulation adopted in 2016) as well as administrative audits.

It is thus paramount to develop method and tools that can keep up with these developments and
enhance our understanding of data science software and ensure it behaves correctly and reliably. In
particular, we are interesting in developing new static analyses specifically tailored to the idiosyncrasies
of data science software. This makes it a new and exciting area for static analysis, offering a wide variety

Project ANTIQUE 9

of challenging problems with huge potential impact on various interdisciplinary application domains
[32].

5 Social and environmental responsibility

5.1 Impact of research results

We are advising several companies such as Bender operating on the Tezos blockchain, think tanks such
as the CDC Labchain (Caisse des Dépots), and other informal development groups such as Jaxnet on
decentralised finance protocols and mechanism design for consensus incentives.

We are advising static analysis companies including AbsInt Angewandte Informatik (static analysis
for the verification of embedded software) and MatrixLead (static analysis for spreadsheet applications).

6 Highlights of the year

In 2020, and after several years of intense preparation, the book “Introduction to static analysis: an
abstract interpretation perspective” [21] was published at MIT Press, so as to disseminate more broadly
foundations of abstract interpretation and of static analysis, to not only researchers, professors, and
students but also working developers, engineers, and software verification experts.

7 New software and platforms

7.1 New software

7.1.1 APRON

Scientific Description: The APRON library is intended to be a common interface to various underlying
libraries/abstract domains and to provide additional services that can be implemented indepen-
dently from the underlying library/abstract domain, as shown by the poster on the right (presented
at the SAS 2007 conference. You may also look at:

Functional Description: The Apron library is dedicated to the static analysis of the numerical variables
of a program by abstract interpretation. Its goal is threefold: provide ready-to-use numerical
abstractions under a common API for analysis implementers, encourage the research in numerical
abstract domains by providing a platform for integration and comparison of domains, and provide
a teaching and demonstration tool to disseminate knowledge on abstract interpretation.

URL: http://apron.cri.ensmp.fr/library/

Author: Bertrand Jeannet

Contacts: Antoine Miné, Bertrand Jeannet

Participants: Antoine Miné, Bertrand Jeannet

7.1.2 Astrée

Name: The AstréeA Static Analyzer of Asynchronous Software

Keywords: Static analysis, Static program analysis, Program verification, Software Verification, Abstrac-
tion

Scientific Description: Astrée analyzes structured C programs, with complex memory usages, but with-
out dynamic memory allocation nor recursion. This encompasses many embedded programs
as found in earth transportation, nuclear energy, medical instrumentation, and aerospace ap-
plications, in particular synchronous control/command. The whole analysis process is entirely
automatic.

http://apron.cri.ensmp.fr/library/

10 Inria Annual Report 2020

Astrée discovers all runtime errors including:

undefined behaviors in the terms of the ANSI C99 norm of the C language (such as division by 0 or
out of bounds array indexing),

any violation of the implementation-specific behavior as defined in the relevant Application Binary
Interface (such as the size of integers and arithmetic overflows),

any potentially harmful or incorrect use of C violating optional user-defined programming guide-
lines (such as no modular arithmetic for integers, even though this might be the hardware choice),

failure of user-defined assertions.

Functional Description: Astrée analyzes structured C programs, with complex memory usages, but
without dynamic memory allocation nor recursion. This encompasses many embedded programs
as found in earth transportation, nuclear energy, medical instrumentation, and aerospace ap-
plications, in particular synchronous control/command. The whole analysis process is entirely
automatic.

Astrée discovers all runtime errors including: - undefined behaviors in the terms of the ANSI C99
norm of the C language (such as division by 0 or out of bounds array indexing), - any violation
of the implementation-specific behavior as defined in the relevant Application Binary Interface
(such as the size of integers and arithmetic overflows), - any potentially harmful or incorrect use
of C violating optional user-defined programming guidelines (such as no modular arithmetic for
integers, even though this might be the hardware choice), - failure of user-defined assertions.

Astrée is a static analyzer for sequential programs based on abstract interpretation. The Astrée static
analyzer aims at proving the absence of runtime errors in programs written in the C programming
language.

URL: http://www.astree.ens.fr/

Contacts: Patrick Cousot, Radhia Cousot, Jérôme Feret, Xavier Rival, Antoine Miné

Participants: Antoine Miné, Jérôme Feret, Laurent Mauborgne, Patrick Cousot, Radhia Cousot, Xavier
Rival

Partners: CNRS, ENS Paris, AbsInt Angewandte Informatik GmbH

7.1.3 AstréeA

Name: The AstréeA Static Analyzer of Asynchronous Software

Keywords: Static analysis, Static program analysis

Scientific Description: AstréeA analyzes C programs composed of a fixed set of threads that commu-
nicate through a shared memory and synchronization primitives (mutexes, FIFOs, blackboards,
etc.), but without recursion nor dynamic creation of memory, threads nor synchronization objects.
AstréeA assumes a real-time scheduler, where thread scheduling strictly obeys the fixed priority
of threads. Our model follows the ARINC 653 OS specification used in embedded industrial aero-
nautic software. Additionally, AstréeA employs a weakly-consistent memory semantics to model
memory accesses not protected by a mutex, in order to take into account soundly hardware and
compiler-level program transformations (such as optimizations). AstréeA checks for the same
run-time errors as Astrée , with the addition of data-races.

Functional Description: AstréeA is a static analyzer prototype for parallel software based on abstract
interpretation. The AstréeA prototype is a fork of the Astrée static analyzer that adds support for
analyzing parallel embedded C software.

URL: http://www.astreea.ens.fr/

Contacts: Patrick Cousot, Radhia Cousot, Xavier Rival, Jérôme Feret, Antoine Miné

Participants: Antoine Miné, Jérôme Feret, Patrick Cousot, Radhia Cousot, Xavier Rival

Partners: CNRS, ENS Paris, AbsInt Angewandte Informatik GmbH

http://www.astree.ens.fr/
http://www.astreea.ens.fr/

Project ANTIQUE 11

7.1.4 ClangML

Keyword: Compilation

Functional Description: ClangML is an OCaml binding with the Clang front-end of the LLVM compiler
suite. Its goal is to provide an easy to use solution to parse a wide range of C programs, that can
be called from static analysis tools implemented in OCaml, which allows to test them on existing
programs written in C (or in other idioms derived from C) without having to redesign a front-end
from scratch. ClangML features an interface to a large set of internal AST nodes of Clang , with an
easy to use API. Currently, ClangML supports all C language AST nodes, as well as a large part of the
C nodes related to C++ and Objective-C.

URL: https://github.com/Antique-team/clangml/tree/master/clang

Contacts: Xavier Rival, François Berenger, Devin Mccoughlin, Pippijn Van Steenhoven

Participants: Devin Mccoughlin, François Berenger, Pippijn Van Steenhoven

7.1.5 FuncTion

Scientific Description: FuncTion is based on an extension to liveness properties of the framework to
analyze termination by abstract interpretation proposed by Patrick Cousot and Radhia Cousot.
FuncTion infers ranking functions using piecewise-defined abstract domains. Several domains
are available to partition the ranking function, including intervals, octagons, and polyhedra. Two
domains are also available to represent the value of ranking functions: a domain of affine ranking
functions, and a domain of ordinal-valued ranking functions (which allows handling programs
with unbounded non-determinism).

Functional Description: FuncTion is a research prototype static analyzer to analyze the termination
and functional liveness properties of programs. It accepts programs in a small non-deterministic
imperative language. It is also parameterized by a property: either termination, or a recurrence or a
guarantee property (according to the classification by Manna and Pnueli of program properties).
It then performs a backward static analysis that automatically infers sufficient conditions at the
beginning of the program so that all executions satisfying the conditions also satisfy the property.

URL: http://www.di.ens.fr/~urban/FuncTion.html

Contacts: Caterina Urban, Antoine Miné

Participants: Antoine Miné, Caterina Urban

7.1.6 HOO

Name: Heap Abstraction for Open Objects

Functional Description: JSAna with HOO is a static analyzer for JavaScript programs. The primary
component, HOO, which is designed to be reusable by itself, is an abstract domain for a dynamic
language heap. A dynamic language heap consists of open, extensible objects linked together by
pointers. Uniquely, HOO abstracts these extensible objects, where attribute/field names of objects
may be unknown. Additionally, it contains features to keeping precise track of attribute name/value
relationships as well as calling unknown functions through desynchronized separation.

As a library, HOO is useful for any dynamic language static analysis. It is designed to allow ab-
stractions for values to be easily swapped out for different abstractions, allowing it to be used for a
wide-range of dynamic languages outside of JavaScript.

