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2 Overall objectives

The research conducted in the Cambium team aims at improving the safety, reliability and security of
software through advances in programming languages and in formal program verification. Our work is
centered on the design, formalization, and implementation of programming languages, with particular
emphasis on type systems and type inference, formal program verification, shared-memory concurrency
and weak memory models. We are equally interested in theoretical foundations and in applications to
real-world problems. The OCaml programming language and the CompCert C compiler embody many of
our research results.

2.1 Software reliability and reusability

Software nowadays plays a pervasive role in our environment: it runs not only on general-purpose
computers, as found in homes, offices, and data centers, but also on mobile phones, credit cards, inside
transportation systems, factories, and so on. Furthermore, whereas building a single isolated software
system was once rightly considered a daunting task, today, tens of millions of developers throughout
the world collaborate to develop software components that have complex interdependencies. Does this
mean that the “software crisis” of the early 1970s, which Dijkstra described as follows, is over?

By now it is generally recognized that the design of any large sophisticated system is going to
be a very difficult job, and whenever one meets people responsible for such undertakings, one
finds them very much concerned about the reliability issue, and rightly so. – Edsger W. Dijkstra

To some extent, the crisis is indeed over. In the past five decades, strong emphasis has been put on
modularity and reusability. It is by now well-understood how to build reusable software components,
thus avoiding repeated programming effort and reducing costs. The availability of hundreds of thousands
of such components, hosted in collaborative repositories, has allowed the software industry to bloom in a
manner that was unimaginable a few decades ago.

As pointed out by Dijkstra, however, the problem is not just to build software, but to ensure that
it works. Today, the reliability of most software leaves a lot to be desired. Consumer-grade software,
including desktop, Web, and mobile phone applications, often crashes or exhibits unexpected behavior.
This results in loss of time, loss of data, and also can often be exploited for malicious purposes by
attackers. Reliability includes safety—exhibiting appropriate behavior under normal usage conditions—
and security—resisting abuse in the hands of an attacker.

Today, achieving very high levels of reliability is possible, albeit at a tremendous cost in time and
money. In the aerospace industry, for instance, high reliability is obtained via meticulous development
processes, extensive testing efforts, and external reviewing by independent certification authorities. There
and elsewhere, formal verification is also used, instead of or in addition to the above methods. In the
hardware industry, model-checking is used to verify microprocessor components. In the critical software
industry, deductive program verification has been used to verify operating system kernels, file systems,
compilers, and so on. Unfortunately, these methods are difficult to apply in industries that have strong
cost and time-to-market constraints, such as the automotive industry, let alone the general software
industry.

Today, thus, we arguably still are experiencing a “reliable-software crisis”. Although we have become
pretty good at producing and evolving software, we still have difficulty producing cheap reliable software.

How to resolve this crisis remains, to a large extent, an open question. Modularity and reusability
seem needed now more than ever, not only in order to avoid repeated programming effort and reduce the
likelihood of errors, but also and foremost to avoid repeated specification and verification effort. Still,
apparently, the languages that we use to write software are not expressive enough, and the logics and
tools that we use to verify software are not mature enough, for this crisis to be behind us.

2.2 Qualities of a programming language

A programming language is the medium through which an intent (software design) is expressed (program
development), acted upon (program execution), and reasoned about (verification). It would be a mistake
to argue that, with sufficient dedication, effort, time and cleverness, good software can be written in
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any programming language. Although this may be true in principle, in reality, the choice of an adequate
programming language can be the deciding factor between software that works and software that does
not, or even cannot be developed at all.

We believe, in particular, that it is crucial for a programming language to be safe, expressive, to
encourage modularity, and to have a simple, well-defined semantics.

• Safety. The execution of a program must not ever be allowed to go wrong in an unpredictable way.
Examples of behaviors that must be forbidden include

reading or writing data outside of the memory area assigned by the operating system to the process
and executing arbitrary data as if it were code. A programming language is safe if every safety
violation is gracefully detected either at compile time or at runtime.

• Expressiveness. The programming language should allow programmers to think in terms of
concise, high-level abstractions—including the concepts and entities of the application domain—as
opposed to verbose, low-level representations or encodings of these concepts.

• Modularity. The programming language should make it easy to develop a software component in
isolation, to describe how it is intended to be composed with other components, and to check at
composition time that this intent is respected.

• Semantics. The programming language should come with a mathematical definition of the mean-
ing of programs, as opposed to an informal, natural-language description. This definition should
ideally be formal, that is, amenable to processing by a machine. A well-defined semantics is a
prerequisite for proving that the language is safe (in the above sense) and for proving that a specific
program is correct (via model-checking, deductive program verification, or other formal methods).

The safety of a programming language is usually achieved via a combination of design decisions,
compile-time type-checking, and runtime checking. As an example design decision, memory deallo-
cation, a dangerous operation, can be placed outside of the programmer’s control. As an example of
compile-time type-checking, attempting to use an integer as if it were a pointer can be considered a type
error; a program that attempts to do this is then rejected by the compiler before it is executed. Finally, as
an example of runtime checking, attempting to access an array outside of its bounds can be considered a
runtime error: if a program attempts to do this, then its execution is aborted.

Type-checking can be viewed as an automated means of establishing certain correctness properties of
programs. Thus, type-checking is a form of “lightweight formal methods” that provides weak guarantees
but whose burden seems acceptable to most programmers. However, type-checking is more than just
a program analysis that detects a class of programming errors at compile time. Indeed, types offer a
language in which the interaction between one program component and the rest of the program can be
formally described. Thus, they can be used to express a high-level description of the service provided
by this component (i.e., its API), independently of its implementation. At the same time, they protect
this component against misuse by other components. In short, “type structure is a syntactic discipline
for enforcing levels of abstraction”. In other words, types offer basic support for expressiveness and
modularity, as described above.

For this reason, types play a central role in programming language design. They have been and remain
a fundamental research topic in our group. More generally, the design of new programming languages
and new type systems and the proof of their safety has been and remains an important theme. The
continued evolution of OCaml, as well as the design and formalization of Mezzo [2], are examples.

2.3 Design, implementation, and evolution of OCaml

Our group’s expertise in programming language design, formalization and implementation has tradi-
tionally been focused mainly on the programming language OCaml [27]. OCaml can be described as a
high-level statically-typed general-purpose programming language. Its main features include first-class
functions, algebraic data structures and pattern matching, automatic memory management, support
for traditional imperative programming (mutable state, exceptions), and support for modularity and
encapsulation (abstract types; modules and functors; objects and classes).
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OCaml meets most of the key criteria that we have put forth above. Thanks to its static type discipline,
which rejects unsafe programs, it is safe. Because its type system is equipped with powerful features, such
as polymorphism, abstract types, and type inference, it is expressive, modular, and concise. Although
OCaml as a whole does not have a formal semantics, many fragments of it have been formally studied in
isolation. As a result, we believe that OCaml is a good language in which to develop complex software
components and software systems and (possibly) to verify that they are correct.

OCaml has long served a dual role as a vehicle for our programming language research and as a
mature real-world programming language. This remains true today, and we wish to preserve this dual
role. On the research side, there are many directions in which the language could be extended. On the
applied side, OCaml is used within academia (for research and for teaching) and in the industry. It is
maintained by a community of active contributors, which extends beyond our team at Inria. It comes
with a package manager, opam, a rich ecosystem of libraries, and a set of programming tools, including
an IDE (Merlin), support for debugging and performance profiling, etc.

OCaml has been used to develop many complex systems, such as proof assistants (Coq, HOL Light),
automated theorem provers (Alt-Ergo, Zenon), program verification tools (Why3), static analysis engines
(Astrée, Frama-C, Infer, Flow), programming languages and compilers (SCADE, Reason, Hack), Web
servers (Ocsigen), operating systems (MirageOS, Docker), financial systems (at companies such as Jane
Street, LexiFi, Nomadic Labs), and so on.

