
2020
ACTIVITY REPORT

Project-Team

DIVERSE

RESEARCH CENTRE

Rennes - Bretagne Atlantique

IN PARTNERSHIP WITH:

CNRS, Institut national des sciences
appliquées de Rennes, Université
Rennes 1

Diversity-centric Software Engineering

IN COLLABORATION WITH: Institut de recherche en informatique et
systèmes aléatoires (IRISA)

DOMAIN

Networks, Systems and Services,
Distributed Computing

THEME

Distributed programming and Software
engineering

Contents

Project-Team DIVERSE 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3
2.1 Overall objectives . 3

3 Research program 4
3.1 Scientific background . 4
3.2 Model-Driven Engineering . 4
3.3 Variability modeling . 5
3.4 Component-based software development . 6
3.5 Validation and verification . 7
3.6 Empirical software engineering . 8
3.7 Research axis . 8
3.8 Software Language Engineering . 8
3.9 Variability Modeling and Engineering . 10
3.10 Heterogeneous and dynamic software architectures . 11
3.11 Diverse implementations for resilience . 12

4 Application domains 13

5 Highlights of the year 13
5.1 Awards . 13

6 New software and platforms 14
6.1 New software . 14

6.1.1 amiunique . 14
6.1.2 FAMILIAR . 14
6.1.3 GEMOC Studio . 15
6.1.4 Kevoree . 16
6.1.5 Melange . 17
6.1.6 DSpot . 17
6.1.7 ALE . 17
6.1.8 InspectorGuidget . 18
6.1.9 Descartes . 18
6.1.10 PitMP . 19

7 New results 19
7.1 Results on Variability modeling and management . 19

7.1.1 Deep software variability . 19
7.1.2 Managing the software variability at the source code level 20

7.2 Results on Software Language Engineering . 20
7.2.1 Foundations . 20
7.2.2 Applications . 23

7.3 Results on Heterogeneous and dynamic software architectures 24
7.3.1 Software architecture and cloud modeling . 24
7.3.2 Leveraging unused heterogeneous resources for modular applications with SLA

guarantees . 25
7.4 Results on Diverse Implementations for Resilience . 26

7.4.1 Software Co-evolution . 26
7.4.2 Privacy and Security . 28
7.4.3 Software Verification . 29

8 Bilateral contracts and grants with industry 29
8.1 Bilateral contracts with industry . 29

9 Partnerships and cooperations 31
9.1 International initiatives . 31

9.1.1 Inria International Labs . 31
9.2 International research visitors . 32

9.2.1 Visits of international scientists . 32
9.3 European initiatives . 32

9.3.1 Collaborations with major European organizations . 32
9.4 National initiatives . 32

9.4.1 ANR . 32
9.4.2 DGA . 33

10 Dissemination 33
10.1 Promoting scientific activities . 33

10.1.1 Scientific events: organisation . 33
10.1.2 Journal . 35
10.1.3 Leadership within the scientific community . 36
10.1.4 Scientific expertise . 36
10.1.5 Research administration . 36

10.2 Teaching - Supervision - Juries . 37
10.2.1 Teaching . 37
10.2.2 Supervision . 37
10.2.3 Juries . 38

11 Scientific production 38
11.1 Major publications . 38
11.2 Publications of the year . 40
11.3 Cited publications . 43

Project DIVERSE 1

Project-Team DIVERSE

Creation of the Team: 2014 January 01, updated into Project-Team: 2014 July 01

Keywords

Computer sciences and digital sciences

A1.2.1. – Dynamic reconfiguration

A1.3.1. – Web

A1.3.6. – Fog, Edge

A2.1.3. – Object-oriented programming

A2.1.10. – Domain-specific languages

A2.5. – Software engineering

A2.5.1. – Software Architecture & Design

A2.5.2. – Component-based Design

A2.5.3. – Empirical Software Engineering

A2.5.4. – Software Maintenance & Evolution

A2.5.5. – Software testing

A2.6.2. – Middleware

A2.6.4. – Ressource management

A4.4. – Security of equipment and software

A4.8. – Privacy-enhancing technologies

Other research topics and application domains

B3.1. – Sustainable development

B3.1.1. – Resource management

B6.1. – Software industry

B6.1.1. – Software engineering

B6.1.2. – Software evolution, maintenance

B6.4. – Internet of things

B6.5. – Information systems

B6.6. – Embedded systems

B8.1.2. – Sensor networks for smart buildings

B9.5.1. – Computer science

B9.10. – Privacy

https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Inria Annual Report 2020

1 Team members, visitors, external collaborators

Research Scientists

• Djamel Eddine Khelladi [CNRS, Researcher]

• Olivier Zendra [Inria, Researcher, from Oct 2020]

Faculty Members

• Olivier Barais [Team leader, Univ de Rennes I, Professor, HDR]

• Mathieu Acher [Univ de Rennes I, Associate Professor]

• Arnaud Blouin [INSA Rennes, Associate Professor, HDR]

• Johann Bourcier [Univ de Rennes I, Associate Professor, HDR]

• Stéphanie Challita [Univ de Rennes I, Associate Professor, from Sep 2020]

• Benoit Combemale [Univ de Rennes I, Professor, HDR]

• Jean-Marc Jezequel [Univ de Rennes I, Professor, HDR]

• Noel Plouzeau [Univ de Rennes I, Associate Professor]

Post-Doctoral Fellows

• Juliana Alves Pereira [Univ de Rennes I, until Feb 2020]

• Raounak Benabidallah [Univ de Rennes I, from Sep 2020]

• Dorian Leroy [Inria, from Mar 2020]

• Xhevahire Ternava [Univ de Rennes I, from Oct 2020]

• Oscar Luis Vera Perez [Univ de Rennes I, from Jan 2020]

• Nan Zhang Messe [Univ de Rennes I, from Sep 2020]

PhD Students

• June Benvegnu-Sallou [Univ de Rennes I]

• Anne Bumiller [Orange, CIFRE, from Oct 2020]

• Emmanuel Chebbi [Inria]

• Antoine Cheron [Zengularity SAS, CIFRE]

• Fabien Coulon [Obeo, CIFRE]

• Jean-Emile Dartois [Institut de recherche technologique B-com, until Feb 2020]

• Cassius De Oliveira Puodzius [Inria, from Oct 2020]

• Pierre Jeanjean [Inria]

• Gwendal Jouneaux [Univ de Rennes I, from Oct 2020]

• Quentin Le Dilavrec [Univ de Rennes I, from Oct 2020]

• Dorian Leroy [Université de Vienne - Autriche, until Jan 2020]

Project DIVERSE 3

• Luc Lesoil [Univ de Rennes I]

• Gauthier Lyan [Keolis, CIFRE]

• Hugo Martin [Univ de Rennes I]

• Lamine Noureddine [Inria, from Oct 2020]

• Alif Akbar Pranata [Inria]

• Alexandre Rio [Univ de Rennes I, from Mar 2020 until Apr 2020]

Technical Staff

• Didier Vojtisek [Inria, Engineer]

Interns and Apprentices

• Janice Conquet [Univ de Rennes I, from Feb 2020 until Jul 2020]

• Philemon Houdaille [Univ de Rennes I, from Jun 2020 until Aug 2020]

• Gwendal Jouneaux [Inria, from Feb 2020 until Aug 2020]

• Quentin Le Dilavrec [Inria, from Feb 2020 until Jul 2020]

• Corentin Ollivier [Univ de Rennes I, from Jun 2020 until Sep 2020]

• Georges Aaron Randrianaina [Univ de Rennes I, from Jun 2020 until Aug 2020]

Administrative Assistant

• Sophie Maupile [CNRS]

Visiting Scientists

• Nelly Bencomo [Aston University, from January 2020 until Jun 2020]

• Gunter Mussbacher [Université de Montréal - Canada, from Mar 2020 until Jun 2020]

External Collaborator

• Gurvan Le Guernic [DGA]

2 Overall objectives

2.1 Overall objectives

DIVERSE’s research agenda targets core values of software engineering. In this fundamental domain
we focus and develop models, methodologies and theories to address major challenges raised by the
emergence of several forms of diversity in the design, deployment and evolution of software-intensive
systems. Software diversity has emerged as an essential phenomenon in all application domains born by
our industrial partners. These application domains range from complex systems brought by systems of
systems (addressed in collaboration with Thales, Safran, CEA and DGA) and Instrumentation and Control
(addressed with EDF) to pervasive combinations of Internet of Things and Internet of Services (addressed
with TellU and Orange) and tactical information systems (addressed in collaboration with civil security).
Today these systems seem to be radically all different, but we envision a strong convergence of the
scientific principles that underpin their construction and validation, bringing forwards sane and reliable
methods for the design of flexible and open yet dependable systems. Flexibility and openness are both

4 Inria Annual Report 2020

critical and challenging software layer properties that must deal with the following four dimensions of
diversity: diversity of languages, used by the stakeholders involved in the construction of these systems;
diversity of features, required by the different customers; diversity of runtime environments, in which
software has to run and adapt; diversity of implementations, which are necessary for resilience by
redundancy.

In this context, the central software engineering challenge consists in handling diversity from vari-
ability in requirements and design to heterogeneous and dynamic execution environments. In particular,
this requires considering that the software system must adapt, in unpredictable yet valid ways, to changes
in the requirements and environment. Conversely, explicitly handling diversity is a great opportunity
to allow software to spontaneously explore alternative design solutions. Concretely, we want to provide
software engineers with the following abilities:

• to characterize an “envelope” of possible variations;

• to compose envelopes (to discover new macro envelopes in an opportunistic manner);

• to dynamically synthesize software inside a given envelop.

The major scientific objective that we must achieve to provide such mechanisms for software engi-
neering is summarized below:

Scientific objective for DIVERSE: To automatically compose and synthesize software diversity from
design to runtime to address unpredictable evolution of software-intensive systems

Software product lines and associated variability modeling formalisms represent an essential aspect
of software diversity, which we already explored in the past, and this aspect stands as a major foundation
of DIVERSE’s research agenda. However, DIVERSE also exploits other foundations to handle new forms
of diversity: type theory and models of computation for the composition of languages; distributed
algorithms and pervasive computation to handle the diversity of execution platforms; functional and
qualitative randomized transformations to synthesize diversity for robust systems.

3 Research program

3.1 Scientific background

3.2 Model-Driven Engineering

Model-Driven Engineering (MDE) aims at reducing the accidental complexity associated with developing
complex software-intensive systems (e.g., use of abstractions of the problem space rather than abstrac-
tions of the solution space) [112]. It provides DIVERSE with solid foundations to specify, analyze and
reason about the different forms of diversity that occur through the development lifecycle. A primary
source of accidental complexity is the wide gap between the concepts used by domain experts and the
low-level abstractions provided by general-purpose programming languages [83]. MDE approaches
address this problem through modeling techniques that support separation of concerns and automated
generation of major system artifacts from models (e.g., test cases, implementations, deployment and
configuration scripts). In MDE, a model describes an aspect of a system and is typically created or derived
for specific development purposes [66]. Separation of concerns is supported through the use of different
modeling languages, each providing constructs based on abstractions that are specific to an aspect of
a system. MDE technologies also provide support for manipulating models, for example, support for
querying, slicing, transforming, merging, and analyzing (including executing) models. Modeling lan-
guages are thus at the core of MDE, which participates in the development of a sound Software Language
Engineering 1, including a unified typing theory that integrate models as first class entities [115].

Incorporating domain-specific concepts and high-quality development experience into MDE tech-
nologies can significantly improve developer productivity and system quality. Since the late nineties, this
realization has led to work on MDE language workbenches that support the development of domain-
specific modeling languages (DSMLs) and associated tools (e.g., model editors and code generators).
A DSML provides a bridge between the field in which domain experts work and the implementation

1See http://planet-sl.org

http://planet-sl.org

Project DIVERSE 5

(programming) field. Domains in which DSMLs have been developed and used include, among others,
automotive, avionics, and the emerging cyber-physical systems. A study performed by Hutchinson et
al. [89] indicates that DSMLs can pave the way for wider industrial adoption of MDE.

More recently, the emergence of new classes of systems that are complex and operate in heterogeneous
and rapidly changing environments raises new challenges for the software engineering community. These
systems must be adaptable, flexible, reconfigurable and, increasingly, self-managing. Such characteristics
make systems more prone to failure when running and thus development and study of appropriate
mechanisms for continuous design and runtime validation and monitoring are needed. In the MDE
community, research is focused primarily on using models at design, implementation, and deployment
stages of development. This work has been highly productive, with several techniques now entering
a commercialization phase. As software systems are becoming more and more dynamic, the use of
model-driven techniques for validating and monitoring runtime behavior is extremely promising [98].

3.3 Variability modeling

While the basic vision underlying Software Product Lines (SPL) can probably be traced back to David
Parnas’ seminal article [105] on the Design and Development of Program Families, it is only quite recently
that SPLs are emerging as a paradigm shift towards modeling and developing software system families
rather than individual systems [102]. SPL engineering embraces the ideas of mass customization and
software reuse. It focuses on the means of efficiently producing and maintaining multiple related software
products, exploiting what they have in common and managing what varies among them.

Several definitions of the software product line concept can be found in the research literature.
Clements et al. define it as a set of software-intensive systems sharing a common, managed set of features
that satisfy the specific needs of a particular market segment or mission and are developed from a common
set of core assets in a prescribed way [103]. Bosch provides a different definition [72]: A SPL consists of a
product line architecture and a set of reusable components designed for incorporation into the product
line architecture. In addition, the PL consists of the software products developed using the mentioned
reusable assets. In spite of the similarities, these definitions provide different perspectives of the concept:
market-driven, as seen by Clements et al., and technology-oriented for Bosch.

SPL engineering is a process focusing on capturing the commonalities (assumptions true for each
family member) and variability (assumptions about how individual family members differ) between
several software products [78]. Instead of describing a single software system, a SPL model describes a
set of products in the same domain. This is accomplished by distinguishing between elements common
to all SPL members, and those that may vary from one product to another. Reuse of core assets, which
form the basis of the product line, is key to productivity and quality gains. These core assets extend
beyond simple code reuse and may include the architecture, software components, domain models,
requirements statements, documentation, test plans or test cases.

The SPL engineering process consists of two major steps:

1. Domain Engineering, or development for reuse, focuses on core assets development.

2. Application Engineering, or development with reuse, addresses the development of the final prod-
ucts using core assets and following customer requirements.

Central to both processes is the management of variability across the product line [85]. In common
language use, the term variability refers to the ability or the tendency to change. Variability management
is thus seen as the key feature that distinguishes SPL engineering from other software development
approaches [73]. Variability management is thus growingly seen as the cornerstone of SPL development,
covering the entire development life cycle, from requirements elicitation [117] to product derivation [122]
to product testing [101, 100].

Halmans et al. [85] distinguish between essential and technical variability, especially at requirements
level. Essential variability corresponds to the customer’s viewpoint, defining what to implement, while
technical variability relates to product family engineering, defining how to implement it. A classification
based on the dimensions of variability is proposed by Pohl et al. [107]: beyond variability in time
(existence of different versions of an artifact that are valid at different times) and variability in space
(existence of an artifact in different shapes at the same time) Pohl et al. claim that variability is important

6 Inria Annual Report 2020

to different stakeholders and thus has different levels of visibility: external variability is visible to the
customers while internal variability, that of domain artifacts, is hidden from them. Other classification
proposals come from Meekel et al. [95] (feature, hardware platform, performances and attributes
variability) or Bass et al. [64] who discusses about variability at the architectural level.

Central to the modeling of variability is the notion of feature, originally defined by Kang et al. as: a
prominent or distinctive user-visible aspect, quality or characteristic of a software system or systems [91].
Based on this notion of feature, they proposed to use a feature model to model the variability in a SPL. A
feature model consists of a feature diagram and other associated information: constraints and dependency
rules. Feature diagrams provide a graphical tree-like notation depicting the hierarchical organization
of high level product functionalities represented as features. The root of the tree refers to the complete
system and is progressively decomposed into more refined features (tree nodes). Relations between nodes
(features) are materialized by decomposition edges and textual constraints. Variability can be expressed in
several ways. Presence or absence of a feature from a product is modeled using mandatory or optional
features. Features are graphically represented as rectangles while some graphical elements (e.g., unfilled
circle) are used to describe the variability (e.g., a feature may be optional).

Features can be organized into feature groups. Boolean operators exclusive alternative (XOR), inclusive
alternative (OR) or inclusive (AND) are used to select one, several or all the features from a feature group.
Dependencies between features can be modeled using textual constraints: requires (presence of a feature
requires the presence of another), mutex (presence of a feature automatically excludes another). Feature
attributes can be also used for modeling quantitative (e.g., numerical) information. Constraints over
attributes and features can be specified as well.

Modeling variability allows an organization to capture and select which version of which variant of
any particular aspect is wanted in the system [73]. To implement it cheaply, quickly and safely, redoing by
hand the tedious weaving of every aspect is not an option: some form of automation is needed to leverage
the modeling of variability [68]. Model Driven Engineering (MDE) makes it possible to automate this
weaving process [90]. This requires that models are no longer informal, and that the weaving process is
itself described as a program (which is as a matter of facts an executable meta-model [99]) manipulating
these models to produce for instance a detailed design that can ultimately be transformed to code, or to
test suites [106], or other software artifacts.

3.4 Component-based software development

Component-based software development [116] aims at providing reliable software architectures with a
low cost of design. Components are now used routinely in many domains of software system designs: dis-
tributed systems, user interaction, product lines, embedded systems, etc. With respect to more traditional
software artifacts (e.g., object oriented architectures), modern component models have the following
distinctive features [79]: description of requirements on services required from the other components;
indirect connections between components thanks to ports and connectors constructs [93]; hierarchical
definition of components (assemblies of components can define new component types); connectors
supporting various communication semantics [76]; quantitative properties on the services [71].

In recent years component-based architectures have evolved from static designs to dynamic, adaptive
designs (e.g., SOFA [76], Palladio [69], Frascati [96]). Processes for building a system using a statically
designed architecture are made of the following sequential lifecycle stages: requirements, modeling,
implementation, packaging, deployment, system launch, system execution, system shutdown and system
removal. If for any reason after design time architectural changes are needed after system launch
(e.g., because requirements changed, or the implementation platform has evolved, etc) then the design
process must be reexecuted from scratch (unless the changes are limited to parameter adjustment in the
components deployed).

Dynamic designs allow for on the fly redesign of a component based system. A process for dynamic
adaptation is able to reapply the design phases while the system is up and running, without stopping
it (this is different from a stop/redeploy/start process). Dynamic adaptation processes support chosen
adaptation, when changes are planned and realized to maintain a good fit between the needs that
the system must support and the way it supports them [92]. Dynamic component-based designs rely
on a component meta-model that supports complex life cycles for components, connectors, service
specification, etc. Advanced dynamic designs can also take platform changes into account at runtime,

Project DIVERSE 7

without human intervention, by adapting themselves [77, 119]. Platform changes and more generally
environmental changes trigger imposed adaptation, when the system can no longer use its design to
provide the services it must support. In order to support an eternal system [70], dynamic component
based systems must separate architectural design and platform compatibility. This requires support for
heterogeneity, since platform evolution can be partial.