Contact: Arlen Cox

Participant: Arlen Cox

https://github.com/Antique-team/clangml/tree/master/clang
http://www.di.ens.fr/~urban/FuncTion.html

12 Inria Annual Report 2020

7.1.7 MemCAD

Name: The MemCAD static analyzer

Keywords: Static analysis, Abstraction

Functional Description: MemCAD is a static analyzer that focuses on memory abstraction. It takes as
input C programs, and computes invariants on the data structures manipulated by the programs.
It can also verify memory safety. It comprises several memory abstract domains, including a flat
representation, and two graph abstractions with summaries based on inductive definitions of
data-structures, such as lists and trees and several combination operators for memory abstract
domains (hierarchical abstraction, reduced product). The purpose of this construction is to offer
a great flexibility in the memory abstraction, so as to either make very efficient static analyses of
relatively simple programs, or still quite efficient static analyses of very involved pieces of code. The
implementation consists of over 30 000 lines of ML code, and relies on the ClangML front-end. The
current implementation comes with over 300 small size test cases that are used as regression tests.

URL: http://www.di.ens.fr/~rival/memcad.html

Authors: Xavier Rival, Antoine Toubhans, Huisong Li, Liu Jiangchao, François Berenger, Pascal Sotin,
Pippijn Van Steenhoven

Contacts: Xavier Rival, François Berenger, Huisong Li, Antoine Toubhans, Liu Jiangchao

Participants: Antoine Toubhans, François Berenger, Huisong Li, Xavier Rival

7.1.8 KAPPA

Name: A rule-based language for modeling interaction networks

Keywords: Systems Biology, Modeling, Static analysis, Simulation, Model reduction

Scientific Description: OpenKappa is a collection of tools to build, debug and run models of biological
pathways. It contains a compiler for the Kappa Language, a static analyzer (for debugging models),
a simulator, a compression tool for causal traces, and a model reduction tool.

Functional Description: Kappa is provided with the following tools: - a compiler - a stochastic simulator
- a static analyzer - a trace compression algorithm - an ODE generator.

Release Contributions: On line UI, Simulation is based on a new data-structure (see ESOP 2017), New
abstract domains are available in the static analyzer (see SASB 2016), Local traces (see TCBB 2018),
Reasoning on polymers (see SASB 2018).

URL: http://www.kappalanguage.org/

Authors: Jean Krivine, Jérôme Feret, Kim-Quyen Ly, Pierre Boutillier

Contacts: Jérôme Feret, Jean Krivine

Participants: Jean Krivine, Jérôme Feret, Kim-Quyen Ly, Pierre Boutillier, Russ Harmer, Vincent Danos,
Walter Fontana

Partners: ENS Lyon, Université Paris-Diderot, HARVARD Medical School

7.1.9 QUICr

Functional Description: QUICr is an OCaml library that implements a parametric abstract domain for
sets. It is constructed as a functor that accepts any numeric abstract domain that can be adapted to
the interface and produces an abstract domain for sets of numbers combined with numbers. It is
relational, flexible, and tunable. It serves as a basis for future exploration of set abstraction.

Contact: Arlen Cox

Participant: Arlen Cox

http://www.di.ens.fr/~rival/memcad.html
http://www.kappalanguage.org/

Project ANTIQUE 13

7.1.10 Zarith

Functional Description: Zarith is a small (10K lines) OCaml library that implements arithmetic and
logical operations over arbitrary-precision integers. It is based on the GNU MP library to efficiently
implement arithmetic over big integers. Special care has been taken to ensure the efficiency of
the library also for small integers: small integers are represented as Caml unboxed integers and
use a specific C code path. Moreover, optimized assembly versions of small integer operations are
provided for a few common architectures.

Zarith is currently used in the Astrée analyzer to enable the sound analysis of programs featuring
64-bit (or larger) integers. It is also used in the Frama-C analyzer platform developed at CEA LIST
and Inria Saclay.

URL: http://forge.ocamlcore.org/projects/zarith

Contacts: Antoine Miné, Xavier Leroy

Participants: Antoine Miné, Pascal Cuoq, Xavier Leroy

7.1.11 PYPPAI

Name: Pyro Probabilistic Program Analyzer

Keywords: Probability, Static analysis, Program verification, Abstraction

Functional Description: PYPPAI is a program analyzer to verify the correct semantic definition of proba-
bilistic programs written in Pyro. At the moment, PYPPAI verifies consistency conditions between
models and guides used in probabilistic inference programs.

PYPPAI is written in OCaml and uses the pyml Python in OCaml library. It features a numerical
abstract domain based on Apron, an abstract domain to represent zones in tensors, and dedicated
abstract domains to describe distributions and states in probabilistic programs.

URL: https://github.com/wonyeol/static-analysis-for-support-match

Contact: Xavier Rival

8 New results

8.1 Shape Analysis

Survey on shape analysis

Participants Bor-Yuh Evan Chang, Cezara Drăgoi, Roman Manevich, Noam Rinet-
zky, Xavier Rival (correspondant).

Shape analysis has been gradually introduced over 25 years ago and has emerged into a key field in
program analysis. It is concerned with the computation of precise semantic information about programs
that manipulate complex data-structures, relying on dynamically allocated memory cells and destructive
updates. Several large families of shape analysis have been developed and have evolved rather indepen-
dently. For instance, we can cite shape analyses based on three-valued logics that rely on the selection
of a family of specific predicates and predicate tables in a logics with “true”, “false” and “maybe” values.
We can also cite shape analyses based on separation logic, whith conjoin the abstraction of separate
memory regions with a spatial conjunction operator called separating conjunction. As a consequence,
the field of shape analysis may appear overwhelming to newcomers and to potential users (many static
analyses require information about memory data-structures and need to exploit results obtained by
shape analysis).

To alleviate this, we have collaborated with experts in various forms of shape analysis on an ambitious
survey paper project. This work spanned over several years and let to the publication of a 160 pages
survey in Fall 2020 [11].

http://forge.ocamlcore.org/projects/zarith
https://github.com/wonyeol/static-analysis-for-support-match

14 Inria Annual Report 2020

8.2 Relational Static Analysis

Relational abstraction for memory properties

Participants Hugo Illous, Matthieu Lemerre, Xavier Rival (correspondant).

Static analyses aim at inferring semantic properties of programs. We can distinguish two important
classes of static analyses: state analyses and relational analyses. While state analyses aim at computing
an over-approximation of reachable states of programs, relational analyses aim at computing functional
properties over the input-output states of programs. Several advantages of relational analyses are their
ability to analyze incomplete programs, such as libraries or classes, but also to make the analysis modular,
using input-output relations as composable summaries for procedures. In the case of numerical pro-
grams, several analyses have been proposed that utilize relational numerical abstract domains to describe
relations. On the other hand, designing abstractions for relations over input-output memory states and
taking shapes into account is challenging. We have proposed a set of novel logical connectives to describe
such relations, which are inspired by separation logic. This logic can express that certain memory areas
are unchanged, freshly allocated, or freed, or that only part of the memory was modified. Using these
connectives, we have built an abstract domain and design a static analysis that over-approximates rela-
tions over memory states containing inductive structures. We implemented this analysis and evaluated it
on a basic library of list manipulating functions.

This work was initially done as part of the PhD of Hugo Illous [31], and we have been working on
the extension of this work and on its publication in a journal paper, which is currently accepted under
revision, with publication date expteced for 2021.

Interprocedural Shape Analysis Using Separation Logic-based Transformer Summaries

Participants Hugo Illous, Matthieu Lemerre, Xavier Rival (correspondant).

Interprocedural static analysis focuses on the analysis of programs with functions, and traditionally relies
on two main approaches: the first uses a state abstraction and computes over-approximations for sets of
states in a finite collection of abstract contexts; the second abstracts the effect of each procedure using a
relation.

Shape analyses aim at inferring semantic invariants related to the data-structures that programs
manipulate. To achieve that, they typically abstract the set of reachable states, which implies that they fit
nicely with the first approach to interprocedural analysis, but not to the second.

By contrast, abstractions for transformation relations between input states and output states not
only provide a finer description of program executions but also enable the composition of the effect of
program fragments so as to make the analysis modular. However, few logics can efficiently capture such
transformation relations. In this work, we proposed to use connectors inspired by separation logic to
describe memory state transformations and to represent procedure summaries. Based on this abstraction,
we designed a top-down interprocedural analysis using shape transformation relations as procedure
summaries. Finally, we report on implementation and evaluation.

This work was initially done as part of the PhD of Hugo Illous [31], and was published at SAS 2020 [19].

8.3 Reduced product

Sharing Ghost Variables in a Collection of Abstract Domains

Participants Marc Chevalier, Jérôme Feret.

Project ANTIQUE 15

In abstract interpretation, it is often necessary to be able to express complex properties while doing
a precise analysis. A way to achieve that is to combine a collection of domains, each handling some
kind of properties, using a reduced product. Separating domains allows an easier and more modular
implementation, and eases soundness and termination proofs. This way, we can add a domain for any
kind of property that is interesting. The reduced product, or an approximation of it, is in charge of refining
abstract states, making the analysis precise.

