
2020
ACTIVITY REPORT

Project-Team

DRACULA

RESEARCH CENTRE

Grenoble - Rhône-Alpes

IN PARTNERSHIP WITH:

CNRS, Université Claude Bernard
(Lyon 1)

Multi-scale modelling of cell dynamics :
application to hematopoiesis

IN COLLABORATION WITH: Institut Camille Jordan

DOMAIN

Digital Health, Biology and Earth

THEME

Modeling and Control for Life Sciences



Contents

Project-Team DRACULA 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3
2.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Research axis 1: Mathematical modeling for cell population dynamics . . . . . . . . . . . . 4
2.4 Research axis 2: Multi-scale modeling of hematopoiesis and leukemia . . . . . . . . . . . . . 5
2.5 Research axis 3: Multi-scale modeling of the immune response . . . . . . . . . . . . . . . . . 6
2.6 Evolution of research direction during the last evaluation . . . . . . . . . . . . . . . . . . . . 8

3 Research program 9
3.1 Mixed-effect models and statistical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Development of a simulation platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Mathematical and computational modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 From hybrid dynamics to continuum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Structured partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Delay differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7 Multi-scale modeling of the immune response . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.8 Dynamical network inference from single-cell data . . . . . . . . . . . . . . . . . . . . . . . . 11
3.9 Leukemia modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Application domains 11

5 New software and platforms 12
5.1 New software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1.1 CelDyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 New results 12
6.1 Models of immune response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6.1.1 Modeling and characterization of inter-individual variability in CD8 T cell responses 12
6.1.2 Multiscale modeling of germinal center recapitulates the temporal transition from

memory B cells to plasma cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1.3 Maternal passive immunity and dengue hemorrhagic fever in infants . . . . . . . . . 13
6.1.4 Viral infection model with CTL immunity . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.1.5 Genotype-dependent virus distribution and competition of virus strains . . . . . . . 13
6.1.6 Reaction–diffusion waves in a model of immune response . . . . . . . . . . . . . . . 13
6.1.7 Nonlocal reaction–diffusion model of viral evolution: emergence of virus strains . . 14

6.2 Cell population dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 Model for the propagation of prion proteins in yeast system . . . . . . . . . . . . . . . . . . . 14
6.4 Mathematical models for treatment of cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.4.1 A mathematical model for treatment of papillary thyroid cancer using the allee effect 14
6.4.2 A multiscale model to design therapeutic strategies that overcome drug resistance to

tyrosine kinase inhibitors in multiple myeloma . . . . . . . . . . . . . . . . . . . . . . 15
6.5 COVID-19 (SARS-CoV-2) and epidemiological models . . . . . . . . . . . . . . . . . . . . . . 15

6.5.1 Coronavirus - Scientific insights and societal aspects . . . . . . . . . . . . . . . . . . . 15
6.5.2 On a quarantine model of coronavirus infection and data analysis . . . . . . . . . . . 15
6.5.3 Global dynamics of a differential-difference system: a case of Kermack-McKendrick

SIR model with age-structured protection phase . . . . . . . . . . . . . . . . . . . . . 16
6.6 Stochastic intracellular regulation can remove oscillations in a model of tissue growth . . . 16
6.7 Phenotypic noise and the cost of complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.8 Population dynamics and ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.8.1 Prey-predator model with nonlocal and global consumption in the prey dynamics . 17



6.8.2 Modeling the dynamics of Wolbachia-infected and uninfected A edes aegypti popu-
lations by delay differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.8.3 Spatio-temporal Bazykin’s model for prey-predator interaction . . . . . . . . . . . . . 17
6.8.4 Dynamics of a diffusive two-prey-one-predator model with nonlocal intra-specific

competition for both the prey species . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.9 Periodic waves in neural field models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.9.1 Dynamics of periodic waves in a neural field model . . . . . . . . . . . . . . . . . . . . 18
6.9.2 Nonlinear analysis of periodic waves in a neural field model . . . . . . . . . . . . . . 18
6.9.3 Cortical stimulation in aphasia following ischemic stroke . . . . . . . . . . . . . . . . 18

6.10 Radioprotective effects during human torpor on deep space missions . . . . . . . . . . . . . 18
6.11 Dynamics of solutions of reaction-diffusion equations and non-Fredholm integro-differential