The Models@runtime paradigm denotes a model-driven approach aiming at taming the complexity
of dynamic software systems. It basically pushes the idea of reflection one step further by considering the
reflection layer as a real model “something simpler, safer or cheaper than reality to avoid the complexity,
danger and irreversibility of reality [110]”. In practice, component-based (and/or service-based) plat-
forms offer reflection APIs that make it possible to introspect the system (to determine which components
and bindings are currently in place in the system) and dynamic adaptation (by applying CRUD opera-
tions on these components and bindings). While some of these platforms offer rollback mechanisms to
recover after an erroneous adaptation, the idea of Models@runtime is to prevent the system from actually
enacting an erroneous adaptation. In other words, the “model at run-time” is a reflection model that can
be uncoupled (for reasoning, validation, simulation purposes) and automatically resynchronized.

Heterogeneity is a key challenge for modern component based system. Until recently, component
based techniques were designed to address a specific domain, such as embedded software for command
and control, or distributed Web based service oriented architectures. The emergence of the Internet of
Things paradigm calls for a unified approach in component based design techniques. By implementing
an efficient separation of concern between platform independent architecture management and platform
dependent implementations, Models@runtime is now established as a key technique to support dynamic
component based designs. It provides DIVERSE with an essential foundation to explore an adaptation
envelop at run-time.

Search Based Software Engineering [87] has been applied to various software engineering problems
in order to support software developers in their daily work. The goal is to automatically explore a set
of alternatives and assess their relevance with respect to the considered problem. These techniques
have been applied to craft software architecture exhibiting high quality of services properties [84]. Multi
Objectives Search based techniques [80] deal with optimization problem containing several (possibly
conflicting) dimensions to optimize. These techniques provide DIVERSE with the scientific foundations
for reasoning and efficiently exploring an envelope of software configurations at run-time.

3.5 Validation and verification

Validation and verification (V&V) theories and techniques provide the means to assess the validity of a
software system with respect to a specific correctness envelop. As such, they form an essential element of
DIVERSE’s scientific background. In particular, we focus on model-based V&V in order to leverage the
different models that specify the envelop at different moments of the software development lifecycle.

Model-based testing consists in analyzing a formal model of a system (e.g., activity diagrams, which
capture high-level requirements about the system, statecharts, which capture the expected behavior of
a software module, or a feature model, which describes all possible variants of the system) in order to
generate test cases that will be executed against the system. Model-based testing [118] mainly relies
on model analysis, constraint solving [81] and search-based reasoning [94]. DIVERSE leverages in
particular the applications of model-based testing in the context of highly-configurable systems and [120]
interactive systems [97] as well as recent advances based on diversity for test cases selection [88].

Nowadays, it is possible to simulate various kinds of models. Existing tools range from industrial tools
such as Simulink, Rhapsody or Telelogic to academic approaches like Omega [104], or Xholon 2. All these
simulation environments operate on homogeneous environment models. However, to handle diversity in
software systems, we also leverage recent advances in heterogeneous simulation. Ptolemy [75] proposes
a common abstract syntax, which represents the description of the model structure. These elements can
be decorated using different directors that reflect the application of a specific model of computation on
the model element. Metropolis [65] provides modeling elements amenable to semantically equivalent
mathematical models. Metropolis offers a precise semantics flexible enough to support different models
of computation. ModHel’X [86] studies the composition of multi-paradigm models relying on different

2http://www.primordion.com/Xholon/

http://www.primordion.com/Xholon/

8 Inria Annual Report 2020

models of computation.
Model-based testing and simulation are complemented by runtime fault-tolerance through the

automatic generation of software variants that can run in parallel, to tackle the open nature of software-
intensive systems. The foundations in this case are the seminal work about N-version programming [63],
recovery blocks [108] and code randomization [67], which demonstrated the central role of diversity in
software to ensure runtime resilience of complex systems. Such techniques rely on truly diverse software
solutions in order to provide systems with the ability to react to events, which could not be predicted at
design time and checked through testing or simulation.

3.6 Empirical software engineering

The rigorous, scientific evaluation of DIVERSE’s contributions is an essential aspect of our research
methodology. In addition to theoretical validation through formal analysis or complexity estimation, we
also aim at applying state-of-the-art methodologies and principles of empirical software engineering.
This approach encompasses a set of techniques for the sound validation contributions in the field of
software engineering, ranging from statistically sound comparisons of techniques and large-scale data
analysis to interviews and systematic literature reviews [113, 111]. Such methods have been used for
example to understand the impact of new software development paradigms [74]. Experimental design
and statistical tests represent another major aspect of empirical software engineering. Addressing large-
scale software engineering problems often requires the application of heuristics, and it is important to
understand their effects through sound statistical analyses [62].

3.7 Research axis

Figure 1 illustrates the four dimensions of software diversity, which form the core research axis of DIVERSE:
the diversity of languages used by the stakeholders involved in the construction of these systems; the
diversity of features required by the different customers; the diversity of runtime environments in
which software has to run and adapt; the diversity of implementations that are necessary for resilience
through redundancy. These four axes share and leverage the scientific and technological results developed
in the area of model-driven engineering in the last decade. This means that all our research activities are
founded on sound abstractions to reason about specific aspects of software systems, compose different
perspectives and automatically generate parts of the system.

Model driven
engineering

Functional
diversity

Language
diversity

Implementation
 diversity

Execution
diversity

Figure 1: The four research axes of DIVERSE, which rely on a MDE scientific background

3.8 Software Language Engineering

The engineering of systems involves many different stakeholders, each with their own domain of expertise.
Hence more and more organizations are adopting Domain Specific Modeling Languages (DSMLs) to
allow domain experts to express solutions directly in terms of relevant domain concepts [112, 83]. This
new trend raises new challenges about designing DSMLs, evolving a set of DSMLs and coordinating the
use of multiple DSLs for both DSL designers and DSL users.

Project DIVERSE 9

Challenges

Reusability of software artifacts is a central notion that has been thoroughly studied and used by both
academics and industrials since the early days of software construction. Essentially, designing reusable
artifacts allows the construction of large systems from smaller parts that have been separately developed
and validated, thus reducing the development costs by capitalizing on previous engineering efforts.
However, it is still hardly possible for language designers to design typical language artifacts (e.g. language
constructs, grammars, editors or compilers) in a reusable way. The current state of the practice usually
prevents the reusability of language artifacts from one language to another, consequently hindering
the emergence of real engineering techniques around software languages. Conversely, concepts and
mechanisms that enable artifacts reusability abound in the software engineering community.

Variability in modeling languages occur in the definition of the abstract and concrete syntax as well as in
the specification of the language’s semantics. The major challenges met when addressing the need for
variability are: (i) to set principles for modeling language units that support the modular specification of
a modeling language; and (ii) to design mechanisms to assemble these units into a complete language,
according to the set of authorized variation points for the modeling language family.

A new generation of complex software-intensive systems (for example smart health support, smart
grid, building energy management, and intelligent transportation systems) gives new opportunities for
leveraging modeling languages. The development of these systems requires expertise in diverse domains.
Consequently, different types of stakeholders (e.g., scientists, engineers and end-users) must work in
a coordinated manner on various aspects of the system across multiple development phases. DSMLs
can be used to support the work of domain experts who focus on a specific system aspect, but they can
also provide the means for coordinating work across teams specializing in different aspects and across
development phases. The support and integration of DSMLs leads to what we call the globalization
of modeling languages, i.e. the use of multiple languages for the coordinated development of diverse
aspects of a system. One can make an analogy with world globalization in which relationships are
established between sovereign countries to regulate interactions (e.g., travel and commerce related
interactions) while preserving each country’s independent existence.

Scientific objectives

We address reuse and variability challenges through the investigation of the time-honored concepts of
substitutability, inheritance and components, evaluate their relevance for language designers and provide
tools and methods for their inclusion in software language engineering. We will develop novel techniques
for the modular construction of language extensions with support to model syntactical variability. From
the semantics perspective, we investigate extension mechanisms for the specification of variability in
operational semantics, focusing on static introduction and heterogeneous models of computation. The
definition of variation points for the three aspects of the language definition provides the foundations for
the novel concept Language Unit (LU) as well as suitable mechanisms to compose such units.

We explore the necessary breakthrough in software languages to support modeling and simulation of
heterogeneous and open systems. This work relies on the specification of executable domain specific
modeling languages (DSMLs) to formalize the various concerns of a software-intensive system, and of
models of computation (MoCs) to explicitly model the concurrency, time and communication of such
DSMLs. We develop a framework that integrates the necessary foundations and facilities for designing
and implementing executable and concurrent domain-specific modeling languages. This framework also
provides unique features to specify composition operators between (possibly heterogeneous) DSMLs.
Such specifications are amenable to support the edition, execution, graphical animation and analysis of
heterogeneous models. The objective is to provide both a significant improvement to MoCs and DSMLs
design and implementation and to the simulation based validation and verification of complex systems.

We see an opportunity for the automatic diversification of programs’ computation semantics, for
example through the diversification of compilers or virtual machines. The main impact of this artificial
diversity is to provide flexible computation and thus ease adaptation to different execution conditions.
A combination of static and dynamic analysis could support the identification of what we call plastic
computation zones in the code. We identify different categories of such zones: (i) areas in the code
in which the order of computation can vary (e.g., the order in which a block of sequential statements

10 Inria Annual Report 2020

is executed); (ii) areas that can be removed, keeping the essential functionality [114] (e.g., skip some
loop iterations); (iii) areas that can replaced by alternative code (e.g., replace a try-catch by a return
statement). Once we know which zones in the code can be randomized, it is necessary to modify the
model of computation to leverage the computation plasticity. This consists in introducing variation
points in the interpreter to reflect the diversity of models of computation. Then, the choice of a given
variation is performed randomly at run time.

3.9 Variability Modeling and Engineering

The systematic modeling of variability in software systems has emerged as an effective approach to
document and reason about software evolution and heterogeneity (cf. Section 3.3). Variability modeling
characterizes an “envelope” of possible software variations. The industrial use of variability models
and their relation to software artifact models require a complete engineering framework, including
composition, decomposition, analysis, configuration and artifact derivation, refactoring, re-engineering,
extraction, and testing. This framework can be used both to tame imposed diversity and to manage
chosen diversity.

Challenges

A fundamental problem is that the number of variants can be exponential in the number of options
(features). Already with 300 boolean configuration options, approximately 1090 configurations exist –
more than the estimated count of atoms in the universe. Domains like automotive or operating systems
have to manage more than 10000 options (e.g., Linux). Practitioners face the challenge of developing
billions of variants. It is easy to forget a necessary constraint, leading to the synthesis of unsafe variants,
or to under-approximate the capabilities of the software platform. Scalable modelling techniques are
therefore crucial to specify and reason about a very large set of variants.

Model-driven development supports two approaches to deal with the increasing number of concerns
in complex systems: multi-view modeling, i.e. when modeling each concern separately, and variability
modeling. However, there is little support to combine both approaches consistently. Techniques to
integrate both approaches will enable the construction of a consistent set of views and variation points in
each view.

The design, construction and maintenance of software families have a major impact on software
testing. Among the existing challenges, we can cite: the selection of test cases for a specific variant; the
evolution of test suites with integration of new variants; the combinatorial explosion of the number
of software configurations to be tested. Novel model-based techniques for test generation and test
management in a software product line context are needed to overcome state-of-the-art limits we already
observed in some projects.

Scientific objectives

We aim at developing scalable reasoning techniques to automatically analyze variability models and
their interactions with other views on the software intensive system (requirements, architecture, design,
code). These techniques provide two major advancements in the state of the art: (1) an extension of
the semantics of variability models in order to enable the definition of attributes (e.g., cost, quality of
service, effort) on features and to include these attributes in the reasoning; (2) an assessment of the
consistent specification of variability models with respect to system views (since variability is orthogonal
to system modeling, it is currently possible to specify the different models in ways that are semantically
meaningless). The former aspect of analysis is tackled through constraint solving and finite-domain
constraint programming, while the latter aspect is investigated through automatic search-based and
learning-based techniques for the exploration of the space of interaction between variability and view
models.

We aim at developing procedures to reverse engineer dependencies and features’ sets from existing
software artefacts – be it source code, configuration files, spreadsheets (e.g., product comparison matrices)
or requirements. We expect to scale up (e.g., for extracting a very large number of variation points) and
guarantee some properties (e.g., soundness of configuration semantics, understandability of ontological

Project DIVERSE 11

semantics). For instance, when building complex software-intensive systems, textual requirements
are captured in very large quantities of documents. In this context, adequate models to formalize the
organization of requirements documents and automated techniques to support impact analysis (in case
of changes in the requirements) have to be developed.

3.10 Heterogeneous and dynamic software architectures

Flexible yet dependable systems have to cope with heterogeneous hardware execution platforms ranging
from smart sensors to huge computation infrastructures and data centers. Evolution possibilities range
from a mere change in the system configuration to a major architectural redesign, for instance to support
addition of new features or a change in the platform architecture (e.g., new hardware is made available,
a running system switches to low bandwidth wireless communication, a computation node battery is
running low, etc). In this context, we need to devise formalisms to reason about the impact of an evolution
and about the transition from one configuration to another. It must be noted that this axis focuses on the
use of models to drive the evolution from design time to runtime. Models will be used to (i) systematically
define predictable configurations and variation points through which the system will evolve; (ii) develop
behaviors necessary to handle unforeseen evolution cases.

Challenges

The main challenge is to provide new homogeneous architectural modelling languages and efficient
techniques that enable continuous software reconfiguration to react to changes. This work handles
the challenges of handling the diversity of runtime infrastructures and managing the cooperation be-
tween different stakeholders. More specifically, the research developed in this axis targets the following
dimensions of software diversity.

Platform architectural heterogeneity induces a first dimension of imposed diversity (type diversity).
Platform reconfiguration driven by changing resources define another dimension of diversity (deployment
diversity). To deal with these imposed diversity problems, we will rely on model based runtime support
for adaptation, in the spirit of the dynamic distributed component framework developed by the Triskell
team. Since the runtime environment composed of distributed, resource constrained hardware nodes
cannot afford the overhead of traditional runtime adaptation techniques, we investigate the design of
novel solutions relying on Models@runtime and on specialized tiny virtual machines to offer resource
provisioning and dynamic reconfiguration.

Diversity can also be an asset to optimize software architecture. Architecture models must integrate
multiple concerns in order to properly manage the deployment of software components over a physical
platform. However, these concerns can contradict each other (e.g., accuracy and energy). In this context,
we investigate automatic solutions to explore the set of possible architecture models and to establish
valid trade-offs between all concerns in case of changes.

Scientific objectives

Automatic synthesis of optimal software architectures. Implementing a service over a distributed
platform (e.g., a pervasive system or a cloud platform) consists in deploying multiple software components
over distributed computation nodes. We aim at designing search-based solutions to (i) assist the software
architect in establishing a good initial architecture (that balances between different factors such as cost of
the nodes, latency, fault tolerance) and to automatically update the architecture when the environment
or the system itself change. The choice of search-based techniques is motivated by the very large number
of possible software deployment architectures that can be investigated and that all provide different
trade-offs between qualitative factors. Another essential aspect that is supported by multi-objective
search is to explore different architectural solutions that are not necessarily comparable. This is important
when the qualitative factors are orthogonal to each other, such as security and usability for example.

Flexible software architecture for testing and data management. As the number of platforms on
which software runs increases and different software versions coexist, the demand for testing environ-
ments also increases. For example, the number of testing environments to test a software patch or
upgrade is the product of the number of execution environments the software supports and the number

12 Inria Annual Report 2020

of coexisting versions of the software. Based on our first experiment on the synthesis of cloud environ-
ment using architectural models, our objective is to define a set of domain specific languages to catch
the requirement and to design cloud environments for testing and data management of future internet
systems from data centers to things. These languages will be interpreted to support dynamic synthesis
and reconfiguration of a testing environment.

Runtime support for heterogeneous environments. Execution environments must provide a way
to account or reserve resources for applications. However, current execution environments such as
the Java Virtual Machine do not clearly define a notion of application: each framework has its own
definition. For example, in OSGi, an application is a component, in JEE, an application is most of the
time associated to a class loader, in the Multi-Tasking Virtual machine, an application is a process. The
challenge consists in defining an execution environment that provides direct control over resources
(CPU, Memory, Network I/O) independently from the definition of an application. We propose to define
abstract resource containers to account and reserve resources on a distributed network of heterogeneous
devices.

3.11 Diverse implementations for resilience

Open software-intensive systems have to evolve over their lifetime in response to changes in their
environment. Yet, most verification techniques assume a closed environment or the ability to predict all
changes. Dynamic changes and evolution cases thus represent a major challenge for these techniques
that aim at assessing the correctness and robustness of the system. On the one hand, DIVERSE will adapt
V&V techniques to handle diversity imposed by the requirements and the execution environment, on the
other hand we leverage diversity to increase the robustness of software in face of unforeseen situations.
More specifically, we address the following V&V challenges.

Challenges

One major challenge to build flexible and open yet dependable systems is that current software engineer-
ing techniques require architects to foresee all possible situations the system will have to face. However,
openness and flexibility also mean unpredictability: unpredictable bugs, attacks, environmental evolu-
tion, etc. Current fault-tolerance [108] and security [82] techniques provide software systems with the
capacity of detecting accidental and deliberate faults. However, existing solutions assume that the set of
bugs or vulnerabilities in a system does not evolve. This assumption does not hold for open systems, thus
it is essential to revisit fault-tolerance and security solutions to account for diverse and unpredictable
faults.

Diversity is known to be a major asset for the robustness of large, open, and complex systems (e.g.,
economical or ecological systems). Following this observation, the software engineering literature
provides a rich set of work that rely on implementation diversity in software systems in order to improve
robustness to attacks or to changes in quality of service. These works range from N-version programming
to obfuscation of data structures or control flow, to randomization of instruction sets. An essential
and active challenge is to support the automatic synthesis and evolution of software diversity in open
software-intensive systems. There is an opportunity to further enhance these techniques in order to cope
with a wider diversity of faults, by multiplying the levels of diversity in the different software layers that are
found in software-intensive systems (system, libraries, frameworks, application). This increased diversity
must be based on artificial program transformations and code synthesis, which increase the chances of
exploring novel solutions, better fitted at one point in time. The biological analogy also indicates that
diversity should emerge as a side-effect of evolution, to prevent over-specialization towards one kind of
diversity.

Scientific objectives

The main objective is to address one of the main limitations of N-version programming for fault-tolerant
systems: the manual production and management of software diversity. Through automated injection of
artificial diversity we aim at systematically increasing failure diversity and thus increasing the chances

Project DIVERSE 13

of early error detection at run-time. A fundamental assumption for this work is that software-intensive
systems can be “good enough” [109, 121].

Proactive program diversification. We aim at establishing novel principles and techniques that favor
the emergence of multiple forms of software diversity in software-intensive systems, in conjunction with
the software adaptation mechanisms that leverage this diversity. The main expected outcome is a set of
meta-design principles that maintain diversity in systems and the experimental demonstration of the
effects of software diversity. Higher levels of diversity in the system provide a pool of software solutions
that can eventually be used to adapt to situations unforeseen at design time (bugs, crash, attacks, etc.).
Principles of automated software diversification rely on the automated synthesis of variants in a software
product line, as well as finer-grained program synthesis combining unsound transformations and genetic
programming to explore the space of mutational robustness.