In program verification, ghost variables can be used to ease proofs of properties by storing intermedi-
ate values that do not appear directly in the execution.

In [15], we propose a reduced product of abstract domains that allows domains to use ghost variables
to ease the representation of their internal state. Domains must be totally agnostic with respect to other
existing domains. In particular the handling of ghost variables must be entirely decentralized while still
ensuring soundness and termination of the analysis.

8.4 Static Analysis of Probabilistic Programming Languages and Optimization Al-
gorithms

Towards the verification of semantic assumptions required by probabilistic inference algorithms

Participants Wonyeol Lee, Hangyeol Wu, Xavier Rival (correspondant),
Hongseok Yang.

Probabilistic programming is the idea of writing models from statistics and machine learning using
program notations and reasoning about these models using generic inference engines. Recently its
combination with deep learning has been explored intensely, which led to the development of so called
deep probabilistic programming languages, such as Pyro, Edward and ProbTorch. At the core of this
development lie inference engines based on stochastic variational inference algorithms. When asked to
find information about the posterior distribution of a model written in such a language, these algorithms
convert this posterior-inference query into an optimisation problem and solve it approximately by a
form of gradient ascent or descent. We analysed one of the most fundamental and versatile variational
inference algorithms, called score estimator or REINFORCE, using tools from denotational semantics and
program analysis. We formally expressed what this algorithm does on models denoted by programs, and
exposed implicit assumptions made by the algorithm on the models. The violation of these assumptions
may lead to an undefined optimisation objective or the loss of convergence guarantee of the optimisation
process. We then describe rules for proving these assumptions, which can be automated by static
program analyses. Some of our rules use nontrivial facts from continuous mathematics, and let us replace
requirements about integrals in the assumptions, such as integrability of functions defined in terms of
programs’ denotations, by conditions involving differentiation or boundedness, which are much easier
to prove automatically (and manually). Following our general methodology, we have developed a static
program analysis for the Pyro programming language that aims at discharging the assumption about
what we call model-guide support match. Our analysis is applied to the eight representative model-guide
pairs from the Pyro webpage, which include sophisticated neural network models such as AIR. It found a
bug in one of these cases, and revealed a non-standard use of an inference engine in another, and showed
that the assumptions are met in the remaining six cases.

This work has been published at POPL 2020 [13].

On correctness of automatic differentiation for non-differentiable functions

Participants Wonyeol Lee, Hangyeol Wu, Xavier Rival (correspondant),
Hongseok Yang.

Differentiation lies at the core of many machine-learning algorithms, and is well-supported by popular
autodiff systems, such as TensorFlow and PyTorch. Originally, these autodiff systems have been developed
to compute derivatives of differentiable functions, but in practice, they are commonly applied to functions

16 Inria Annual Report 2020

with non-differentiabilities. For instance, neural networks using ReLU define non-differentiable functions
in general, but the gradients of losses involving those functions are computed using autodiff systems
in practice. This status quo raises a natural question: are autodiff systems correct in any formal sense
when they are applied to such non-differentiable functions? In this work, we provided a positive answer
to this question. Using counterexamples, we first point out flaws in often-used informal arguments,
such as: non-differentiabilities arising in deep learning do not cause any issues because they form a
measure-zero set. We then investigate a class of functions, called PAP functions, that includes nearly all
(possibly non-differentiable) functions in deep learning nowadays. For these PAP functions, we propose
a new type of derivatives, called intensional derivatives, and prove that these derivatives always exist and
coincide with standard derivatives for almost all inputs. We also show that these intensional derivatives
are what most autodiff systems compute or try to compute essentially. In this way, we formally establish
the correctness of autodiff systems applied to non-differentiable functions.

This work has been published in [20].

8.5 Static Analysis of Neural Networks

Perfectly Parallel Fairness Certification

Participants Caterina Urban (correspondant), Maria Christakis, Valentin Wüestholz,
Fuyuan Zhang.

Recently, there is growing concern that machine-learning models, which currently assist or even automate
decision making, reproduce, and in the worst case reinforce, bias of the training data. The development
of tools and techniques for certifying fairness of these models or describing their biased behavior is,
therefore, critical.

In [14], we propose a perfectly parallel static analysis for certifying causal fairness of feed-forward
neural networks used for classification tasks. When certification succeeds, our approach provides definite
guarantees, otherwise, it describes and quantifies the biased behavior. We design the analysis to be
sound, in practice also exact, and configurable in terms of scalability and precision, thereby enabling
pay-as-you-go certification. We implement our approach in an open-source tool and demonstrate its
effectiveness on models trained with popular datasets.

8.6 Reductions between synchronous and asynchronous programming abstractions

Testing consensus implementations using communication closure

Participants Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Ma-
jumdar, Filip Niksic.

Large scale production distributed systems are difficult to design and test. Correctness must be
ensured when processes run asynchronously, at arbitrary rates relative to each other, and in the presence
of failures, e.g., process crashes or message losses. These conditions create a huge space of executions that
is difficult to explore in a principled way. Current testing techniques focus on systematic or randomized
exploration of all executions of an implementation while treating the implemented algorithms as black
boxes. On the other hand, proofs of correctness of many of the underlying algorithms often exploit
semantic properties that reduce reasoning about correctness to a subset of behaviors. For example, the
communication-closure property, used in many proofs of distributed consensus algorithms, shows that
every asynchronous execution of the algorithm is equivalent to a lossy synchronous execution, thus
reducing the burden of proof to only that subset. In a lossy synchronous execution, processes execute in

Project ANTIQUE 17

lock-step rounds, and messages are either received in the same round or lost forever—such executions
form a small subset of all asynchronous ones.

In [17] we formulate the communication-closure hypothesis, which states that bugs in implemen-
tations of distributed consensus algorithms will already manifest in lossy synchronous executions and
present a testing algorithm based on this hypothesis. We prioritize the search space based on a bound
on the number of failures in the execution and the rate at which these failures are recovered. We show
that a random testing algorithm based on sampling lossy synchronous executions can empirically find
a number of bugs—including previously unknown ones—in production distributed systems such as
Zookeeper, Cassandra, and Ratis, and also produce more understandable bug traces.

Programming at the edge of synchrony

Participants Cezara Drăgoi, Josef Widder, Damien Zufferey.

Synchronization primitives for fault-tolerant distributed systems that ensure an effective and efficient
cooperation among processes are an important challenge in the programming languages community.
In [18] we present a new programming abstraction, ReSync, for implementing benign and Byzantine
fault-tolerant protocols. ReSync has a new round structure that offers a simple abstraction for group
communication, like it is customary in synchronous systems, but also allows messages to be received one
by one, like in the asynchronous systems. This extension allows implementing network and algorithm-
specific policies for the message reception, which is not possible in classic round models. The execution of
ReSync programs is based on a new generic round switch protocol that generalizes the famous theoretical
result about consensus in the presence of partial synchrony by of Dwork, Lynch, and Stockmeyer. We
evaluate experimentally the performance of ReSync’s execution platform, by comparing consensus
implementations in ReSync with LibPaxos3, etcd, and Bft-SMaRt, three consensus libraries tolerant to
benign, resp. byzantine faults.

Proving the security of software-intensive embedded systems by abstract interpretation

Participants Marc Chevalier.

Marc Chevalier’s thesis [24] is dedicated to the analysis of low-level software, like operating systems,
by abstract interpretation. Analyzing OSes is a crucial issue to guarantee the safety of software systems
since they are the layer immediately above the hardware and that all applicative tasks rely on them.
For critical applications, we want to prove that the OS does not crash, and that it ensures the isolation
of programs, so that an untrusted program cannot disrupt a trusted one. The analysis of this kind of
programs raises specific issues. This is because OSes must control hardware using instructions that are
meaningless in ordinary programs. In addition, because hardware features are outside the scope of C,
source code includes assembly blocks mixed with C code. These are the two main axes in this thesis:
handling mixed C and assembly, and precise abstraction of instructions that are specific to low-level
software. This work is motivated by the analysis of a case study emanating from an industrial partner,
which required the implementation of proposed methods in the static analyzer Astrée. The first part
is about the formalization of a language mixing simplified models of C and assembly, from syntax to
semantics. This specification is crucial to define what is legal and what is a bug, while taking into account
the intricacy of interactions of C and assembly, in terms of data flow and control flow. The second part
is a short introduction to abstract interpretation focusing on what is useful thereafter. The third part
proposes an abstraction of the semantics of mixed C and assembly. This is actually a series of parametric
abstractions handling each aspect of the semantics. The fourth part is interested in the question of the
abstraction of instructions specific to low-level software. Interest properties can easily be proven using
ghost variables, but because of technical reasons, it is difficult to design a reduced product of abstract
domains that allows a satisfactory handling of ghost variables. This part builds such a general framework

18 Inria Annual Report 2020

with domains that allow us to solve our problem and many others. The final part details properties
to prove in order to guarantee isolation of programs that have not been treated since they raise many
complicated questions. We also give some suggestions to improve the product of domains with ghost
variables introduced in the previous part, in terms of features and performances.

