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2 Overall objectives

DataShape is a research project in Topological Data Analysis (TDA), a recent field whose aim is to uncover,
understand and exploit the topological and geometric structure underlying complex and possibly high
dimensional data. The overall objective of the DataShape project is to settle the mathematical, statistical
and algorithmic foundations of TDA and to disseminate and promote our results in the data science
community.

The approach of DataShape relies on the conviction that it is necessary to combine statistical, topolog-
ical/geometric and computational approaches in a common framework, in order to face the challenges
of TDA. Another conviction of DataShape is that TDA needs to be combined with other data sciences
approaches and tools to lead to successful real applications. It is necessary for TDA challenges to be
simultaneously addressed from the fundamental and application sides.

The team members have actively contributed to the emergence of TDA during the last few years.
The variety of expertise, going from fundamental mathematics to software development, and the strong
interactions within our team as well as numerous well established international collaborations make our
group one of the best to achieve these goals.

The expected output of DataShape is two-fold. First, we intend to set-up and develop the mathemat-
ical, statistical and algorithmic foundations of Topological and Geometric Data Analysis. Second, we
intend to pursue the development of the GUDHI platform, initiated by the team members and which
is becoming a standard tool in TDA, in order to provide an efficient state-of-the-art toolbox for the
understanding of the topology and geometry of data. The ultimate goal of DataShape is to develop and
promote TDA as a new family of well-founded methods to uncover and exploit the geometry of data.
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This also includes the clarification of the position and complementarity of TDA with respect to other
approaches and tools in data science. Our objective is also to provide practically efficient and flexible
tools that could be used independently, complementarily or in combination with other classical data
analysis and machine learning approaches.

3 Research program

3.1 Algorithmic aspects and new mathematical directions for topological and geo-
metric data analysis

TDA requires to construct and manipulate appropriate representations of complex and high dimensional
shapes. A major difficulty comes from the fact that the complexity of data structures and algorithms used
to approximate shapes rapidly grows as the dimensionality increases, which makes them intractable in
high dimensions. We focus our research on simplicial complexes which offer a convenient representation
of general shapes and generalize graphs and triangulations. Our work includes the study of simplicial
complexes with good approximation properties and the design of compact data structures to represent
them.

In low dimensions, effective shape reconstruction techniques exist that can provide precise geometric
approximations very efficiently and under reasonable sampling conditions. Extending those techniques
to higher dimensions as is required in the context of TDA is problematic since almost all methods in
low dimensions rely on the computation of a subdivision of the ambient space. A direct extension of
those methods would immediately lead to algorithms whose complexities depend exponentially on the
ambient dimension, which is prohibitive in most applications. A first direction to by-pass the curse of
dimensionality is to develop algorithms whose complexities depend on the intrinsic dimension of the
data (which most of the time is small although unknown) rather than on the dimension of the ambient
space. Another direction is to resort to cruder approximations that only captures the homotopy type or
the homology of the sampled shape. The recent theory of persistent homology provides a powerful and
robust tool to study the homology of sampled spaces in a stable way.

3.2 Statistical aspects of topological and geometric data analysis

The wide variety of larger and larger available data - often corrupted by noise and outliers - requires to
consider the statistical properties of their topological and geometric features and to propose new relevant
statistical models for their study.

There exist various statistical and machine learning methods intending to uncover the geometric
structure of data. Beyond manifold learning and dimensionality reduction approaches that generally do
not allow to assert the relevance of the inferred topological and geometric features and are not well-suited
for the analysis of complex topological structures, set estimation methods intend to estimate, from
random samples, a set around which the data is concentrated. In these methods, that include support
and manifold estimation, principal curves/manifolds and their various generalizations to name a few,
the estimation problems are usually considered under losses, such as Hausdorff distance or symmetric
difference, that are not sensitive to the topology of the estimated sets, preventing these tools to directly
infer topological or geometric information.

Regarding purely topological features, the statistical estimation of homology or homotopy type of
compact subsets of Euclidean spaces, has only been considered recently, most of the time under the quite
restrictive assumption that the data are randomly sampled from smooth manifolds.

In a more general setting, with the emergence of new geometric inference tools based on the study of
distance functions and algebraic topology tools such as persistent homology, computational topology
has recently seen an important development offering a new set of methods to infer relevant topological
and geometric features of data sampled in general metric spaces. The use of these tools remains widely
heuristic and until recently there were only a few preliminary results establishing connections between
geometric inference, persistent homology and statistics. However, this direction has attracted a lot
of attention over the last three years. In particular, stability properties and new representations of
persistent homology information have led to very promising results to which the DATASHAPE members
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have significantly contributed. These preliminary results open many perspectives and research directions
that need to be explored.

Our goal is to build on our first statistical results in TDA to develop the mathematical foundations of
Statistical Topological and Geometric Data Analysis. Combined with the other objectives, our ultimate
goal is to provide a well-founded and effective statistical toolbox for the understanding of topology and
geometry of data.

3.3 Topological and geometric approaches for machine learning

This objective is driven by the problems raised by the use of topological and geometric approaches in
machine learning. The goal is both to use our techniques to better understand the role of topological and
geometric structures in machine learning problems and to apply our TDA tools to develop specialized
topological approaches to be used in combination with other machine learning methods.

3.4 Experimental research and software development

We develop a high quality open source software platform called GUDHI which is becoming a reference in
geometric and topological data analysis in high dimensions. The goal is not to provide code tailored to
the numerous potential applications but rather to provide the central data structures and algorithms that
underlie applications in geometric and topological data analysis.

The development of the GUDHI platform also serves to benchmark and optimize new algorithmic
solutions resulting from our theoretical work. Such development necessitates a whole line of research
on software architecture and interface design, heuristics and fine-tuning optimization, robustness and
arithmetic issues, and visualization. We aim at providing a full programming environment following the
same recipes that made up the success story of the CGAL library, the reference library in computational
geometry.

Some of the algorithms implemented on the platform will also be interfaced to other software platform,
such as the R software 1 for statistical computing, and languages such as Python in order to make them
usable in combination with other data analysis and machine learning tools. A first attempt in this
direction has been done with the creation of an R package called TDA in collaboration with the group
of Larry Wasserman at Carnegie Mellon University (INRIA Associated team CATS) that already includes
some functionalities of the GUDHI library and implements some joint results between our team and the
CMU team. A similar interface with the Python language is also considered a priority. To go even further
towards helping users, we will provide utilities that perform the most common tasks without requiring
any programming at all.

4 Application domains

Our work is mostly of a fundamental mathematical and algorithmic nature but finds a variety of ap-
plications in data analysis, e.g., in material science, biology, sensor networks, 3D shape analysis and
processing, to name a few.