Multi-tier software diversification. We name multi-tier diversification the fact of diversifying several
application software components simultaneously. The novelty of our proposal, with respect to the
software diversity state of the art, is to diversify the application-level code (for example, diversify the
business logic of the application), focusing on the technical layers found in web applications. The
diversification of application software code is expected to provide a diversity of failures and vulnerabilities
in web server deployment. Web server deployment usually adopts a form of the Reactor architecture
pattern, for scalability purposes: multiple copies of the server software stack, called request handlers, are
deployed behind a load balancer. This architecture is very favorable for diversification, since by using
the multiplicity of request handlers running in a web server we can simultaneously deploy multiple
combinations of diverse software components. Then, if one handler is hacked or crashes the others
should still be able to process client requests.

4 Application domains

Information technology affects all areas of society. The need to develop software systems is therefore
present in a huge number of application domains. One of the goals of software engineering is to apply a
systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software
whatever the application domain.

As a result, the team covers a wide range of application domain and never refrains from exploring
a particular field of application. Our primary expertise is in complex, heterogeneous and distributed
systems. While we historically collaborated with partners in the field of systems engineering, it should be
noted that for several years now, we have investigated several new areas in depth:

• the field of web applications, with the associated design principles and architectures, for applica-
tions ranging from cloud-native applications to the design of modern web front-ends.

• the field of scientific computing in connection with the CEA DAM, Safran and scientists from other
disciplines such as the ecologists of the University of Rennes 1. In this field where the writing of
complex software is common, we explore how we could help scientists using software engineering
approach in particular the use of SLE and approximate computing techniques.

• the field of large software systems such as the kernel Linux or other open-source projects. In this
field, we explore in particular the variability management, the support of co-evolution and the use
of polyglot approaches.

5 Highlights of the year

5.1 Awards

Jean-Marc Jézéquel has been awarded the ACM/IEEE MODELS 2020 Career Award.
The paper "Sampling Effect on Performance Prediction of Configurable Systems: A Case Study"

(Juliana Alves Pereira, Mathieu Acher, Hugo Martin and Jean-Marc Jézéquel) received the best paper
Award at ICPE 2020 - 11th ACM/SPEC International Conference on Performance Engineering, ACM, Apr
2020, Edmonton, Canada.

14 Inria Annual Report 2020

6 New software and platforms

6.1 New software

6.1.1 amiunique

Name: amiunique

Keywords: Privacy, Browser fingerprinting

Scientific Description: The amiunique web site has been deployed in 2014 in the context of the DiverSE
team research activities on browser fingerprinting to understand how software diversity can be
leveraged to mitigate the impact of fingerprinting on the privacy of users. In 2018, it was migrated
to the Spirals team where the research on browser fingerprinting still continues to this day.

The web site has yielded multiple datasets of genuine fingerprints to understand the multiple facets
of browser fingerprinting and how they can be used on the web to reinforce security. The web site
presents regular updates to include the latest development in web technology and understand their
impact of users’ privacy.

The whole source code of amiunique is open source and is distributed under the terms of the MIT
license.

Main innovative features:

• canvas fingerprinting

• WebGL fingerprinting

• advanced JS features (platform, DNT, etc.)

Impact: The website has been visited by more than 3,000,000 unique visitors since its creation and
it has been showcased in several professional forums and tutorial sessions over the years. It pro-
duced multiple datasets over the years that were used in articles published in top-tier conferences.
Amiunique has received in 2018 the prize "Protection de la vie privée" granted by Inria and the
CNIL. The research around fingerprints in amiunique has also been a source of influence for the
Brave web browser.

Functional Description: This web site aims at informing visitors about browser fingerprinting and
possible tools to mitigate its effect, as well as at collecting data about the fingerprints that can be
found on the web. It collects browser fingerprints with the explicit agreement of the users (they have
to click on a button on the home page). Fingerprints are composed of 17 attributes, which include
regular HTTP headers as well as the most recent state of the art techniques (canvas fingerprinting,
WebGL information).

URL: https://amiunique.org/

Authors: Pierre Laperdrix, Antonin Durey, Walter Rudametkin Ivey

Contacts: Benoit Baudry, Pierre Laperdrix

Partners: INSA Rennes, Université de Lille

6.1.2 FAMILIAR

Keywords: Software line product, Configators, Customisation

Scientific Description: FAMILIAR (for FeAture Model scrIpt Language for manIpulation and Automatic
Reasoning) is a language for importing, exporting, composing, decomposing, editing, configuring,
computing "diffs", refactoring, reverse engineering, testing, and reasoning about (multiple) feature
models. All these operations can be combined to realize complex variability management tasks. A
comprehensive environment is proposed as well as integration facilities with the Java ecosystem.

https://www.cnil.fr/fr/la-cnil-et-inria-decernent-le-prix-protection-de-la-vie-privee-2018
https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://amiunique.org/

Project DIVERSE 15

Functional Description: Familiar is an environment for large-scale product customisation. From a
model of product features (options, parameters, etc.), Familiar can automatically generate several
million variants. These variants can take many forms: software, a graphical interface, a video
sequence or even a manufactured product (3D printing). Familiar is particularly well suited for
developing web configurators (for ordering customised products online), for providing online
comparison tools and also for engineering any family of embedded or software-based products.

URL: http://familiar-project.github.com

Contact: Mathieu Acher

Participants: Aymeric Hervieu, Benoit Baudry, Didier Vojtisek, Edward Mauricio Alferez Salinas, Guil-
laume Bécan, Joao Bosco Ferreira-Filho, Julien Richard-Foy, Mathieu Acher, Olivier Barais, Sana
Ben Nasr

6.1.3 GEMOC Studio

Name: GEMOC Studio

Keywords: DSL, Language workbench, Model debugging

Scientific Description: The language workbench put together the following tools seamlessly integrated
to the Eclipse Modeling Framework (EMF):

• Melange, a tool-supported meta-language to modularly define executable modeling languages
with execution functions and data, and to extend (EMF-based) existing modeling languages.

• MoCCML, a tool-supported meta-language dedicated to the specification of a Model of
Concurrency and Communication (MoCC) and its mapping to a specific abstract syntax and
associated execution functions of a modeling language.

• GEL, a tool-supported meta-language dedicated to the specification of the protocol between
the execution functions and the MoCC to support the feedback of the data as well as the
callback of other expected execution functions.

• BCOoL, a tool-supported meta-language dedicated to the specification of language coor-
dination patterns to automatically coordinates the execution of, possibly heterogeneous,
models.

• Sirius Animator, an extension to the model editor designer Sirius to create graphical animators
for executable modeling languages.

Functional Description: The GEMOC Studio is an Eclipse package that contains components supporting
the GEMOC methodology for building and composing executable Domain-Specific Modeling
Languages (DSMLs). It includes two workbenches: The GEMOC Language Workbench: intended to
be used by language designers (aka domain experts), it allows to build and compose new executable
DSMLs. The GEMOC Modeling Workbench: intended to be used by domain designers to create,
execute and coordinate models conforming to executable DSMLs. The different concerns of a
DSML, as defined with the tools of the language workbench, are automatically deployed into the
modeling workbench. They parametrize a generic execution framework that provides various
generic services such as graphical animation, debugging tools, trace and event managers, timeline.

URL: http://gemoc.org/studio.html

Authors: Didier Vojtisek, Benoît Combemale, Cédric Brun, François Tanguy, Joël Champeau, Julien
DeAntoni, Xavier Crégut

Contacts: Benoît Combemale, Julien DeAntoni

Participants: Didier Vojtisek, Dorian Leroy, Erwan Bousse, Fabien Coulon, Julien DeAntoni

Partners: IRIT, ENSTA, I3S, OBEO, Thales TRT

http://familiar-project.github.com
http://gemoc.org/studio.html

16 Inria Annual Report 2020

6.1.4 Kevoree

Keywords: M2M, Dynamic components, Iot, Heterogeneity, Smart home, Cloud, Software architecture,
Dynamic deployment

Scientific Description: Kevoree is an open-source models@runtime platform (http://www.kevoree.org
) to properly support the dynamic adaptation of distributed systems. Models@runtime basically
pushes the idea of reflection [132] one step further by considering the reflection layer as a real
model that can be uncoupled from the running architecture (e.g. for reasoning, validation, and
simulation purposes) and later automatically resynchronized with its running instance.

Kevoree has been influenced by previous work that we carried out in the DiVA project [132] and
the Entimid project [135] . With Kevoree we push our vision of models@runtime [131] farther.
In particular, Kevoree provides a proper support for distributed models@runtime. To this aim
we introduced the Node concept to model the infrastructure topology and the Group concept to
model semantics of inter node communication during synchronization of the reflection model
among nodes. Kevoree includes a Channel concept to allow for multiple communication semantics
between remoteComponents deployed on heterogeneous nodes. All Kevoree concepts (Component,
Channel, Node, Group) obey the object type design pattern to separate deployment artifacts from
running artifacts. Kevoree supports multiple kinds of very different execution node technology (e.g.
Java, Android, MiniCloud, FreeBSD, Arduino, ...).

Kevoree is distributed under the terms of the LGPL open source license.

Main competitors:

• the Fractal/Frascati eco-system (http://frascati.ow2.org/doc/1.4/frascati-user
guide.html).

• SpringSource Dynamic Module (http://spring.io/)

• GCM-Proactive (http://proactive.inria.fr/)

• OSGi (http://www.osgi.org)

• Chef

• Vagran (http://vagrantup.com/)

Main innovative features:

• distributed models@runtime platform (with a distributed reflection model and an extensible
models@runtime dissemination set of strategies).

• Support for heterogeneous node type (from Cyber Physical System with few resources until
cloud computing infrastructure).

• Fully automated provisioning model to correctly deploy software modules and their depen-
dencies.

• Communication and concurrency access between software modules expressed at the model
level (not in the module implementation).

Functional Description: Kevoree is an open-source models@runtime platform to properly support
the dynamic adaptation of distributed systems. Models@runtime basically pushes the idea of
reflection one step further by considering the reflection layer as a real model that can be uncoupled
from the running architecture (e.g. for reasoning, validation, and simulation purposes) and later
automatically resynchronized with its running instance.

URL: http://kevoree.org/

Authors: Jean Emile Dartois, Aymeric Hervieu, Olivier Barais

Contact: Olivier Barais

Participants: Aymeric Hervieu, Benoit Baudry, Francisco-Javier Acosta Padilla, Inti Gonzalez Herrera,
Ivan Paez Anaya, Jacky Bourgeois, Jean Emile Dartois, Johann Bourcier, Manuel Leduc, Maxime
Tricoire, Mohamed Boussaa, Noël Plouzeau, Olivier Barais

http://frascati.ow2.org/doc/1.4/frascati-userguide.html
http://frascati.ow2.org/doc/1.4/frascati-userguide.html
http://spring.io/
http://proactive.inria.fr/
http://www.osgi.org
http://vagrantup.com/
http://kevoree.org/

Project DIVERSE 17

6.1.5 Melange

Name: Melange

Keywords: Model-driven engineering, Meta model, MDE, DSL, Model-driven software engineering,
Dedicated langage, Language workbench, Meta-modelisation, Modeling language, Meta-modeling

Scientific Description: Melange is a follow-up of the executable metamodeling language Kermeta, which
provides a tool-supported dedicated meta-language to safely assemble language modules, cus-
tomize them and produce new DSMLs. Melange provides specific constructs to assemble together
various abstract syntax and operational semantics artifacts into a DSML. DSMLs can then be used
as first class entities to be reused, extended, restricted or adapted into other DSMLs. Melange
relies on a particular model-oriented type system that provides model polymorphism and language
substitutability, i.e. the possibility to manipulate a model through different interfaces and to define
generic transformations that can be invoked on models written using different DSLs. Newly pro-
duced DSMLs are correct by construction, ready for production (i.e., the result can be deployed
and used as-is), and reusable in a new assembly.

Melange is tightly integrated with the Eclipse Modeling Framework ecosystem and relies on the
meta-language Ecore for the definition of the abstract syntax of DSLs. Executable meta-modeling is
supported by weaving operational semantics defined with Xtend. Designers can thus easily design
an interpreter for their DSL in a non-intrusive way. Melange is bundled as a set of Eclipse plug-ins.

Functional Description: Melange is a language workbench which helps language engineers to mashup
their various language concerns as language design choices, to manage their variability, and
support their reuse. It provides a modular and reusable approach for customizing, assembling and
integrating DSMLs specifications and implementations.

URL: http://melange-lang.org

Contacts: Benoît Combemale, Thomas Degueule, Olivier Barais, Jean-Marc Jézéquel, Didier Vojtisek

Participants: Arnaud Blouin, Benoît Combemale, David Mendez Acuna, Didier Vojtisek, Dorian Leroy,
Erwan Bousse, Fabien Coulon, Jean-Marc Jézéquel, Olivier Barais, Thomas Degueule

6.1.6 DSpot

Keywords: Software testing, Test amplification

Functional Description: DSpot is a tool that generates missing assertions in JUnit tests. DSpot takes as
input a Java project with an existing test suite. As output, DSpot outputs new test cases on console.
DSpot supports Java projects built with Maven and Gradle

URL: https://github.com/STAMP-project/dspot

Authors: Simon Allier, Benoit Baudry, Marcelino Rodriguez Cancio, Martin Monperrus

Contacts: Benoit Baudry, Benjamin Danglot

Participants: Benoit Baudry, Martin Monperrus, Benjamin Danglot

Partner: KTH Royal Institute of Technology

6.1.7 ALE

Name: Action Language for Ecore

Keywords: Meta-modeling, Executable DSML

Functional Description: Main features of ALE include:

http://melange-lang.org
https://github.com/STAMP-project/dspot

18 Inria Annual Report 2020

• Executable metamodeling: Re-open existing EClasses to insert new methods with their imple-
mentations

• Metamodel extension: The very same mechanism can be used to extend existing Ecore
metamodels and insert new features (eg. attributes) in a non-intrusive way

• Interpreted: No need to deploy Eclipse plugins, just run the behavior on a model directly in
your modeling environment

• Extensible: If ALE doesn’t fit your needs, register Java classes as services and invoke them
inside your implementations of EOperations.

URL: http://gemoc.org/ale-lang/

Contact: Benoît Combemale

Partner: OBEO

6.1.8 InspectorGuidget

Keywords: Static analysis, Software testing, User Interfaces

Functional Description: InspectorGuidget is a static code analysing tool. InspectorGuidget analyses
UI (user interface/interaction) code of a software system to extract high level information and
metrics. InspectorGuidget also finds bad UI coding pratices, such as Blob listener instances.
InspectorGuidget analyses Java code.

URL: https://github.com/diverse-project/InspectorGuidget

Publications: hal-01499106v5, hal-01308625v2

Contact: Arnaud Blouin

Participants: Arnaud Blouin, Benoit Baudry

6.1.9 Descartes

Keywords: Software testing, Mutation analysis

Functional Description: Descartes evaluates the capability of your test suite to detect bugs using ex-
treme mutation testing.

Descartes is a mutation engine plugin for PIT which implements extreme mutation operators as
proposed in the paper Will my tests tell me if I break this code?.

URL: https://github.com/STAMP-project/pitest-descartes

Publications: hal-01870976, hal-01867423

Contacts: Benoit Baudry, Oscar Luis Vera Perez, Olivier Barais, Martin Monperrus

Participants: Oscar Luis Vera Perez, Benjamin Danglot, Benoit Baudry, Martin Monperrus

Partner: KTH Royal Institute of Technology

http://gemoc.org/ale-lang/
https://github.com/diverse-project/InspectorGuidget
https://hal.inria.fr/hal-01499106v5
https://hal.inria.fr/hal-01308625v2
https://github.com/STAMP-project/pitest-descartes
https://hal.inria.fr/hal-01870976
https://hal.inria.fr/hal-01867423

Project DIVERSE 19

6.1.10 PitMP

Name: PIT for Multi-module Project

Keywords: Mutation analysis, Mutation testing, Java, JUnit, Maven

Functional Description: PIT and Descartes are mutation testing systems for Java applications, which
allows you to verify if your test suites can detect possible bugs, and so to evaluate the quality of your
test suites. They evaluate the capability of your test suite to detect bugs using mutation testing (PIT)
or extreme mutation testing (Descartes). Mutation testing does it by introducing small changes
or faults into the original program. These modified versions are called mutants. A good test suite
should able to kill or detect a mutant. Traditional mutation testing works at the instruction level,
e.g., replacing ">" by "<=", so the number of generated mutants is huge, as the time required to
check the entire test suite. That’s why Extreme Mutation strategy appeared. In Extreme Mutation
testing, the whole body of a method under test is removed. Descartes is a mutation engine plugin
for PIT which implements extreme mutation operators. Both provide reports combining, line
coverage, mutation score and list of weaknesses in the source.

URL: https://github.com/STAMP-project/pitmp-maven-plugin

Contact: Caroline Landry

Partners: CSQE, KTH Royal Institute of Technology, ENGINEERING

7 New results

7.1 Results on Variability modeling and management

Participants Mathieu Acher, Arnaud Blouin, Jean-Marc Jezequel.

In general, we are currently exploring the use of machine learning for variability-intensive systems in
the context of VaryVary ANR project https://varyvary.github.io.

7.1.1 Deep software variability

Empirical Assessment of Generating Adversarial Configurations for Software Product Lines Soft-
ware product line (SPL) engineering allows the derivation of products tailored to stakeholders’ needs
through the setting of a large number of configuration options. Unfortunately, options and their interac-
tions create a huge configuration space, which is either intractable or too costly to explore exhaustively.
Instead of covering all products, machine learning (ML) approximates the set of acceptable products
(e.g., successful builds, passing tests) out of a training set (a sample of configurations). However, ML
techniques can make prediction errors yielding non-acceptable products wasting time, energy and
other resources. We apply adversarial machine learning techniques to the world of SPLs and craft new
configurations faking to be acceptable configurations but that are not and vice-versa [39]. It allows to
diagnose prediction errors and take appropriate actions. We developed two adversarial configuration
generators on top of state-of-the-art attack algorithms and capable of synthesizing configurations that
are both adversarial and conform to logical constraints. We empirically assessed our generators using two
case studies: an industrial video synthesizer (MOTIV) and an industry-strength, open-source Web-app
configurator (JHipster). For the two cases, our attacks yield (up to) a 100% misclassification rate without
sacrificing the logical validity of adversarial configurations. This work lays the foundations of a quality
assurance framework for ML-based SPLs.

https://github.com/STAMP-project/pitmp-maven-plugin
https://varyvary.github.io

20 Inria Annual Report 2020

Sampling Effect on Performance Prediction of Configurable Systems: A Case Study Numerous soft-
ware systems are highly configurable and provide a myriad of configuration options that users can tune
to fit their functional and performance requirements (e.g., execution time). Measuring all configurations
of a system is the most obvious way to understand the effect of options and their interactions, but is too
costly or infeasible in practice. Numerous works thus propose to measure only a few configurations (a
sample) to learn and predict the performance of any combination of options’ values. A challenging issue
is to sample a small and representative set of configurations that leads to a good accuracy of performance
prediction models. A recent study devised a new algorithm, called distance-based sampling, that obtains
state-of-the-art accurate performance predictions on different subject systems. In this work, we replicate
this study through an in-depth analysis of x264, a popular and configurable video encoder. We system-
atically measure all 1,152 configurations of x264 with 17 input videos and two quantitative properties
(encoding time and encoding size) [43]. Our goal is to understand whether there is a dominant sampling
strategy over the very same subject system (x264), i.e., whatever the workload and targeted performance
properties. The findings from this study show that random sampling leads to more accurate performance
models. However, without considering random, there is no single "dominant" sampling, instead dif-
ferent strategies perform best on different inputs and non-functional properties, further challenging
practitioners and researchers.