8.7 Modeling

Integrative model for TGF-β signalling and extracallelular matrix

Participants Nathalie Theret, Jérôme Feret, Arran Hodgkinson, Pierre Boutillier,
Pierre Vignet, Ovidiu Radulescu.

The extracellular matrix is the most important regulator of cell-cell communication within tissues.
The extracellular matrix is a complex structure, made up of a wide variety of molecules including proteins,
proteglycans and glycoaminoglycans. It contributes to cell signaling through the action of both its
constituents and their proteolytic cleaved fragments called ma-tricryptins. In addition, the extracellular
matrix acts as a "reservoir" of growth factors and cytokines and regulates their bioavailability at the cell
surface. By controlling cell signaling inputs, the extracellular matrix plays a key role in regulating cell
phenotype (differentiation, proliferation, migration, etc.). In this context, signaling networks associated
with the polypeptide transforming growth factor TGF-β are unique since their activation are controlled
by the extracellular matrix and TGF-β is a major regulator of ECM remodeling in return.

In [22], we provide feedbacks from two approaches to model to model the extra-cellular matrix: rule
based-languages on the first hand, and mesoscale partial differential equations on the second hand.

Rate Equations for Graphs

Participants Vincent Danos, Tobias Heindel, Ricardo Honorato-Zimmer, San-
dro Stucki.

We combine ideas from: 1) graph transformation systems (GTSs) stemming from the theory of formal
languages and concurrency, and 2) mean field approximations (MFAs), a collection of approximation
techniques ubiquitous in the study of complex dynamics to build a framework which generates rate
equations for stochastic GTSs and from which one can derive MFAs of any order (no longer limited to
the humanly computable). The procedure for deriving rate equations and their approximations can be
automated. An implementation and example models are available online at https://rhz.github.io/
fragger. We apply our techniques and tools to derive an expression for the mean velocity of a two-legged
walker protein on DNA.

Scaling up epidemiological models with rule-based modelling

Participants Vincent Danos, William Waites, Matteo Cavaliere, David Manheim,
Jasmina Panovska-Griffiths.

We investigate the use of rule-based modelling applied to topics in infectious diseases. Rule-based
models generalise reaction-based models with reagents that have internal state and may be bound
together to form complexes, as in chemistry. Rule-based models allow us to express a broad class of
models for processes of interest in epidemiology that would not otherwise be feasible in compartmental
models. This includes dynamics commonly found in compartmental models such as the spread of a virus
from an infectious to a susceptible population, and more complex dynamics outside the typical scope of
such models such as social behaviours and decision-making, testing capacity constraints, and tracing of
people exposed to a virus but not yet symptomatic [28].

https://rhz.github.io/fragger
https://rhz.github.io/fragger

Project ANTIQUE 19

Quantum neural networks

Participants Brian Coyle, Vincent Danos, Elham Kashefi, Daniel Mills.

We study an application of a class of quantum circuits known as Born machines to generative mod-
elling. We show that the circuits encountered during gradient-based training cannot be efficiently
sampled from classically up to multiplicative error in the worst case. Our gradient-based training meth-
ods use cost functions known as the Sinkhorn divergence and the Stein discrepancy, not previously
used in the gradient-based training of quantum circuits, and we also introduce quantum kernels to
generative modelling. We show that these methods outperform the previous standard method, which
used maximum mean discrepancy (MMD) as a cost function, and achieve this with minimal overhead.
Finally, we discuss the ability of the model to learn hard distributions [12].

Stochastic graph rewriting

Participants Nicolas Behr, Vincent Danos, Ilias Garnier.

We develop a novel method to analyse the dynamics of stochastic rewriting systems evolving over
finitary adhesive, extensive categories. Our formalism is based on the so-called rule algebra framework
and demonstrates a relationship between the combinatorics of the rewriting rules (as encoded in the
rule algebra) and the dynamics which these rules generate on observables (as encoded in the stochastic
mechanics formalism). We introduce the concept of combinatorial conversion, whereby under certain
technical conditions the evolution equation for (the exponential generating function of) the statistical
moments of observables can be expressed as the action of certain differential operators on formal power
series. This permits us to formulate the novel concept of moment bisimulation, where two dynamical
systems are compared in terms of their evolution of sets of observables that are in bijection. In particular,
we exhibit non-trivial examples of graphical rewriting systems that are moment bisimilar to certain
discrete rewriting systems (such as branching processes or the larger class of stochastic chemical reaction
systems). Our results point towards applications of a vast number of existing well-established exact
and approximate analysis techniques developed for chemical reaction systems to the far richer class of
general stochastic rewriting systems [10].

8.8 Smart contracts
Reversible and composable financial contracts

Participants Vincent Danos, Jean Krivine, Julien Prat.

We have defined and studied a protocol for (intertemporal) reversible transactions organised in
trade lines and demonstrated its soundness. We show that within our protocol, novel instruments for
zero-collateral intermediation can be built. Soudness amounts to proving that 1) participants to the
protocol can upper bound their costs statically, and 2) novel game-theoretic forms of confluence of the
execution which guarantee that at any given time step (e.g. in block time) one player can unilaterally fold
the trade line, if s/he so wishes. These results were summarised in a paper published in the proceedings
of the Tokenomics 2020 conference [26].

20 Inria Annual Report 2020

9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

9.1.1 Follow up to the ANASTASEC project

• Title: Analyse de propriété de sécurité

• Type: Research contracts funded by AirBus France

• Duration: March 2019 - August 2018 and November 2019 - March 2020

• Inria contact: Jérôme Feret

• Abstract: An emerging structure in our information processing-based society is the notion of
trusted complex systems interacting via heterogeneous networks with an open, mostly untrusted
world. This view characterises a wide variety of systems ranging from the information system of a
company to the connected components of a private house, all of which have to be connected with
the outside.

The goal of these constracts is to analyse an application that is used to filter messages from higher-
level security regions to lower-level ones in trusted complex systems. This application shall check
that messages are well-formed and that they match with existing requests. Moreover, so as to limit
potential flows of information, one shall prove that the internal state of buffers are reset between
the processing of each packet.

To certify these properties, the front-end of ASTRÉE has been upgraded with new directives to
specify the properties of interest, and the analysis has been tuned to improve the analysis : 1)
ghost variables are used to record the value of buffers between each packet processing so that
already existing relational domains can prove that they are restored to the correct value, and 2)
data-partitioning strategies have been implemented to separate the different modes of usage.

9.1.2 Disco project with Tezos

• Title: DISCO: Synchronous Abstractions for Blockchain Infrastructures

• Type: Research contracts funded by Tezos

• Duration: September 2020 - September 2023

• Inria contact: Xavier Rival, Jérôme Feret

• Abstract: The literature in distributed computing distinguishes two main classes of computational
models: asynchronous models have better performance, whereas synchronous models provide
stronger formal guarantees. Implementations of distributed systems must operate in asynchronous
models of computation, where performance emerges from the load of the system. The correctness
of asynchronous protocols is very hard to prove, due to the challenges of concurrency, faults,
buffered message queues, and message loss, altering, and re-ordering by the network. In contrast,
synchronous models are based on (communication- closed) rounds, and this structure greatly
facilitates verification. There are no interleavings, and the cumulative size of reception buffers is
bounded by the number of processes in the network.

The goal of this project is to increase the confidence we have in blockchain systems. We pro-
pose to: (1) define a synchronous computational model for blockchain algorithms and build a
domain-specific language appropriate for this synchronous computational model, (2) equip the
domain-specific language with support for mechanized formal verification with a high degree of
automation, and (3) prototypically implement a dedicated runtime for efficiently executing, within
an asynchronous context, algorithms defined for a synchronous models, together with a formal
correctness proof that certifies the correctness of the synchronous abstraction with respect to the
asynchronous runtime.

http://www.di.ens.fr/~feret/anastasec/
https://www.google.com/search?client=safari&rls=en&q=AirBus&ie=UTF-8&oe=UTF-8
http://www.astree.ens.fr/

Project ANTIQUE 21

9.1.3 Exploratory collaboration with Airbus on static analysis for machine learning

• Title: Formal Methods for Artificial Intelligence: State of the Art

• Type: Research contract funded by AirBus France

• Duration: October 2020 - December 2020

• Inria contact: Caterina Urban

• Abstract: Artificial intelligence is a key enabler for the development of autonomous aircrafts. In
order to use this technology in critical systems, strict safety guarantees are necessary for the
trained machine learning models. The actual state of the art in artificial intelligence does not allow
providing such guarantees and new methods are currently being developed. Among these, formal
methods and notably static analysis by abstract interpretation appear to be the most promising
for critical systems, in terms of soundness and scalability. Moreover, formal methods are actually
intensively used for the verification of critical avionics software and well accepted by certification
authorities. Nevertheless, as many research teams are developing multiple methods that fall under
the formal methods umbrella, a need has emerged for Airbus to better understand this academics
ecosystem. The goal of this contract is to carry out a thorough report on the state of the art in
formal methods for artificial intelligence and discuss perspectives and expectations for possible
worthwhile future research directions.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Inria international partners

Informal international partners Xavier Rival has a long standing collaboration with Bor-Yuh Evan
Chang (University of Colorado, Boulder, USA), on the abstraction of symbolic properties and of complex
memory data-structures.