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.11.1 Dynamics of solutions of a reaction-diffusion equation with delayed inhibition . . . 19
6.11.2 Existence of solutions for some non-Fredholm integro-differential equations with

the bi-Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.11.3 Dynamics of convective thermal explosion in porous media . . . . . . . . . . . . . . 20

7 Partnerships and cooperations 20
7.1 International initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.1.1 Inria associate team not involved in an IIL . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 European initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.2.1 FP7 & H2020 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.3 National initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.3.1 ANR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.3.2 Other projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.4 Regional initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Dissemination 22
8.1 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.2 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 Scientific production 23
9.1 Publications of the year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9.2 Cited publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



Project DRACULA 1

Project-Team DRACULA

Creation of the Team: 2010 January 01, updated into Project-Team: 2011 January 01

Keywords

Computer sciences and digital sciences

A6.1. – Methods in mathematical modeling

A6.1.1. – Continuous Modeling (PDE, ODE)

A6.1.2. – Stochastic Modeling

A6.1.3. – Discrete Modeling (multi-agent, people centered)

A6.1.4. – Multiscale modeling

A6.2.1. – Numerical analysis of PDE and ODE

A6.2.3. – Probabilistic methods

A6.2.4. – Statistical methods

A6.3.1. – Inverse problems

Other research topics and application domains

B1.1.2. – Molecular and cellular biology

B1.1.3. – Developmental biology

B1.1.4. – Genetics and genomics

B1.1.5. – Immunology

B1.1.6. – Evolutionnary biology

B1.1.7. – Bioinformatics

B1.1.8. – Mathematical biology

B1.1.10. – Systems and synthetic biology

B2.2.1. – Cardiovascular and respiratory diseases

B2.2.3. – Cancer

B2.2.5. – Immune system diseases

B2.2.6. – Neurodegenerative diseases

https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/OtherResearchTopicsandApplicationDomains.html


2 Inria Annual Report 2020

1 Team members, visitors, external collaborators

Research Scientists

• Mostafa Adimy [Team leader, Inria, Senior Researcher, HDR]

• Samuel Bernard [CNRS, Researcher, HDR]

• Vincent Calvez [CNRS, Researcher, HDR]

• Olivier Gandrillon [CNRS, Senior Researcher, HDR]

• Thomas Lepoutre [Inria, Researcher, HDR]

• Vitaly Volpert [CNRS, Senior Researcher, HDR]

Faculty Members

• Thibault Espinasse [Univ Claude Bernard, Associate Professor]

• Laurent Pujo Menjouet [Univ Claude Bernard, Associate Professor, HDR]

• Leon Matar Tine [Univ Claude Bernard, Associate Professor]

PhD Students

• Ghada Abi Younes [Univ Claude Bernard]

• Kyriaki Dariva [Univ Claude Bernard]

• Leonard Dekens [Univ Claude Bernard]

• Mete Demircigil [École Normale Supérieure de Paris]

• Cheikh Gueye [Senegal]

• Alexey Koshkin [Inria]

• Paul Lemarre [Univ Claude Bernard]

• Elias Ventre [École Normale Supérieure de Lyon]

Interns and Apprentices

• Louis Babin [École Normale Supérieure de Lyon, until Jul 2020]

• Benjamin Faucher [Inria, from Sep 2020]

• Arsene Marzorati [Inria, from Jun 2020 until Aug 2020]

• Clemence Metayer [Inria, from May 2020 until Jun 2020]

• Julien Molina [Inria, from Apr 2020 until Jul 2020]

Administrative Assistant

• Claire Sauer [Inria]

External Collaborator

• Fabien Crauste [CNRS, HDR]



Project DRACULA 3

2 Overall objectives

2.1 Presentation

Dracula is a joint research team between INRIA, Université Claude Bernard Lyon 1 (UCBL) and CNRS
(Institut Camille-Jordan (ICJ, UMR 5208) and Laboratoire de Biologie et Modélisation de la Cellule (LBMC,
UMR 5239)).