Deep Software Variability Configuring software is a powerful means to reach functional and perfor-
mance goals of a system. However, many layers (hardware, operating system, input data, etc.), themselves
subject to variability, can alter performances of software configurations. For instance, configuration
options of the x264 video encoder may have very different effects on x264’s encoding time when used
with different input videos, depending on the hardware on which it is executed. In this work, we coin
the term deep software variability to refer to the interaction of all external layers modifying the behav-
ior or non-functional properties of a software. Deep software variability challenges practitioners and
researchers: the combinatorial explosion of possible executing environments complicates the under-
standing, the configuration, the maintenance, the debug, and the test of configurable systems. There are
also opportunities: harnessing all variability layers (and not only the software layer) can lead to more
efficient systems and configuration knowledge that truly generalizes to any usage and context [51].

7.1.2 Managing the software variability at the source code level

A framework for managing the imperfect modularity of variability implementations In many indus-
trial settings, the common and varying features of related software-intensive systems, as their reusable
units, are likely to be implemented by a combined set of traditional techniques. Features do not align
perfectly well with the used language constructs, e.g., classes, thus hindering the management of imple-
mented variability. Herein, we provide a detailed framework to capture, model, and trace this imperfectly
modular variability in terms of variation points with variants [40]. We describe an implementation of
this framework, as a domain-specific language, and report on its application on four subject systems and
usage for variability management, showing its feasibility.

7.2 Results on Software Language Engineering

Participants Olivier Barais, Benoit Combemale, Jean-Marc Jézéquel, Gurvan Leguer-
nic, Noel Plouzeau, Didier Vojtisek.

7.2.1 Foundations

A Hitchhiker’s Guide to Model-Driven Engineering for Data-Centric Systems. A broad spectrum of
application domains are increasingly making use of heterogeneous and large volumes of data with varying
degrees of humans in the loop. The recent success of Artificial Intelligence (AI) and, in particular, Machine
Learning (ML) further amplifies the relevance of data in the development, maintenance, evolution,
and execution management of systems built with model-driven engineering techniques. Applications

Project DIVERSE 21

include critical infrastructure areas such as intelligent transportation, smart energy management, public
healthcare, and emergency and disaster management; many of these systems are considered socio-
technical systems given the human, social, and organizational factors that must be considered during the
system life-cycle. In [27], we introduce a conceptual reference framework – the Models and Data (MODA)
framework – to support a data-centric and model-driven approach for the integration of heterogeneous
models and their respective data for the entire life-cycle of socio-technical systems.

Software Language Extension Problem The problem of software language extension and composition
drives much of the research in Software Language Engineering (SLE). Although various solutions have
already been proposed, there is still little understanding of the specific ins and outs of this problem,
which hinders the comparison and evaluation of existing solutions. In [33], we introduce the Language
Extension Problem as a way to better qualify the scope of the challenges related to language extension and
composition. The formulation of the problem is similar to the seminal Expression Problem introduced
by Wadler in the late nineties, and lift it from the extensibility of single constructs to the extensibility
of groups of constructs, i.e., software languages. We provide a comprehensive definition of the actual
constraints when considering language extension, and believe the Language Extension Problem will drive
future research in SLE, the same way the original Expression Problem helped to understand the strengths
and weaknesses of programming languages and drove much research in programming languages.

Comparing and Classifying Model Transformation Reuse Approaches across Metamodels Model trans-
formations are essential elements of model-driven engineering (MDE) solutions, as they enable the
automatic manipulation of models. MDE promotes the creation of domain-specific metamodels, but
without proper reuse mechanisms, model transformations need to be developed from scratch for each
new metamodel. In this work [25], our goal is to understand whether transformation reuse across meta-
models is needed by the community, evaluate its current state, identify practical needs and propose
promising lines for further research. For this purpose, we first report on a survey to understand the reuse
approaches used currently in practice and the needs of the community. Then, we propose a classification
of reuse techniques based on a feature model and compare a sample of specific approaches—model
types, concepts, a posteriori typing, multilevel modeling, typing requirement models, facet-oriented
modeling, mapping operators, constraint-based model types, and design patterns for model transforma-
tions—based on this feature model and a common example. We discuss strengths and weaknesses of
each approach, provide a reading grid used to compare their features, compare with community needs,
identify gaps in current transformation reuse approaches in relation to these needs and propose future
research directions.

Modular and Distributed IDE Integrated Development Environments (IDEs) are indispensable com-
panions to programming languages. They are increasingly turning towards Web-based infrastructure. The
rise of a protocol such as the Language Server Protocol (LSP) that standardizes the separation between a
language-agnostic IDE, and a language server that provides all language services (e.g., auto completion,
compiler...) has allowed the emergence of high quality generic Web components to build the IDE part
that runs in the browser. However, all language services require different computing capacities and
response times to guarantee a user-friendly experience within the IDE. The monolithic distribution of all
language services prevents to leverage on the available execution platforms (e.g., local platform, applica-
tion server, cloud). In contrast with the current approaches that provide IDEs in the form of a monolithic
client-server architecture, we explore in [45] the modularization of all language services to support their
individual deployment and dynamic adaptation within an IDE. We evaluate the performance impact of
the distribution of the language services across the available execution platforms on four EMF-based
languages, and demonstrate the benefit of a custom distribution.

A Principled Approach to REPL Interpreters Read-eval-print-loops (REPLs) allow programmers to test
out snippets of code, explore APIs, or even incrementally construct code, and get immediate feedback on
their actions. However, even though many languages provide a REPL, the relation between the language
as is and what is accepted at the REPL prompt is not always well-defined. Furthermore, implementing a
REPL for new languages, such as DSLs, may incur significant language engineering cost. In [59] we survey

22 Inria Annual Report 2020

the domain of REPLs and investigate the (formal) principles underlying REPLs. We identify and define
the class of sequential languages, which admit a sound REPL implementation based on a definitional
interpreter, and present design guidelines for extending existing language implementations to support
REPL-style interfaces (including computational notebooks). The obtained REPLs can then be generically
turned into an exploring interpreter, to allow exploration of the user’s interaction. The approach is
illustrated using three case studies, based on MiniJava, QL (a DSL for questionnaires), and eFLINT (a
DSL for normative rules). We expect sequential languages, and the consequent design principles, to be
stepping stones towards a better understanding of the essence of REPLs.

Behavioral Interfaces for Executable DSLs Executable domain-specific languages (DSLs) enable the
execution of behavioral models. While an execution is mostly driven by the model content (e.g., control
structures), many use cases require interacting with the running model, such as simulating scenarios in
an automated or interactive way, or coupling the model with other models of the system or environment.
The management of these interactions is usually hardcoded into the semantics of the DSL, which prevents
its reuse for other DSLs and the provision of generic interaction-centric tools (e.g., event injector). In [35],
we propose a metalanguage for complementing the definition of executable DSLs with explicit behavioral
interfaces to enable external tools to interact with executed models in a unified way. We implemented the
proposed metalanguage in the GEMOC Studio and show how behavioral interfaces enable the realization
of tools that are generic and thus usable for different executable DSLs.

Runtime Monitoring for Executable DSLs Runtime monitoring is a fundamental technique used
throughout the lifecycle of a system for many purposes, such as debugging, testing, or live analyt-
ics. While runtime monitoring for general purpose programming languages has seen a great amount
of research, developing such complex facilities for any executable Domain Specific Language (DSL)
remains a challenging, reoccurring and error prone task. A generic solution must both support a wide
range of executable DSLs (xDSLs) and induce as little execution time overhead as possible. In [36], our
contribution is a fully generic approach based on a temporal property language with a semantics tailored
for runtime verification. Properties can be compiled into efficient runtime monitors that can be attached
to any kind of executable discrete event model within an integrated development environment. Efficiency
is bolstered using a novel combination of structural model queries and complex event processing. Our
evaluation on three xDSLs shows that the approach is applicable with an execution time overhead of
121% (on executions shorter than 1s), to 79% (on executions shorter than 20s) making it suitable for
model testing and debugging.

Live Modeling Live modeling has been recognized as an important technique to edit behavioral models
while being executed and helps in better understanding the impact of a design choice. In the context
of Model-driven Development (MDD) models can be executed by interpretation or by the translation
of models into existing programming languages, often by code generation. This work is concerned
with the support of live modeling in the context of state machine models when they are executed by
code generation [24]. To this end, we propose an approach that is completely independent of any live
programming support offered by the target language. This independence is achieved with the help of a
model transformation that equips the model with support for features that are required for live modeling.
A subsequent code generation then produces a self-reflective program that allows changes to the model
elements at runtime (through synchronization of design and runtime models). We have applied the
approach in the context of UML-RT and created a prototype (Live-UMLRT) that provides a full set of
services for live modeling of UML-RT state machines such as re-execution, adding/removing states and
transitions, and adding/removing action code. We have evaluated the prototype on several use cases. The
evaluation shows that (1) generation of a self-reflective and model instrumentation can be carried out
with reasonable performance, and (2) our approach can apply model changes to the running execution
faster than the standard approach that depends on the live programming support of the target language.

Automatic Generation of Truffle-based Interpreters for Domain-Specific Languages Numerous lan-
guage workbenches have been proposed over the past decade to ease the definition of Domain-Specific
Languages (DSLs). Language workbenches enable language designers to specify DSLs using high-level

Project DIVERSE 23

metalanguages and to generate their implementation (e.g. parsers, interpreters) and tool support (e.g.
editors, debuggers) automatically. However, little attention has been given to the performance of the
resulting interpreters. In many domains where performance is key (e.g. scientific and high-performance
computing), this forces language designer to handcraft ad hoc optimizations in the interpreter imple-
mentations, or to lose compatibility with tool support. In [34] we propose to systematically exploit
the domain-specific information of language specifications to derive optimized Truffle-based language
interpreters executed over the GraalVM. We implement our approach on top of the Eclipse Modeling
Framework (EMF) by complementing its existing compilation chain with Truffle-specific information,
which drives the GraalVM to benefit from an optimized just-in-time compilation. A key benefit of our
approach is that it leverages existing language specifications and does not require additional information
from language designers who remain oblivious of Truffle’s low-level intricacies and JIT optimizations in
general, while staying compatible with tool support. We evaluate our approach using a representative set
of four DSLs and eight conforming programs. Compared to the standard interpreters generated by EMF
running on the GraalVM, we observe an average speed-up of x1.14, ranging from x1.07 to x1.26. Although
the benefits vary slightly from one DSL or program to another, we conclude that our approach yields
substantial performance gains while remaining non-intrusive of EMF abstractions.

Loop Aggregation for Approximate Scientific Computing Trading off some accuracy for better perfor-
mance in scientific computing is an appealing approach to ease the exploration of various alternatives
on complex simulation models. Existing approaches involve the application of either time-consuming
model reduction techniques or resource-demanding statistical approaches. Such requirements prevent
any opportunistic model exploration, e.g., exploring various scenarios on environmental models. This
limits the ability to analyse new models for scientists, to support trade-off analysis for decision-makers
and to empower the general public towards informed environmental intelligence. In [58], we present a
new approximate computing technique, aka. loop aggregation, which consists in automatically reducing
the main loop of a simulation model by aggregating the corresponding spatial or temporal data. We apply
this approximate scientific computing approach on a geophysical model of a hydraulic simulation with
various input data. The experimentation demonstrates the ability to drastically decrease the simulation
time while preserving acceptable results with a minimal set-up. We obtain a median speed-up of 95.13%
and up to 99.78% across all the 23 case studies.

7.2.2 Applications

Toward Model-driven Sustainability Evaluation Sustainability has emerged as a concern of central
relevance. As a wicked problem, it poses challenges to business-as-usual in many areas, including
that of modeling. In [30], we address a question at the intersection of model-driven engineering and
sustainability research: How can we better support sustainability by bringing together model-driven
engineering, data, visualization and self-adaptive systems, to facilitate engagement, exploration, and
understanding of the effects that individual and organizational choices have on sustainability? We explore
this question via an idealized vision of an evaluation environment that facilitates integration and mapping
of models from multiple diverse sources, visual exploration, and evaluation of what-if scenarios, for
stakeholders with divergent perspectives. The article identifies research challenges to be addressed to
enable decision making to support sustainability and provides a map of sustainability modeling issues
across disciplines.

Modeling Languages in Industry 4.0: an Extended Systematic Mapping Study Industry 4.0 integrates
cyber-physical systems with the Internet of Things to optimize the complete value-added chain. Suc-
cessfully applying Industry 4.0 requires the cooperation of various stakeholders from different domains.
Domain-specific modeling languages promise to facilitate their involvement through leveraging (domain-
specific) models to primary development artifacts. We aim to assess the use of modeling in Industry
4.0 through the lens of modeling languages in a broad sense. Based on an extensive literature review,
we updated our systematic mapping study on modeling languages and modeling techniques used in
Industry 4.0 (Wortmann et al., Conference on model-driven engineering languages and systems (MOD-
ELS’17), IEEE, pp 281–291, 2017) to include publications until February 2018 [41]. Overall, the updated
study considers 3344 candidate publications that were systematically investigated until 408 relevant

24 Inria Annual Report 2020

publications were identified. Based on these, we developed an updated map of the research landscape on
modeling languages and techniques for Industry 4.0. Research on modeling languages in Industry 4.0
focuses on contributing methods to solve the challenges of digital representation and integration. To this
end, languages from systems engineering and knowledge representation are applied most often but rarely
combined. There also is a gap between the communities researching and applying modeling languages
for Industry 4.0 that originates from different perspectives on modeling and related standards. From the
vantage point of modeling, Industry 4.0 is the combination of systems engineering, with cyber-physical
systems, and knowledge engineering. Research is currently splintered along topics and communities and
accelerating progress demands for multi-disciplinary, integrated research efforts.

Towards Model-Driven Digital Twin Engineering: Current Opportunities and Future Challenges Dig-
ital Twins have emerged since the beginning of this millennium to better support the management of
systems based on (real-time) data collected in different parts of the operating systems. Digital Twins
have been successfully used in many application domains, and thus, are considered as an important
aspect of Model-Based Systems Engineering (MBSE). However, their development, maintenance, and
evolution still face major challenges, in particular: (i) the management of heterogeneous models from
different disciplines, (ii) the bidirectional synchronization of digital twins and the actual systems, and
(iii) the support for collaborative development throughout the complete life cycle. In the last decades,
the Model-Driven Engineering (MDE) community has investigated these challenges in the context of
software systems. Now the question arises, which results may be applicable for digital twin engineering
as well. In [44], we identify various MDE techniques and technologies that may contribute to tackle the
three mentioned digital twin challenges as well as outline a set of open MDE research challenges that
need to be addressed in order to move towards a digital twin engineering discipline.

Opportunities in Intelligent Modeling Assistance Modeling is requiring increasingly larger efforts
while becoming indispensable given the complexity of the problems we are solving. Modelers face high
cognitive load to understand a multitude of complex abstractions and their relationships. There is an
urgent need to better support tool builders to ultimately provide modelers with intelligent modeling
assistance that learns from previous modeling experiences, automatically derives modeling knowledge,
and provides context-aware assistance. However, current intelligent modeling assistants (IMAs) lack
adaptability and flexibility for tool builders, and do not facilitate understanding the differences and
commonalities of IMAs for modelers. Such a patchwork of limited IMAs is a lost opportunity to provide
modelers with better support for the creative and rigorous aspects of software engineering. In [37, 54], we
present a conceptual reference framework (RF-IMA) and its properties to identify the foundations for
intelligent modeling assistance. For tool builders, RF-IMA aims to help build IMAs more systematically.
For modelers, RF-IMA aims at facilitating comprehension, comparison, and integration of IMAs, and
ultimately at providing more intelligent support. We envision a momentum in the modeling community
that leads to the implementation of RF-IMA and consequently future IMAs. We identify open challenges
that need to be addressed to realize the opportunities provided by intelligent modeling assistance.

7.3 Results on Heterogeneous and dynamic software architectures

Participants Olivier Barais, Arnaud Blouin, Johann Bourcier, Stéphanie Challita,
Benoit Combemale, Djamel khelladi.

We have selected two main group of contributions for DIVERSE’s research axis #3: one is in the field
of architecture modeling in particular for the cloud computing field and a second one in the domain of
runtime management of resources for dynamically adaptive system.

7.3.1 Software architecture and cloud modeling

Model-Based Cloud Resource Management with TOSCA and OCCI With the advent of cloud comput-
ing, different cloud providers with heterogeneous cloud services (compute, storage, network, applications,

Project DIVERSE 25

etc.) and their related Application Programming Interfaces (APIs) have emerged. This heterogeneity
complicates the implementation of an interoperable cloud system. Several standards have been proposed
to address this challenge and provide a unified interface to cloud resources. The Open Cloud Computing
Interface (OCCI) thereby focuses on the standardization of a common API for Infrastructure-as-a-Service
(IaaS) providers while the Topology and Orchestration Specification for Cloud Applications (TOSCA)
focuses on the standardization of a template language to enable the proper definition of the topology of
cloud applications and their orchestrations on top of a cloud system. TOSCA thereby does not define how
the application topologies are created on the cloud. Therefore, we analyse the conceptual similarities
between the two approaches and we study how we can integrate them to obtain a complete standard-
based approach to manage both cloud infrastructure and cloud application layers [26]. We propose an
automated extensive mapping between the concepts of the two standards and we provide TOSCA Studio,
a model-driven tool chain for TOSCA that conforms to OCCI. TOSCA Studio allows to graphically design
cloud applications as well as to deploy and manage them at runtime using a fully model-driven cloud
orchestrator based on the two standards. Our contribution is validated by successfully transforming and
deploying three cloud applications: WordPress, Node Cellar and Multi-Tier.

7.3.2 Leveraging unused heterogeneous resources for modular applications with SLA guarantees

Leveraging Cloud Unused Heterogeneous Resources for Applications with SLA Guarantees Efficient
resource management is an important dimension in the field of cloud computing for both economic and
ecological reasons. It has been observed that the resources of cloud infrastructures are only used to an
average of 20%. In order to improve its business model, a cloud provider must seek to optimise the use of
all its hardware resources without ever violating the minimum quality of service it has contracted with
its customers. The objective of this work is to exploit the unused heterogeneous resources of the cloud
for applications with guaranteed quality of service [61]. For this purpose, the work provides four main
contributions. The first one focuses on the estimation of the real capacity of a virtualized machine using
SSD storage devices, taking into account the variable performance caused by interferences. The second
aims at estimating the future unused resources of a cloud infrastructure and anticipating the risks of
impact on the quality of service. A third contribution demonstrates the possibility of efficiently exploiting
unused cloud resources for large data applications without disrupting resource providers’ applications.
Finally, a final contribution proposes to verify the proper execution of an application in a non-trusted
environment.