Xavier Rival has a set up a collaboration with Hongseok Yang (KAIST, Daejeon, South Korea), on the
verification of probabilistic programs such as programs built in the Pyro framework.

Xavier Rival has started a collaboration with Shinya Katsumata, Jérémy Dubut, and Ichiro Hasuo (NII,
Tokyo, Japan) on the formalization of abstract domains.

Xavier Rival has been working with Kwangkeun Yi on the writing of a book that should serve as an
introduction to the field of static analysis, for students and engineers.

10.2 International research visitors

10.2.1 Visits of international scientists

Xavier Rival has visited National Institute for Informatics, Tokyo, Japan in March 2020.

10.3 European initiatives

10.3.1 FP7 & H2020 Projects

• Type: IDEAS

• Instrument: ERC Proof of Concept Grant 2018

• Objectif: Static Analysis for the VErification of Spreadsheets

• Duration: January 2019 - June 2020

• Coordinator: INRIA (France)

• Inria contact: Xavier Rival

https://www.google.com/search?client=safari&rls=en&q=AirBus&ie=UTF-8&oe=UTF-8

22 Inria Annual Report 2020

• Abstract: Spreadsheet applications (such as Microsoft Excel + VBA) are heavily used in a wide
range of application domains including engineering, finance, management, statistics and health.
However, they do not ensure robustness properties, thus spreadsheet errors are common and
potentially costly. According to estimates, the annual cost of spreadsheet errors is around 7 billion
dollars. For instance, in 2013, a series of spreadsheet errors at JPMorgan incurred 6 billion dollars
trading losses. Yet, expert reports estimate about 90 % of the spreadsheets contain errors. The
MemCAD ERC StG project opened the way to novel formal analysis techniques for spreadsheet
applications. We propose to leverage these results into a toolbox able to safely verify, optimize and
maintain spreadsheets, so as to reduce the likelihood of spreadsheet disasters. This toolbox will be
commercialized by the startup MATRIXLEAD.

10.4 National initiatives

10.4.1 ANASTASEC

• Title: Static Analysis for Security Properties

• Type: ANR générique 2014

• Defi: Société de l’information et de la communication

• Instrument: ANR grant

• Duration: January 2015 - September 2019

• Coordinator: INRIA Paris-Rocquencourt (France)

• Others partners: Airbus France (France), AMOSSYS (France), CEA LIST (France), INRIA Rennes-
Bretagne Atlantique (France), TrustInSoft (France)

• Inria contact: Jérôme Feret

• See also: http://www.di.ens.fr/ feret/anastasec/

• Abstract: An emerging structure in our information processing-based society is the notion of
trusted complex systems interacting via heterogeneous networks with an open, mostly untrusted
world. This view characterises a wide variety of systems ranging from the information system of a
company to the connected components of a private house, all of which have to be connected with
the outside.

It is in particular the case for some aircraft-embedded computer systems, which communicate
with the ground through untrusted communication media. Besides, the increasing demand for
new capabilities, such as enhanced on-board connectivity, e.g. using mobile devices, together with
the need for cost reduction, leads to more integrated and interconnected systems. For instance,
modern aircrafts embed a large number of computer systems, from safety-critical cockpit avionics
to passenger entertainment. Some systems meet both safety and security requirements. Despite
thorough segregation of subsystems and networks, some shared communication resources raise
the concern of possible intrusions.

Some techniques have been developed and still need to be investigated to ensure security and
confidentiality properties of such systems. Moreover, most of them are model-based techniques
operating only at architectural level and provide no guarantee on the actual implementations.
However, most security incidents are due to attackers exploiting subtle implementation-level
software vulnerabilities. Systems should therefore be analyzed at software level as well (i.e. source
or executable code), in order to provide formal assurance that security properties indeed hold for
real systems.

Because of the size of such systems, and considering that they are evolving entities, the only
economically viable alternative is to perform automatic analyses. Such analyses of security and
confidentiality properties have never been achieved on large-scale systems where security proper-
ties interact with other software properties, and even the mapping between high-level models of

http://www.di.ens.fr/~feret/anastasec/
 http://www.di.ens.fr/~feret/anastasec/

Project ANTIQUE 23

the systems and the large software base implementing them has never been done and represents a
great challenge. The goal of this project is to develop the new concepts and technologies necessary
to meet such a challenge.

The project ANASTASEC project will allow for the formal verification of security properties of
software-intensive embedded systems, using automatic static analysis techniques at different levels
of representation: models, source and binary codes. Among expected outcomes of the project will
be a set of prototype tools, able to deal with realistic large systems and the elaboration of industrial
security evaluation processes, based on static analysis.

10.4.2 DCore

• Title: DCore - Causal Debugging for Concurrent Systems

• Type: ANR générique 2018

• Defi: Société de l’information et de la communication

• Instrument: ANR grant

• Duration: March 2019 - February 2023

• Coordinator: INRIA Grenoble - Rhône-Alpes (France)

• Others partners: IRIF (France), Inria Paris (France)

• Inria contact: Jérôme Feret

• See also: https://project.inria.fr/dcore/

• Abstract: As software takes over more and more functionalities in embedded and safety-critical
systems, bugs may endanger the safety of human beings and of the environment, or entail heavy
financial losses. In spite of the development of verification and testing techniques, debugging
still plays a crucial part in the arsenal of the software developer. Unfortunately, usual debugging
techniques do not scale to large concurrent and distributed systems: they fail to provide precise
and efficient means to inspect and analyze large concurrent executions; they do not provide means
to automatically reveal software faults that constitute actual causes for errors; and they do not
provide succinct and relevant explanations linking causes (software bugs) to their effects (errors
observed during execution).

The overall objective of the project is to develop a semantically well-founded, novel form of concur-
rent debugging, which we call "causal debugging”, that aims to alleviate the deficiencies of current
debugging techniques for large concurrent software systems.

Briefly, the causal debugging technology developed by the DCore project will comprise and integrate
two main novel engines:

1. A reversible execution engine that allows programmers to backtrack and replay a concurrent
or distributed program execution, in a way that is both precise and efficient (only the exact
threads involved by a return to a target anterior or posterior program state are impacted);

2. a causal analysis engine that allows programmers to analyze concurrent executions, by asking
questions of the form "what caused the violation of this program property?”, and that allows
for the precise and efficient investigation of past and potential program executions.

The project will build its causal debugging technology on results obtained by members of the team,
as part of the past ANR project REVER, on the causal semantics of concurrent languages, and the
semantics of concurrent reversible languages, as well as on recent works by members of the project
on abstract interpretation, causal explanations and counterfactual causal analysis.

The project primarily targets multithreaded, multicore and multiprocessor software systems, and
functional software errors, that is errors that arise in concurrent executions because of faults

http://www.di.ens.fr/~feret/anastasec/
 https://project.inria.fr/dcore/

24 Inria Annual Report 2020

(bugs) in software that prevents it to meet its intended function. Distributed systems, which can
be impacted by network failures and remote site failures are not an immediate target for DCore,
although the technology developed by the project should constitute an important contribution
towards full-fledged distributed debugging. Likewise, we do not target performance or security
errors, which come with specific issues and require different levels of instrumentation, although
the DCore technology should prove a key contribution in these areas as well.

10.4.3 REPAS

The project REPAS, Reliable and Privacy-Aware Software Systems via Bisimulation Metrics (coordination
Catuscia Palamidessi, INRIA Saclay), aims at investigating quantitative notions and tools for proving
program correctness and protecting privacy, focusing on bisimulation metrics, the natural extension of
bisimulation on quantitative systems. A key application is to develop mechanisms to protect the privacy
of users when their location traces are collected. Partners: Inria (Comete, Focus), ENS Cachan, ENS Lyon,
University of Bologna.

10.4.4 SAFTA

• Title: SAFTA Static Analysis for Fault-Tolerant distributed Algorithms.

• Type: ANR JCJC 2018

• Duration: February 2018 - August 2022

• Coordinator: Cezara Drăgoi, CR Inria

• Abstract: Fault-tolerant distributed data structures are at the core distributed systems. Due to
the multiple sources of non-determinism, their development is challenging. The project aims to
increase the confidence we have in distributed implementations of data structures. We think that
the difficulty does not only come from the algorithms but from the way we think about distributed
systems. In this project we investigate partially synchronous communication-closed round based
programming abstractions that reduce the number of interleavings, simplifying the reasoning
about distributed systems and their proof arguments. We use partial synchrony to define reduction
theorems from asynchronous semantics to partially synchronous ones, enabling the transfer of
proofs from the synchronous world to the asynchronous one. Moreover, we define a domain
specific language, that allows the programmer to focus on the algorithm task, it compiles into
efficient asynchronous code, and it is equipped with automated verification engines.