More specifically, DATASHAPE is working on the analysis of trajectories obtained from inertial sensors
(PhD thesis of Bertrand Beaufils with Sysnav) and, more generally on the development of new TDA
methods for Machine Learning and Artificial Intelligence for (multivariate) time-dependent data from
various kinds of sensors in collaboration with Fujitsu.

DATASHAPE is also working in collaboration with the University of Columbia in New-York, especially
with the Rabadan lab, in order to improve bioinformatics methods and analyses for single cell genomic
data. For instance, there is a lot of work whose aim is to use TDA tools such as persistent homology and
the Mapper algorithm to characterize, quantify and study statistical significance of biological phenomena
that occur in large scale single cell data sets. Such biological phenomena include, among others: the
cell cycle, functional differentiation of stem cells, and immune system responses (such as the spatial
response on the tissue location, and the genomic response with protein expression) to breast cancer.

1https://www.r-project.org/

https://www.r-project.org/
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5 Social and environmental responsibility

5.1 Footprint of research activities

The weekly research seminar of DATASHAPE is now taking place online, and travels for the team members
have decreased a lot this year, mainly because of the COVID-19 pandemic.

6 New software and platforms

6.1 New software

6.1.1 GUDHI

Name: Geometric Understanding in Higher Dimensions

Keywords: Computational geometry, Topology, Clustering

Scientific Description: The Gudhi library is an open source library for Computational Topology and
Topological Data Analysis (TDA). It offers state-of-the-art algorithms to construct various types
of simplicial complexes, data structures to represent them, and algorithms to compute geometric
approximations of shapes and persistent homology.

The GUDHI library offers the following interoperable modules:

. Complexes: + Cubical + Simplicial: Rips, Witness, Alpha and Čech complexes + Cover: Nerve and
Graph induced complexes . Data structures and basic operations: + Simplex tree, Skeleton blockers
and Toplex map + Construction, update, filtration and simplification . Topological descriptors com-
putation . Manifold reconstruction . Topological descriptors tools: + Bottleneck and Wasserstein
distance + Statistical tools + Persistence diagram and barcode

Functional Description: The GUDHI open source library will provide the central data structures and al-
gorithms that underly applications in geometry understanding in higher dimensions. It is intended
to both help the development of new algorithmic solutions inside and outside the project, and to
facilitate the transfer of results in applied fields.

News of the Year: - DTM Rips complex - Edge Collapse - Time delay embedding - Clustering (ToMaTo) -
Atol - Persistence representations - Weighted alpha complex - Subsampling - Periodic (weighted or
not) 3d Alpha complex - pip packages

URL: https://gudhi.inria.fr/

Authors: Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, Mariette Yvinec, Vincent Rouvreau,
Clément Jamin, David Salinas, François Godi, Mathieu Carrière, Pawel Dlotko, Siargey Kachanovich,
Siddharth Pritam, Theo Lacombe, Steve Oudot, Bertrand Michel, Frédéric Chazal

Contacts: Jean-Daniel Boissonnat, Marc Glisse, Vincent Rouvreau

Participants: Clément Maria, François Godi, David Salinas, Jean-Daniel Boissonnat, Marc Glisse, Ma-
riette Yvinec, Pawel Dlotko, Siargey Kachanovich, Vincent Rouvreau, Mathieu Carrière, Bertrand
Michel, Clément Jamin, Siddharth Pritam, Theo Lacombe, Frédéric Chazal, Steve Oudot

6.1.2 Module CGAL: New dD Geometry Kernel

Keyword: Computational geometry

Functional Description: This package of CGAL (Computational Geometry Algorithms Library) provides
the basic geometric types (point, vector, etc) and operations (orientation test, etc) used by geometric
algorithms in arbitrary dimension. It uses filters for efficient exact predicates.

Release Contributions: New predicates for (weighted) alpha complexes, performance improvements.

https://gudhi.inria.fr/
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URL: http://www.cgal.org/

Author: Marc Glisse

Contact: Marc Glisse

7 New results

7.1 Algorithmic aspects and new mathematical directions for topological and geo-
metric data analysis

7.1.1 Lexicographic optimal homologous chains and applications to point cloud triangulations

Participants David Cohen-Steiner.

In collaboration with André Lieutier (Dassault Systèmes) and Julien Vuillamy (Titane team, Inria Sophia-
Antipolis).

This work [30] considers a particular case of the Optimal Homologous Chain Problem (OHCP),where
optimality is meant as a minimal lexicographic order on chains induced by a total or-der on simplices.
The matrix reduction algorithm used for persistent homology is used toderive polynomial algorithms
solving this problem instance, whereas OHCP is NP-hard inthe general case. The complexity is further
improved to a quasilinear algorithm by leveraginga dual graph minimum cut formulation when the
simplicial complex is a strongly connectedpseudomanifold. We then show how this particular instance of
the problem is relevant, byproviding an application in the context of point cloud triangulation

7.1.2 Tracing isomanifolds in Rd in time polynomial in d

Participants Jean-Daniel Boissonnat, Siargey Kachanovich.

In collaboration with Mathijs Wintraecken (IST Austria).

Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e.
submanifolds of Rd defined as the zero set of some multivariate multivalued smooth function f :Rd →
Rd−n , where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth
isomanifold M is to consider its Piecewise-Linear (PL) approximation M̂ based on a triangulation T of
the ambient space Rd . In [36] , we describe a simple algorithm to trace isomanifolds from a given starting
point. The algorithm works for arbitrary dimensions n and d , and any precision D. Our main result is
that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and
δ = 1/D (and unavoidably exponential in n). Since it is known that for δ =Ω(d 2.5), M̂ is O(D2)-close
and isotopic to M , our algorithm produces a faithful PL-approximation of isomanifolds of bounded
complexity in time polynomial in d . Combining this algorithm with dimensionality reduction techniques,
the dependency on d in the size of M̂ can be completely removed with high probability. We also show that
the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm
has been implemented and experimental results are reported, showing that it is practical and can handle
cases that are far ahead of the state-of-the-art.

7.1.3 A compact data structure for high dimensional Coxeter-Freudenthal-Kuhn triangulations

http://www.cgal.org/
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Participants Jean-Daniel Boissonnat, Siargey Kachanovich.

In collaboration with Mathijs Wintraecken (IST Austria).

In [45], we consider a family of highly regular triangulations of Rd that can be stored and queried
efficiently in high dimensions. This family consists of Freudenthal-Kuhn triangulations and their images
through affine mappings, among which are the celebrated Coxeter triangulations of type Ãd . Those
triangulations have major advantages over grids in applications in high dimensions like interpolation of
functions and manifold sampling and meshing. We introduce an elegant and very compact data structure
to implicitly store the full facial structure of such triangulations. This data structure allows to locate a
point and to retrieve the faces or the cofaces of a simplex of any dimension in an output sensitive way.
The data structure has been implemented and experimental results are presented.