ReLeaSER: A Reinforcement Learning Strategy for Optimizing Utilization Of Ephemeral Cloud Re-
sources Cloud data center capacities are over-provisioned to handle demand peaks and hardware
failures, which leads to poor resource utilization. One way to improve resource utilization and thus
reduce the total cost of ownership is to offer unused resources (referred to as ephemeral resources) at
a lower price. However, reselling resources needs to meet the expectations of its customers in terms of
quality of service. The goal is thus to maximize the amount of reclaimed resources while avoiding SLA
penalties. To achieve that goal, cloud providers have to estimate their future utilization to provide avail-
ability guarantees. The prediction should consider a safety margin for resources to react to unpredictable
workloads. The challenge is to find the safety margin that provides the best trade-off between the amount
of resources to reclaim and the risk of SLA violations. Most state-of-the-art solutions rely on a fixed safety
margin for all types of metrics (e.g., CPU, RAM). However, a single fixed margin does not consider various
workloads variations over time, which may lead to SLA violations or/and poor utilization. In order to
tackle these challenges, we propose ReLeaSER [46], a Reinforcement Learning strategy for optimizing the
ephemeral resource utilization in the cloud. ReLeaSER dynamically tunes the safety margin at host level
for each resource metric. The strategy learns from past prediction errors (that caused SLA violations).
Our solution reduces significantly the SLA violation penalties on average by 2.7x and up to 3.4x. It also
improves considerably the cloud providers potential savings by 27.6% on average and up to 43.6%.

Salamander: a Holistic Scheduling of MapReduce Jobs on Ephemeral Cloud Resources Most cloud
data centers are overprovisioned and underutilized, primarily to handle peak loads and sudden failures.
This has motivated many researchers to reclaim the unused resources, which are by nature ephemeral, to
run data-intensive applications at a lower cost. Hadoop MapReduce is one of those applications. However,

26 Inria Annual Report 2020

it was designed on the assumption that resources are available as long as users pay for the service. In
order to make it possible for Hadoop to run on unused (ephemeral) resources, we have designed a
heterogeneity- and volatility-aware holistic scheduler [47], consisting of three different components: (1) a
MapReduce task and job scheduler that relies on a global vision of resource utilization predictions, (2) a
scheduler-based data placement strategy that improves the data locality, and (3) a reactive QoS controller
that ensures customers’ service-level agreement (SLA) and minimizes interference between co-located
workloads. Our framework makes it possible to take advantage of ephemeral resources efficiently. Indeed,
for a given set of jobs, it reduces the overall execution time by up to 47.6% and an average of 18.7% as
compared to state-of-the-art strategies.

7.4 Results on Diverse Implementations for Resilience

Participants Olivier Barais, Benoit Baudry, Arnaud Blouin, Johann Bourcier,
Stéphanie Challita, Benoit Combemale, Jean-Marc Jézéquel,
Djamel khelladi, Olivier Zendra.

Diversity is acknowledged as a crucial element for resilience, sustainability and increased wealth in
many domains such as sociology, economy and ecology. Yet, despite the large body of theoretical and
experimental science that emphasizes the need to conserve high levels of diversity in complex systems,
the limited amount of diversity in software-intensive systems is a major issue. This is particularly critical
as these systems integrate multiple concerns, are connected to the physical world, run eternally and are
open to other services and to users. Here we present our latest observational and technical results about
(i) observations of software evolution and co-evolution, (ii) observations of software diversity related to
software security and privacy and (iii) software verification (testing) to study and assess the validity of
software.

7.4.1 Software Co-evolution

Co-Evolving Code with Evolving Metamodels Metamodels play a significant role to describe and ana-
lyze the relations between domain concepts. They are also cornerstones to build a software language (SL)
for a given domain and its associated tooling. Metamodel definition generally drives code generation
of a core API. The latter is further enriched by developers with additional code implementing advanced
functionalities, e.g. checkers, recommenders, etc. When a SL evolves to its next version, its metamodels
evolve as well before regeneration of the core API code. As a result, the developers added code both in the
core API and the SL toolings may be impacted and thus may need to be co-evolved accordingly. Many
approaches support the co-evolution of various artifacts when metamodels evolve. However, not the
co-evolution of code. Our work [50] fills this gap. We propose a semi-automatic co-evolution approach
based on change propagation. The premise is that knowledge of the metamodel evolution changes can
be propagated by means of resolutions to drive the code co-evolution. Our approach leverages on the
abstraction level of metamodels where a given metamodel element has often different usages in the
code. It supports alternative co-evaluations to meet different developers needs. Our work is evaluated
on three Eclipse SL implementations, namely OCL, Modisco, and Papyrus over several evolved versions
of metamodels and code. In response to five different evolved metamodels, we co-evolved 976 impacts
over 18 projects. A comparison of our co-evolved code with the versioned ones shows the usefulness
of our approach. Our approach was able to reach a weighted average of 87.4% and 88.9% respectively
of precision and recall while supporting useful alternative co-evolution that developers have manually
performed.

On the Power of Abstraction: a Model-Driven Co-evolution Approach of Software Code Model-driven
software engineering fosters abstraction through the use of models and then automation by transforming
them into various artefacts, in particular to code, for example: 1) from architectural models to code,
2) from metamodels to API code (with EMF in Eclipse), 3) from entity models to front-end and back-end
code in Web stack application (with JHispter), etc. In all these examples, the generated code is usually
enriched by developers with additional code implementing advanced functionalities (e.g. checkers,

Project DIVERSE 27

recommenders, etc.) to build a full coherent system. When the system must evolve, so must the models
to regenerate the code. As a result, the developers’ enriched code may be impacted and thus need to
co-evolve accordingly. Many approaches support the co-evolution of various artifacts, but not the co-
evolution of code. Our work [49] sheds light on this issue and envisions to fill this gap. We formulate the
hypothesis that code co-evolution can be driven by model changes using change propagation. To investi-
gate this hypothesis, we implemented a prototype for the case of metamodels and their accompanying
code in EMF Eclipse. As a preliminary evaluation, we considered the case of the OCL Pivot metamodel
evolution and its code co-evolution in two projects from version 3.2.2 to 3.4.4. Preliminary results confirm
our hypothesis that model-driven evolution changes can effectively drive the code co-evolution. On 562
impacts in two projects’ code by 221 metamodel changes, our approach was able to reach the average of
89% and 92,5% of precision and recall respectively.

Consistent Change Propagation within Models. Developers change models with clear intentions, e.g.
for refactoring, defects removal, or evolution. However, in doing so developers are often unaware of the
consequences of their changes. Changes to one part of a model may affect other parts of the same model
and/or even other models, possibly created and maintained by other developers. The consequences
are incomplete changes, and with it inconsistencies within or across models. Extensive works exist on
detecting and repairing inconsistencies. However, literature tends to focus on inconsistencies as errors in
need of repairs rather than on incomplete changes in need of further propagation. Many changes are
non-trivial and require a series of coordinated model changes. As developers start changing the model,
intermittent inconsistencies arise with other parts of the model that developers have not yet changed.
These inconsistencies are cues for incomplete change propagation. Resolving these inconsistencies
should be done in a manner that is consistent with the original changes. We define this property as
consistent change propagation. Paper [32] leverages classical inconsistency repair mechanisms to explore
the vast search space of change propagation. Our approach not only suggests changes to repair a given
inconsistency but also changes to repair inconsistencies caused by the aforementioned repair. In doing so,
our approach follows the developer’s intent where subsequent changes may not contradict or backtrack
earlier changes. We argue that consistent change propagation is essential for effective model driven
engineering. Our approach and its tool implementation were empirically assessed on 18 case studies
from industry, academia, and GitHub to demonstrate its feasibility and scalability. A comparison with two
versioned models shows that our approach identifies actual repair sequences that developers had chosen.
Furthermore, an experiment involving 22 participants shows that our change propagation approach
meets the workflow of how developers handle changes by always computing the sequence of repairs
resulting from the change propagation.

Transforming Abstract to Concrete Repairs with a Generative Approach of Repair Values Software
models, often comprised of interconnected diagrams, change continuously, and developers often fail
to keep these diagrams consistent. Detecting inconsistencies quickly and efficiently is state of the art.
However, repairing them is not trivial, because there are typically multiple model elements that need to be
repaired, leading to an exponentially growing space of combinations of repair choices. Despite extensive
research on consistency checking, existing approaches provide abstract repairs only (i.e. identifying
the model element but failing to describe the change), which is not satisfactory. Our work proposes a
novel approach that provides concrete repair choices based on values from the inconsistent models [31].
More precisely, our approach first retrieves repair values from the model, turns them into repair choices,
and groups them based on their effects. This grouping lets our approach explore the repair space in
its entirety, providing quick example-like feedback for all possible repairs. Our approach and its tool
implementation have been empirically assessed on 10 case studies from industry, academia, and GitHub
to demonstrate its feasibility and scalability. A comparison with three versioned models shows that our
approach identifies useful repair values that developers have chosen.

An Approach and Benchmark to Detect Behavioral Changes of Commits in Continuous Integration
When a developer pushes a change to an application’s codebase, a good practice is to have a test case
specifying this behavioral change. Thanks to continuous integration (CI), the test is run on subsequent
commits to check that they do no introduce a regression for that behavior. In our work [28], we propose

28 Inria Annual Report 2020

an approach that detects behavioral changes in commits. Its inputs are a program, its test suite, and
a commit. Its output is a set of test methods that captures the behavioral difference between the pre-
commit and post-commit versions of the program. We call our approach DCI (Detecting behavioral
changes in CI). It relies on the generation of variations of the existing test cases through (i) assertion
amplification and (ii) a search-based exploration of the input space. We evaluate our approach on a
curated set of 60 commits from 6 open source Java projects. To our knowledge, this is the first ever curated
dataset of real-world behavioral changes. Our evaluation shows that DCI is able to generate test methods
that detect behavioral changes. Our approach is fully automated and can be integrated into current
development processes.

7.4.2 Privacy and Security

SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution Packers are widespread
tools used by malware authors to hinder static malware detection and analysis. Identifying the packer
used to pack a malware is essential to properly unpack and analyze the malware, be it manually or
automatically. While many well-known packers are used, there is a growing trend for new custom packers
that make malware analysis and detection harder. Research works have been very effective in identifying
known packers or their variants, with signature-based, supervised machine learning or similarity-based
techniques. However, identifying new packer classes remains an open problem. This work presents a
self-evolving packer classifier that provides an effective, incremental, and robust solution to cope with the
rapid evolution of packers [55]. We propose a composite pairwise distance metric combining different
types of packer features. We derive an incremental clustering approach able to identify both (variants
of) known packer classes and new ones, as well as to update clusters automatically and efficiently. Our
system thus continuously enhances, integrates, adapts and evolves packer knowledge. Moreover, to
optimize post clustering packer processing costs, we introduce a new post clustering strategy for selecting
small subsets of relevant samples from the clusters. Our approach effectiveness and time-resilience are
assessed with: 1) a real-world malware feed dataset composed of 16k packed binaries, comprising 29
unique packers, and 2) a synthetic dataset composed of 19k manually crafted packed binaries, comprising
31 unique packers (including custom ones).

An Asset-Based Assistance for Secure by Design With the growing numbers of security attacks causing
more and more serious damages in software systems, security cannot be added as an afterthought in
software development. It has to be built in from the early development phases such as requirement and
design. The role responsible for designing a software system is termed an "architect", knowledgeable
about the system architecture design, but not always well-trained in security. Moreover, involving
other security experts into the system design is not always possible due to time-to-market and budget
constraints. To address these challenges, we propose to define an asset-based security assistance [52], to
help architects design secure systems even if these architects have limited knowledge in security. This
assistance helps to detect threats, and integrates security controls over vulnerable parts of system into
the architecture model. The central concept enabling this assistance is an asset. We apply our proposal to
a telemonitoring case study to show that automating such an assistance is feasible.

Asset-Oriented Threat Modeling Threat modeling is recognized as one of the most important activities
in software security. It helps to address security issues in software development. Several threat modeling
processes are widely used in the industry such as Microsoft’s SDL. In threat modeling, it is essential to first
identify assets before enumerating threats, in order to diagnose the threat targets and spot the protection
mechanisms. Asset identification and threat enumeration are collaborative activities involving many
actors such as security experts and software architects. These activities are traditionally carried out in
brainstorming sessions. Due to the lack of guidance, the lack of a sufficiently formalized process, the
high dependence on actors’ knowledge, and the variety of actors’ background, these actors often have
difficulties collaborating with each other. Brainstorming sessions are thus often conducted sub-optimally
and require significant effort. To address this problem, we aim at structuring the asset identification phase
by proposing a systematic asset identification process, which is based on a reference model [53]. This
process structures and identifies relevant assets, facilitating the threat enumeration during brainstorming.

Project DIVERSE 29

We illustrate the proposed process with a case study and show the usefulness of our process in supporting
threat enumeration and improving existing threat modeling processes such as the Microsoft SDL one.

Browser Profiling: State of the Art and Countermeasures This work presents the result of a litterature
review of all the techniques used to track a user navigating on the Internet though a web browser and the
main countermeasures available [60].

7.4.3 Software Verification

A Language Agnostic Approach to Modeling Requirements: Specification and Verification Modeling
is a complex and error prone activity, which can result in ambiguous models containing omissions and
inconsistencies. Many works have addressed the problem of checking models’ consistency. However,
most of these works express consistency requirements for a specific modeling language. On the contrary,
we argue that in some contexts those requirements should be expressed independently from the modeling
language of the models to be checked. In our work [42], we identify a set of modeling requirements
in the context of embedded systems design that are expressed independently from any modeling lan-
guage concrete syntax. We propose a dedicated semantic domain to support them and give a formal
characterization of those requirements that is modeling language agnostic.

Misconfiguration Discovery with Principal Component Analysis for Cloud-Native Services Native
cloud applications and services have significantly increased the importance of system and service config-
uration activities. These activities include updating (i) these services, (ii) their dependencies on third
parties, (iii) their configurations, (iv) the configuration of the execution environment, (v) network con-
figurations. The high frequency of updates results in significant configuration complexity that can lead
to failures or performance drops. To mitigate these risks, service providers extensively rely on testing
techniques, such as metamorphic testing, to detect these failures before moving to production. However,
the development and maintenance of these tests are costly, especially the oracle, which must determine
whether a system’s performance remains within acceptable boundaries. In [57], we explores the use of
a learning method called Principal Component Analysis (PCA) to learn about acceptable performance
metrics on cloud-native services and identify a metamorphic relationship between the nominal service
behavior and the value of these metrics.We investigate the following research question: Is it possible to
combine the metamorphic testing technique with unsupervised learning methods on service monitoring
data to detect error-prone reconfigurations before moving to production? We remove the developers’
burden to define a specific oracle in detecting these configuration issues. For validation, we applied
this proposal on a distributed media streaming application whose authentication was managed by an
external identity and access management services. This application illustrates both the heterogeneity
of the technologies used to build this type of service and its large configuration space. As a result, our
proposal demonstrated the ability to identify error-prone reconfigurations using PCA.

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

ADR Nokia

• Coordinator: Inria

• Dates: 2017-2021

• Abstract: The goal of this project is to integrate a chaos engineering principles to IoT Services
frameworks to improve the robustness of the software-defined network services using this approach
and to explore the concept of equivalence for software-defined network services and propose an
approach to constantly evolve the attack surface of the network services.

30 Inria Annual Report 2020

BCOM

• Coordinator: UR1

• Dates: 2018-2024

• Abstract: The aim of the Falcon project is to investigate how to improve the resale of available
resources in private clouds to third parties. In this context, the collaboration with DiverSE mainly
aims at working on efficient techniques for the design of consumption models and resource
consumption forecasting models. These models are then used as a knowledge base in a classical
autonomous loop.

GLOSE

• Partners: Inria/CNRS/Safran

• Dates: 2017-2021

• Abstract: The GLOSE project develops new techniques for heterogeneous modeling and simulation
in the context of systems engineering. It aims to provide formal and operational tools and methods
to formalize the behavioral semantics of the various modeling languages used at system-level.
These semantics will be used to extract behavioral language interfaces supporting the definition
of coordination patterns. These patterns, in turn, can systematically be used to drive the coordi-
nation of any model conforming to these languages. The project is structured according to the
following tasks: concurrent xDSML engineering, coordination of discrete models, and coordination
of discrete/continuous models. The project is funded in the context of the network DESIR, and
supported by the GEMOC initiative.

GLOSE Demonstrator

• Partners: Inria/Safran

• Dates: 2019-2020

• Abstract: Demonstrator illustrating the technologies involved in the WP5 off the GLOSE project.
The use case chosen for the demonstrator is the high-level description of a remote control drone
system, whose the main objective is to illustrate the design and simulation of the main functional
chains, the possible interactivity with the model in order to raise the level of understanding over
the models built, and possibly the exploration of the design space.

Debug4Science

• Partners: Inria/CEA DAM

• Dates: 2020-2022

• Abstract: Debug4Science aims to propose a disciplined approach to develop domain-specific
debugging facilities for Domain-Specific Languages within the context of scientific computing
and numerical analysis. Debug4Science is a bilateral collaboration (2020-2022), between the CEA
DAM/DIF and the DiverSE team at Inria.

Orange

• Partners: UR1/Orange

• Dates: 2020-2023

• Abstract: Context aware adaptive authentification, Anne Bumiller’s PhD Cifre project.

Obeo

• Partners: Inria/Obéo

• Dates: 2017-2020

• Abstract: Web engineering for domain-specific modeling languages, Fabien Coulon’s PhD Cifre
project.

Project DIVERSE 31

OKWind

• Partners: UR1/OKWind

• Dates: 2017-2020

• Abstract: Models@runtime to improve self-consumption of renewable energies, Alexandre Rio’s
PhD Cifre project.

Keolis

• Partners: UR1/Keolis

• Dates: 2018-2021

• Abstract: Urban mobility: machine learning for building simulators using large amounts of data,
Gauthier LYAN’s PhD Cifre project.

FaberNovel

• Partners: UR1/FaberNovel

• Dates: 2018-2021

• Abstract: Abstractions for linked data and the programmable web, Antoine Cheron’s PhD Cifre
project.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Inria International Labs

ALE

Title: Agile Language Engineering

Duration: 2020 - 2022

Coordinator: Benoit Combemale

Partners:

• Inria (France), CWI (Netherlands)

Inria contact: Benoit Combemale

Summary: Software engineering faces new challenges with the advent of modern software-intensive
systems such as complex critical embedded systems, cyber-physical systems and the Internet
of things. Application domains range from robotics, transportation systems, defense to home
automation, smart cities, and energy management, among others. Software is more and more
pervasive, integrated into large and distributed systems, and dynamically adaptable in response
to a complex and open environment. As a major consequence, the engineering of such systems
involves multiple stakeholders, each with some form of domain-specific knowledge, and with
the increased use of software as an integration layer. Hence more and more organizations are
adopting Domain-Specific Languages (DSLs) to allow domain experts to express solutions directly
in terms of relevant domain concepts. This new trend raises new challenges about designing DSLs,
evolving a set of DSLs and coordinating the use of multiple DSLs for both DSL designers and DSL
users. ALE will contribute to the field of Software Language Engineering, aiming to provide more
agility to both language designers and language users. The main objective is twofold. First, we
aim to help language designers to leverage previous DSL implementation efforts by reusing and

32 Inria Annual Report 2020

combining existing language modules, while automating the deployment of distributed, elastic and
collaborative modeling environments. Second, we aim to provide more flexibility to language users
by ensuring interoperability between different DSLs, offering live feedback about how the model or
program behaves while it is being edited (aka. live programming/modeling), and combining with
interactive environments like Jupiter Notebook for literate programming.