2.4 Software verification

We have already mentioned the importance of formal verification to achieve the highest levels of software
quality. One of our major contributions to this field has been the verification of programming tools,
namely the CompCert optimizing compiler for the C language [34] and the Verasco abstract interpretation-
based static analyzer [7]. Technically, this is deductive verification of purely functional programs, using
the Coq proof assistant both as the prover and the programming language. Scientifically, CompCert
and Verasco are milestones in the area of program proof, due to the complexity and realism of the code
generation, optimization, and static analysis techniques that are verified. Practically, these formally-
verified tools strengthen the guarantees that can be obtained by formal verification of critical software
and reduce the need for other verification activities, attracting the interest of Airbus and other companies
that develop critical embedded software.

CompCert is implemented almost entirely in Gallina, the purely functional programming language
that lies at the heart of Coq. Extraction, a whole-program translation from Gallina to OCaml, allows
Gallina programs to be compiled to native code and efficiently executed. Unfortunately, Gallina is a very
restrictive language: it rules out all side effects, including nontermination, mutable state, exceptions,
delimited control, nondeterminism, input/output, and concurrency. In comparison, most industrial
programming languages, including OCaml, are vastly more expressive and convenient. Thus, there is a
clear need for us to also be able to verify software components that are written in OCaml and exploit side
effects.

To reason about the behavior of effectful programs, one typically uses a “program logic”, that is, a
system of deduction rules that are tailor-made for this purpose, and can be built into a verification tool.
Since the late 1960s, program logics for imperative programming languages with global mutable state
have been in wide use. A key advance was made in the 2000s with the appearance of Separation Logic,
which emphasizes local reasoning and thereby allows reasoning about a callee independently of its caller,
about one heap fragment independently of the rest of the heap, about one thread independently of all
other threads, and so on. Today, this field is extremely active: the development of powerful program
logics for rich effectful programming languages, such as OCaml or Multicore OCaml, is a thriving and
challenging research area.

Our team has expertise in this field. For several years, François Pottier has been investigating the
theoretical foundations and applications of several features of modern Separation Logics, such as “hidden
state” and “monotonic state”. Jean-Marie Madiot has contributed to the Verified Software Toolchain,
which includes a version of Concurrent Separation Logic for a subset of C. Arthur Charguéraud 1 has
developed CFML, an implementation of Separation Logic for a subset of OCaml. Armaël Guéneau has

1Formerly a PhD student in our team, today a researcher at Inria Nancy Grand-Est, team Camus.
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extended CFML with the ability to simultaneously verify the correctness and the time complexity of
an OCaml component. Glen Mével and Paulo de Vilhena are currently investigating the use of Iris, a
descendant of Concurrent Separation Logic, to carry out proofs of Multicore OCaml programs.

We envision several ways of using OCaml components that have been verified using a program
logic. In the simplest scenario, some key OCaml components, such as the standard library, are verified,
and are distributed for use in unverified applications. This increases the general trustworthiness of
the OCaml system, but does not yield strong guarantees of correctness. In a second scenario, a fully
verified application is built out of verified OCaml components, therefore it comes with an end-to-end
correctness guarantee. In a third scenario, while some components are written and verified directly at the
level of OCaml, others are first written and verified in Gallina, then translated down to verified OCaml
components by an improved version of Coq’s extraction mechanism. In this scenario, it is possible to fully
verify an application that combines effectful OCaml code and side-effect-free Gallina code. This scenario
represents an improvement over the current state of the art. Today, CompCert includes several OCaml
components, which cannot be verified in Coq. As a result, the data produced by these components must
be validated by verified checkers.

2.5 Shared-memory concurrency

Concurrent shared-memory programming seems required in order to extract maximum performance out
of the multicore general-purpose processors that have been in wide use for more than a decade. (GPUs
and other special-purpose processors offer even greater raw computing power, but are not easily exploited
in the symbolic computing applications that we are usually interested in.) Unfortunately, concurrent
programming is notoriously more difficult than sequential programming. This can be attributed to a
“state-space explosion problem”: the number of permitted program executions grows exponentially with
the number of concurrent agents involved. Shared memory introduces an additional, less notorious,
difficulty: on a modern multicore processor, execution does not follow the strong model where the
instructions of one thread are interleaved with the instructions of other threads, and where reads and
writes to memory instantaneously take effect. To properly understand and analyze a program, one must
first formally define the semantics of the programming language, or of the device that is used to execute
the program. The aspect of the semantics that governs the interaction of threads through memory is
known as a memory model. Most modern memory models are weak in the sense that they offer fewer
guarantees than the strong model sketched above.

Describing a memory model in precise mathematical language, in a manner that is at the same time
faithful with respect to real-world machines and exploitable as a basis for reasoning about programs,
is a challenging problem and a domain of active research, where thorough testing and verification are
required.

Luc Maranget and Jean-Marie Madiot have acquired an expertise in the domain of weak memory mod-
els, including so-called axiomatic models and event-structure-based models. Moreover, Luc Maranget
develops diy-herd-litmus, a unique software suite for defining, simulating and testing memory models.
In short, diy generates so-called litmus tests from concise specifications; herd simulates litmus tests
with respect to memory models expressed in the domain-specific language CAT; litmus executes litmus
tests on real hardware. These tools have been instrumental in finding bugs in the deployed processors
IBM Power5 and ARM Cortex-A9. Moreover, within industry, some models are now written in CAT, either
for internal use, such as the AArch64 model by Will Deacon (ARM), or for publication, such as the RISC-V
model by Luc Maranget and the HSA model by Jade Alglave and Luc Maranget.

For a long time, the OCaml language and runtime system have been restricted to sequential execution,
that is, execution of a single computation thread on a single processor core. Yet, since 2014 approximately,
the Multicore OCaml project at OCaml Labs (Cambridge, UK) is preparing a version of OCaml where
multiple threads execute concurrently and communicate with each other via shared memory.

In principle, it seems desirable for Multicore OCaml to become the standard version of OCaml.
Integrating Multicore OCaml into mainstream OCaml, however, is a major undertaking. The runtime
system is deeply impacted: in particular, OCaml’s current high-performance garbage collector must
be replaced with an entirely new concurrent collector. The memory model and operational semantics
of the language must be clearly defined. At the programming-language level, several major extensions
are proposed, including effect handlers (a generalization of exception handlers, introducing a form of
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delimited control) and a new type-and-effect-discipline that statically detects and rejects unhandled
effects.

3 Research program

Our research proposal is organized along three main axes, namely programming language design and
implementation, concurrency, and program verification. These three areas have strong connections.
For instance, the definition and implementation of Multicore OCaml intersects the first two axes, whereas
creating verification technology for Multicore OCaml programs intersects the last two.

In short, the “programming language design and implementation” axis includes:

• The search for richer type disciplines, in an effort to make our programming languages safer and
more expressive. Two domains, namely modules and effects, appear of particular interest. In
addition, we view type inference as an important cross-cutting concern.

• The continued evolution of OCaml. The major evolutions that we envision in the medium term
are the integration of Multicore OCaml, the addition of modular implicits, and a redesign of the
type-checker.

• Research on refactoring and program transformations.

The “concurrency” axis includes:

• Research on weak memory models, including axiomatic models, operational models, and event-
structure models.

• Research on the Multicore OCaml memory model. This might include proving that the axiomatic
and operational presentations of the model agree; testing the Multicore OCaml implementation to
ensure that it conforms to the model; and extending the model with new features, should the need
arise.

The “program verification” axis includes:

• The continued evolution of CompCert.

• Building new verified tools, such as verified compilers for domain-specific languages, verified
components for the Coq type-checker, and so on.