7.1.4 Local characterizations for decomposability of 2-parameter persistence modules

Participants Steve Oudot, Vadim Lebovici.

In collaboration with Magnus Botnan (Vrije Universiteit Amsterdam)

In this work [48] we investigate the existence of sufficient local conditions under which representations
of a given poset will be guaranteed to decompose as direct sums of indecomposables from a given class.
Our indecomposables of interest belong to the so-called interval modules, which by definition are
indicator representations of intervals in the poset. In contexts where the poset is the product of two totally
ordered sets (which corresponds to the setting of 2-parameter persistence in topological data analysis),
we show that the whole class of interval modules itself does not admit such a local characterization, even
when locality is understood in a broad sense. By contrast, we show that the subclass of rectangle modules
does admit such a local characterization, and furthermore that it is, in some precise sense, the largest
subclass to do so.

7.1.5 On rectangle-decomposable 2-parameter persistence modules

Participants Steve Oudot, Vadim Lebovici.

In collaboration with Magnus Botnan (Vrije Universiteit Amsterdam)

This work [28] addresses two questions: (a) can we identify a sensible class of 2-parameter persistence
modules on which the rank invariant is complete? (b) can we determine efficiently whether a given
2-parameter persistence module belongs to this class? We provide positive answers to both questions,
and our class of interest is that of rectangle-decomposable modules. Our contributions include: on the
one hand, a proof that the rank invariant is complete on rectangle-decomposable modules, together
with an inclusion-exclusion formula for counting the multiplicities of the summands; on the other hand,
algorithms to check whether a module induced in homology by a bifiltration is rectangle-decomposable,
and to decompose it in the affirmative, with a better complexity than state-of-the-art decomposition
methods for general 2-parameter persistence modules. Our algorithms are backed up by a new structure
theorem, whereby a 2-parameter persistence module is rectangle-decomposable if, and only if, its
restrictions to squares are. This local characterization is key to the efficiency of our algorithms, and it
generalizes previous conditions derived for the smaller class of block-decomposable modules. It also
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admits an algebraic formulation that turns out to be a weaker version of the one for block-decomposability.
By contrast, we show that general interval-decomposability does not admit such a local characterization,
even when locality is understood in a broad sense. Our analysis focuses on the case of modules indexed
over finite grids.

7.1.6 Decomposition of exact pfd persistence bimodules

Participants Jérémy Cochoy, Steve Oudot.

In this work [22] we characterize the class of persistence modules indexed over R2 that are decompos-
able into summands whose support have the shape of a block—i.e. a horizontal band, a vertical band, an
upper-right quadrant, or a lower-left quadrant. Assuming the modules are pointwise finite dimensional
(pfd), we show that they are decomposable into block summands if and only if they satisfy a certain
local property called exactness. Our proof follows the same scheme as the proof of decomposition for
pfd persistence modules indexed over R, yet it departs from it at key stages due to the product order on
R2 not being a total order, which leaves some important gaps open. These gaps are filled in using more
direct arguments. Our work is motivated primarily by the stability theory for zigzags and interlevel-sets
persistence modules, in which block-decomposable bimodules play a key part. Our results allow us to
drop some of the conditions under which that theory holds, in particular the Morse-type conditions.

7.1.7 Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex

Participants Frédéric Chazal, Jisu Kim.

In collaboration with J. Shin, A. Rinaldo, L. Wasserman (Carnegie Mellon University)

In this work [32], we derive conditions under which the reconstruction of a target space is topologically
correct via the Čech complex or the Vietoris-Rips complex obtained from possibly noisy point cloud
data. We provide two novel theoretical results. First, we describe sufficient conditions under which
any non-empty intersection of finitely many Euclidean balls intersected with a positive reach set is
contractible, so that the Nerve theorem applies for the restricted Čech complex. Second, we demonstrate
the homotopy equivalence of a positive µ-reach set and its offsets. Applying these results to the restricted
Čech complex and using the interleaving relations with the Čech complex (or the Vietoris-Rips complex),
we formulate conditions guaranteeing that the target space is homotopy equivalent to the Čech complex
(or the Vietoris-Rips complex), in terms of the µ-reach. Our results sharpen existing results.

7.1.8 Recovering the homology of immersed manifolds

Participants Raphaël Tinarrage.

Given a sample of an abstract manifold immersed in some Euclidean space, we describe [68] a way to
recover the singular homology of the original manifold. It consists in estimating its tangent bundle—seen
as subset of another Euclidean space—in a measure theoretic point of view, and in applying measure-
based filtrations for persistent homology. The construction we propose is consistent and stable, and does
not involve the knowledge of the dimension of the manifold. In order to obtain quantitative results, we
introduce the normal reach, which is a notion of reach suitable for an immersed manifold.
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7.1.9 Computing persistent Stiefel-Whitney classes of line bundles

Participants Raphaël Tinarrage.

We propose [67] a definition of persistent Stiefel-Whitney classes of vector bundle filtrations. It
relies on seeing vector bundles as subsets of some Euclidean spaces. The usual Čech filtration of such a
subset can be endowed with a vector bundle structure, that we call a Čech bundle filtration. We show
that this construction is stable and consistent. When the dataset is a finite sample of a line bundle,
we implement an effective algorithm to compute its persistent Stiefel-Whitney classes. In order to use
simplicial approximation techniques in practice, we develop a notion of weak simplicial approximation.
As a theoretical example, we give an in-depth study of the normal bundle of the circle, which reduces to
understanding the persistent cohomology of the torus knot (1,2).

7.2 Statistical aspects of topological and geometric data analysis

7.2.1 Optimal quantization of the mean measure and applications tostatistical learning

Participants Frédéric Chazal, Martin Royer.

In collaboration with Clément Levrard (Université Paris-Diderot)

This work [51] addresses the case where data come as point sets, or more generally as discrete
measures. Our motivation is twofold: first we intend to approximate with a compactly supported
measure the mean of the measure generating process, that coincides with the intensity measure in the
point process framework, or with the expected persistence diagram in the framework of persistence-
based topological data analysis. To this aim we provide two algorithms that we prove almost minimax
optimal. Second we build from the estimator of the mean measure a vectorization map, that sends every
measure into a finite-dimensional Euclidean space, and investigate its properties through a clustering-
oriented lens. In a nutshell, we show that in a mixture of measure generating process, our technique
yields a representation in Rk , for k ∈N∗ that guarantees a good clustering of the data points with high
probability. Interestingly, our results apply in the framework of persistence-based shape classification via
the ATOL procedure. At last, we assess the effectiveness of our approach on simulated and real datasets,
encompassing text classification and large-scale graph classification.

7.2.2 DTM-based Filtrations

Participants Frédéric Chazal, Marc Glisse, Raphael Tinarrage.