9.2 International research visitors

9.2.1 Visits of international scientists

• Nelly Bencomo, Aston University, UK

• Gunter Mussbacher, McGill University, Canada

9.3 European initiatives

9.3.1 Collaborations with major European organizations

• Vipo Project. Vipo is an innovation project from EIT Digital. This year, we bring our expertise on
native cloud architecture and adaptable architectures for this project.

9.4 National initiatives

9.4.1 ANR

VaryVary ANR JCJC

• Coordinator: Mathieu Acher

• DiverSE, Inria/IRISA Rennes

• Dates: 2017-2021

• Abstract: Most modern software systems (operating systems like Linux, Web browsers like Firefox
or Chrome, video encoders like x264 or ffmpeg, servers, mobile applications, etc.) are subject to
variation or come in many variants. Hundreds of configuration options, features, or plugins can
be combined, each potentially with distinct functionality and effects on execution time, memory
footprint, etc. Among configurations, some of them are chosen and do not compile, crash at
run time, do not pass a test suite, or do not reach a certain performance quality (e.g., energy
consumption, security). In this JCJC ANR project, we follow a thought-provocative and unexplored
direction: We consider that the variability boundary of a software system can be specialized and
should vary when needs be. The goal of this project is to provide theories, methods and techniques
to make vary variability. Specifically, we consider machine learning and software engineering
techniques for narrowing the space of possible configurations to a good approximation of those
satisfying the needs of users. Based on an oracle (e.g., a runtime test) that tells us whether a given
configuration meets the requirements (e.g., speed or memory footprint), we leverage machine
learning to retrofit the acquired constraints into a variability that can be used to automatically
specialize the configurable system. Based on a relative small number of configuration samples,
we expect to reach high accuracy for many different kinds of oracles and subject systems. Our
preliminary experiments suggest that varying variability can be practically useful and effective.
However, much more work is needed to investigate sampling, testing, and learning techniques
within a variety of cases and application scenarios. We plan to further collect large experimental
data and apply our techniques on popular, open-source, configurable software (like Linux, Firefox,
ffmpeg, VLC, Apache or JHipster) and generators for media content (like videos, models for 3D
printing, or technical papers written in LaTeX).

Project DIVERSE 33

9.4.2 DGA

LangComponent (CYBERDEFENSE)

• Coordinator: DGA

• Partners: DGA MI, INRIA

• Dates: 2019-2022

• Abstract: in the context of this project, DGA-MI and the INRIA team DiverSE explore the existing
approaches to ease the development of formal specifications of domain-Specific Languages (DSLs)
dedicated to paquet filtering, while guaranteeing expressiveness, precision and safety. In the long
term, this work is part of the trend to provide to DGA-MI and its partners a tooling to design and
develop formal DSLs which ease the use while ensuring a high level of reasoning.

10 Dissemination

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

General chair, scientific chair We organize ICPE 2021. Johann Bourcier will serve as general chair.

Member of the organizing committees Arnaud Blouin:

• JDev 2020

Stéphanie Challita:

• Proceedings chair, ICSA 2021

• Publicity co-chair, ECSA 2020

Djamel Khelladi:

• Publicity co-chair, ICPE 2021

Chair of conference program committees Mathieu Acher:

• Program committee co-chair, VaMoS 2020

• Workshop co-chair MODELS 2020

• Organizer/co-chairs of REVE and MODEVAR workshops

Stéphanie Challita:

• Co-organizer/program committee co-chair, FAACS workshop @ECSA 2020

Benoit Combemale:

• PC co-chair for ICT4S 2020

• Tools & Demos co-chair for MODELS’20

Djamel Khelladi:

• Poster Track co-chair, MODELS 2020

• Doctoral Track co-chair, ICSSP/ICGSE 2021

34 Inria Annual Report 2020

Member of the conference program committees Arnaud Blouin:

• ACM/SIGAPP Symposium on Applied Computing (SAC), software engineering track, 2020

• ACM SIGCHI symposium on Engineering interactive computing systems (EICS 2020), 2020

Mathieu Acher:

• SPLC 2020

• VaMoS 2020

• DocSymp@MODELS2020

• ICSE SEIP 2020

Jean-Marc Jézéquel:

• ICSE 2020

• SPLC 2020

Stéphanie Challita:

• ICSA 2021, ECR track

• ICSA 2021, Artifacts Evaluation track

• FormaliSE 2021

• SAC 2021, SA-TTA track

• MODELS 2020, Demo Track

Benoit Combemale:

• ACM SRC for MODELS’20

• MODELS’20 (program board)

• ECMFA’20

• FDL’20

• CBI’20

• QUATIC’20

• MLE’20 workshop at MODELS’20

• DevOps@MODELS’20 workshop at MODELS’20

• CoMoDiTy’20 workshop at ER’20

• PNSE’20 workshop

• MoSC’20 workshop

Olivier Barais:

• ICSR’20

• COMPAS’2020

• SecureMDE’2020 at MODELS’20

Djamel Khelladi:

• MSR 2021

• VSC at WETICE 2019, 2020, 2021

• ME workshop at MODELS 2020

Project DIVERSE 35

Reviewer Arnaud Blouin:

• ICSE’20

10.1.2 Journal

Member of the editorial boards Jean-Marc Jézéquel:

• Journal of Software and Systems Modeling: SoSyM (Associate Editor in Chief)

• IEEE Computer (Associate Editor in Chief)

• Journal of Systems and Software: JSS

• Journal of Object Technology: JOT

Benoit Combemale:

• Journal of Object Technology: JOT (Deputy Editors-in-Chief)

• Journal of Software and Systems Modeling: SoSyM

• Software Quality Journal (SQJ)

• Journal of Computer Languages (COLA)

• Journal on Science of Computer Programming (SCP, Advisory Board of the Software Section)

Reviewer - reviewing activities Arnaud Blouin:

• Journal Of System and Software

Stéphanie Challita:

• Journal of Object Technology: JOT

• IEEE Access

Olivier Barais:

• Journal Of System and Software

• Journal of Software and Systems Modeling: SoSyM

Djamel Khelladi:

• Journal of Empirical Software Engineering: EMSE

• Journal of Object Technology: JOT

• Journal of Software and Systems Modeling: SoSyM

• Software Quality Journal (SQJ)

36 Inria Annual Report 2020

10.1.3 Leadership within the scientific community

Arnaud Blouin:

• Founding member and co-organiser of the French GDR-GPL research action on Software Engineer-
ing and Human-Computer Interaction (GL-IHM).

Jean-Marc Jézéquel:

• Board member of Informatics Europe

• Member of the Scientific Committee of the GDR GPL of CNRS

• Member of the Advisory Board of the GEMOC Initiative: On the Globalization of Modeling Lan-
guages

Benoit Combemale:

• Chair of the steering committee of the ACM SIGPLAN Intl. Conference on Software Language
Engineering (SLE)

• Founding member of the steerng committee of the Modeling Language Engineering and Execution
(MLE) workshop series

• Funding Member of the Advisory Board of the GEMOC Initiative: On the Globalization of Modeling
Languages

Djamel Khelladi:

• Co-organiser of the French GDR-GPL research action on Software Velocity - software engineering.

Olivier Zendra:

• Scientific Coordinattor of EU H2020 TeamPlay project

• Founder and member of the Steering Committee of the International Workshop on Implementation,
Compilation, Optimization of OO Languages, Programs and Systems (ICOOOLPS)

• Member of the EU HiPEAC CSA project Steering Committee

• Member of the HiPEAC Vision Editorial Board

10.1.4 Scientific expertise

Olivier Barais:

• Advisory board member for the H2020 ENACT european Project

• Expert for the evaluation of the project provided by Ministères des affaires étrangères

Olivier Zendra:

• Scientific expert for CIR/JEI for Ministère de l’enseignement supérieur, de la recherche et de l’innovation

10.1.5 Research administration

Jean-Marc Jézéquel:

• Director of UMR6074 IRISA (850 persons)

• Director of EIT Digital in Rennes

• Coordinator of the Acaemic research of Pole d’Excellence Cyber

Olivier Barais:

• Vice Dean of ISTIC (1800 students, 75 associate profs or profs)

Olivier Zendra:

• Member of Inria Evaluation Committee.

Project DIVERSE 37

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

The DIVERSE team bears the bulk of the teaching on Software Engineering at the University of Rennes 1
and at INSA Rennes, for the first year of the Master of Computer Science (Project Management, Object-
Oriented Analysis and Design with UML, Design Patterns, Component Architectures and Frameworks,
Validation & Verification, Human-Computer Interaction) and for the second year of the MSc in software
engineering (Model driven Engineering, Aspect-Oriented Software Development, Software Product Lines,
Component Based Software Development, Validation & Verification, etc.).

Each of Jean-Marc Jézéquel, Noël Plouzeau, Olivier Barais, Benoit Combemale, Johann Bourcier,
Arnaud Blouin, Stéphanie Challita and Mathieu Acher teaches about 250h in these domains for a grand
total of about 2000 hours, including several courses at ENSTB, IMT, ENS Rennes and ENSAI Rennes
engineering school.

Olivier Barais is deputy director of the electronics and computer science teaching department of the
University of Rennes 1. Olivier Barais is the head of the Master in Computer Science at the University of
Rennes 1. Johann Bourcier is the head of the Information Technology department and member of the
management board at the ESIR engineering school in Rennes. Arnaud Blouin is in charge of industrial
relationships for the computer science department at INSA Rennes and elected member of this CS
department council.

The DIVERSE team also hosts several MSc and summer trainees every year.

10.2.2 Supervision

• PhD defense in 2020: Jean-Émile Dartois, Efficient resources management for hybrid cloud comput-
ing, 2016, O. Barais, Jalil Boukhobza.

• PhD defense in 2020: Tristan Ninet, Formal verification of the Internet Key Exchange (IKEv2) security
protocol, 2016, O. Zendra.

• PhD in progress: Alexandre Rio, Demand Side Management A model driven approach to promote
energy self-consumption , 2016, O. Barais, Y. Morel

• PhD in progress: Dorian Leroy, A generic and generative white-box testing framework for model
transformations, 2017, B. Combemale.

• PhD in progress: Fabien Coulon, Web engineering for domain-specific modeling languages, 2017, B.
Combemale, S. Begaudeau.

• PhD in progress: June Benvegnu-Sallou, Decision support for the assessment of risks associated
with the operation of underground environments, 2018, J-R. De Dreuzy, B. Combemale, J. Bourcier.

• PhD in progress: Pierre JeanJean, Refining simulators by analyzing execution traces of complex
systems, 2018, O. Barais, B. Combemale.

• PhD in progress: Alif Akbar-pranata, Chaos Engineering for IoT and Network Services, 2018, O.
Barais, J. Bourcier.

• PhD in progress: Antoine Cheron, Abstractions for linked data and the programmable web, 2018, O.
Barais, J. Bourcier.

• PhD in progress: Gauthier Lyan, Urban mobility: machine learning for building simulators using
large amounts of data, 2018, J-M. Jééquel, D. Gross Amblard.

• PhD in progress: Hugo Martin, Learning variability, 2018, M. Acher.

• PhD in progress: Lamine Noureddine, Developing New Techniques for Packing Detection and
Unpacking to Stop Malware Propagation, 2018, O. Zendra.

• PhD in progress: Cassius De Oliveira Puodzius, Machine learning for malware detection by aggrega-
tion of multiple threat feeds, 2019, O. Zendra.

38 Inria Annual Report 2020

• PhD in progress: Luc Lesoil, Deep variability in large-scaled systems, 2019, M. Acher. A. Blouin, JM
Jézéquel.

• PhD in progress: Emmanuel Chebbi, Domain-Specific Language Reuse, 2019, B. Combemale, O.
Barais, G. Leguernic

• PhD in progress: Mohamed Handaoui, Scheduling Big Data applications in the cloud: the case of
machine learning algorithms, 2019, Jalil Boukhobza. Olivier Barais.

• PhD in progress: Quentin Le Dilavrec, Co-evolution between code, tests, and third-part libraries,
2020, Arnaud Blouin, Jean-Marc Jézéquel, Djamel Eddine Khelladi.

• PhD in progress: Gwendal Jouneaux, Self-Adaptive Language, 2020, B. Combemale, O. Barais, G.
Mussbacher.

• PhD in progress: Anne Bumiller, Contextual Modeling of Adaptive Authentication Systems, 2020,
Olivier Barais, Benoit Combemale, Stéphanie Challita.

10.2.3 Juries

Olivier Barais was in the examination committee of the following PhD and HDR thesis:

• HDR: Sophie Ebersold, Univ Toulouse, (Mars 2021), (Reviewer)

• PhD: Sami Lazreg Univ Nice (December 2020) (Reviewer)

• Ajay Muroor, Univ Grenoble, (December 2020) (examiner)

• Julien Delplanque Univ Lille (December 2020) (Reviewer)

Benoit Combemale was in the examination committee of the following PhD thesis:

• Valentin Besnard, ENSTA Bretagne (December 2020), (Reviewer)

Olivier Zendra was in the examination committee of the following PhD thesis:

• Anthony Ferrand, LIRMM / Université de Montpellier (September 2020), (Examiner)

11 Scientific production

11.1 Major publications

[1] M. Acher, R. E. Lopez-Herrejon and R. Rabiser. ‘Teaching Software Product Lines: A Snapshot of
Current Practices and Challenges’. In: ACM Transactions of Computing Education (May 2017).
URL: https://hal.inria.fr/hal-01522779.

[2] B. Baudry and M. Monperrus. ‘The Multiple Facets of Software Diversity: Recent Developments in
Year 2000 and Beyond’. In: ACM Computing Surveys 48.1 (2015), 16:1–16:26. URL: https://hal.i
nria.fr/hal-01182103.

[3] G. Bécan, M. Acher, B. Baudry and S. Ben Nasr. ‘Breathing Ontological Knowledge Into Feature
Model Synthesis: An Empirical Study’. In: Empirical Software Engineering 21.4 (2015), pp. 1794–
1841. DOI: 10.1007/s10664-014-9357-1. URL: https://hal.inria.fr/hal-01096969.

[4] A. Blouin, V. Lelli, B. Baudry and F. Coulon. ‘User Interface Design Smell: Automatic Detection and
Refactoring of Blob Listeners’. In: Information and Software Technology 102 (May 2018), pp. 49–64.
DOI: 10.1016/j.infsof.2018.05.005. URL: https://hal.inria.fr/hal-01499106.

[5] M. Boussaa, O. Barais, G. Sunyé and B. Baudry. ‘Leveraging metamorphic testing to automatically
detect inconsistencies in code generator families’. In: Software Testing, Verification and Reliability
(Dec. 2019). DOI: 10.1002/stvr.1721. URL: https://hal.inria.fr/hal-02422437.

https://hal.inria.fr/hal-01522779
https://hal.inria.fr/hal-01182103
https://hal.inria.fr/hal-01182103
https://doi.org/10.1007/s10664-014-9357-1
https://hal.inria.fr/hal-01096969
https://doi.org/10.1016/j.infsof.2018.05.005
https://hal.inria.fr/hal-01499106
https://doi.org/10.1002/stvr.1721
https://hal.inria.fr/hal-02422437

Project DIVERSE 39

[6] E. Bousse, D. Leroy, B. Combemale, M. Wimmer and B. Baudry. ‘Omniscient Debugging for
Executable DSLs’. In: Journal of Systems and Software 137 (Mar. 2018), pp. 261–288. DOI: 10.1016
/j.jss.2017.11.025. URL: https://hal.inria.fr/hal-01662336.

[7] B. Combemale, J. Deantoni, B. Baudry, R. B. France, J.-M. Jézéquel and J. Gray. ‘Globalizing
Modeling Languages’. In: IEEE Computer (June 2014), pp. 10–13. URL: https://hal.inria.fr
/hal-00994551.

[8] K. Corre, O. Barais, G. Sunyé, V. Frey and J.-M. Crom. ‘Why can’t users choose their identity
providers on the web?’ In: Proceedings on Privacy Enhancing Technologies 2017.3 (Jan. 2017),
pp. 72–86. DOI: 10.1515/popets-2017-0029. URL: https://hal.archives-ouvertes.fr/h
al-01611048.

[9] J.-E. Dartois, J. Boukhobza, A. Knefati and O. Barais. ‘Investigating Machine Learning Algorithms
for Modeling SSD I/O Performance for Container-based Virtualization’. In: IEEE transactions on
cloud computing 14 (2019), pp. 1–14. DOI: 10.1109/TCC.2019.2898192. URL: https://hal.in
ria.fr/hal-02013421.

[10] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Clelang-Huang and P. Heymans. ‘Feature Model
Extraction from Large Collections of Informal Product Descriptions’. In: Proc. of the Europ. Soft-
ware Engineering Conf. and the ACM SIGSOFT Symp. on the Foundations of Software Engineering
(ESEC/FSE). Sept. 2013, pp. 290–300. DOI: 10.1145/2491411.2491455. URL: https://hal.inr
ia.fr/hal-00859475.

[11] T. Degueule, B. Combemale, A. Blouin, O. Barais and J.-M. Jézéquel. ‘Melange: A Meta-language
for Modular and Reusable Development of DSLs’. In: Proc. of the Int. Conf. on Software Language
Engineering (SLE). Oct. 2015. URL: https://hal.inria.fr/hal-01197038.

[12] J. A. Galindo Duarte, M. Alférez, M. Acher, B. Baudry and D. Benavides. ‘A Variability-Based Testing
Approach for Synthesizing Video Sequences’. In: Proc. of the Int. Symp. on Software Testing and
Analysis (ISSTA). July 2014. URL: https://hal.inria.fr/hal-01003148.

[13] I. Gonzalez-Herrera, J. Bourcier, E. Daubert, W. Rudametkin, O. Barais, F. Fouquet, J.-M. Jézéquel
and B. Baudry. ‘ScapeGoat: Spotting abnormal resource usage in component-based reconfigurable
software systems’. In: Journal of Systems and Software (2016). DOI: 10.1016/j.jss.2016.02.02
7. URL: https://hal.inria.fr/hal-01354999.

[14] A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin and B. Baudry. ‘Test them all, is it worth it?
Assessing configuration sampling on the JHipster Web development stack’. In: Empirical Software
Engineering (July 2018), pp. 1–44. DOI: 10.1007/s10664-018-9635-4. URL: https://hal.inr
ia.fr/hal-01829928.