• Verifying algorithms and data structures implemented in OCaml and in Multicore OCaml and
enriching Separation Logic with new features, if needed, to better support this activity.

• The continued development of tools for TLA+.

4 Application domains

4.1 Formal methods

We develop techniques and tools for the formal verification of critical software:

• program logics based on CFML and Iris for the deductive verification of software, including concur-
rency and algorithmic complexity aspects;

• verified development tools such as the CompCert verified C compiler, which extends properties
established by formal verification at the source level all the way to the final executable code.

Some of these techniques have already been used in the nuclear industry (MTU Friedrichshafen uses
CompCert to develop emergency diesel generators) and are under evaluation in the aerospace industry.
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4.2 High-assurance software

Software that is not critical enough to undergo formal verification can still benefit greatly, in terms of
reliability and security, from a functional, statically-typed programming language. The OCaml type system
offers several advanced tools (generalized algebraic data types, abstract types, extensible variant and
object types) to express many data structure invariants and safety properties and have them automatically
enforced by the type-checker. This makes OCaml a popular language to develop high-assurance software,
in particular in the financial industry. OCaml is the implementation language for the Tezos blockchain
and cryptocurrency. It is also used for automated trading at Jane Street and for modeling and pricing
of financial contracts at Bloomberg, Lexifi and Simcorp. OCaml is also widely used to implement code
verification and generation tools at Facebook, Microsoft, CEA, Esterel Technologies, and many academic
research groups, at Inria and elsewhere.

4.3 Design and test of microprocessors

The diy tool suite and the underlying methodology is in use at ARM Ltd to design and test the memory
model of ARM architectures. In particular, the internal reference memory model of the ARMv8 (or
AArch64) architecture has been written “in house” in Cat, our domain-specific language for specifying
and simulating memory models. Moreover, our test generators and runtime infrastructure are used
routinely at ARM to test various implementations of their architectures.

4.4 Teaching programming

Our work on the OCaml language family has an impact on the teaching of programming. OCaml is one of
the programming languages selected by the French Ministry of Education for teaching Computer Science
in classes préparatoires scientifiques. OCaml is also widely used for teaching advanced programming in
engineering schools, colleges and universities in France, the USA, and Japan. The MOOC “Introduction
to Functional Programming in OCaml”, developed at University Paris Diderot, is available on the France
Université Numérique platform and comes with an extensive platform for self-training and automatic
grading of exercises, developed in OCaml itself.

5 New software and platforms

5.1 Software

5.1.1 The CompCert verified compiler

Participants Xavier Leroy, Michael Schmidt (AbsInt GmbH), Bernhard Schom-
mer (AbsInt GmbH).

Since 2005, in the context of our work on compiler verification, we have been developing and formally
verifying CompCert, a moderately-optimizing compiler for a large subset of the C programming language.
CompCert generates assembly code for the ARM, PowerPC, RISC-V and x86 architectures [34]. It comprises
a back-end, which translates the Cminor intermediate language to PowerPC assembly and which can
be reused for source languages other than C [32], and a front-end, which translates the “CompCert C”
subset of C to Cminor. The compiler is written mostly within the specification language of the Coq proof
assistant, out of which Coq’s extraction facility generates executable OCaml code. The compiler comes
with a 100000-line machine-checked proof of semantic preservation, establishing that the generated
assembly code executes exactly as prescribed by the semantics of the source C program.

This year, we improved the CompCert C compiler and tools in several directions:

• Conformance with the ISO C 11 standard was improved: the _Static_assert construct is now
supported, and several discrepancies were fixed.
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• We introduced mechanisms to specify the semantics of built-in functions. We used them to provide
semantics for a growing number of built-in functions, making them amenable to optimizations
such as constant propagation and common subexpression elimination.

• The x86 code generator was updated to support Cygwin 64 as a target platform, making it easier to
use CompCert under Windows.

• Conformance with the Application Binary Interfaces (ABI) for AArch64, PowerPC, RISC-V, and x86
was improved.

• The clightgen tool, which integrates CompCert in the Verified Software Toolchain developed by
Andrew Appel’s team at Princeton University [28], was improved so as to simplify the verification of
C programs composed of multiple source files.

We released two versions of CompCert incorporating these improvements: version 3.7 in March 2020
and version 3.8 in November 2020.

5.1.2 The OCaml system

Participants Florian Angeletti, Frédéric Bour, Damien Doligez, Jacques Gar-
rigue (Nagoya University), Sébastien Hinderer, Xavier Leroy,
Luc Maranget, Thomas Refis, David Allsop (Cambridge University),
Stephen Dolan (Cambridge University), Alain Frisch (Lexifi), Jacques-
Henri Jourdan (CNRS), Nicolás Ojeda Bär (Lexifi), Gabriel Scherer (In-
ria team Partout), Mark Shinwell (Jane Street), Leo White (Jane Street),
Jeremy Yallop (Cambridge University).

This year, we released two major versions of the OCaml system: version 4.10.0 in February and version
4.11.0 in August. We also released four minor versions (4.09.1, 4.10.1, 4.10.2, 4.11.1) with bug fixes and
backports of new features. The main novelties in these releases are:

• The language has been extended to allow users to define their own multidimensional array-like
indexing operators.

• A new memory profiler, statmemprof, is now available. It is based on statistical sampling of
allocations, resulting in much lower run-time overhead than the earlier memory profiler, Spacetime.

• OCaml now fully supports the MacOS system running on ARM 64-bit processors, including the
latest Macintosh models with “Apple silicon”.

• A native-code generator for the RISC-V processor architecture has been added.

• A new memory allocator for the major heap is now available. It is based on a best-fit strategy and
causes less heap fragmentation than the previous allocator.

• The exhaustiveness check has been made more precise for case analyses that involve GADTs or
empty types.

• The runtime system can now record statistics and events in the standard CTF format.

• The integration of the Multicore OCaml project has begun, with a number of internal changes to
the runtime system that will be required for full multicore support.

• More than one hundred usability improvements have been implemented, ranging from more
readable stack backtraces through improved error messages to new standard library functions.

• About 80 bugs have been fixed.
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5.1.3 The Menhir parser generator

Participants François Pottier.

Since 2005, François Pottier has been developing Menhir, an LR(1) parser generator for OCaml. Menhir
is used both within our group (where it is exploited, in particular, by the OCaml and CompCert compilers)
and by many users in the OCaml community. This year, a number of improvements and bug fixes have
been performed:

• The algorithms for constructing LR automata have been re-implemented in a style that is more
concise, more elegant and more efficient. A bug in our implementation of Pager’s construction
algorithm has been fixed. Our new implementation operates in two phases: first compute the
automaton’s states, then compute its transitions. It is significantly easier to describe and understand
than our earlier implementation.

• A simplified error-handling strategy has been introduced. It removes a couple undesirable features
of the traditional error-handling strategy inherited from yacc.

• Several “bit set” data structures have been improved, for greater speed.

• The test that determines whether macro-expansion will terminate has been re-implemented. The
old test was discovered to be neither sound nor complete. The new test is hopefully both sound
and complete.

• The manner in which Menhir performs type inference has been slightly modified so as to avoid
certain (infrequent) situations in which incorrect types could be inferred.

• Menhir is now built using dune instead of ocamlbuild. This allows taking advantage of parallelism
while building and testing Menhir.

5.1.4 The odoc documentation tool

Participants Jon Ludlam (University of Cambridge), Gabriel Radanne, Florian An-
geletti, Leo White (Jane Street).

Rendering the documentation of a piece of OCaml code is a difficult task. Indeed, the OCaml module
system allows setting up complex inter-dependencies that are difficult to compute and difficult to render
in a concise document. odoc is our latest attempt at creating a documentation tool that handles the full
complexity of the OCaml language.