In collaboration with H. Anai, H. Inakoshi and Y. Umeda (Fujitsu, Japan)

Despite strong stability properties, the persistent homology of filtrations classically used in Topological
Data Analysis, such as, e.g. the Čech or Vietoris-Rips filtrations, are very sensitive to the presence of
outliers in the data from which they are computed. In this work [12], we introduce and study a new
family of filtrations, the DTM-filtrations, built on top of point clouds in the Euclidean space which are
more robust to noise and outliers. The approach adopted in this work relies on the notion of distance-to-
measure functions and extends some previous work on the approximation of such functions.
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7.2.3 Understanding the Topology and the Geometry of the Space of Persistence Diagrams via Opti-
mal Partial Transport

Participants Vincent Divol, Théo Lacombe.

Despite the obvious similarities between the metrics used in topological data analysis and those
of optimal transport, an optimal-transport based formalism to study persistence diagrams and similar
topological descriptors has yet to come. In this work [17], by considering the space of persistence diagrams
as a space of discrete measures, and by observing that its metrics can be expressed as optimal partial
transport problems, we introduce a generalization of persistence diagrams, namely Radon measures
supported on the upper half plane. Such measures naturally appear in topological data analysis when
considering continuous representations of persistence diagrams (e.g. persistence surfaces) but also as
limits for laws of large numbers on persistence diagrams or as expectations of probability distributions
on the persistence diagrams space. We explore topological properties of this new space, which will
also hold for the closed subspace of persistence diagrams. New results include a characterization of
convergence with respect to Wasserstein metrics, a geometric description of barycenters (Fréchet means)
for any distribution of diagrams, and an exhaustive description of continuous linear representations of
persistence diagrams. We also showcase the strength of this framework to study random persistence
diagrams by providing several statistical results made meaningful thanks to this new formalism.

7.2.4 Minimax adaptive estimation in manifold inference

Participants Vincent Divol.

In this work [57], we focus on the problem of manifold estimation: given a set of observations sampled
close to some unknown submanifold M , one wants to recover information about the geometry of M .
Minimax estimators which have been proposed so far all depend crucially on the a priori knowledge of
some parameters quantifying the regularity of M (such as its reach), whereas those quantities will be
unknown in practice. Our contribution to the matter is twofold: first, we introduce a one-parameter
family of manifold estimators (Mt ), t ≥ 0, and show that for some choice of t (depending on the regularity
parameters), the corresponding estimator is minimax on the class of models of C 2 manifolds introduced
in [Genovese et al., Manifold estimation and singular deconvolution under Hausdorff loss]. Second, we
propose a completely data-driven selection procedure for the parameter t , leading to a minimax adaptive
manifold estimator on this class of models. This selection procedure actually allows to recover the sample
rate of the set of observations, and can therefore be used as an hyperparameter in other settings, such as
tangent space estimation.

7.2.5 Volume Doubling Condition and a Local Poincaré Inequality on Unweighted Random Geomet-
ric Graphs

Participants Gilles Blanchard.

In collaboration with Franziska Göbel (Institute of Mathematics, University of Potsdam)

The aim of this work [59] is to establish two fundamental measure-metric properties of particular
random geometric graphs. We consider ε-neighborhood graphs whose vertices are drawn independently
and identically distributed from a common distribution defined on a regular submanifold of RK . We show
that a volume doubling condition (VD) and local Poincaré inequality (LPI) hold for the random geometric
graph (with high probability, and uniformly over all shortest path distance balls in a certain radius range)
under suitable regularity conditions of the underlying submanifold and the sampling distribution.



12 Inria Annual Report 2020

7.3 Topological and geometric approaches for machine learning

7.3.1 Inverse Problems in Topological Persistence: a Survey

Participants Steve Oudot.

In collaboration with Elchanan Solomon (Duke University)

In this survey [23], we review the literature on inverse problems in topological persistence theory. The
first half of the survey is concerned with the question of surjectivity, i.e. the existence of right inverses, and
the second half focuses on injectivity, i.e. left inverses. Throughout, we highlight the tools and theorems
that underlie these advances, and direct the reader’s attention to open problems, both theoretical and
applied.

7.3.2 Intrinsic Topological Transforms via the Distance Kernel Embedding

Participants Clément Maria, Steve Oudot.

In collaboration with Elchanan Solomon (Duke University)

Topological transforms are parametrized families of topological invariants, which, by analogy with
transforms in signal processing, are much more discriminative than single measurements. The first two
topological transforms to be defined were the Persistent Homology Transform and Euler Characteristic
Transform, both of which apply to shapes embedded in Euclidean space. The contribution of this
work [34] is to define topological transforms that depend only on the intrinsic geometry of a shape, and
hence are invariant to the choice of embedding. To that end, given an abstract metric measure space, we
define an integral operator whose eigenfunctions are used to compute sublevel set persistent homology.
We demonstrate that this operator, which we call the distance kernel operator, enjoys desirable stability
properties, and that its spectrum and eigenfunctions concisely encode the large-scale geometry of our
metric measure space. We then define a number of topological transforms using the eigenfunctions of
this operator, and observe that these transforms inherit many of the stability and injectivity properties of
the distance kernel operator.

7.3.3 PLLay: Efficient Topological Layer based on Persistence Landscapes

Participants Frédéric Chazal, Jisu Kim.

In collaboration with K. Kim, J.S. Kim, L. Wasserman (Carnegie Mellon University) and M. Zaheer (Google
Research)

In this work [33], we propose PLLay, a novel topological layer for general deep learning models based
on persistence landscapes, in which we can efficiently exploit the underlying topological features of
the input data structure. We show differentiability with respect to layer inputs, for a general persistent
homology with arbitrary filtration. Thus, our proposed layer can be placed anywhere in the network
and feed critical information on the topological features of input data into subsequent layers to improve
the learnability of the networks toward a given task. A task optimal structure of PLLay is learned during
training via backpropagation, without requiring any input featurization or data preprocessing. We provide
a novel adaptation for the DTM function-based filtration, and show that the proposed layer is robust
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against noise and outliers through a stability analysis. We demonstrate the effectiveness of our approach
by classification experiments on various datasets.

7.3.4 Topological Data Analysis for Arrhythmia Detection through Modular Neural Networks

Participants Frédéric Chazal.

In collaboration with M. Dindin and Y. Umeda (Fujitsu, Japan)

This work [31] presents an innovative and generic deep learning approach to monitor heart conditions
from ECG signals.We focus our attention on both the detection and classification of abnormal heartbeats,
known as arrhythmia. We strongly insist on generalization throughout the construction of a deeplearning
model that turns out to be effective for new unseen patient. The novelty of our approach relieson the
use of topological data analysis as basis of our multichannel architecture, to diminish the bias due to
individual differences. We show that our structure reaches the performances of the state-of-the-art
methods regarding arrhythmia detection and classification.