[15] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus and F. Fouquet. ‘Mashup of Meta-Languages
and its Implementation in the Kermeta Language Workbench’. In: Software and Systems Modeling
14.2 (2015), pp. 905–920. URL: https://hal.inria.fr/hal-00829839.

[16] D. E. Khelladi, B. Combemale, M. Acher and O. Barais. ‘On the Power of Abstraction: a Model-
Driven Co-evolution Approach of Software Code’. In: 42nd International Conference on Software
Engineering, New Ideas and Emerging Results. Séoul, South Korea, May 2020. URL: https://hal
.inria.fr/hal-03029426.

[17] P. Laperdrix, W. Rudametkin and B. Baudry. ‘Beauty and the Beast: Diverting modern web browsers
to build unique browser fingerprints’. In: Proc. of the Symp. on Security and Privacy (S&P). May
2016. URL: https://hal.inria.fr/hal-01285470.

[18] M. Leduc, T. Degueule, E. Van Wyk and B. Combemale. ‘The Software Language Extension Prob-
lem’. In: Software and Systems Modeling (2019), pp. 1–4. URL: https://hal.inria.fr/hal-023
99166.

[19] M. Rodriguez-Cancio, B. Combemale and B. Baudry. ‘Automatic Microbenchmark Generation to
Prevent Dead Code Elimination and Constant Folding’. In: Proc. of the Int. Conf. on Automated
Software Engineering (ASE). Sept. 2016. URL: https://hal.inria.fr/hal-01343818.

https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/10.1016/j.jss.2017.11.025
https://hal.inria.fr/hal-01662336
https://hal.inria.fr/hal-00994551
https://hal.inria.fr/hal-00994551
https://doi.org/10.1515/popets-2017-0029
https://hal.archives-ouvertes.fr/hal-01611048
https://hal.archives-ouvertes.fr/hal-01611048
https://doi.org/10.1109/TCC.2019.2898192
https://hal.inria.fr/hal-02013421
https://hal.inria.fr/hal-02013421
https://doi.org/10.1145/2491411.2491455
https://hal.inria.fr/hal-00859475
https://hal.inria.fr/hal-00859475
https://hal.inria.fr/hal-01197038
https://hal.inria.fr/hal-01003148
https://doi.org/10.1016/j.jss.2016.02.027
https://doi.org/10.1016/j.jss.2016.02.027
https://hal.inria.fr/hal-01354999
https://doi.org/10.1007/s10664-018-9635-4
https://hal.inria.fr/hal-01829928
https://hal.inria.fr/hal-01829928
https://hal.inria.fr/hal-00829839
https://hal.inria.fr/hal-03029426
https://hal.inria.fr/hal-03029426
https://hal.inria.fr/hal-01285470
https://hal.inria.fr/hal-02399166
https://hal.inria.fr/hal-02399166
https://hal.inria.fr/hal-01343818

40 Inria Annual Report 2020

[20] P. Temple, M. Acher, J.-M. Jezequel and O. Barais. ‘Learning-Contextual Variability Models’. In:
IEEE Software 34.6 (Nov. 2017), pp. 64–70. DOI: 10.1109/MS.2017.4121211. URL: https://hal
.inria.fr/hal-01659137.

[21] P. Temple, M. Acher and J.-M. Jézéquel. ‘Empirical Assessment of Multimorphic Testing’. In: IEEE
Transactions on Software Engineering (July 2019), pp. 1–21. DOI: 10.1109/TSE.2019.2926971.
URL: https://hal.inria.fr/hal-02177158.

[22] P. Temple, G. Perrouin, M. Acher, B. Biggio, J.-M. Jézéquel and F. Roli. ‘Empirical Assessment
of Generating Adversarial Configurations for Software Product Lines’. In: Empirical Software
Engineering (Dec. 2020), pp. 1–57. URL: https://hal.inria.fr/hal-03045797.

[23] O. L. Vera-Pérez, B. Danglot, M. Monperrus and B. Baudry. ‘A Comprehensive Study of Pseudo-
tested Methods’. In: Empirical Software Engineering (2018), pp. 1–33. DOI: 10.1007/s10664-018
-9653-2. URL: https://hal.inria.fr/hal-01867423.

11.2 Publications of the year

International journals

[24] M. Bagherzadeh, K. Jahed, B. Combemale and J. Dingel. ‘Live Modeling in the Context of State
Machine Models and Code Generation’. In: Software and Systems Modeling (2020), pp. 1–44. DOI:
10.1007/s10270-020-00829-y. URL: https://hal.inria.fr/hal-02942374.

[25] J.-M. Bruel, B. Combemale, E. M. Guerra, J.-M. Jézéquel, J. Kienzle, J. De Lara, G. Mussbacher, E.
Syriani and H. Vangheluwe. ‘Comparing and Classifying Model Transformation Reuse Approaches
across Metamodels’. In: Software and Systems Modeling 19.2 (2020), pp. 441–465. DOI: 10.1007/s
10270-019-00762-9. URL: https://hal.inria.fr/hal-02317864.

[26] S. Challita, F. Korte, J. Erbel, F. Zalila, J. Grabowski and P. Merle. ‘Model-Based Cloud Resource
Management with TOSCA and OCCI’. In: Software and Systems Modeling (2021). URL: https://h
al.archives-ouvertes.fr/hal-03122452.

[27] B. Combemale, J. Kienzle, G. Mussbacher, H. Ali, D. Amyot, M. Bagherzadeh, E. Batot, N. Bencomo,
B. Benni, J.-M. Bruel, J. Cabot, B. H. C. Cheng, P. Collet, G. Engels, R. Heinrich, J.-M. Jézéquel,
A. Koziolek, S. Mosser, R. Reussner, H. Sahraoui, R. Saini, J. Sallou, S. Stinckwich, E. Syriani and
M. Wimmer. ‘A Hitchhiker’s Guide to Model-Driven Engineering for Data-Centric Systems’. In:
IEEE Software (2020), pp. 1–9. DOI: 10.1109/MS.2020.2995125. URL: https://hal.inria.fr
/hal-02612087.

[28] B. Danglot, M. Monperrus, W. Rudametkin and B. Baudry. ‘An approach and benchmark to detect
behavioral changes of commits in continuous integration’. In: Empirical Software Engineering
25.4 (July 2020), pp. 2379–2415. DOI: 10.1007/s10664-019-09794-7. URL: https://hal.inri
a.fr/hal-03121735.

[29] F. A. Fontana, G. Perrouin, A. Ampatzoglou, M. Acher, B. Walter, M. Cordy, F. Palomba and X.
Devroey. ‘MALTESQUE 2019 Workshop Summary’. In: Software Engineering Notes (24th Jan. 2020).
DOI: 10.1145/3375572.3375582. URL: https://hal.inria.fr/hal-02471302.

[30] J. Kienzle, G. Mussbacher, B. Combemale, L. Bastin, N. Bencomo, J.-M. Bruel, C. Becker, S. Betz,
R. Chitchyan, B. Cheng, S. Klingert, R. Paige, B. Penzenstadler, N. Seyff, E. Syriani and C. C. Venters.
‘Towards Model-Driven Sustainability Evaluation’. In: Communications of the ACM 63.3 (2020),
pp. 80–91. URL: https://hal.inria.fr/hal-02146543.

[31] R. Kretschmer, D. E. Khelladi and A. Egyed. ‘Transforming Abstract to Concrete Repairs with a
Generative Approach of Repair Values’. In: Journal of Systems and Software (2021). URL: https:
//hal.inria.fr/hal-03127118.

[32] R. Kretschmer, D. E. Khelladi, R. E. Lopez-Herrejon and A. Egyed. ‘Consistent Change Propagation
within Models’. In: Software and Systems Modeling (6th July 2020). DOI: 10.1007/s10270-020-0
0823-4. URL: https://hal.inria.fr/hal-03029432.

https://doi.org/10.1109/MS.2017.4121211
https://hal.inria.fr/hal-01659137
https://hal.inria.fr/hal-01659137
https://doi.org/10.1109/TSE.2019.2926971
https://hal.inria.fr/hal-02177158
https://hal.inria.fr/hal-03045797
https://doi.org/10.1007/s10664-018-9653-2
https://doi.org/10.1007/s10664-018-9653-2
https://hal.inria.fr/hal-01867423
https://doi.org/10.1007/s10270-020-00829-y
https://hal.inria.fr/hal-02942374
https://doi.org/10.1007/s10270-019-00762-9
https://doi.org/10.1007/s10270-019-00762-9
https://hal.inria.fr/hal-02317864
https://hal.archives-ouvertes.fr/hal-03122452
https://hal.archives-ouvertes.fr/hal-03122452
https://doi.org/10.1109/MS.2020.2995125
https://hal.inria.fr/hal-02612087
https://hal.inria.fr/hal-02612087
https://doi.org/10.1007/s10664-019-09794-7
https://hal.inria.fr/hal-03121735
https://hal.inria.fr/hal-03121735
https://doi.org/10.1145/3375572.3375582
https://hal.inria.fr/hal-02471302
https://hal.inria.fr/hal-02146543
https://hal.inria.fr/hal-03127118
https://hal.inria.fr/hal-03127118
https://doi.org/10.1007/s10270-020-00823-4
https://doi.org/10.1007/s10270-020-00823-4
https://hal.inria.fr/hal-03029432

Project DIVERSE 41

[33] M. Leduc, T. Degueule, E. Van Wyk and B. Combemale. ‘The Software Language Extension Prob-
lem’. In: Software and Systems Modeling 19.2 (2020), pp. 263–267. URL: https://hal.inria.fr
/hal-02399166.

[34] M. Leduc, G. Jouneaux, T. Degueule, G. Le Guernic, O. Barais and B. Combemale. ‘Automatic
generation of Truffle-based interpreters for Domain-Specific Languages’. In: The Journal of Object
Technology 19.2 (2020), pp. 1–21. DOI: 10.5381/jot.2020.19.2.a1. URL: https://hal.inria
.fr/hal-02395867.

[35] D. Leroy, E. Bousse, M. Wimmer, T. Mayerhofer, B. Combemale and W. Schwinger. ‘Behavioral
interfaces for executable DSLs’. In: Software and Systems Modeling (23rd Apr. 2020). DOI: 10.1007
/s10270-020-00798-2. URL: https://hal.archives-ouvertes.fr/hal-02565549.

[36] D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer and B. Combemale. ‘Runtime Monitoring for Exe-
cutable DSLs’. In: The Journal of Object Technology 19.2 (2020), pp. 1–23. DOI: 10.5381/jot.202
0.19.2.a6. URL: https://hal.inria.fr/hal-03109992.

[37] G. Mussbacher, B. Combemale, J. Kienzle, S. Abrahão, H. Ali, N. Bencomo, M. Búr, L. Burgueño,
G. Engels, P. Jeanjean, J.-M. Jézéquel, T. Kühn, S. Mosser, H. Sahraoui, E. Syriani, D. Varró and M.
Weyssow. ‘Opportunities in Intelligent Modeling Assistance’. In: Software and Systems Modeling
(2020), pp. 1–7. DOI: 10.1007/s10270-020-00814-5. URL: https://hal.inria.fr/hal-028
76536.

[38] A. Pierantonio, M. V. D. Brand and B. Combemale. ‘Open Access: all you wanted to know and
never dared to ask’. In: The Journal of Object Technology (2020). URL: https://hal.inria.fr/h
al-03137877.

[39] P. Temple, G. Perrouin, M. Acher, B. Biggio, J.-M. Jézéquel and F. Roli. ‘Empirical Assessment
of Generating Adversarial Configurations for Software Product Lines’. In: Empirical Software
Engineering (8th Dec. 2020), pp. 1–57. URL: https://hal.inria.fr/hal-03045797.

[40] X. Tërnava and P. Collet. ‘A framework for managing the imperfect modularity of variability
implementations’. In: Journal of Computer Languages (Sept. 2020), pp. 1–39. DOI: 10.1016/j.co
la.2020.100998. URL: https://hal.archives-ouvertes.fr/hal-02951745.

[41] A. Wortmann, O. Barais, B. Combemale and M. Wimmer. ‘Modeling Languages in Industry 4.0: An
Extended Systematic Mapping Study’. In: Software and Systems Modeling 19.1 (2020), pp. 67–94.
DOI: 10.1007/s10270-019-00757-6. URL: https://hal.inria.fr/hal-02282028.

International peer-reviewed conferences

[42] A. Alidra, A. Beugnard, H. Godfroy, P. Kimmel and G. Le Guernic. ‘A Language Agnostic Approach
to Modeling Requirements: Specification and Verification’. In: MODELS ’20 Companion. Virtual
Event, Canada, 18th Oct. 2020. DOI: 10.1145/3417990.3419224. URL: https://hal.inria.fr
/hal-02924645.

[43] J. Alves Pereira, M. Acher, H. Martin and J.-M. Jézéquel. ‘Sampling Effect on Performance Pre-
diction of Configurable Systems: A Case Study’. In: ICPE 2020 - 11th ACM/SPEC International
Conference on Performance Engineering. Edmonton, Canada, 20th Apr. 2020, pp. 1–13. URL:
https://hal.inria.fr/hal-02356290.

[44] F. Bordeleau, B. Combemale, R. Eramo, M. Van Den Brand and M. Wimmer. ‘Towards Model-
Driven Digital Twin Engineering: Current Opportunities and Future Challenges’. In: ICSMM 2020 -
International Conference on Systems Modelling and Management. Bergen, Norway, 25th June
2020. URL: https://hal.inria.fr/hal-02946949.

[45] F. Coulon, A. Auvolat, B. Combemale, Y.-D. Bromberg, F. Taïani, O. Barais and N. Plouzeau. ‘Modular
and Distributed IDE’. In: SLE 2020 - 13th ACM SIGPLAN International Conference on Software
Language Engineering. Virtual, United States, Nov. 2020, pp. 270–282. DOI: 10.1145/3426425.3
426947. URL: https://hal.archives-ouvertes.fr/hal-02964806.

https://hal.inria.fr/hal-02399166
https://hal.inria.fr/hal-02399166
https://doi.org/10.5381/jot.2020.19.2.a1
https://hal.inria.fr/hal-02395867
https://hal.inria.fr/hal-02395867
https://doi.org/10.1007/s10270-020-00798-2
https://doi.org/10.1007/s10270-020-00798-2
https://hal.archives-ouvertes.fr/hal-02565549
https://doi.org/10.5381/jot.2020.19.2.a6
https://doi.org/10.5381/jot.2020.19.2.a6
https://hal.inria.fr/hal-03109992
https://doi.org/10.1007/s10270-020-00814-5
https://hal.inria.fr/hal-02876536
https://hal.inria.fr/hal-02876536
https://hal.inria.fr/hal-03137877
https://hal.inria.fr/hal-03137877
https://hal.inria.fr/hal-03045797
https://doi.org/10.1016/j.cola.2020.100998
https://doi.org/10.1016/j.cola.2020.100998
https://hal.archives-ouvertes.fr/hal-02951745
https://doi.org/10.1007/s10270-019-00757-6
https://hal.inria.fr/hal-02282028
https://doi.org/10.1145/3417990.3419224
https://hal.inria.fr/hal-02924645
https://hal.inria.fr/hal-02924645
https://hal.inria.fr/hal-02356290
https://hal.inria.fr/hal-02946949
https://doi.org/10.1145/3426425.3426947
https://doi.org/10.1145/3426425.3426947
https://hal.archives-ouvertes.fr/hal-02964806

42 Inria Annual Report 2020

[46] M. Handaoui, J.-E. Dartois, J. Boukhobza, O. Barais and L. D’orazio. ‘ReLeaSER: A Reinforcement
Learning Strategy for Optimizing Utilization Of Ephemeral Cloud Resources’. In: CloudCom 2020
- 12th IEEE International Conference on Cloud Computing Technology and Science. Bangkok,
Thailand, 14th Dec. 2020, pp. 1–9. URL: https://hal.archives-ouvertes.fr/hal-02989286.

[47] M. Handaoui, J.-E. Dartois, L. Lemarchand and J. Boukhobza. ‘Salamander: a Holistic Scheduling
of MapReduce Jobs on Ephemeral Cloud Resources’. In: CCGRID 2020 - 20th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing. Melbourne, Australia, 2nd Nov. 2020,
pp. 1–10. URL: https://hal.archives-ouvertes.fr/hal-02497029.

[48] P. Jeanjean, B. Combemale and O. Barais. ‘IDE as Code: Reifying Language Protocols as First-Class
Citizens’. In: ISEC 2021 - Innovations in Software Engineering Conference. Bhubaneswar / Virtual,
India, 25th Feb. 2021. URL: https://hal.inria.fr/hal-03107122.

[49] D. E. Khelladi, B. Combemale, M. Acher and O. Barais. ‘On the Power of Abstraction: a Model-
Driven Co-evolution Approach of Software Code’. In: 42nd International Conference on Software
Engineering, New Ideas and Emerging Results. Séoul, South Korea, 27th May 2020. URL: https:
//hal.inria.fr/hal-03029426.

[50] D. E. Khelladi, B. Combemale, M. Acher, O. Barais and J.-M. Jézéquel. ‘Co-Evolving Code with
Evolving Metamodels’. In: 42nd International Conference on Software Engineering. Séoul, South
Korea, 27th May 2020. URL: https://hal.inria.fr/hal-03029429.

[51] L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel. ‘Deep Software Variability: Towards Handling
Cross-Layer Configuration’. In: VaMoS 2021 - 15th International Working Conference on Variability
Modelling of Software-Intensive Systems. Krems / Virtual, Austria: https://vamos2021.fh-kre
ms.ac.at/, 9th Feb. 2021. URL: https://hal.inria.fr/hal-03084276.

[52] N. Messe, N. Belloir, V. Chiprianov, J. El-Hachem, R. Fleurquin and S. Sadou. ‘An Asset-Based Assis-
tance for Secure by Design’. In: APSEC 2020 - 27th Asia-Pacific Software Engineering Conference.
Singapore, Singapore, 1st Dec. 2020, pp. 1–10. URL: https://hal.archives-ouvertes.fr/hal
-02990897.

[53] N. Messe, V. Chiprianov, N. Belloir, J. El-Hachem, R. Fleurquin and S. Sadou. ‘Asset-Oriented
Threat Modeling’. In: TrustCom 2020 - 19th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications. Guangzhou, China, 31st Dec. 2020, pp. 1–11. URL:
https://hal.archives-ouvertes.fr/hal-02990919.

[54] G. Mussbacher, B. Combemale, S. Abrahão, N. Bencomo, L. Burgueño, G. Engels, J. Kienzle,
T. Kühn, S. Mosser, H. Sahraoui and M. Weyssow. ‘Towards an Assessment Grid for Intelligent
Modeling Assistance’. In: MDE Intelligence 2020 - 2nd Workshop on Artificial Intelligence and
Model-driven Engineering. Vol. 10. Montreal, Canada, 18th Oct. 2020, pp. 1–10. URL: https://ha
l.inria.fr/hal-02925142.

[55] L. Noureddine, A. Heuser, C. Puodzius and O. Zendra. ‘SE-PAC: A Self-Evolving PAcker Classifier
against rapid packers evolution’. In: CODASPY ’21: Eleventh ACM Conference on Data and Appli-
cation Security and Privacy. Virtual Event, United States, 26th Apr. 2021. DOI: 10.1145/3422337
.3447848. URL: https://hal.inria.fr/hal-03149211.