This year, Gabriel Radanne rewrote a significant portion of odoc to provide improved HTML output,
make it possible to produce other document formats, and introduce the ability to produce man pages.
Florian Angeletti then implemented PDF output and integrated the usage of odoc in the official OCaml
distribution. Concurrently, Jon Ludlam and Leo White rewrote the resolution mechanism of odoc, which
led to a joint presentation at the OCaml workshop.

5.1.5 The diy tool suite

Participants Luc Maranget, Jade Alglave (University College London–ARM Ltd., UK).

The diy suite provides a set of tools for testing shared memory models: the litmus tool for running
tests on hardware, various generators for producing tests from concise specifications, and herd, a memory
model simulator. Tests are small programs written in x86, Power, ARM, generic (LISA) assembler, or a
subset of the C language that can thus be generated from concise specifications, run on hardware, or
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simulated on top of memory models. Test results can be handled and compared using additional tools.
On distinctive feature of our system is Cat, a domain-specific language for memory models.

This year, a feature branch for handling virtual memory was created, of which Jade Alglave and Luc
Maranget are (almost) the exclusive authors. It is the backbone of our current research. Moreover, many
authors (most of whom work at ARM Ltd.) have been contributing in various manners:

• Test and build infrastructure.

• Extension of the simulated instruction set.

• Architectural extensions: capabilities (ARM Morello), SIMD (ARM Neon; work in progress).

5.1.6 The TLAPS proof system

Participants Damien Doligez, Leslie Lamport (Microsoft Research), Ioannis Filip-
pidis, Stephan Merz (Inria team VeriDis).

Damien Doligez heads the “Tools for Proofs” team in the Microsoft-Inria Joint Centre. The aim of
this project is to extend the TLA+ language with a formal language for hierarchical proofs, formalizing
Lamport’s ideas [31], and to build tools for writing TLA+ specifications and mechanically checking the
proofs.

This year, we made a bug-fix release of TLAPS (version 1.4.5). We have also been testing the new
support for the ENABLED operator and the action composition operator in TLA+ proofs. We hope to
release version 1.5.0 with this support very soon.

We also made a maintenance release of Zenon (version 0.8.5) to make it compatible with the latest
version of OCaml.

5.1.7 Sek, an efficient sequence library for OCaml

Participants Arthur Charguéraud, François Pottier.

This year, Arthur Charguéraud and François Pottier developed Sek, a library that offers efficient
implementations of ephemeral sequences, persistent sequences, and ephemeral iterators on both kinds
of sequences. Sek publishes 4 abstract types and over 150 operations. Its data structures involve complex
balancing invariants, shared mutable state, and a subtle ownership policy that determines when an
object can be updated in place and when it must be copied. It is intended to offer very good performance,
in terms of both space and time, in most usage scenarios; thus, it should remove the need for more
specialized data structures, such as stacks, queues, deques, catenable deques, and so on. The library
has been published and is available via OCaml’s package manager, opam. No paper about Sek has been
published at this time. It is worth noting that testing Sek was our main motivation for developing
Monolith (§5.1.8).

5.1.8 Monolith, a library for testing OCaml libraries

Participants François Pottier.

This year, François Pottier developed Monolith, an OCaml library whose purpose is to facilitate
black-box testing of other OCaml libraries. Monolith provides a rich specification language, which allows
the user to describe her library’s API, and an engine, which generates clients of this API and executes
them. This reduces the problem of testing a library to the simpler problem of testing a complete program.
Testing can then be performed either in a purely random manner or with the help of an off-the-shelf
fuzzer, such as AFL. This work is described in a paper that will be presented at JFLA 2021 [20]. Monolith
has been used to test and debug Sek (§5.1.7).

https://github.com/herd/herdtools7/tree/KVM
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5.2 New software

5.2.1 OCaml

Keywords: Functional programming, Static typing, Compilation

Functional Description: The OCaml language is a functional programming language that combines
safety with expressiveness through the use of a precise and flexible type system with automatic
type inference. The OCaml system is a comprehensive implementation of this language, featuring
two compilers (a bytecode compiler, for fast prototyping and interactive use, and a native-code
compiler producing efficient machine code for x86, ARM, PowerPC and System Z), a debugger,
a documentation generator, a compilation manager, a package manager, and many libraries
contributed by the user community.

URL: https://ocaml.org/

Publications: hal-03145030, hal-01929508, hal-03125031, hal-00772993, hal-00914493, hal-00914560,
inria-00074804, hal-01499973, hal-01499946

Contacts: Xavier Leroy, Damien Doligez

Participants: Damien Doligez, Xavier Leroy, Fabrice Le Fessant, Luc Maranget, Gabriel Scherer, Alain
Frisch, Jacques Garrigue, Marc Shinwell, Jeremy Yallop, Leo White

5.2.2 Compcert

Name: The CompCert formally-verified C compiler

Keywords: Compilers, Formal methods, Deductive program verification, C, Coq

Functional Description: CompCert is a compiler for the C programming language. Its intended use
is the compilation of life-critical and mission-critical software written in C and meeting high
levels of assurance. It accepts most of the ISO C 99 language, with some exceptions and a few
extensions. It produces machine code for the ARM, PowerPC, RISC-V, and x86 architectures. What
sets CompCert C apart from any other production compiler, is that it is formally verified to be
exempt from miscompilation issues, using machine-assisted mathematical proofs (the Coq proof
assistant). In other words, the executable code it produces is proved to behave exactly as specified
by the semantics of the source C program. This level of confidence in the correctness of the
compilation process is unprecedented and contributes to meeting the highest levels of software
assurance. In particular, using the CompCert C compiler is a natural complement to applying
formal verification techniques (static analysis, program proof, model checking) at the source code
level: the correctness proof of CompCert C guarantees that all safety properties verified on the
source code automatically hold as well for the generated executable.

Release Contributions: Novelties include a formally-verified type checker for CompCert C, a more
careful modeling of pointer comparisons against the null pointer, algorithmic improvements in
the handling of deeply nested struct and union types, much better ABI compatibility for passing
composite values, support for GCC-style extended inline asm, and more complete generation of
DWARF debugging information (contributed by AbsInt).

URL: http://compcert.inria.fr/

Authors: Xavier Leroy, Bernhard Schommer, Guillaume Melquiond, Jacques-Henri Jourdan, Sylvie Boldo

Contact: Xavier Leroy

Participants: Xavier Leroy, Sandrine Blazy, Jacques-Henri Jourdan, Sylvie Boldo, Guillaume Melquiond

Partner: AbsInt Angewandte Informatik GmbH

https://ocaml.org/
https://hal.inria.fr/hal-03145030
https://hal.inria.fr/hal-01929508
https://hal.inria.fr/hal-03125031
https://hal.inria.fr/hal-00772993
https://hal.inria.fr/hal-00914493
https://hal.inria.fr/hal-00914560
https://hal.inria.fr/inria-00074804
https://hal.inria.fr/hal-01499973
https://hal.inria.fr/hal-01499946
http://compcert.inria.fr/
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5.2.3 Diy

Name: Do It Yourself

Keyword: Parallelism

Functional Description: The diy suite provides a set of tools for testing shared memory models: the
litmus tool for running tests on hardware, various generators for producing tests from concise
specifications, and herd, a memory model simulator. Tests are small programs written in x86, Power
or ARM assembler that can thus be generated from concise specification, run on hardware, or
simulated on top of memory models. Test results can be handled and compared using additional
tools.

URL: http://diy.inria.fr/

Authors: Jade Alglave, Luc Maranget

Contact: Luc Maranget

Participants: Jade Alglave, Luc Maranget

Partner: University College London UK

5.2.4 Menhir

Keywords: Compilation, Context-free grammars, Parsing

Functional Description: Menhir is a LR(1) parser generator for the OCaml programming language. That
is, Menhir compiles LR(1) grammar specifications down to OCaml code. Menhir was designed and
implemented by François Pottier and Yann Régis-Gianas.