7.3.5 A note on stochastic subgradient descent for persistence-based functionals: convergence and
practical aspects

Participants Mathieu Carrière, Frédéric Chazal, Marc Glisse, Hari Kannan, Théo La-
combe.

In collaboration with Yiuchi Ike (Fujitsu, Japan)

Solving optimization tasks based on functions and losses with a topological flavor is a very active and
growing field of research in Topological Data Analysis, with plenty of applications in non-convex optimiza-
tion, statistics and machine learning. All of these methods rely on the fact that most of the topological
constructions are actually stratifiable and differentiable almost everywhere. However, the corresponding
gradient and associated code is always anchored to a specific application and/or topological construction,
and do not come with theoretical guarantees. In this work [50], we study the differentiability of a general
functional associated with the most common topological construction, that is, the persistence map,
and we prove a convergence result of stochastic subgradient descent for such a functional. This result
encompasses all the constructions and applications for topological optimization in the literature, and
comes with code that is easy to handle and mix with other non-topological constraints, and that can be
used to reproduce the experiments described in the literature.

7.3.6 ATOL: Measure Vectorization for Automatic Topologically-Oriented Learning

Participants Frédéric Chazal, Martin Royer.

In collaboration with Clément Levrard (Université Paris-Diderot), Yiuchi Ike and Yuhei Umeda (Fujitsu,
Japan).

Robust topological information commonly comes in the form of a set of persistence diagrams, finite
measures that are in nature uneasy to affix to generic machine learning frameworks. In this work [65], we
introduce a fast, learnt, unsupervised vectorization method for measures in Euclidean spaces and use it
for reflecting underlying changes in topological behaviour in machine learning contexts. The algorithm is
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simple and efficiently discriminates important space regions where meaningful differences to the mean
measure arise. It is proven to be able to separate clusters of persistence diagrams. We showcase the
strength and robustness of our approach on a number of applications, from emulous and modern graph
collections where the method reaches state-of-the-art performance to a geometric synthetic dynamical
orbits problem. The proposed methodology comes with a single high level tuning parameter: the total
measure encoding budget.

7.3.7 Multiparameter Persistence Image for Topological Machine Learning

Participants Mathieu Carrière.

In collaboration with Andrew Blumberg (Université de Columbia, New-York, USA).

In the last decade, there has been increasing interest in topological data analysis, a new methodology
for using geometric structures in data for inference and learning. A central theme in the area is the idea of
persistence, which in its most basic form studies how measures of shape change as a scale parameter
varies. There are now a number of frameworks that support statistics and machine learning in this
context. However, in many applications there are several different parameters one might wish to vary: for
example, scale and density. In contrast to the one-parameter setting, techniques for applying statistics
and machine learning in the setting of multiparameter persistence are not well understood due to the lack
of a concise representation of the results. We introduce a new descriptor for multiparameter persistence,
which we call the Multiparameter Persistence Image, that is suitable for machine learning and statistical
frameworks, is robust to perturbations in the data, has finer resolution than existing descriptors based
on slicing, and can be efficiently computed on data sets of realistic size. Moreover, we demonstrate its
efficacy by comparing its performance to other multiparameter descriptors on several classification tasks.

7.4 Miscellaneous

7.4.1 Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space

Participants Frédéric Chazal, Alex Delalande.

In collaboration with Quentin Mérigot (Laboratoire de Mathématiques d’Orsay, Univ. Paris-Saclay)

This work [35] studies an explicit embedding of the set of probability measures into a Hilbert space,
defined using optimal transport maps from a reference probability density. This embedding linearizes to
some extent the 2-Wasserstein space, and enables the direct use of generic supervised and unsupervised
learning algorithms on measure data. Our main result is that the embedding is (bi-)Hö lder continuous,
when the reference density is uniform over a convex set, and can be equivalently phrased as a dimension-
independent Hölder-stability results for optimal transport maps.

7.4.2 Post hoc confidence bounds on false positives using reference families

Participants Gilles Blanchard.

In collaboration with Étienne Roquain (LPSM, Sorbonne université), Pierre Neuvial (IMT, Toulouse
Université)

In this work [14], we follow a post-hoc, "user-agnostic" approach to false discovery control in a large-scale
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multiple testing framework, as introduced by Genovese and Wasserman (2006), Goeman and Solari (2011):
the statistical guarantee on the number of correct rejections must hold for any set of candidate items,
possibly selected by the user after having seen the data. To this end, we introduce a novel point of view
based on a family of reference rejection sets and a suitable criterion, namely the joint-family-wise-error
rate over that family (JER for short). First, we establish how to derive post hoc bounds from a given
JER control and analyze some general properties of this approach. We then develop procedures for
controlling the JER in the case where reference regions are p-value level sets. These procedures adapt to
dependencies and to the unknown quantity of signal (via a step-down principle). We also show interesting
connections to confidence envelopes of Meinshausen (2006); Genovese and Wasserman (2006), the closed
testing based approach of Goeman and Solari (2011) and to the higher criticism of Donoho and Jin (2004).
Our theoretical statements are supported by numerical experiments.

Published in Annals of Statistics, 2020.

7.4.3 Compressive Statistical Learning with Random Feature Moments

Participants Gilles Blanchard.

In collaboration with Rémi Gribonval (INRIA Lyon), Nicolas Keriven (CNRS, GIPSA, Université Rhône-
Alpes), Yan Traonmilin (CNRS, IMB, Université Bordeaux)

We introduce in this work [20] a general framework –compressive statistical learning– for resource-
efficient large-scale learning: the training collection is compressed in one pass into a low-dimensional
sketch (a vector of random empirical generalized moments) that captures the information relevant to the
considered learning task. A near-minimizer of the risk is computed from the sketch through the solution
of a nonlinear least squares problem. We investigate sufficient sketch sizes to control the generalization
error of this procedure. The framework is illustrated on compressive PCA, compressive clustering, and
compressive Gaussian mixture Modeling with fixed known variance. The latter two are further developed
in a companion paper.

Accepted for publication in Mathematical Statistics and Learning, 2021.

7.4.4 Domain Generalization by Marginal Transfer Learning

Participants Gilles Blanchard.

In collaboration with Aniket Anand Deshmukh (Microsoft Research), Urun Dogan (Microsoft Research),
Gyemin Lee (Seoul University for Science and Technology), Clayton Scott (University of Michigan)

In the problem of domain generalization (DG), there are labeled training data sets from several related
prediction problems, and the goal is to make accurate predictions on future unlabeled data sets that are
not known to the learner. This problem arises in several applications where data distributions fluctuate
because of environmental, technical, or other sources of variation. In the work [42] we introduce a formal
framework for DG, and argue that it can be viewed as a kind of supervised learning problem by augmenting
the original feature space with the marginal distribution of feature vectors. While our framework has
several connections to conventional analysis of supervised learning algorithms, several unique aspects
of DG require new methods of analysis. This work lays the learning theoretic foundations of domain
generalization, building on our earlier work where the problem of DG was introduced. We present two
formal models of data generation, corresponding notions of risk, and distribution-free generalization
error analysis. By focusing our attention on kernel methods, we also provide more quantitative results
and a universally consistent algorithm. An efficient implementation is provided for this algorithm, which
is experimentally compared to a pooling strategy on one synthetic and three real-world data sets.