The Dracula project is devoted to multi-scale modeling in biology and medicine, and more specifically
to the development of tools and methods to describe multi-scale processes in biology and medicine.
Applications include normal and pathological hematopoiesis (for example leukemia), immune response,
and other biological processes, like: tissue renewal, morphogenesis, atherosclerosis, prion disease,
hormonal regulation of food intake, and so on. Multi-scale modeling implies simultaneous modeling
of several levels of descriptions of biological processes: intra-cellular networks (molecular level), cell
behavior (cellular level), dynamics of cell populations (organ or tissue) with the control by other organs
(organism) (see Figure 1). Such modeling represents one of the major challenges in modern science due
to its importance and because of the complexity of biological phenomena and of the presence of very
different interconnected scales.

Figure 1: Scheme of multi-scale models of cell dynamics

Although multi-scale modeling holds a great potential for biology and medicine, and despite the fact
that a variety of techniques exists to deal with such problems, the complexity of the systems poses new
challenges and needs the development of new tools. Moreover, different biological questions usually
require different types of multi-scale modeling. The expected results of these studies are numerous. On
one hand, they will shed new light on the understanding of specific biological and medical questions
(for instance, what is the behavior of hematopoietic stem cells under pathological conditions? Or
how to efficiently stimulate an immune response in order to design new vaccines?). On the other
hand, the modeling methods developed here for specific processes are relevant to study other complex
biological systems. We pay a special attention on developing methods that are not restricted to one or
two applications.

An important part of our researches is performed in close collaboration with biologists and physicians
in order to stay in contact with the biological and medical goals. The presence, within the project, of a
biologist (Olivier Gandrillon) who has acquired over the years the know-how required for interacting with
mathematicians is probably one of the main assets of the project. He participates actively in many tasks
of our program, stimulates interactions between members of the project and biologists, and everyone
benefits from his expertise in molecular and cell biology.
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2.2 Keywords

Multi-scale modeling; Hybrid modeling; Mathematical Biology; Computational Biology; Immune re-
sponse modeling; Normal and pathological hematopoiesis; Multi-scale cancer modeling; Regulatory
networks; Reaction-diffusion equation; Structured partial differential equations; Delay differential equa-
tions; Agent-based modeling; Dynamical systems.

2.3 Research axis 1: Mathematical modeling for cell population dynamics

Executive summary

Stem cells are essential for development and keep the maintenance of many tissues homeostasis. They
are characterized by their ability to self-renew as well as to produce differentiated cells. They vary
enormously, for each organ, in their proliferation capacity, their potency to produce different cell lineage
and their response to various environmental cues. How a cell will react to a given external signal does
not depend only on its current state but also on its environment. Understanding the effect of cell-to-cell
heterogeneity and the spatial organization of cell populations is therefore necessary to help keeping the
normal function of an organ.

We develop mathematical tools and methods to study cell population dynamics and other biological
processes: stability of steady sates, existence of bifurcations, kinetic properties, spatial organization, in
finely detailed cell populations. The main tools we use are hybrid discrete-continuous models, reaction-
diffusion equations, structured models (in which the population is endowed with relevant structures or
traits), delay differential systems, agent-based models. Our team has acquired an international expertise
in the fields of analysis of reaction-diffusion and structured equations, particularly integro-differential
and delay differential equations.

The mathematical methods we develop are not restricted to hematopoietic system (Research axis 2),
and immune response (Research axis 3), rather we apply them in many other biological phenomena, for
example: tissue renewal, morphogenesis, prion disease, atherosclerosis, hormonal regulation of food
intake, cancer, and others.

Project-team positioning

The focus of this objective is the development, analysis and application of hybrid discrete-continuous,
reaction-diffusion and structured partial differential models. The structured equations allow a fine
description of a population as some structures (age, maturity, intracellular content) change with time.
In many cases, structured equations can be partially integrated to yield integro-differential equations
(ordinary or partial differential equations involving non-local integral terms), time-delay differential or
time-delay partial differential, or coupled differential-difference models. Analysis of integro-differential
and time-delay systems deals with existence of solutions and their stability. Applications are found in the
study of normal and pathological hematopoietic system (Research axis 2), immune response (Research
axis 3), morphogenesis, prion disease, cancer development and treatment, and generally in tissue renewal
problems. Models based on structured equations are especially useful to take into account the effect of
finite time cells take to divide, die or become mature. Reaction-diffusion equations are used in order to
describe spatial distribution of cell populations. It is a well developed area of research in our team which
includes qualitative properties of travelling waves for reaction-diffusion systems with or without delay,
and complex nonlinear dynamics.