Publications: hal-01633123, hal-01417004

Contact: François Pottier

5.2.5 CFML

Name: Interactive program verification using characteristic formulae

Keywords: Coq, Software Verification, Deductive program verification, Separation Logic

Functional Description: The CFML tool supports the verification of OCaml programs through interac-
tive Coq proofs. CFML proofs establish the full functional correctness of the code with respect to a
specification. They may also be used to formally establish bounds on the asymptotic complexity
of the code. The tool is made of two parts: on the one hand, a characteristic formula generator
implemented as an OCaml program that parses OCaml code and produces Coq formulae, and, on
the other hand, a Coq library that provides notations and tactics for manipulating characteristic
formulae interactively in Coq.

URL: http://www.chargueraud.org/softs/cfml/

Contact: Arthur Charguéraud

Participants: Arthur Charguéraud, Armaël Guéneau, François Pottier

http://diy.inria.fr/
https://hal.inria.fr/hal-01633123
https://hal.inria.fr/hal-01417004
http://www.chargueraud.org/softs/cfml/
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5.2.6 TLAPS

Name: TLA+ proof system

Keyword: Proof assistant

Functional Description: TLAPS is a platform for developing and mechanically verifying proofs about
TLA+ specifications. The TLA+ proof language is hierarchical and explicit, allowing a user to
decompose the overall proof into proof steps that can be checked independently. TLAPS consists of
a proof manager that interprets the proof language and generates a collection of proof obligations
that are sent to backend verifiers. The current backends include the tableau-based prover Zenon
for first-order logic, Isabelle/TLA+, an encoding of TLA+ set theory as an object logic in the logical
framework Isabelle, an SMT backend designed for use with any SMT-lib compatible solver, and an
interface to a decision procedure for propositional temporal logic.

News of the Year: In 2020, we published a minor release, fixing some issues notably for the SMT back-
end. Substantial work was devoted to supporting liveness reasoning, in particular proofs about
the ENABLED and action composition constructions of TLA+. We also prepared support for current
versions of the Isabelle back-end prover.

URL: https://tla.msr-inria.inria.fr/tlaps/content/Home.html

Contacts: Stephan Merz, Damien Doligez

Participants: Damien Doligez, Stephan Merz, Ioannis Filippidis

Partner: Microsoft

5.2.7 ZENON

Name: The Zenon automatic theorem prover

Keywords: Automated theorem proving, First-order logic

Functional Description: Zenon is an automatic theorem prover based on the tableaux method. Given
a first-order statement as input, it outputs a fully formal proof in the form of a Coq or Isabelle
proof script. It has special rules for efficient handling of equality and arbitrary transitive relations.
Although still in the prototype stage, it already gives satisfying results on standard automatic-
proving benchmarks.

Zenon is designed to be easy to interface with front-end tools (for example integration in an
interactive proof assistant) and also to retarget to output scripts for different frameworks (for
example Dedukti).

URL: http://zenon-prover.org/

Publications: inria-00338299v1, hal-02305831v1, inria-00315920v1, hal-00909784v1, tel-01420460v2, hal-
00909688v1, hal-01204701v2, hal-01171360v1, hal-01100512v1, hal-01099338v1, hal-01243593v1,
hal-01420638v1, hal-01342849v1

Author: Damien Doligez

Contact: Damien Doligez

Participant: Damien Doligez

https://tla.msr-inria.inria.fr/tlaps/content/Home.html
http://zenon-prover.org/
https://hal.inria.fr/inria-00338299v1
https://hal.inria.fr/hal-02305831v1
https://hal.inria.fr/inria-00315920v1
https://hal.inria.fr/hal-00909784v1
https://hal.inria.fr/tel-01420460v2
https://hal.inria.fr/hal-00909688v1
https://hal.inria.fr/hal-00909688v1
https://hal.inria.fr/hal-01204701v2
https://hal.inria.fr/hal-01171360v1
https://hal.inria.fr/hal-01100512v1
https://hal.inria.fr/hal-01099338v1
https://hal.inria.fr/hal-01243593v1
https://hal.inria.fr/hal-01420638v1
https://hal.inria.fr/hal-01342849v1
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5.2.8 hevea

Name: hevea is a fast latex to html translator.

Keywords: LaTeX, Web

Functional Description: HEVEA is a LATEX to html translator. The input language is a fairly complete
subset of LATEX 2 (old LATEX style is also accepted) and the output language is html that is
(hopefully) correct with respect to version 5. HEVEA understands LATEX macro definitions. Simple
user style files are understood with little or no modifications. Furthermore, HEVEA customisation
is done by writing LATEX code.

HEVEA is written in Objective Caml, as many lexers. It is quite fast and flexible. Using HEVEA it is
possible to translate large documents such as manuals, books, etc. very quickly. All documents
are translated as one single html file. Then, the output file can be cut into smaller files, using the
companion program HACHA. HEVEA can also be instructed to output plain text or info files.

Information on HEVEA is available at http://hevea.inria.fr/.

URL: http://hevea.inria.fr/

Author: Luc Maranget

Contact: Luc Maranget

6 New results

6.1 Programming language design and implementation

6.1.1 Evolution of the OCaml type system

Participants Florian Angeletti, Jacques Garrigue (Nagoya University), Thomas Refis,
Didier Rémy, Leo White (Jane Street), Gabriel Scherer (Inria team
Partout).

Throughout this year, taking advantage of Jacques Garrigue’s visit, we have worked to improve the
type system, its robustness, and its implementation. This includes:

• Giving a proper formalization of the typing of generalized algebraic data types (GADTs) and pattern
matching on GADTs, including making progress towards their formalization in Coq.

• Introducing notions of injective and nominal types, which allow a more complete typing of GADTs.
These features have been presented by Jacques Garrigue at the 2020 ML Family Workshop.2 Injective
types will be part of OCaml 4.12.

• Adding support for naming existential type variables in pattern matching constructs.

• Adding support for GADTs inside disjunctive patterns.

• Improving the readability of the type-checker’s code.

6.1.2 Refactoring with ornaments in ML

Participants Didier Rémy, Ambre Williams (Google Paris).

2http://www.mlworkshop.org/workshops/ml2020/ml2020-injectivity.pdf

http://hevea.inria.fr/
http://www.mlworkshop.org/workshops/ml2020/ml2020-injectivity.pdf
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Ambre Williams and Didier Rémy have been working on ornaments for ML, a technique that allows
code refactoring and evolution based on the transformations of datatypes. Ornaments have been in-
troduced as a way of describing changes in data type definitions that can reorganize or add pieces of
data. After a new data structure has been described as an ornament of an older one, the functions that
operate on the bare structure can be partially or sometimes totally lifted into functions that operate on
the ornamented structure.

This year, Williams improved and completed the formalization of ornaments, which she presented in
her PhD dissertation in December [22].

6.1.3 Linear types

Participants Gabriel Radanne, Hannes Saffrich (University of Freiburg), Peter Thie-
mann (University of Freiburg).

Linear types, recently made popular by the Rust programming language, allow to statically check the
usage of resources such as file descriptors, network connections, or dynamically allocated memory.

In 2019, Peter Thiemann, Hannes Saffrich and Gabriel Radanne developed the language Affe, which
combines Rust’s flagship features, namely linear types and ownership, with the ease of use of the pro-
gramming languages of the ML family, thanks to support for functional programming, GC-by-default,
and full type inference.

This year, they wrote a paper that describes Affe and its inner workings and demonstrates its sound-
ness [14]. This paper was presented at ICFP 2020 by Gabriel Radanne.

6.1.4 An incremental type-checker for OCaml modules

Participants Gabriel Radanne, Didier Rémy, Jacques Garrigue (Nagoya University),
Thomas Refis.