10.4.5 VERIAMOS

• Title: Verification of Abstract Machines for Operating Systems

• Type: ANR générique 2018

• Defi: Société de l’information et de la communication

• Instrument: ANR grant

• Duration: January 2019 - December 2022

• Coordinator: INRIA Paris (France)

• Others partners: LIP6 (France), IRISA (France), UGA (France)

• Inria contact: Xavier Rival

• Abstract: Operating System (OS) programming is notoriously difficult and error prone. Moreover,
OS bugs can have a serious impact on the functioning of computer systems. Yet, the verification of
OSes is still mostly an open problem, and has only been done using user-assisted approaches that
require a huge amount of human intervention. The VeriAMOS proposal relies on a novel approach

Project ANTIQUE 25

to automatically and fully verifying OS services, that combines Domain Specific Languages (DSLs)
and automatic static analysis. In this approach, DSLs provide language abstraction and let users
express complex policies in high-level simple code. This code is later compiled into low level C code,
to be executed on an abstract machine. Last, the automatic static analysis verifies structural and
robustness properties on the abstract machine and generated code. We will apply this approach to
the automatic, full verification of input/output schedulers for modern supports like SSDs.

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

General chair, scientific chair

• Jérôme Feret is a guest member of the Steering Committee of the Conference on Computational
Methods in Systems Biology (CMSB).

• Jérôme Feret is a member of the Steering Committee of the Workshop on Static Analysis and
Systems Biology (SASB).

• Xavier Rival is a member of the Steering Committee of the Static Analysis Symposium (SAS).

• Xavier Rival is a member of the Steering Committee of the Workshop on Tools for Automatic
Program Analysis (TAPAS).

• Caterina Urban is a member of the Executive Board of ETAPS (European Joint Conferences on
Theory & Practice of Software).

• Vincent Danos is a member of the Steering Committee of the International Conference on Blockchain
Economics, Security and Protocols (Tokenomics).

Member of the organizing committees

• Caterina Urban is serving as Chair of the Award Committee of the ETAPS Doctoral Dissertation
Award 2021.

• Caterina Urban is organizing the 7th Verification Mentoring Workshop @CAV 2021.

• Caterina Urban is organizing the 7th Logic Mentoring Workshop @LICS 2022.

11.1.2 Scientific events: selection

Chair of conference program committees Caterina Urban is serving as Chair of SOAP 2021 (Workshop
on the State of the Art in Program Analysis).

Member of the conference program committees

• Jérôme Feret is serving as a Member of the Program Committee of CMSB 2020 (Conference on
Computational Methods in Systems Biology) and chaired a session.

• Jérôme Feret is serving as a Member of the Program Committee of SAS 2020 (Static Analysis
Symposium) and chaired a session.

• Jérôme Feret is serving as a Member of the Program Committee of HSB 2020 (Workshop on Hybrid
Systems Biology).

• Xavier Rival is serving as a Member of the Program Committee of POPL 2020 (Symposium on
Principles Of Programming Languages) and chaired a session.

26 Inria Annual Report 2020

• Xavier Rival served as a Member of the Program Committee of SAS 2020 (Static Analysis Symposium)
and chaired a session.

• Xavier Rival is serving as a Member of the Program Committee of SAS 2021 (Static Analysis Sympo-
sium).

• Xavier Rival served as a Member of the Program Committee of VMCAI 2021 (Static Analysis Sympo-
sium) and chaired a session.

• Caterina Urban served as a member of the Program Committee of VMCAI 2020 (Verification, Model
Checking, and Abstract Interpretation).

• Caterina Urban served as a member of the Program Committee of ESOP 2020 (European Symposium
on Programming).

• Caterina Urban served as a member of the Program Committee of CAV 2020 (Computer Aided
Verification) and chaired a session.

• Caterina Urban served as a member of the Program Committee of SOAP 2020 (Workshop on the
State Of the Art in Program Analysis).

• Caterina Urban served as a member of the Program Committee of VSTTE 2020 (Verified Software.
Theories, Tools, and Experiments).

• Caterina Urban served as a member of the Program Committee of SAS 2020 (Static Analysis Sympo-
sium) and chaired a session.

• Caterina Urban served as a member of the Committee of the SPLASH 2020 Student Research
Competition.

• Caterina Urban served as a member of the Program Committee of FAccT 2021 (Fairness, Account-
ability, and Transparency)

• Caterina Urban is serving as a member of the Program Committee of NFM 2021 (NASA Formal
Methods)

• Caterina Urban is serving as a member of the Program Committee of CAV 2021 (Computer Aided
Verification)

• Caterina Urban is serving as a member of the Program Committee of SBLP 2021 (Brazilian Sympo-
sium on Programming Languages)

• Caterina Urban is serving as a member of the Program Committee of POPL 2022 (Symposium on
Principles of Programming Languages)

Reviewer Jérôme Feret served as Reviewer for CAV 2020 (Conference on Computer-Aided Verification)
and MFCS 2020 (Symposium on Mathematical Foundations of Computer Science). Caterina Urban
served as Reviewer for POPL 2020 (Symposium on Principles of Programming Languages). Vincent Danos
served as a reviewer for ICBC 2021 (International Conference on Blockchain and Cryptocurrency).

11.1.3 Journal

Member of the editorial boards

• Jérôme Feret is in the editorial board of Open Journal of Modelling and Simulation.

• Jérôme Feret is in the editorial board of Frontiers in Genetics.

• Vincent Danos is a member of the editorial board of Mathematical Structures in Computer Science.

• Vincent Danos is a member of the editorial board of Transactions in Computational Systems Biology

• Vincent Danos was invited to serve as a member of the editorial board of Life, June 2020.

Project ANTIQUE 27

Reviewer - reviewing activities

• Jérôme Feret serves as a reviewer for Theoretical Computer Science.

• Jérôme Feret serves as a reviewer for BioInformatics.

11.1.4 Invited talks

• Xavier Rival was invited to give a talk on “Construction of modular abstract domains” at University
of Lille on the 12th of February 2020.

• Xavier Rival was invited to give a talk on “Type verification of spreadsheet applications” on the 3rd
of march 2020.

• Xavier Rival was invited to give a talk on “Relational shape analysis” at Tel Aviv University (Israel)
on the 21st of June 2020.

• Caterina Urban was invited to give a talk on “Perfectly Parallel Fairness Certification of Neural
Networks” at Thales Research & Technology (remote) on May 15th, 2020.

• Caterina Urban was invited to give a talk on “Perfectly Parallel Fairness Certification of Neural
Networks” at Tel Aviv University (Israel, remote) on May 24th, 2020.

• Caterina Urban was invited to give a talk on “Perfectly Parallel Fairness Certification of Neural
Networks” at IRIF (remote) on June 3rd, 2020.

• Caterina Urban was invited to give a talk on “Perfectly Parallel Fairness Certification of Neural
Networks” at Inria Rennes (remote) on June 18th, 2020.

• Caterina Urban was invited to give a talk on “A Static Analyzer for Data Science Software” at DSV
2020 (Workshop on Democratizing Software Verification), USA (remote) on July 20th, 2020.

• Caterina Urban was invited to give a talk on “Static Analysis for Data Science” at INSERM (remote)
on November 2nd, 2020.

• Vincent Danos was invited to give a talk on “Decentralised Finance and capital efficiency” at the
Paris Blockchain Week Summit, December 9, 2020.

• Vincent Danos was invited to give a talk on “Competition mechanisms in Decentralised Finance”
at the Labchain Think Tank (Caisse de dépôts), December 4, 2020.

• Vincent Danos was invited to give a talk on “Automated market-makers” at the Chalmers University
seminar on Runtime Verification, November 17, 2020.

• Vincent Danos was invited to give a talk on “Automated market-makers” at the TU Berlin seminar
on Software Engineering, October 20, 2020.

11.1.5 Leadership within the scientific community

• Xavier Rival is a member of the IFIP Working Group 2.4 on Software implementation technology.

11.1.6 Research administration

• Jérôme Feret and Xavier Rival are members of the Laboratory Council of DIENS.

• Jérôme Feret is member of the PhD Review Committee (CSD) of Inria Paris.

• Until August 2020, Jérôme Feret is deputy dean of study of the Department of Computer Science of
École normale supérieure.

• Since September 2020, Jérôme Feret is dean of study of the Department of Computer Science of
École normale supérieure.

28 Inria Annual Report 2020

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

• Licence:

– Marc Chevalier, Mathematics, 40h, L1, FDV Bachelor program (Frontiers in Life Sciences
(FdV)), Université Paris-Descartes, France.