Published in Journal of Machine Learning Research, 2021.
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7.4.5 A polynomial time algorithm to compute quantum invariants of 3-manifolds with bounded
first Betti number

Participants Clément Maria.

In collaboration with Jonathan Spreer (The University of Sydney, Australia)

In this article, we introduce a fixed parameter tractable algorithm for computing the Turaev-Viro
invariants TV4,q, using the dimension of the first homology group of the manifold as parameter. This
is, to our knowledge, the first parameterised algorithm in computational 3-manifold topology using
a topological parameter. The computation of TV4,q is known to be sharp-P-hard in general; using a
topological parameter provides an algorithm polynomial in the size of the input triangulation for the
extremely large family of 3-manifolds with first homology group of bounded rank. Our algorithm is easy
to implement and running times are comparable with running times to compute integral homology
groups for standard libraries of triangulated 3- manifolds. The invariants we can compute this way are
powerful: in combination with integral homology and using standard data sets we are able to roughly
double the pairs of 3-manifolds we can distinguish. We hope this qualifies TV4,q to be added to the
short list of standard properties (such as orientability, connectedness, Betti numbers, etc.) that can be
computed ad-hoc when first investigating an unknown triangulation.

Published in the journal on Foundations of Computational Mathematics (FoCM) 2020.

7.4.6 Variable-width contouring for additive manufacturing

Participants Marc Glisse.

In collaboration with Samuel Hornus, Sylvain Lefebvre, Jonàs Martínez (Inria team MFX), Olivier Devillers,
Sylvain Lazard, Monique Teillaud (Inria team Gamble) and Tim Kuipers (Delft University of Technology,
Pays-Bas).

In most layered additive manufacturing processes, a tool solidifies or deposits material while following
pre-planned trajectories to form solid beads. Many interesting problems arise in this context, among
which one concerns the planning of trajectories for filling a planar shape as densely as possible. This is
the problem we tackle in the present work [21]. Recent works have shown that allowing the bead width to
vary along the trajectories helps increase the filling density. We present a novel technique that, given a
deposition width range, constructs a set of closed beads whose width varies within the prescribed range
and fill the input shape. The technique outperforms the state of the art in important metrics: filling
density (while still guaranteeing the absence of bead overlap) and trajectories smoothness. We give a
detailed geometric description of our algorithm, explore its behavior on example inputs and provide a
statistical comparison with the state of the art. We show that it is possible to obtain high quality fabricated
layers on commodity FDM printers.

7.4.7 Mean curvature motion of point cloud varifolds

Participants Blanche Buet.

In collaboration with Martin Rumpf (University of Bonn)
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This paper [49] investigates a discretization scheme for mean curvature motion on point cloud
varifolds with particular emphasis on singular evolutions. To define the varifold a local covariance
analysis is applied to compute an approximate tangent plane for the points in the cloud. The core
ingredient of the mean curvature motion model is the regularization of the first variation of the varifold
via convolution with kernels with small stencil. Consistency with the evolution velocity for a smooth
surface is proven if a sufficiently small stencil and a regular sampling are taking into account. Furthermore,
an implicit and a semiimplicit time discretization are derived. The implicit scheme comes with discrete
barrier properties known for the smooth, continuous evolution, whereas the semiimplicit still ensures in
all our numerical experiments very good approximation properties while being easy to implement. It is
shown that the proposed method is robust with respect to noise and recovers the evolution of smooth
curves as well as the formation of singularities such as triple points in 2D or minimal cones in 3D.

7.4.8 Covering families of triangles

Participants Marc Glisse.

In collaboration with Olivier Devillers, Ji-Won Park (Inria team Gamble) and Otfried Cheong (KAIST, Corée
du sud).

A cover for a family F of sets in the plane is a set into which every set in F can be isometrically moved.
We are interested in the convex cover of smallest area for a given family of triangles. Park and Cheong
conjectured that any family of triangles of bounded diameter has a smallest convex cover that is itself a
triangle. The conjecture is equivalent to the claim that for every convex set X there is a triangle Z whose
area is not larger than the area of X, such that Z covers the family of triangles contained in X. In this
work [52], we prove this claim for the case where a diameter of X lies on its boundary. We also give a
complete characterization of the smallest convex cover for the family of triangles contained in a half-disk,
and for the family of triangles contained in a square. In both cases, this cover is a triangle.

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

• Collaboration with Sysnav, a French SME with world leading expertise in navigation and geoposi-
tioning in extreme environments, on TDA, geometric approaches and machine learning for the
analysis of movements of pedestrians and patients equipped with inetial sensors (CIFRE PhD of
Bertrand Beaufils).

• Research collaboration with Fujitsu on the development of new TDA methods and tools for Machine
learning and Artificial Intelligence (started in Dec 2017).

• Research collaboration with MetaFora on the development of new TDA-based and statistical
methods for the analysis of cytometric data (started in Nov. 2019).

8.2 Bilateral grants with industry

• DATASHAPE and Sysnav have been selected for the ANR/DGA Challenge MALIN (funding: 700
kEuros) on pedestrian motion reconstruction in severe environments (without GPS access).

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Inria international partners

Informal international partners



18 Inria Annual Report 2020

• TopStat group (L. Wasserman and A. Rinaldo) at Carnegie Mellon: DataShape maintains a long-
standing collaboration with this group since several years with several joint publications.

9.2 National initiatives

9.2.1 ANR
ANR ASPAG

Participants Marc Glisse.

- Acronym : ASPAG.
- Type : ANR blanc.
- Title : Analysis and Probabilistic Simulations of Geometric Algorithms.
- Coordinator : Olivier Devillers (équipe Inria Gamble).
- Duration : 4 years from January 2018 to December 2021.
- Others Partners: Inria Gamble, LPSM, LABRI, Université de Rouen, IECL, Université du Littoral Côte

d’Opale, Telecom ParisTech, Université Paris X (Modal’X), LAMA, Université de Poitiers, Université de
Bourgogne.