Modules are a core feature of ML languages, allowing to assemble pieces of software in a high-level
and composable fashion. OCaml benefits from a particularly rich module system which was originally
described more than two decades ago [35, 33], but has significantly grown since.

This year, Gabriel Radanne, in collaboration with Didier Rémy and Jacques Garrigue, started formaliz-
ing a new module system which combines all of the features that have been introduced since the last
formalization effort by Xavier Leroy. This new system also improves inference and provides a solid basis
for further experiments, such as the “modular implicits” that are currently being investigated by Thomas
Refis and Didier Rémy (§6.1.5). Gabriel Radanne started a “clean room” implementation of a prototype
type-checker for this new module system.

6.1.5 Designing and formalizing modular implicits

Participants Thomas Refis, Didier Rémy, Gabriel Radanne, Leo White (Jane Street).

A few years ago, White et al. suggested a way to add ad-hoc polymorphism to OCaml, in the form
of modular implicits [37]. This new language feature can in fact be viewed as the combination of two
independent parts. The first component, modular explicits, is an extension to ML’s core language with
a seemingly dependent arrow type. The second component, an implicit resolution mechanism, finds
suitable values for omitted arguments in function applications, based on the type constraints that apply
to these missing arguments.

In 2020, Thomas Refis started a PhD under the supervision of Didier Rémy. He aims to revive this
project and eventually to merge it into mainline OCaml.
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This year, Thomas and Didier worked on formalizing the semantics of modular explicits, which can
be seen as syntactic sugar for first-class functors. They also started studying the resolution mechanism
implemented in the earlier prototype of modular implicits, so as to understand its limitations and its
interaction with the OCaml type-checker.

6.1.6 Partial type inference with second-order types

Participants Didier Rémy.

Adding second-order types to ML in a way that smoothly integrates with ML-style type inference for
first-order types has been a challenge for many years. In 2007, Le Botlan and Rémy proposed a solution to
this problem, named MLF, that is still the state of the art today. Unfortunately, this solution has not been
adopted, as it is a bit involved and goes beyond System F, which is the reference system for second-order
types. As a result, partial type inference in the presence of second-order types remains a topic of research,
and researchers continue to propose ad hoc solutions.

Didier Rémy has been investigating a new approach using the powerful inference engine of MLF to
infer a typing derivation in MLF, which is then lowered to a derivation of System F. This process fails if no
System F derivation exists. Preliminary investigations are promising.

6.1.7 Automatic synthesis of high-performance numerical libraries

Participants Basile Clement.

Basile Clement has been working on developing a domain-specific language and a machine-learning-
based compiler for the synthesis of high-performance numerical libraries, with a focus on GPUs.

One of the key challenges is to design a language that is expressive enough to capture complex loop-
based code transformations while keeping the proof of semantic preservation simple. Another challenge
is to accurately capture the potential peculiarities of the hardware, so as to expose the relation between
the program and its performance, as far as possible, to the learning component.

This year, Basile worked on a formal semantics for an array language with explicit loops and an
equational semantics. He wrote a small prototype verifier in OCaml to test the equivalence of a generated
implementation with a given specification, as well as a specification in Coq for a subset of the language.

6.1.8 Analysis of an LR parser’s stack

Participants Frédéric Bour.

A few years ago, building on prior work by Jeffery, François Pottier implemented in the Menhir parser
generator a principled method for producing good syntax error messages [36]. This method chooses an
error message based solely on the state in which a syntax error was detected by the LR automaton.

This year, Frédéric Bour investigated a more ambitious approach, with the aim of providing messages
that are better suited to certain specific situations. This approach is able to exploit not only the current
state of the LR automaton, but also to analyze the shape of its stack, thanks to a novel form of regular
expressions.

6.1.9 Formalization of equational monadic reasoning for combined choice
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Participants Jacques Garrigue (Nagoya University), Reynald Affeldt (AIST),
David Nowak (AIST), Takafumi Saikawa (Nagoya University).

Following work by Affeldt, Nowak and Saikawa on formalized equational monadic reasoning for
programs with a variety of effects, we tackled the problem of providing a concrete model for a monad that
combines nondeterministic choice with probabilistic choice. The resulting monad is fully formalized in
Coq, and relies on a formalization of discrete probabilities and convex distributions. A report has been
submitted for publication. This also required a formalization of axiomatic convex spaces, which was
separately published at CICM 2020.3

6.2 Shared-memory concurrency

6.2.1 Axiomatic memory models

Participants Jade Alglave (ARM Ltd–University College London), Will Dea-
con (Google Inc.), Antoine Hacquard (EPITA, Paris), Luc Maranget.

Modern multi-core and multi-processor computers do not follow the intuitive “Sequential Con-
sistency” model that would define a concurrent execution as the interleaving of the executions of its
constituent threads and that would command instantaneous writes to the shared memory. This situation
is due both to in-core optimizations such as speculative and out-of-order execution of instructions, and
to the presence of sophisticated (and cooperating) caching devices between processors and memory.

Jade Alglave and Luc Maranget have been collaborating in this domain for a decade. This year, they
submitted a paper entitled “Armed cats: formal concurrency modeling at Arm” to the journal Transaction
on Programming Languages and Systems (TOPLAS). The article has been accepted modulo revisions,
and a revised version has been submitted in December. The paper presents an extension of the AArch64
(ARMv8) and x86 (TSO) models to mixed-size accesses. This extension is of practical interest, as many
programs, in particular system programs, access memory using different sizes—e.g. by mixing byte
and word accesses—which may overlap. Our work introduces a general treatment of memory model
extensions, producing two provably equivalent alternative formulations. Our results have been confirmed
via vast experimental campaigns, synthesized at http://diy.inria.fr/mixed/. The paper includes
work by Antoine Hacquard, who was an intern at Cambium in 2019.

Concurrently, Jade Alglave and Luc Maranget are designing another extension to the ARM memory
model, namely virtual memory. This work in progress aims to account for the interaction of the memory
model and of virtual memory. Understanding this interaction is an absolute necessity in order to imple-
ment correct operating systems. Luc Maranget is specifically in charge of software development and of
experiments. We already have interesting experimental results, having experimentally demonstrated the
necessity of systems programming idioms recommended by ARM’s official documentation.

6.2.2 Unifying axiomatic and operational weak memory models

Participants Quentin Ladeveze, Jean-Marie Madiot, Jade Alglave (ARM Ltd & Uni-
versity College London), Simon Castellan (Inria team Celtique).

Modern multi-processors optimize the running speed of programs using a variety of techniques,
including caching, instruction reordering, and branch speculation. While those techniques are perfectly
invisible to sequential programs, such is not the case for concurrent programs that execute several threads
and share memory: threads do not share at every point in time a single consistent view of memory. A weak
memory model offers only weak consistency guarantees when reasoning about the permitted behaviors

3https://link.springer.com/chapter/10.1007%2F978-3-030-53518-6_2

http://diy.inria.fr/mixed/
https://link.springer.com/chapter/10.1007%2F978-3-030-53518-6_2
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of a program. Until now, there have been two kinds of such models, based on different mathematical
foundations: axiomatic models and operational models.

Axiomatic models explicitly represent the dependencies between the program and memory actions.
These models are convenient for causal reasoning about programs. They are also well-suited to the
simulation and testing of hardware microprocessors.

Operational models represent program states directly, thus can be used to reason on programs:
program logics become applicable, and the reasoning behind nondeterministic behavior is much clearer.
This makes them preferable for reasoning about software.

Jean-Marie Madiot has been collaborating with weak memory model expert Jade Alglave and concur-
rent game semantics researcher Simon Castellan in order to unify these styles, in a way that attempts
to combine the best of both approaches. The first results are a formalization of TSO-style architectures
using partial-order techniques similar to the ones used in game semantics, and a proof of a stronger-than-
state-of-art “data-race freedom” theorem: well-synchronized programs can assume a strong memory
model.