Our team has developed a solid expertise in mathematical analysis of reaction-diffusion with or
without delay and structured equations (in particular, delay differential equations) and one of the most
prolific. Other major groups are the teams of Benoit Perthame (Pierre et Marie CURIE University and
Mamba, Paris, https://team.inria.fr/mamba/fr/), Emmanuel Grenier (Ecole normale supérieure
de Lyon and NUMED, https://www.inria.fr/en/teams/numed), Odo Diekmann (Utrecht University,
The Netherlands, https://www.uu.nl/staff/ODiekmann), Avner Friedman (The Ohio State University,
USA, https://people.math.osu.edu/friedman.158/), Jianhong Wu (York University, Canada,
http://liam.lab.yorku.ca/), Glenn Webb (Vanderbilt University, Nashville, USA, https://as.v
anderbilt.edu/math/bio/glenn-webb), Philip K. Maini (University of Oxford, England, https:
//people.maths.ox.ac.uk/maini/), Mark Chaplain (University of St Andrews, Scotland, http:

https://team.inria.fr/mamba/fr/
https://www.inria.fr/en/teams/numed
https://www.uu.nl/staff/ODiekmann
https://people.math.osu.edu/friedman.158/
http://liam.lab.yorku.ca/
https://as.vanderbilt.edu/math/bio/glenn-webb
https://as.vanderbilt.edu/math/bio/glenn-webb
https://people.maths.ox.ac.uk/maini/
https://people.maths.ox.ac.uk/maini/
http://www.mcs.st-andrews.ac.uk/~majc/
http://www.mcs.st-andrews.ac.uk/~majc/
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//www.mcs.st-andrews.ac.uk/~majc/), Nicola Bellomo (University of Turin, Italy, http://staff.
polito.it/nicola.bellomo/index.html). Most of the members of all these groups and of our team
belong to the same mathematical community working on partial differential equations and dynamical
systems with applications to biology and medicine.

Collaborations

• University of Toronto, Canada; Mathematical analysis and applications of reaction-diffusion
equations (more than 30 joint papers).

• Institute of Problems of Mechanical Engineering, St.Petersburg, Russia; Dynamics of cell renewal
(more than 10 joint papers).

• Department of Cell and Molecular Biology and Department of Forensic Medicine, Stockholm,
Sweden; Dynamics of cell generation and turnover (3 joint papers).

• Universities of Tlemcen (Algeria) and Marrakech (Morocco); Delay differential equations (7 joint
papers)

2.4 Research axis 2: Multi-scale modeling of hematopoiesis and leukemia

Executive summary

Hematopoiesis is a complex process that begins with hematopoietic stem cells (HSCs) and results in
formation of mature cells: red blood cells, white cells and platelets. Blood cells are produced in the bone
marrow, from where mature cells are released into the blood stream. Hematopoiesis is based on a balance
between cell proliferation (including self-renewal), differentiation and apoptosis. The choice between
these three possibilities is determined by intra-cellular regulatory networks and by numerous control
mechanisms in the bone marrow or carried out by other organs. Intra-cellular regulatory networks are
complex biochemical reactions involving proteins, enzymes and signalling molecules. The deregulation
of hematopoiesis can result in numerous blood diseases including leukemia (a cancer of blood cells). One
important type of leukemia is Chronic Myeloid Leukemia (CML). The strong tyrosine kinase activity of the
BCR-ABL protein is the basis for the main cell effects that are observed in CML: significant proliferation,
anti-apoptotic effect, disruption of stroma adhesion properties. This explains the presence in CML blood
of a very important number of cells belonging to the myeloid lineage, at all stages of maturation.

Multi-scale modeling in hematopoiesis holds a great potential. A variety of techniques exists to
deal with this problem. However, the complexity of the system poses new difficulties and leads to the
development of new tools. The expected results of this study are numerous. On one hand, it will shed
new light on the different physiological mechanisms that converge toward the continuous regeneration
of blood cells, for example: the understanding of deregulation of erythropoiesis (the process of red blood
cell production) under drug treatments (this can lead to lack of red blood cells (anemia), or a surplus of
red blood cells), the dynamic of leukemic cells under the action of drugs and the control of their resistance
to these treatments.