[56] J. A. Pereira, H. Martin, P. Temple and M. Acher. ‘Machine Learning and Configurable Systems:
A Gentle Introduction’. In: SPLC 2020 - 24th ACM International Systems and Software Product
Line Conference. Montreal, Canada, 19th Oct. 2020, p. 1. DOI: 10.1145/3382025.3414976. URL:
https://hal.inria.fr/hal-03020125.

[57] A. A. Pranata, O. Barais, J. Bourcier and L. Noirie. ‘Misconfiguration Discovery with Principal
Component Analysis for Cloud-Native Services’. In: 2020 IEEE/ACM 13th International Conference
on Utility and Cloud Computing (UCC). UCC 2020 - 13th IEEE/ACM International Conference on
Utility and Cloud Computing. Leicester / Virtual, United Kingdom, 30th Dec. 2020, pp. 269–278.
URL: https://hal.archives-ouvertes.fr/hal-03137874.

https://hal.archives-ouvertes.fr/hal-02989286
https://hal.archives-ouvertes.fr/hal-02497029
https://hal.inria.fr/hal-03107122
https://hal.inria.fr/hal-03029426
https://hal.inria.fr/hal-03029426
https://hal.inria.fr/hal-03029429
https://vamos2021.fh-krems.ac.at/
https://vamos2021.fh-krems.ac.at/
https://hal.inria.fr/hal-03084276
https://hal.archives-ouvertes.fr/hal-02990897
https://hal.archives-ouvertes.fr/hal-02990897
https://hal.archives-ouvertes.fr/hal-02990919
https://hal.inria.fr/hal-02925142
https://hal.inria.fr/hal-02925142
https://doi.org/10.1145/3422337.3447848
https://doi.org/10.1145/3422337.3447848
https://hal.inria.fr/hal-03149211
https://doi.org/10.1145/3382025.3414976
https://hal.inria.fr/hal-03020125
https://hal.archives-ouvertes.fr/hal-03137874

Project DIVERSE 43

[58] J. Sallou, A. Gauvain, J. Bourcier, B. Combemale and J.-R. De Dreuzy. ‘Loop Aggregation for Approx-
imate Scientific Computing’. In: Computational Science – ICCS 2020. International Conference on
Computational Science. Lecture Notes in Computer Science book series. Amsterdam, Netherlands,
June 2020, pp. 141–155. DOI: 10.1007/978-3-030-50417-5_11. URL: https://hal.archives
-ouvertes.fr/hal-02545875.

[59] L. Thomas Van Binsbergen, M. V. Merino, P. Jeanjean, T. Van Der Storm, B. Combemale and O.
Barais. ‘A principled approach to REPL interpreters’. In: SPLASH 2020 - ACM SIGPLAN conference
on Systems, Programming, Languages, and Applications: Software for Humanity. Chicago / Virtual,
United States, 15th Nov. 2020, pp. 1–17. DOI: 10.1145/3426428.3426917. URL: https://hal.i
nria.fr/hal-02968938.

Scientific book chapters

[60] B. Baudry, Y.-D. Bromberg, D. Frey, A. Gómez-Boix, P. Laperdrix and F. Taïani. ‘Profilage de navi-
gateurs : état de l’art et contre-mesures’. In: Le profilage en ligne : entre libéralisme et régulation.
15th Oct. 2020. URL: https://hal.inria.fr/hal-03043187.

Doctoral dissertations and habilitation theses

[61] J.-E. Dartois. ‘Leveraging Cloud unused heterogeneous resources for applications with SLA guar-
antees’. Univ-Rennes1, 4th Sept. 2020. URL: https://hal.inria.fr/tel-03009816.

11.3 Cited publications

[62] A. Arcuri and L. C. Briand. ‘A practical guide for using statistical tests to assess randomized
algorithms in software engineering’. In: ICSE. 2011, pp. 1–10.

[63] A. Avizienis. ‘The N-version approach to fault-tolerant software’. In: Software Engineering, IEEE
Transactions on 12 (1985), pp. 1491–1501.

[64] F. Bachmann and L. Bass. ‘Managing variability in software architectures’. In: SIGSOFT Softw. Eng.
Notes 26 (3 May 2001), pp. 126–132. DOI: http://doi.acm.org/10.1145/379377.375274. URL:
http://doi.acm.org/10.1145/379377.375274.

[65] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone and A. Sangiovanni-Vincentelli.
‘Metropolis: An integrated electronic system design environment’. In: Computer 36.4 (2003),
pp. 45–52.

[66] E. Baniassad and S. Clarke. ‘Theme: an approach for aspect-oriented analysis and design’. In: 26th
International Conference on Software Engineering (ICSE). 2004, pp. 158–167.

[67] E. G. Barrantes, D. H. Ackley, S. Forrest and D. Stefanović. ‘Randomized instruction set emulation’.
In: ACM Transactions on Information and System Security (TISSEC) 8.1 (2005), pp. 3–40.

[68] D. Batory, R. E. Lopez-Herrejon and J.-P. Martin. ‘Generating Product-Lines of Product-Families’.
In: ASE ’02: Automated software engineering. IEEE, 2002, pp. 81–92.

[69] S. Becker, H. Koziolek and R. Reussner. ‘The Palladio component model for model-driven perfor-
mance prediction’. In: Journal of Systems and Software 82.1 (Jan. 2009), pp. 3–22.

[70] N. Bencomo. ‘On the use of software models during software execution’. In: MISE ’09: Proceedings
of the 2009 ICSE Workshop on Modeling in Software Engineering. IEEE Computer Society, May
2009.

[71] A. Beugnard, J.-M. Jézéquel and N. Plouzeau. ‘Contract Aware Components, 10 years after’. In:
WCSI. 2010, pp. 1–11.

[72] J. Bosch. Design and use of software architectures: adopting and evolving a product-line approach.
New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000.

[73] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H. Obbink and K. Pohl. ‘Variability Issues in
Software Product Lines’. In: PFE ’01: Revised Papers from the 4th International Workshop on
Software Product-Family Engineering. London, UK: Springer-Verlag, 2002, pp. 13–21.

https://doi.org/10.1007/978-3-030-50417-5_11
https://hal.archives-ouvertes.fr/hal-02545875
https://hal.archives-ouvertes.fr/hal-02545875
https://doi.org/10.1145/3426428.3426917
https://hal.inria.fr/hal-02968938
https://hal.inria.fr/hal-02968938
https://hal.inria.fr/hal-03043187
https://hal.inria.fr/tel-03009816
https://doi.org/http://doi.acm.org/10.1145/379377.375274
http://doi.acm.org/10.1145/379377.375274

44 Inria Annual Report 2020

[74] L. C. Briand, E. Arisholm, S. Counsell, F. Houdek and P. Thévenod–Fosse. ‘Empirical studies
of object-oriented artifacts, methods, and processes: state of the art and future directions’. In:
Empirical Software Engineering 4.4 (1999), pp. 387–404.

[75] J. T. Buck, S. Ha, E. A. Lee and D. G. Messerschmitt. ‘Ptolemy: A framework for simulating and
prototyping heterogeneous systems’. In: Int. Journal of Computer Simulation (1994).

[76] T. Bures, P. Hnetynka and F. Plasil. ‘Sofa 2.0: Balancing advanced features in a hierarchical com-
ponent model’. In: Software Engineering Research, Management and Applications, 2006. Fourth
International Conference on. IEEE. 2006, pp. 40–48.

[77] B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G.
Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A. Müller, S. Park, M. Shaw, M.
Tichy, M. Tivoli, D. Weyns and J. Whittle. Software Engineering for Self-Adaptive Systems: A Research
Roadmap. Ed. by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi and J. Magee. Vol. 5525. Betty H.
C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009.

[78] J. Coplien, D. Hoffman and D. Weiss. ‘Commonality and Variability in Software Engineering’. In:
IEEE Software 15.6 (1998), pp. 37–45.

[79] I. Crnkovic, S. Sentilles, A. Vulgarakis and M. R. Chaudron. ‘A classification framework for software
component models’. In: Software Engineering, IEEE Transactions on 37.5 (2011), pp. 593–615.

[80] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. ‘A fast and elitist multiobjective genetic algorithm:
NSGA-II’. In: Evolutionary Computation, IEEE Transactions on 6.2 (2002), pp. 182–197.

[81] R. DeMilli and A. J. Offutt. ‘Constraint-based automatic test data generation’. In: Software Engi-
neering, IEEE Transactions on 17.9 (1991), pp. 900–910.

[82] S. Forrest, A. Somayaji and D. H. Ackley. ‘Building diverse computer systems’. In: Operating
Systems, 1997., The Sixth Workshop on Hot Topics in. IEEE. 1997, pp. 67–72.

[83] R. B. France and B. Rumpe. ‘Model-driven Development of Complex Software: A Research
Roadmap’. In: Proceedings of the Future of Software Engineering Symposium (FOSE ’07). Ed. by
L. C. Briand and A. L. Wolf. IEEE, 2007, pp. 37–54.

[84] S. Frey, F. Fittkau and W. Hasselbring. ‘Search-based genetic optimization for deployment and
reconfiguration of software in the cloud’. In: Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press. 2013, pp. 512–521.

[85] G. Halmans and K. Pohl. ‘Communicating the Variability of a Software-Product Family to Cus-
tomers’. In: Software and System Modeling 2.1 (2003), pp. 15–36.

[86] C. Hardebolle and F. Boulanger. ‘ModHel’X: A component-oriented approach to multi-formalism
modeling’. In: Models in Software Engineering. Springer, 2008, pp. 247–258.

[87] M. Harman and B. F. Jones. ‘Search-based software engineering’. In: Information and Software
Technology 43.14 (2001), pp. 833–839.

[88] H. Hemmati, L. C. Briand, A. Arcuri and S. Ali. ‘An enhanced test case selection approach for
model-based testing: an industrial case study’. In: SIGSOFT FSE. 2010, pp. 267–276.

[89] J. Hutchinson, J. Whittle, M. Rouncefield and S. Kristoffersen. ‘Empirical assessment of MDE in
industry’. In: Proceedings of the 33rd International Conference on Software Engineering (ICSE ’11).
Ed. by R. N. Taylor, H. Gall and N. Medvidovic. ACM, 2011, pp. 471–480.

[90] J.-M. Jézéquel. ‘Model Driven Design and Aspect Weaving’. In: Journal of Software and Systems
Modeling (SoSyM) 7.2 (May 2008), pp. 209–218. URL: http://www.irisa.fr/triskell/publis
/2008/Jezequel08a.pdf.

[91] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Tech. rep. Carnegie-Mellon University Software Engineering
Institute, Nov. 1990.

http://www.irisa.fr/triskell/publis/2008/Jezequel08a.pdf
http://www.irisa.fr/triskell/publis/2008/Jezequel08a.pdf

Project DIVERSE 45

[92] J. Kramer and J. Magee. ‘Self-Managed Systems: an Architectural Challenge’. In: Future of Software
Engineering. IEEE, 2007, pp. 259–268.

[93] K.-K. Lau, P. V. Elizondo and Z. Wang. ‘Exogenous connectors for software components’. In:
Component-Based Software Engineering. Springer, 2005, pp. 90–106.

[94] P. McMinn. ‘Search-based software test data generation: a survey’. In: Software Testing, Verification
and Reliability 14.2 (2004), pp. 105–156.

[95] J. Meekel, T. B. Horton and C. Mellone. ‘Architecting for Domain Variability’. In: ESPRIT ARES
Workshop. 1998, pp. 205–213.

[96] R. Mélisson, P. Merle, D. Romero, R. Rouvoy and L. Seinturier. ‘Reconfigurable run-time support
for distributed service component architectures’. In: the IEEE/ACM international conference. New
York, New York, USA: ACM Press, 2010, p. 171.

[97] A. M. Memon. ‘An event-flow model of GUI-based applications for testing’. In: Software Testing,
Verification and Reliability 17.3 (2007), pp. 137–157.

[98] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey and A. Solberg. ‘Models at Runtime to Support
Dynamic Adaptation’. In: IEEE Computer (Oct. 2009), pp. 46–53. URL: http://www.irisa.fr/t
riskell/publis/2009/Morin09f.pdf.

[99] P.-A. Muller, F. Fleurey and J.-M. Jézéquel. ‘Weaving Executability into Object-Oriented Meta-
Languages’. In: Proc. of MODELS/UML’2005. LNCS. Jamaica: Springer, 2005.

[100] C. Nebut, Y. Le Traon and J.-M. Jézéquel. ‘System Testing of Product Families: from Requirements
to Test Cases’. In: Software Product Lines. Springer Verlag, 2006, pp. 447–478. URL: http://www.i
risa.fr/triskell/publis/2006/Nebut06b.pdf.

[101] C. Nebut, S. Pickin, Y. Le Traon and J.-M. Jézéquel. ‘Automated Requirements-based Generation of
Test Cases for Product Families’. In: Proc. of the 18th IEEE International Conference on Automated
Software Engineering (ASE’03). 2003. URL: http://www.irisa.fr/triskell/publis/2003/ne
but03b.pdf.

[102] L. M. Northrop. ‘A Framework for Software Product Line Practice’. In: Proceedings of the Workshop
on Object-Oriented Technology. London, UK: Springer-Verlag, 1999, pp. 365–366.

[103] L. M. Northrop. ‘SEI’s Software Product Line Tenets’. In: IEEE Softw. 19.4 (2002), pp. 32–40.

[104] I. Ober, S. Graf and I. Ober. ‘Validating timed UML models by simulation and verification’. In:
International Journal on Software Tools for Technology Transfer 8.2 (2006), pp. 128–145.

[105] D. L. Parnas. ‘On the Design and Development of Program Families’. In: IEEE Trans. Softw. Eng.
2.1 (1976), pp. 1–9.

[106] S. Pickin, C. Jard, T. Jéron, J.-M. Jézéquel and Y. Le Traon. ‘Test Synthesis from UML Models of
Distributed Software’. In: IEEE Transactions on Software Engineering 33.4 (Apr. 2007), pp. 252–268.

[107] K. Pohl, G. Böckle and F. J. van der Linden. Software Product Line Engineering: Foundations,
Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[108] B. Randell. ‘System structure for software fault tolerance’. In: Software Engineering, IEEE Transac-
tions on 2 (1975), pp. 220–232.

[109] M. Rinard. ‘Obtaining and reasoning about good enough software’. In: Proceedings of Annual
Design Automation Conference (DAC). 2012, pp. 930–935.

[110] J. Rothenberg, L. E. Widman, K. A. Loparo and N. R. Nielsen. ‘The Nature of Modeling’. In: in
Artificial Intelligence, Simulation and Modeling. John Wiley & Sons, 1989, pp. 75–92.

[111] P. Runeson and M. Höst. ‘Guidelines for conducting and reporting case study research in software
engineering’. In: Empirical Software Engineering 14.2 (2009), pp. 131–164.

[112] D. Schmidt. ‘Guest Editor’s Introduction: Model-Driven Engineering’. In: IEEE Computer 39.2
(2006), pp. 25–31.

[113] F. Shull, J. Singer and D. I. Sjberg. Guide to advanced empirical software engineering. Springer,
2008.

http://www.irisa.fr/triskell/publis/2009/Morin09f.pdf
http://www.irisa.fr/triskell/publis/2009/Morin09f.pdf
http://www.irisa.fr/triskell/publis/2006/Nebut06b.pdf
http://www.irisa.fr/triskell/publis/2006/Nebut06b.pdf
http://www.irisa.fr/triskell/publis/2003/nebut03b.pdf
http://www.irisa.fr/triskell/publis/2003/nebut03b.pdf

46 Inria Annual Report 2020

[114] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann and M. Rinard. ‘Managing performance vs.
accuracy trade-offs with loop perforation’. In: Proc. of the Symp. on Foundations of software
engineering. ESEC/FSE ’11. Szeged, Hungary: ACM, 2011, pp. 124–134.

[115] J. Steel and J.-M. Jézéquel. ‘On Model Typing’. In: Journal of Software and Systems Modeling
(SoSyM) 6.4 (Dec. 2007), pp. 401–414. URL: http://www.irisa.fr/triskell/publis/2007
/Steel07a.pdf.

[116] C. Szyperski, D. Gruntz and S. Murer. Component software: beyond object-oriented programming.
Addison-Wesley, 2002.

[117] J.-C. Trigaux and P. Heymans. Modelling variability requirements in Software Product Lines: a
comparative survey. Tech. rep. FUNDP Namur, 2003.

[118] M. Utting and B. Legeard. Practical model-based testing: a tools approach. Morgan Kaufmann,
2010.

[119] P. Vromant, D. Weyns, S. Malek and J. Andersson. ‘On interacting control loops in self-adaptive
systems’. In: SEAMS 2011. ACM, 2011, pp. 202–207.

[120] C. Yilmaz, M. B. Cohen and A. A. Porter. ‘Covering arrays for efficient fault characterization in
complex configuration spaces’. In: Software Engineering, IEEE Transactions on 32.1 (2006), pp. 20–
34.

[121] Z. A. Zhu, S. Misailovic, J. A. Kelner and M. Rinard. ‘Randomized accuracy-aware program trans-
formations for efficient approximate computations’. In: Proc. of the Symp. on Principles of Pro-
gramming Languages (POPL). 2012, pp. 441–454.

[122] T. Ziadi and J.-M. Jézéquel. ‘Product Line Engineering with the UML: Deriving Products’. In:
Springer Verlag, 2006, pp. 557–586.

http://www.irisa.fr/triskell/publis/2007/Steel07a.pdf
http://www.irisa.fr/triskell/publis/2007/Steel07a.pdf

	Project-Team DIVERSE
	Team members, visitors, external collaborators
	Overall objectives
	Overall objectives

	Research program
	Scientific background
	Model-Driven Engineering
	Variability modeling
	Component-based software development
	Validation and verification
	Empirical software engineering
	Research axis
	Software Language Engineering
	Variability Modeling and Engineering
	Heterogeneous and dynamic software architectures
	Diverse implementations for resilience

	Application domains
	Highlights of the year
	Awards

	New software and platforms
	New software
	amiunique
	FAMILIAR
	GEMOC Studio
	Kevoree
	Melange
	DSpot
	ALE
	InspectorGuidget
	Descartes
	PitMP

	New results
	Results on Variability modeling and management
	Deep software variability
	Managing the software variability at the source code level

	Results on Software Language Engineering
	Foundations
	Applications

	Results on Heterogeneous and dynamic software architectures
	Software architecture and cloud modeling
	Leveraging unused heterogeneous resources for modular applications with SLA guarantees

	Results on Diverse Implementations for Resilience
	Software Co-evolution
	Privacy and Security
	Software Verification

	Bilateral contracts and grants with industry
	Bilateral contracts with industry

	Partnerships and cooperations
	International initiatives
	Inria International Labs

	International research visitors
	Visits of international scientists

	European initiatives
	Collaborations with major European organizations

	National initiatives
	ANR
	DGA

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Journal
	Leadership within the scientific community
	Scientific expertise
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Scientific production
	Major publications
	Publications of the year
	Cited publications