This year, Jean-Marie Madiot also started developing a tool that transforms models written in the
format of the memory model simulator herd into models that can be reasoned about in the Coq proof
assistant. This allowed him to build mechanized proofs of properties of existing models: inclusion of
models, equivalence of models, and equivalence of different acyclicity conditions. Quentin Ladeveze’s
formalization of the DRF-SC property of C/C++11 programs (§6.2.3) fits inside the same framework.

6.2.3 A mechanized proof of DRF-SC for the RC11 memory model

Participants Quentin Ladeveze, Luc Maranget, Jean-Marie Madiot.

Quentin Ladeveze, who is co-advised by Luc Maranget and Jean-Marie Madiot, has been working on
a proof of the DRF-SC property that is independent of the memory model.

DRF-SC is a well-known property that most memory models are intended to satisfy. In a weak memory
model that satisfies this property, if all of the executions of a program under the sequentially consistent
(SC) model are data-race-free (DRF), then all executions of the program under the weak memory model
are also consistent with SC. In practice, this property allows a programmer to completely ignore the
possible weak behaviors of her program, provided she writes a data-race-free program. Proofs of this
property exist for some weak memory models. Our goal is to design a generic proof, by relying on
properties that are shared by all of the models that satisfy this property.

This year, Quentin Ladeveze formalized in the Coq proof assistant a memory model that describes
the behavior of C/C++11 programs and a proof that this model enjoys the DRF-SC property.

A paper that describes this formalization has been accepted for presentation at JFLA 2021 [19].

6.3 Software specification and verification

6.3.1 Verified code generation in the polyhedral model

Participants Nathanaël Courant, Xavier Leroy.

The polyhedral model is a high-level intermediate representation for loop nests iterating over arrays
and matrices, as found in numerical code. It supports a great many loop optimizations (fusion, splitting,
interchange, blocking, etc) in a uniform, mathematically-elegant manner.

In 2018, Nathanaël Courant, under Xavier Leroy’s supervision, developed a Coq formalization of the
polyhedral model. He implemented and verified a code generator that produces efficient sequential code
out of an optimized polyhedral representation.

This year, Nathanaël Courant and Xavier Leroy wrote a paper that describes this verification work [11].
This paper has been published and presented at the conference POPL 2021.
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6.3.2 A separation logic for effect handlers

Participants Paulo Emílio de Vilhena, François Pottier.

Paulo Emílio de Vilhena is a second-year PhD student, advised by François Pottier. His aim is to devise
a separation logic with support for verifying programs that exploit effect handlers.

This year, Paulo made considerable progress towards that goal. He defined a calculus with support
for effect handlers, formalized its operational semantics in Coq, and proposed a new separation logic,
based on Iris [30], for this calculus. To demonstrate the usability of this logic, he carried out two short yet
nontrivial case studies. A paper on this topic has been published and presented at the conference POPL
2021 [5].

6.3.3 A program logic for Multicore Ocaml

Participants Glen Mével, Jacques-Henri Jourdan (CNRS), François Pottier.

Glen Mével, who is co-advised by Jacques-Henri Jourdan and François Pottier, has been working on
designing a mechanized program logic for Multicore OCaml.

One of the key challenges is to enable deductive reasoning under a weak memory model. In such a
model, the behaviors of a program are no longer described by a naive interleaving semantics. Thus, the
operational semantics that describes a weak memory model often feels unnatural to the programmer,
and is difficult to reason about.

At the beginning of this year, we proposed a program logic for Multicore OCaml, named Cosmo.
Cosmo extends Iris [30] with a notion of “view” that allows the programmer to reason in an explicit (yet
abstract) manner about the current thread’s view of memory, and about the manner in which views are
transferred from one thread to another via reads and writes of atomic memory locations. This work has
been published and presented by Glen at ICFP 2020 [13].

Since then, Glen extended Cosmo with support for arrays. This extension allows reasoning on a wider
variety of programs. Using this extended logic, Glen proved the functional correctness of a concurrent
first-in first-out queue, whose invariant is nontrivial.

6.3.4 Algebraically closed fields in Isabelle/HOL

Participants Paulo Emílio de Vilhena, Lawrence Paulson (University of Cambridge).

During the summer of 2018, Paulo Emílio de Vilhena did a research internship under the supervision
of Lawrence Paulson at the University of Cambridge. The topic was the formalization of mathematics in
the proof assistant Isabelle/HOL. Paulo and Lawrence verified in Isabelle/HOL the fundamental theorem
of algebra, which states that every field has an algebraic closure.

Although the majority of this work was complete by the end of the internship, the results were
published only this year at the conference IJCAR 2020 [17].

6.3.5 Towards an efficient, verified proof checker for Coq

Participants Nathanaël Courant.

Nathanaël Courant, who is advised by Xavier Leroy, has been working on writing a formally verified
and efficient convertibility test for Coq.
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One of the key challenges is to perform strong reduction, whereas computers are better suited to weak
reduction. Strong reduction is a form of computation that involves both concrete values and symbolic
variables, and where it is permitted to perform reductions in the body of a function before this function
is actually called. Weak reduction, in contrast, involves concrete values only, and does not evaluate a
function until it is invoked. With strong reduction, care must be taken not to evaluate too much, and
to avoid reducing the body of functions that will not appear in the final term. Besides, another difficult
problem is to compare reduced terms, or even to combine the convertibility test with reduction itself.

This year, Nathanaël worked on defining a big-step semantics for strong call-by-need λ-calculus. He
also wrote a Coq proof that such a semantics is compatible with standard small-step reduction for the
λ-calculus, and extended this result to show that it still holds in the presence of data constructors and
pattern matching.

6.3.6 An interactive, modular proof environment for OCaml

Participants Frédéric Bour, François Pottier.

Frédéric Bour aims to design and implement a tool that allows verifying simple properties of OCaml
programs. As a starting point, he is adapting the methodology of the VeriFast verifier [29] to OCaml
programs.

This year, Frédéric worked on the translation of a subset of OCaml to a custom verification language.
Verification is then handled by two different layers: an ad-hoc verifier based on separation logic for
modeling effects and the Z3 theorem prover for first-order properties.

7 Bilateral contracts and grants with industry

7.1 Bilateral contracts with industry

7.1.1 The Caml Consortium

Participants Damien Doligez.

The Caml Consortium is a formal structure where industrial and academic users of OCaml can support
the development of the language and associated tools, express their specific needs, and contribute to the
long-term stability of OCaml. Membership fees are used to fund specific developments targeted towards
industrial users. Members of the Consortium automatically benefit from very liberal licensing conditions
on the OCaml system, allowing for instance the OCaml compiler to be embedded within proprietary
applications.

Damien Doligez chairs the Caml Consortium.
The Consortium currently has 9 member companies:

• Aesthetic Integration

• Citrix

• Docker

• Esterel / ANSYS

• Facebook

• Jane Street

• LexiFi
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• Microsoft

• SimCorp

In the future, we would like to replace the Caml Consortium with the OCaml Software Foundation,
discussed below. For the moment, however, the Caml Consortium remains alive, because the licensing
conditions that it offers are unique.

7.1.2 Tarides

Participants Frédéric Bour, Thomas Refis, François Pottier, Didier Rémy.

Two of our PhD students, Frédéric Bour and Thomas Refis, are employed by Tarides and carry out a
PhD under a CIFRE agreement. Tarides is a small high-tech software company, with a strong expertise in
virtualization, distributed systems, and programming languages. Several of their key products, such as
MirageOS, are developed using OCaml.

7.2 Bilateral grants with industry

7.2.1 The OCaml Software Foundation

Participants Damien Doligez, Xavier Leroy.