– Jérôme Feret and Xavier Rival (lectures), and Marc Chevalier (tutorials), “Semantics and
Application to Verification”, 36h, L3, at École Normale Supérieure, France.

– Xavier Rival, “Functional Programming”, 21h, L3, Bachelor Programme at at École Polytech-
nique, France.

• Master:

– Xavier Rival, “Introduction to Static Analysis”, 12h, Internet of Things Master (retraining
curriculum, EXED), France.

– Jérôme Feret, Antoine Miné, Xavier Rival, and Caterina Urban, “Abstract Interpretation: appli-
cation to verification and static analysis”, 72h, M2. Parisian Master of Research in Computer
Science (MPRI), France.

– Vincent Danos and Jérôme Feret (with Jean Krivine), Rule-based Modelling, 24h, M1. Inter-
disciplinary Approaches to Life Science (AIV), Master Program, Université Paris-Descartes,
France.

11.2.2 Supervision

• PhD defended: Marc Chevalier, Static analysis of Security Properties in Critical Embedded Software,
started in 2017 and supervised by Jérôme Feret

• PhD in progress: Albin Salazar, Formal derivation of discrete models with separated time-scales,
started in 2019 and supervised by Jérôme Feret

• PhD in progress: Olivier Nicole, Verification of micro-kernels, started in 2018 and supervised by
Xavier Rival and Matthieu Lemerre (CEA)

• PhD in progress: Josselin Giet, Functional verification of components of operating systems by static
analysis, started in 2020 and supervised by Xavier Rival and Gilles Muller (INRIA Paris, Project team
Whisper).

• PhD in progress: Ignacio Tiraboshi, Static analysis for security properties on IoT applications,
started in 2020 and supervised by Xavier Rival and Tamara Rezk (INRIA Sophia, Project team Indes).

• PhD in progress: Denis Mazzucato, Static Analysis by Abstract Interpretation of Machine-Learned
Software, started in 2020 and supervised by Caterina Urban

11.2.3 Juries

• Xavier Rival served as a member of the Review Committee for the PhD of Vincenzo Arceri at
University of Verona (Defense: March 2020).

• Xavier Rival served as a reviewer and as a member of jury for the PhD defense of Chaoqiang Deng
at Courant Mathematical Institute of New York University (Defense: August 2020).

• Caterina Urban served as a reviewer for the PhD defense of Marco Zanella at the University of
Padova, Italy (Defense: March/April 2021).

Project ANTIQUE 29

11.3 Popularization

11.3.1 Internal or external Inria responsibilities

• Cezara Drăgoi and Xavier Rival are elected members of the INRIA Commision of Evaluation

• Jérôme Feret is a member of the jury of the ISIF - Gilles Kahn PhD Award.

• Xavier Rival is member of the “Bureau du comité des projets”.

• Xavier Rival served in the “admissibility” jury for INRIA researcher positions (CRCN) for the center
of “Nancy Grand Est” and for the national campaign in 2020.

• Xavier Rival served in the “admission” jury for INRIA researcher positions (CRCN) for all centers in
2020.

• Caterina Urban is serving in the INRIA Commission Emplois Scientifique in 2021.

11.3.2 Articles and contents

• Cezara Drăgoi and Xavier Rival co-authored with Bor-Yuh Evan Chang, Noam Rinetzky and Roman
Manevich a survery on shape analysis, which was published in Fall 2020 [11].

• Jérôme Feret authored a book chapter on static analysis of rule-based models [27].

• Xavier Rival has been working with Kwangkeun Yi on the writing of a book that should serve as an
introduction to the field of static analysis, for students and engineers, and this book is expected to
be released by MIT Press in January 2020 [21].

12 Scientific production

12.1 Major publications

[1] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné and X. Rival. ‘Static Analysis and
Verification of Aerospace Software by Abstract Interpretation’. In: Proceedings of the American
Institute of Aeronautics and Astronautics (AIAA Infotech@Aerospace 2010). Atlanta, Georgia, USA:
American Institute of Aeronautics and Astronautics, 2010.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux and X. Rival. ‘A Static
Analyzer for Large Safety-Critical Software’. In: Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (PLDI’03). ACM Press, June 2003, pp. 196–207.

[3] A. Bouajjani, C. Dragoi, C. Enea and M. Sighireanu. ‘On inter-procedural analysis of programs with
lists and data’. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. 2011, pp. 578–589. DOI:
10.1145/1993498.1993566. URL: http://doi.acm.org/10.1145/1993498.1993566.

[4] P. Cousot. ‘Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract
Interpretation’. In: Theoretical Computer Science 277.1–2 (2002), pp. 47–103.

[5] J. Feret, V. Danos, J. Krivine, R. Harmer and W. Fontana. ‘Internal coarse-graining of molecular
systems’. In: Proceeding of the national academy of sciences 106.16 (Apr. 2009).

[6] L. Mauborgne and X. Rival. ‘Trace Partitioning in Abstract Interpretation Based Static Analyzers’. In:
Proceedings of the 14th European Symposium on Programming (ESOP’05). Ed. by M. Sagiv. Vol. 3444.
Lecture Notes in Computer Science. Springer-Verlag, 2005, pp. 5–20.

[7] A. Miné. ‘The Octagon Abstract Domain’. In: Higher-Order and Symbolic Computation 19 (2006),
pp. 31–100.

[8] X. Rival. ‘Symbolic Transfer Functions-based Approaches to Certified Compilation’. In: Confer-
ence Record of the 31st Annual ACM SIGPLAN\discretionary–SIGACT Symposium on Principles of
Programming Languages. ACM Press, New York, United States, 2004, pp. 1–13.

https://doi.org/10.1145/1993498.1993566
http://doi.acm.org/10.1145/1993498.1993566

30 Inria Annual Report 2020

12.2 Publications of the year

International journals

[9] F. Angileri, S. Legare, A. Marino Gammazza, E. Conway de Macario, A. JL Macario and F. Cappello.
‘Molecular mimicry may explain multi-organ damage in COVID-19’. In: Autoimmunity Reviews
19.8 (Aug. 2020). DOI: 10.1016/j.autrev.2020.102591. URL: https://hal.inria.fr/hal-0
3089171.

[10] N. Behr, V. Danos and I. Garnier. ‘Combinatorial Conversion and Moment Bisimulation for Stochas-
tic Rewriting Systems’. In: Logical Methods in Computer Science (10th July 2020). DOI: 10.23638
/LMCS-16(3:3)2020. URL: https://hal.archives-ouvertes.fr/hal-03096175.

[11] B.-Y. E. Chang, C. Dragoi, R. Manevich, N. Rinetzky and X. Rival. ‘Shape Analysis’. In: Foundations
and Trends in Programming Languages 6.1–2 (2020), pp. 1–158. DOI: 10.1561/2500000037. URL:
https://hal.inria.fr/hal-03081617.

[12] B. Coyle, D. Mills, V. Danos and E. Kashefi. ‘The Born supremacy: quantum advantage and training
of an Ising Born machine’. In: npj Quantum Information 6.1 (8th July 2020), p. 60. DOI: 10.1038/s
41534-020-00288-9. URL: https://hal.archives-ouvertes.fr/hal-03096252.

[13] W. Lee, H. Yu, X. Rival and H. Yang. ‘Towards Verified Stochastic Variational Inference for Proba-
bilistic Programs’. In: Proceedings of the ACM on Programming Languages 16 (2020). DOI: 10.1145
/3371084. URL: https://hal.archives-ouvertes.fr/hal-02399922.

[14] C. Urban, M. Christakis, V. Wüstholz and F. Zhang. ‘Perfectly Parallel Fairness Certification of Neural
Networks’. In: Proceedings of the ACM on Programming Languages 4.OOPSLA (13th Nov. 2020),
pp. 1–30. DOI: 10.1145/3428253. URL: https://hal.inria.fr/hal-03091870.

International peer-reviewed conferences

[15] M. Chevalier and J. Feret. ‘Sharing Ghost Variables in a Collection of Abstract Domains’. In: VMCAI
2020 - 21st International Conference on Verification, Model Checking, and Abstract Interpretation.
Proceedings of the 21st International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2020). New Orleans, LA, United States, 19th Jan. 2020. URL: https://hal
.inria.fr/hal-02378809.

[16] V. Danos, T. Heindel, R. Honorato-Zimmer and S. Stucki. ‘Rate Equations for Graphs’. In: CMSB
2020 - 18th International Conference Computational Methods in Systems Biology. Konstanz /
Virtual, Germany, 29th Sept. 2020, pp. 3–26. DOI: 10.1007/978- 3- 030- 60327- 4_1. URL:
https://hal.archives-ouvertes.fr/hal-03096240.