Project team positioning

Multi-scale modeling of hematopoiesis is one of the key points of the project that has started in the
early stage of the Dracula team. Investigated by all the team members, it took many years of close
discussion with biologists to get the best understanding of the key role played by the most important
molecules, hormones, kinase cascade, cell communication up to the latest knowledge. One of the
important questions here is to identify particular biological mechanisms (intracellular regulation, control
mechanisms) and to integrate them in the different models. Our main work consisted in the development
of a hybrid (continuous/discrete) model for red blood cell progenitor proliferation, survival/death,
differentiation, and migration. Cells are modeled as discrete objects, and the extracellular medium is
described by continuous equations for extracellular concentrations. This is to our knowledge the most
complete model for erythropoiesis to date, and the only one using a multi-scale formalism. Other models

http://www.mcs.st-andrews.ac.uk/~majc/
http://www.mcs.st-andrews.ac.uk/~majc/
http://staff.polito.it/nicola.bellomo/index.html
http://staff.polito.it/nicola.bellomo/index.html
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published by our group and others for hematopoiesis are population-based models, mostly population
structured equations (transport partial differential equations or delay differential equations). The interest
in modeling hematopoiesis dates back to the 70’s and two groups have been responsible for most of
development in the past 40 years: Markus Loeffer’s team in Leipzig, Germany (Wichmann et al. 1976, in
Mathematical Models in Medicine) and Michael Mackey’s team at McGill University, Montreal, Canada
(Mackey 1978, Blood). Our model differs from population based models in that the regulation is directly
modeled at the molecular level (See Figure 1) rather than acting on rates at the population level. Thus we
can take into account non-predictable effects of interactions between different molecular pathways and
between cells that would otherwise be lost in the global population rates.

Regarding modeling leukemia, we concentrated on Chronic Myeloid Leukemia (CML) and its treat-
ment. We considered models based on ordinary differential equations for the action of the main proteins
involved in CML (as BCR-ABL protein), and of transport equations (with or without delay, physiologically
structured or not) to represent healthy and leukemic cell populations, take into account many inter-
actions between proteins (especially BCR-ABL), cells (anti-apoptotic effect, etc.). The development of
models for CML allowed us to interact with Franck Nicolini in Lyon (Centre Hospitalier de Lyon) and
Doron Levy (Maryland University, http://www.math.umd.edu/~dlevy/). Different schools developed
models for CML and its treatment. The three leading groups are the ones of Franziska Michor (Harvard
School of public health, http://michorlab.dfci.harvard.edu/), Ingo Roeder (Institute for Medical
Informatics and Biometry, Dresden, https://tu-dresden.de/med/mf/imb/das-institut) and
Michael Mackey (McGill University, http://www.mcgill.ca/mathematical-physiology-lab/).

Collaborations

Members of the team have worked for several years in collaboration with biologists (François Morlé,
University Lyon 1) and hematologists (Charles Dumontet, Lyon and Mark Koury, Nashville, http://
www.hematology.org/Thehematologist/Authors/298.aspx) on the Modelling of normal and
pathological hematopoiesis .

The work on modeling Leukemia is based on two major collaborations: firstly, an ongoing (since
2011) mathematical collaboration with the University of Maryland through the program Associate Teams
Inria project, “Modelling Leukemia” (http://dracula.univ-lyon1.fr/modelling_leukemia.php).
Secondly, an ongoing (since 2012) collaboration with a clinician from Hospices Civils de Lyon (Dr. F.E.
Nicolini). In this framework, we shall have soon access to the data of the clinical trial PETALs (2×100
patients).

2.5 Research axis 3: Multi-scale modeling of the immune response

Executive summary

Vaccination represents a worldwide health, social and economical challenge as it has allowed the eradica-
tion or the strong containment of several devastating diseases over the past century. However to date,
most of the effective vaccines rely on the generation of neutralizing antibody responses and such vaccines
have proven largely unsuccessful in the prevention against some pathogens, such as HIV or malaria.
In such cases, vaccines geared towards the generation of CD8 T cell immunity may provide a better
protection. The generation of memory CD8 T cells following antigenic immunization is a long process
(lasting up to month in murine preclinical models), therefore strongly slowing the process of vaccine
monitoring in preclinical studies. Thus, the dynamical modeling of the CD8 T cell immune response both
at the cellular and molecular levels should provide an important tool to better understand the dynamics
of the response and to speed-up the process and reduce costs of vaccine development.