The OCaml Software Foundation, established in 2018 under the umbrella of the Inria Foundation,
aims to promote, protect, and advance the OCaml programming language and its ecosystem, and to
support and facilitate the growth of a diverse and international community of OCaml users.

Damien Doligez and Xavier Leroy serve as advisors on the foundation’s Executive Committee.
We receive substantial basic funding from the OCaml Software Foundation in order to support

research activity related to OCaml.

7.2.2 Funding from Nomadic Labs

Nomadic Labs, a Paris-based company, has implemented the Tezos blockchain and cryptocurrency
entirely in OCaml. This year, Nomadic Labs and Inria have signed a framework agreement (“contrat-
cadre”) that allows Nomadic Labs to fund multiple research efforts carried out by Inria groups. Within
this framework, we have received three 3-year grants:

• “Évolution d’OCaml”. This grant is intended to fund a number of improvements to OCaml, including
the addition of new features and a possible re-design of the OCaml type-checker. This grant has
allowed us to fund Jacques Garrigue’s visit (10 months, from September 2019 to June 2020) and to
hire Gabriel Radanne on a Starting Research Position (14 months, from October 2019 to November
2020).

• “Maintenance d’OCaml”. This grant is intended to fund the day-to-day maintenance of OCaml as
well as the considerable work involved in managing the release cycle. This grant has allowed us to
hire Florian Angeletti as an engineer for 3 years.

• “Multicore OCaml”. This grant is intended to encourage research work on Multicore OCaml within
our team. This grant has allowed us to fund Glen Mével’s PhD thesis (3 years).

7.2.3 Funding from the Microsoft-Inria joint lab

Funding from the Microsoft-Inria joint lab has allowed us to hire Ioannis Filippidis on a Starting Research
Position (until March 2020) to work on the TLAPS system.

https://tarides.com/
http://ocaml-sf.org/
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8 Partnerships and cooperations

8.1 International research visitors

8.1.1 Visits of international scientists

Jacques Garrigue (Nagoya University) visited us in Paris from September 2019 to June 2020. He has long
been one of the key designers and implementors of the OCaml type system. During his visit, we have
collaborated on the design of new language features and on a possible re-design of the type-checker
implementation.

9 Dissemination

9.1 Promoting scientific activities

9.1.1 Scientific events: organisation

François Pottier is a member of the ICFP steering committee.

9.1.2 Scientific events: selection

Xavier Leroy was a member of the program committee of CC 2021, the 30th International Conference on
Compiler Construction, and of PriSC 2021, the Workshop on Principles of Secure Compilation.

Luc Maranget was a member of the program committee of POPL 2021, the 48th ACM SIGPLAN
Symposium on Principles of Programming Languages.

Didier Rémy was a member of the program committee of FLOPS 2020, the 15th International Sympo-
sium on Functional and Logic Programming.

9.1.3 Journals

Xavier Leroy is an area editor for the Journal of the ACM, in charge of the Programming Languages area.
He is also a member of the editorial board of Journal of Automated Reasoning.

François Pottier is a member of the editorial boards of the Journal of Functional Programming and
the Proceedings of the ACM on Programming Languages.

9.1.4 Research administration

Damien Doligez chairs the Caml Consortium.
Luc Maranget is member of Inria Commission d’évaluation. He was a member of two Chargé de

Recherche hiring committees.
François Pottier is a member of Inria Paris’ Commission de Développement Technologique and the

president of Inria Paris’ Comité de Suivi Doctoral.
Didier Rémy is a co-chair of the steering committee of the Inria-Nomadic Labs partnership. He is

Inria’s delegate in the pedagogical team and management board of MPRI.

9.2 Teaching - Supervision - Juries

9.2.1 Teaching

In 2020, the members of our team have taught or assisted in teaching the following courses:

• Open lectures: Xavier Leroy, Sémantiques mécanisées: quand la machine raisonne sur ses langages,
19 HETD, Collège de France, France.

• Master (M2): “Proofs of Programs”, Jean-Marie Madiot, 18 HETD, MPRI, Université de Paris, France.

• Master (M2): “Programming shared memory multicore machines”, Luc Maranget, 18 HETD, MPRI,
Université de Paris, France. Luc Maranget is in charge of this course.
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• Master (M2): “Functional programming and type systems”, François Pottier, 22 HETD, MPRI,
Université de Paris, France.

• Master (M2): “Functional programming and type systems”, Didier Rémy, 24 HETD, MPRI, Université
de Paris, France. Didier Rémy is in charge of this course. Didier Rémy is also Inria’s delegate in the
pedagogical team and management board of MPRI.

• Master (M1): “Compilation and Analysis of Programs”, Gabriel Radanne, 28 HETD, Master IF, ENS
Lyon, France.

• Licence (L3): Jean-Marie Madiot, “Introduction à l’informatique”, 40 HETD, École Polytechnique,
France.

• Licence (L3): Basile Clement, “Langages de programmation et compilation” (course taught by
Jean-Christophe Filliâtre), 64 HETD, École Normale Supérieure, France.

• Licence (L3): Nathanaël Courant, “Mécanismes de la programmation orientée objet”, 40 HETD,
École Polytechnique, France.

• Licence (L3): Nathanaël Courant, “Préparation aux concours SWERC”, 45 HETD, École Polytech-
nique, France.

• Licence (L2): Glen Mével, “Projet informatique 4”, 32 HETD, Université de Paris, France.

• Licence (L1): Glen Mével, “Initiation à la programmation 1 en Python”, 32 HETD, Université de
Paris, France.

9.2.2 Supervision

The following PhD theses are in progress or have been defended in 2020:

• PhD (CIFRE) in progress: Frédéric Bour, “An interactive, modular proof environment for OCaml”,
Université de Paris, since October 2019 (approved by ANRT in August 2020), advised by François
Pottier and Thomas Gazagnaire (Tarides).

• PhD in progress: Basile Clement, “Domain-specific language and machine learning compiler for
the automatic synthesis of high-performance numerical libraries”, École Normale Supérieure, since
September 2018, advised by Xavier Leroy since October 2019.

• PhD in progress: Nathanaël Courant, “Towards an efficient, formally-verified proof checker for
Coq”, Université de Paris, since September 2019, advised by Xavier Leroy.

• PhD in progress: Paulo Emílio de Vilhena, “Proof of programs with effect handlers”, Université de
Paris, since September 2019, advised by François Pottier.

• PhD in progress: Quentin Ladeveze, “Generic conditions for DRF-SC in axiomatic memory models”,
Université de Paris, since October 2019, advised by Luc Maranget and Jean-Marie Madiot.

• PhD in progress: Glen Mével, “Towards a system for proving the correctness of concurrent Multicore
OCaml programs”, Université de Paris, since November 2018, advised by Jacques-Henri Jourdan
and François Pottier.

• PhD (CIFRE) in progress: Thomas Refis, “Modular Implicits: Design, Formalization, and Implemen-
tation”, Université de Paris, since February 2020, advised by Didier Rémy and Thomas Gazagnaire
(Tarides).

• PhD: Ambre Williams, “Refactoring functional programs with ornaments”, Université de Paris,
defended on December 14, 2020 [22], advised by Didier Rémy.
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9.2.3 Juries

Xavier Leroy chaired the jury for the PhD defense of Lélio Brun (Université PSL, July 2020). He was a
member of the jury for the PhD defenses of Raphaël Rieu-Helft (Université Paris-Saclay, November 2020)
and Darius Mercadier (Sorbonne Université, November 2020).

François Pottier was a reviewer for the PhD theses of Lionel Parreaux (EPFL, June 2020) and Ralf Jung
(MPI-SWS, August 2020).

9.3 Popularization

9.3.1 Interventions

Xavier Leroy gave a popularization talk on contact tracing applications at lycée Montaigne, Paris, in
October 2020.
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