- Abstract:
The analysis and processing of geometric data has become routine in a variety of human activities

ranging from computer-aided design in manufacturing to the tracking of animal trajectories in ecology or
geographic information systems in GPS navigation devices. Geometric algorithms and probabilistic geo-
metric models are crucial to the treatment of all this geometric data, yet the current available knowledge
is in various ways much too limited: many models are far from matching real data, and the analyses are
not always relevant in practical contexts. One of the reasons for this state of affairs is that the breadth of
expertise required is spread among different scientific communities (computational geometry, analysis
of algorithms and stochastic geometry) that historically had very little interaction. The Aspag project
brings together experts of these communities to address the problem of geometric data. We will more
specifically work on the following three interdependent directions.

(1) Dependent point sets: One of the main issues of most models is the core assumption that the data
points are independent and follow the same underlying distribution. Although this may be relevant in
some contexts, the independence assumption is too strong for many applications.

(2) Simulation of geometric structures: The phenomena studied in (1) involve intricate random
geometric structures subject to new models or constraints. A natural first step would be to build up our
understanding and identify plausible conjectures through simulation. Perhaps surprisingly, the tools for
an effective simulation of such complex geometric systems still need to be developed.

(3) Understanding geometric algorithms: the analysis of algorithm is an essential step in assessing
the strengths and weaknesses of algorithmic principles, and is crucial to guide the choices made when
designing a complex data processing pipeline. Any analysis must strike a balance between realism and
tractability; the current analyses of many geometric algorithms are notoriously unrealistic. Aside from
the purely scientific objectives, one of the main goals of Aspag is to bring the communities closer in the
long term. As a consequence, the funding of the project is crucial to ensure that the members of the
consortium will be able to interact on a very regular basis, a necessary condition for significant progress
on the above challenges.

- See also: https://members.loria.fr/Olivier.Devillers/aspag/

ANR Chair in AI

Participants Frédéric Chazal, Marc Glisse, Louis Pujol, Wojciech Riese.

- Acronym : TopAI
- Type : ANR Chair in AI.

https://members.loria.fr/Olivier.Devillers/aspag/
https://members.loria.fr/Olivier.Devillers/aspag/
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- Title : Topological Data Analysis for Machine Learning and AI
- Coordinator : Frédéric Chazal
- Duration : 4 years from September 2020 to August 2024.
- Others Partners: Two industrial partners, the French SME Sysnav and the French start-up MetaFora.
- Abstract:
The TopAI project aims at developing a world-leading research activity on topological and geometric

approaches in Machine Learning (ML) and AI with a double academic and industrial/societal objective.
First, building on the strong expertise of the candidate and his team in TDA, TopAI aims at designing new
mathematically well-founded topological and geometric methods and tools for Data Analysis and ML
and to make them available to the data science and AI community through state-of-the-art software tools.
Second, thanks to already established close collaborations and the strong involvement of French industrial
partners, TopAI aims at exploiting its expertise and tools to address a set of challenging problems with
high societal and economic impact in personalized medicine and AI-assisted medical diagnosis.

ANR ALGOKNOT

Participants Clément Maria.

- Acronym : ALGOKNOT.
- Type : ANR Jeune Chercheuse Jeune Chercheur.
- Title : Algorithmic and Combinatorial Aspects of Knot Theory.
- Coordinator : Clément Maria.
- Duration : 2020 – 2023 (3 years).
- Abstract: The project AlgoKnot aims at strengthening our understanding of the computational and

combinatorial complexity of the diverse facets of knot theory, as well as designing efficient algorithms
and software to study their interconnections.

- See also: https://www-sop.inria.fr/members/Clement.Maria/

9.2.2 Collaboration with other national research institutes
SHOM

Participants Steve Oudot.

Research collaboration between DataShape and the Service Hydrographique et Océanographique
de la Marine (SHOM) on bathymetric data analysis using a combination of TDA and deep learning
techniques. This collaboration is funded by the AMI IA Améliorer la cartographie du littoral.

IFPEN

Participants Frédéric Chazal, Marc Glisse, Jisu Kim.

Research collaboration between DataShape and IFPEN on TDA applied to various problems issued
from energy transition and sustainable mobility.

9.3 Regional initiatives

PhD² CytoPart

Participants Marc Glisse, Louis Pujol.

https://www-sop.inria.fr/members/Clement.Maria/
https://www-sop.inria.fr/members/Clement.Maria/
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- Acronym : CytoPart.
- Type : Paris Region PhD².
- Title : Partitionnement de données cytométriques.
The Île-de-France region funds one PhD thesis supervised by Pascal Massart (Inria team Celeste) and

Marc Glisse, in collaboration with Metafora biosystems, a company specialized in the analysis of cells
through their metabolism. The goal of the project is to improve clustering for this particular type of data.

10 Dissemination

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

• F. Chazal was the co-organizer of a Workshop on Topological Data Analysis and beyonds at NeurIPS
2020 (https://tda-in-ml.github.io/)

10.1.2 Scientific events: selection

Member of the conference program committees

• Marc Glisse was a member of the Program Committee of the International Symposium on Compu-
tational Geometry (SoCG), June 2020.

• Gilles Blanchard was an Area Chair for the NeurIPS 2020 conference.

10.1.3 Journal

Member of the editorial boards

• Jean-Daniel Boissonnat is a member of the Editorial Board of the Journal of the ACM.

• Jean-Daniel Boissonnat is a member of the Editorial Board of Discrete and Computational Geometry
(Springer).

• Frédéric Chazal is a member of the Editorial Board of Discrete and Computational Geometry
(Springer).

• Frédéric Chazal is a member of the Editorial Board of Graphical Models (Elsevier).

• Frédéric Chazal is a member of the Scientific Board of Journal of Applied and Computational
Topology (Springer), and Editor-in-Chief since January 1st 2021.

• Gilles Blanchard is a member of the Editorial Boards of Bernoulli, Electronic Journal of Statistics,
and Annales de l’Institut Henri Poincaré Probability and Statistics.

• Steve Oudot is a member of the Editorial Board of the Journal of Computational Geometry.

10.1.4 Invited talks

• Steve Oudot. Two Decomposition Results for Bipersistence Modules. MFO Workshop on Repre-
sentation Theory of Quivers and Finite Dimensional Algebras, Oberwolfach, Germany, January
2020.

• Frédéric Chazal. Approches topologiques et géométriques pour l’apprentissage statistique, théorie
et pratique, EDF and System X workshop, September 2020.

• Frédéric Chazal. Learning linear representations of persistence diagrams: mathematical aspects
and applications. Applied Machine Learning Days at EPFL 2020, January 2020.

https://tda-in-ml.github.io/
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• Jean-Daniel Boissonnat. Delaunay triangulation of manifolds. Inaugural conference at the web-
seminar series on Applications of Geometry and Topology (GEOTOP-A), January 2020.

• Blanche Buet. Weak and approximate curvatures of a measure: a varifold perspective. Mathematics
and Image Analysis MIA’21, January 2021.

10.1.5 Leadership within the scientific community

• Frédéric Chazal is co-responsible, with E. Scornett (Ecole Polytechnique), of the “programme
Maths-IA” of the Fondation Mathématique Jacques Hadamard (FMJH).