However, currently published cellular models of the immune response are either over-simplified, not
predicting important parameters of this response, or too complicated for most of their parameters to be
accessible for experimental measurements, thus impeding their biological validation. Dynamical models
of the CD8 T cell response at the molecular level are very scarce and there is no multi-scale model of the
immune response giving insights into both the regulation at the molecular scale and the consequences
on cell population dynamics.

http://www.math.umd.edu/~dlevy/
http://michorlab.dfci.harvard.edu/
https://tu-dresden.de/med/mf/imb/das-institut
http://www.mcgill.ca/mathematical-physiology-lab/
http://www.hematology.org/Thehematologist/Authors/298.aspx
http://www.hematology.org/Thehematologist/Authors/298.aspx
http://dracula.univ-lyon1.fr/modelling_leukemia.php
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The objective of this research axis is therefore to develop a predictive multi-scale model of the CD8 T
cell response, by confronting the model at different stages to in vivo-acquired experimental data, in order
to be able to investigate the influence of early molecular events on cell population dynamics few days or
weeks later.

Project-team positioning

We are aiming at building and analyzing a multi-scale model of the CD8 T cell immune response, from
the molecular to the cellular and potentially organismal scale. This consists in describing the dynamics at
each scale with relevant formalisms as well as the careful description of the couplings between scales.

Only few research groups are actually working on the CD8 T cell immune response around the
world, and none of them deals with multi-scale modeling of this response. A network developed around
Alan Perelson’s work in theoretical immunology in the last decades, at Los Alamos National Laboratory,
and involves mainly people in various US universities or institutes. In Europe, Rob De Boer’s group
(http://theory.bio.uu.nl/rdb/) of theoretical immunology in Utrecht, Netherlands, is the historical
leader in the CD8 T cell dynamics modeling. We considered the models developed in these groups when
we started our project, and we contributed to improve them by using nonlinearities accounting for cell
population interactions to regulate the response. Also, our initial focus was on the generation of memory
cells associated with vaccine development so we modeled CD8 T cell responses against influenza and
vaccinia viruses, whereas other groups usually consider LCMV in its chronic form.

Ron Germain’s group at the NIH, and Grégoire Altan-Bonnet in subsequent works, focused on the
molecular regulation of the CD4 and CD8 T cell immune responses. In particular, they built the Simmune
software, which allows the modeling and simulation of molecular interactions (https://www.niaid.ni
h.gov/research/simmune-project). This software is not really devoted to multi-scale modeling yet
it provides an interesting tool to describe molecular interactions. Since our aim is to couple molecular
and cellular scales at the tissue level, and we do not want to consider large networks but rather small-
simplified informative interaction networks, we are confident that our approach is complementary of
these works.

Within Inria project-teams, NUMED develops multi-scale approaches for biological problems, and
MAMBA and MONC (https://team.inria.fr/monc/) mention models of cancer progression and
treatment including immune responses. In the first case the methodology is similar, and collaborations
between NUMED and DRACULA already exist (both teams are located in Lyon), but applications differ.
In the second case, MAMBA and MONC are mainly focused on cancer modeling and up to now are
motivated by including an action of the immune system in the fight against cancer, which is very different
from what we are developing. However, both modeling approaches are complementary and could lead
to interactions, in particular in the light of recent advances in medical research pointing towards an
important role - and high expectations - of the immune reaction in fighting cancers. Finally, SISTM
(https://www.inria.fr/en/teams/sistm) also focuses on the modeling of the immune response,
mainly against HIV, but the motivation is very similar to ours: the objective is to provide tools and methods
in order to efficiently develop vaccines. They consider the CD4 T cell response instead of the CD8 T cell
response, and biostatistics to achieve their goals instead of multi-scale models, yet even though there
is no interaction between SISTM and DRACULA at this moment our methods and objectives are close
enough to foreshadow future collaborations.

Collaborations

On this topic our main collaborators are members of Jacqueline Marvel’s team in Lyon in the CIRI
(Centre International de Recherche en Infectiologie INSERM U1111): Dr. Jacqueline Marvel, head of the
team, Dr. Christophe Arpin (CR CNRS), and other technicians and engineers of the team. They are all
immunologists, specialists of the CD8 T cell response and of the generation of memory CD8 T cells.