[17] C. Dragoi, C. Enea, B. K. Ozkan, R. Majumdar and F. Niksic. ‘Testing consensus implementations
using communication closure’. In: Proc. ACM Program. Lang. 4(OOPSLA): 210:1-210:29 (2020).
Chiccago, United States, 18th Oct. 2021. URL: https://hal.inria.fr/hal-03134294.

[18] C. Dragoi, J. Widder and D. Zufferey. ‘Programming at the edge of synchrony’. In: Proc. ACM
Program. Lang. 4(OOPSLA): 213:1-213:30 (2020). Chicago, United States, 18th Oct. 2020. URL:
https://hal.inria.fr/hal-03134314.

[19] H. Illous, M. Lemerre and X. Rival. ‘Interprocedural Shape Analysis Using Separation Logic-based
Transformer Summaries’. In: SAS 2020 - 27th Static Analysis Symposium. Chicago / Virtual, United
States, 18th Nov. 2020. URL: https://hal.inria.fr/hal-03081558.

[20] W. Lee, H. Yu, X. Rival and H. Yang. ‘On Correctness of Automatic Differentiation for Non-Differentiable
Functions’. In: NeurIPS 2020 - 34th Conference on Neural Information Processing Systems. Van-
couver / Virtual, Canada, 6th Dec. 2020. URL: https://hal.inria.fr/hal-03081582.

Scientific books

[21] X. Rival and K. Yi. Introduction to Static Analysis. Feb. 2020. URL: https://hal.archives-ouver
tes.fr/hal-02402597.

https://doi.org/10.1016/j.autrev.2020.102591
https://hal.inria.fr/hal-03089171
https://hal.inria.fr/hal-03089171
https://doi.org/10.23638/LMCS-16(3:3)2020
https://doi.org/10.23638/LMCS-16(3:3)2020
https://hal.archives-ouvertes.fr/hal-03096175
https://doi.org/10.1561/2500000037
https://hal.inria.fr/hal-03081617
https://doi.org/10.1038/s41534-020-00288-9
https://doi.org/10.1038/s41534-020-00288-9
https://hal.archives-ouvertes.fr/hal-03096252
https://doi.org/10.1145/3371084
https://doi.org/10.1145/3371084
https://hal.archives-ouvertes.fr/hal-02399922
https://doi.org/10.1145/3428253
https://hal.inria.fr/hal-03091870
https://hal.inria.fr/hal-02378809
https://hal.inria.fr/hal-02378809
https://doi.org/10.1007/978-3-030-60327-4_1
https://hal.archives-ouvertes.fr/hal-03096240
https://hal.inria.fr/hal-03134294
https://hal.inria.fr/hal-03134314
https://hal.inria.fr/hal-03081558
https://hal.inria.fr/hal-03081582
https://hal.archives-ouvertes.fr/hal-02402597
https://hal.archives-ouvertes.fr/hal-02402597

Project ANTIQUE 31

Scientific book chapters

[22] N. Theret, J. Feret, A. Hodgkinson, P. Boutillier, P. Vignet and O. Radulescu. ‘Integrative models
for TGF-β signaling and extracellular matrix’. In: Extracellular Matrix Omics. Vol. 7. Biology of
Extracellular Matrix. https://v6ediss.universite-lyon.fr/sylvie-ricard-blum--3249
7.kjsp, Dec. 2020, p. 17. DOI: 10.1007/978-3-030-58330-9_10. URL: https://hal.inria.f
r/hal-02458073.

Edition (books, proceedings, special issue of a journal)

[23] V. Danos, M. Herlihy, M. Potop-Butucaru, J. Prat and S. Tucci-Piergiovanni, eds. International
Conference on Blockchain Economics, Security and Protocols (Tokenomics 2019). Vol. 71. OpenAccess
Series in Informatics (OASIcs). Paris, France, Mar. 2020. DOI: 10.4230/OASIcs.Tokenomics.201
9.0. URL: https://hal.archives-ouvertes.fr/hal-03096247.

Doctoral dissertations and habilitation theses

[24] M. Chevalier. ‘Proving the security of software-intensive embedded systems by abstract interpreta-
tion’. ENS Paris; PSL University, 27th Nov. 2020. URL: https://hal.inria.fr/tel-03127921.

Reports & preprints

[25] L. Brotcorne, A. Canteaut, A. C. Viana, C. Grandmont, B. Guedj, S. Huot, V. Issarny, G. Pallez, V.
Perrier, V. Quema, J.-B. Pomet, X. Rival, S. Salvati and E. Thomé. Indicateurs de suivi de l’activité
scientifique de l’Inria. Inria, 1st Dec. 2020. URL: https://hal.inria.fr/hal-03033764.

[26] V. Danos, J. Krivine and J. Prat. Reversible and Composable Financial Contracts (extended abstract).
2020. URL: https://hal.archives-ouvertes.fr/hal-03103298.

[27] J. Feret. Analyses des motifs accessiblesdans les modèles Kappa. 2020. URL: https://hal.inria.f
r/hal-03088539.

[28] W. Waites, M. Cavaliere, D. Manheim, J. Panovska-Griffiths and V. Danos. Scaling up epidemiological
models with rule-based modelling. June 2020. URL: https://hal.archives-ouvertes.fr/hal-
03096264.

12.3 Cited publications

[29] P. Cousot. ‘Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation’. In: Electr. Notes Theor. Comput. Sci. 6 (1997), pp. 77–102. DOI: 10.1016/S1571-06
61(05)80168-9. URL: http://dx.doi.org/10.1016/S1571-0661(05)80168-9.

[30] P. Cousot and R. Cousot. ‘Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints’. In: Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press,
New York, United States, 1977, pp. 238–252.

[31] H. Illous. ‘Abstract Heap Relations for a Compositional Shape Analysis’. Theses. Ecole Normale
Supérieure, Apr. 2019. URL: https://hal.inria.fr/tel-02399767.

[32] C. Urban. ‘Static Analysis of Data Science Software’. In: SAS 2019 - 26th Static Analysis Symposium.
Ed. by B.-Y. E. Chang. Porto, Portugal: Springer, Oct. 2019, pp. 17–23. DOI: 10.1007/978-3-030-3
2304-2_2. URL: https://hal.inria.fr/hal-02397699.

https://v6ediss.universite-lyon.fr/sylvie-ricard-blum--32497.kjsp
https://v6ediss.universite-lyon.fr/sylvie-ricard-blum--32497.kjsp
https://doi.org/10.1007/978-3-030-58330-9_10
https://hal.inria.fr/hal-02458073
https://hal.inria.fr/hal-02458073
https://doi.org/10.4230/OASIcs.Tokenomics.2019.0
https://doi.org/10.4230/OASIcs.Tokenomics.2019.0
https://hal.archives-ouvertes.fr/hal-03096247
https://hal.inria.fr/tel-03127921
https://hal.inria.fr/hal-03033764
https://hal.archives-ouvertes.fr/hal-03103298
https://hal.inria.fr/hal-03088539
https://hal.inria.fr/hal-03088539
https://hal.archives-ouvertes.fr/hal-03096264
https://hal.archives-ouvertes.fr/hal-03096264
https://doi.org/10.1016/S1571-0661(05)80168-9
https://doi.org/10.1016/S1571-0661(05)80168-9
http://dx.doi.org/10.1016/S1571-0661(05)80168-9
https://hal.inria.fr/tel-02399767
https://doi.org/10.1007/978-3-030-32304-2_2
https://doi.org/10.1007/978-3-030-32304-2_2
https://hal.inria.fr/hal-02397699

	Project-Team ANTIQUE
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Semantics
	Abstract interpretation and static analysis
	Applications of the notion of abstraction in semantics
	From properties to explanations

	Application domains
	Verification of safety critical embedded software
	Static analysis of software components and libraries
	Models of mechanistic interactions between proteins
	Consensus
	Smart contracts
	Staticanalysis of data science software

	Social and environmental responsibility
	Impact of research results

	Highlights of the year
	New software and platforms
	New software
	APRON
	Astrée
	AstréeA
	ClangML
	FuncTion
	HOO
	MemCAD
	KAPPA
	QUICr
	Zarith
	PYPPAI

	New results
	Shape Analysis
	Relational Static Analysis
	Reduced product
	Static Analysis of Probabilistic Programming Languages and Optimization Algorithms
	Static Analysis of Neural Networks
	Reductions between synchronous and asynchronous programming abstractions
	Modeling
	Smart contracts

	Bilateral contracts and grants with industry
	Bilateral contracts with industry
	Follow up to the AnaStaSec project
	Disco project with Tezos
	Exploratory collaboration with Airbus on static analysis for machine learning

	Partnerships and cooperations
	International initiatives
	Inria international partners

	International research visitors
	Visits of international scientists

	European initiatives
	FP7 & H2020 Projects

	National initiatives
	AnaStaSec
	DCore
	REPAS
	SAFTA
	VeriAMOS

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Leadership within the scientific community
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Internal or external Inria responsibilities
	Articles and contents

	Scientific production
	Major publications
	Publications of the year
	Cited publications