• Frédéric Chazal is a member of the “Comité de pilotage” of the SIGMA group at SMAI.

• Steve Oudot is co-responsible, with L. Castelli-Aleardi, of the GT GeoAlgo within the GdR-IM.

10.1.6 Research administration

• Marc Glisse is president of the CDT at Inria Saclay.

• Steve Oudot is president of the Commission Scientifique at Inria Saclay.

• Frédéric Chazal is a member of the Graduate School in Mathematics at Université Paris-Saclay.

• Clément Maria is a member of the CDT at Inria Sophia Antipolis-Méditerranée.

• Blanche Buet is member of Committee on Gender Equality of LMO at Université Paris-Saclay and
member of the Laboratory Council of LMO at Université Paris-Saclay. She has also been member
of a recruitement committee recruitement committees for a “Maître de conférence” position at
IMJ-PRG, Sorbonne Université and a “PRAG” position at LMO, Université Paris-Saclay, both in 2020.

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Master: Frédéric Chazal and Quentin Mérigot, Analyse Topologique des Données, 30h eq-TD,
Université Paris-Sud, France.

• Master: Marc Glisse and Clément Maria, Computational Geometry Learning, 36h eq-TD, M2, MPRI,
France.

• Master: Frédéric Cazals and Frédéric Chazal, Geometric Methods for Data Analysis, 30h eq-TD, M1,
École Centrale Paris, France.

• Master: Frédéric Chazal and Julien Tierny, Topological Data Analysis, 38h eq-TD, M2, Mathéma-
tiques, Vision, Apprentissage (MVA), ENS Paris-Saclay, France.

• Master: Steve Oudot, Topological data analysis, 45h eq-TD, M1, École polytechnique, France.

• Master: Steve Oudot, Data Analysis: geometry and topology in arbitrary dimensions, 24h eq-TD,
M2, graduate program in Artificial Intelligence & Advanced Visual Computing, École polytechnique,
France.

• Master: Gilles Blanchard, Mathematics for Artificial Intelligence 1, 70h eq-TD, IMO, Université
Paris-Saclay, France.

• Master: Blanche Buet, TD-Techniques d’Analyse Harmonique , 30h eq-TD, M2 AAG Orsay, Univer-
sité Paris-Saclay, France.

• Master: Blanche Buet, TD-Distributions et analyse de Fourier, 60h eq-TD, M1, Université Paris-
Saclay, France.
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• Undergrad-Master: Steve Oudot, Algorithms for data analysis in C++, 22.5h eq-TD, L3/M1, École
polytechnique, France.

• Undergrad: Marc Glisse, Mécanismes de la programmation orientée-objet, 40h eq-TD, L3, École
Polytechnique, France.

10.2.2 Supervision

• PhD: Siddharth Pritam, Collapses and persistent homology, Jean-Daniel Boissonnat (Université
Côte d’Azur). Defended in April 2020.

• PhD: Nicolas Berkouk, Persistence and Sheaves : from Theory to Applications, Institut Polytech-
nique de Paris. Defended in September 2020. Steve Oudot.

• PhD: Théo Lacombe, Statistics for topological descriptors using optimal transport, Institut Poly-
technique de Paris. Defended in September 2020. Steve Oudot.

• PhD: Raphaël Tinarrage, Topological inference from measures and vector bundles. Defended in
October 2020. Frédéric Chazal and Marc Glisse.

• PhD: Bertrand Beaufils, Méthodes topologiques et apprentissage statistique pour l’actimétrie du
piéton à partir de données de mouvement, Frédéric Chazal and Bertrand Michel (Ecole Centrale de
Nantes).

• PhD in progress: Vadim Lebovici, Laplace transform for constructible functions. Started September
1st, 2020. Steve Oudot and François Petit (CRESS).

• PhD in progress: Christophe Vuong, Random hypergraphs. Started November 2020. Laurent
Decreusefond and Marc Glisse.

• PhD in progress: Louis Pujol, Partitionnement de données cytométriques, started Novermber 1st,
2019, Pascal Massart and Marc Glisse.

• PhD in progress: Vincent Divol, statistical aspects of TDA, started September 1st, 2017, Frédéric
Chazal and Pascal Massart (LMO).

• PhD in progress: Etienne Lasalle, TDA for graph data, started September 1st, 2019, Frédéric Chazal
and Pascal Massart (LMO).

• PhD in progress: Alex Delalande, Measure embedding with Optimal Transport and applications in
Machine Learning, started December 1st, 2019, Frédéric Chazal and Quentin Mérigot (LMO).

• PhD in progress: Wojciech Riese, Geometric inference for curves and trajectories. Applications to
speed estimation from magnetic field measurements, started in September 2020, Frédéric Chazal
and Bertrand Michel (Ecole Centrale de Nantes).

• PhD in progress: Jérémie Capitao-Miniconi, Deconvolution for geometric inference, started Octo-
ber 2020, Frédéric Chazal and Elisabeth Gassiat (LMO).

• PhD in progress: Owen Rouillé, Algorithms and Complexity in Geometric Topology, started Septem-
ber 2018. Clément Maria and Jean-Daniel Boissonnat.

• PhD in progress: Oleksandr Zadorozhnyi, Contributions to the theoretical analysis of the algorithms
with adversarial and dependent data, started September 2017. Gilles Blanchard and Alexandra
Carpentier.

• PhD in progress: El Mehdi Saad, Efficient online methods for variable and model selection, started
September 2019. Gilles Blanchard and Sylvain Arlot.

• PhD in progress: Olympio Hacquard, Dimension reduction for persistent homology, started Septem-
ber 2020. Gilles Blanchard and Clément Levrard.

• PhD in progress: Hannah Marienwald, Transfer learning in high dimension. Started September
2019. Gilles Blanchard and Klaus-Robert Müller.
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10.2.3 Juries

• Clément Maria was a member of the jury attributing the Gilles Kahn PhD award, from the SIF and
the Academy of Science, Nov. 2020.

• Steve Oudot was reviewer for the Ph.D. defence of Håvard Bjerkevik, Norwegian University of
Science and Technology, June 2020.

• Steve Oudot was a member of the jury for CRCN applications at Inria Nancy – Grand Est, Spring
2020.

• Blanche Buet was a member of the PhD defence of Camille Labourie, Université Paris Saclay,
January 2020 ; François Genereau, Université Grenoble Alpes, June 2020 and Raphaël Tinarrage,
October 2020, INRIA-Université Paris Saclay.

10.3 Popularization

10.3.1 Interventions

• Frédéric Chazal. Les données ont elles une forme? Une petite introduction à l’Analyse Topologique
des Données. Back-to-school seminar of the Master in Mathematics at Université PAris-Saclay.
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