We also interact with private companies: AltraBio (http://www.altrabio.com/), that provides
tools for data analysis, and CosmoTech, that develops a modeling and simulating platform that should
allow transferring our model on an easy-to-use platform devoted to commercial uses.

http://theory.bio.uu.nl/rdb/
https://www.niaid.nih.gov/research/simmune-project
https://www.niaid.nih.gov/research/simmune-project
https://team.inria.fr/monc/
https://www.inria.fr/en/teams/sistm
http://www.altrabio.com/
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2.6 Evolution of research direction during the last evaluation

Reminder of the objectives given for the last evaluation

The aim of this project is the development of modern tools for multi-scale modeling in biological phe-
nomena. During the period 2014-2017, the objectives we had fixed were to develop modern tools for
multi-scale modeling of biological phenomena, as detailed hereafter:

1. Multi-scale modeling of erythropoiesis, the process of red blood cell production, in order to
describe normal, stress, and pathological erythropoiesis, using mathematical and computational
models. This led to:

2. The modeling of hemoglobin instability in dialysis patients: Thomas Lepoutre has been progres-
sively taking part in this theme through a collaboration with P. Kim (University of Sydney, Australia);

3. Multi-scale modeling of the CD8 T cell immune response, in order to develop a predictive model
of the CD8 T cell response, by confronting the model at different stages to in vivo-acquired experi-
mental data;

4. Population dynamics modeling, with the aim to develop general mathematical tools to study
them. The main tools we were using were structured equations, in which the cell population is
endowed with relevant structures, or traits. We identified limitations in using these formalisms,
this is why we started developing multi-scale approaches;

5. Modeling of Chronic Myeloid Leukemia (CML) treatment, using ordinary differential equations
models. Our team had already developed a first model of mutant leukemic cells being resistant to
chemotherapy. A next step would be to identify the parameters using experimental data;

6. Multi-scale modeling carried out on the basis of hybrid discrete-continuous models, where dis-
sipative particle dynamics (DPD) are used in order to describe individual cells and relatively small
cell populations, partial differential equations (PDE) are used to describe concentrations of bio-
chemical substances in the extracellular matrix, and ordinary differential equations for intracellular
regulatory networks (Figure 1). An emphasis would be made on developing codes that are both
flexible and powerful enough to implement variants of the model, perform simulations, produce
desired outputs, and provide tools for analysis; to do so:

7. We planned to contribute to a recent project named chronos, whose code (written in C++) rep-
resents heterogeneous populations of individual cells evolving in time and interacting physically
and biochemically, and the objective is to make the code flexible enough to implement different
formalisms within the same model, so that different components of the model can be represented
in the most appropriate way;

8. Partial differential equations (PDE) analysis, with a focus on reaction-diffusion equations, trans-
port equations (hyperbolic PDEs) in which the structure can be age, maturity, protein concentration,
etc., with particular cases where transport equations are reduced to delay differential equations
(DDE).

Comments on these objectives over the evaluation period

We have had strong contributions to objectives 1, 3, 4, 5, and consequently to objective 6, as well as to
objective 8, as mentioned in previous sections. These contributions represented the core of the team’s
research activity over the evaluation period, as stressed by our publications. It is however noticeable that
multi-scale modeling of the immune response and of pathological hematopoiesis (leukemia) has come
to represent a proportionally more important part of our activity.

Objective 2 has been cancelled few months after the previous evaluation, following meetings with
clinicians who did not show any particular interest in our approaches. The modeling of chronic myeloid
leukemia instead took a bigger part of the team’s research activity, both project being at the time coordi-
nated by Thomas Lepoutre.
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Objective 7 has been pursued, the project chronos evolved to a better defined project SiMuScale that is
currently being developed and aims at structuring the team’s activity and providing a simulation platform
that could be adapted to various biological questions necessitating multi-scale modeling.

Objectives for the next four years

The main objectives for the next four years are to continue to improve the 3 previous points: 1) Mathemat-
ical and computational modeling for cell population dynamics; 2) Multi-scale modeling of hematopoiesis
and leukemia; 3) Multi-scale modeling of the immune response. In addition, we will pursue our effort
to develop a simulation platform for multi-scale models (SiMuScale) and we intend to develop the use
of mixed effect models and other statistical approaches to deal with the challenges offered by modern
biology, in particular the generation of single cell data.

3 Research program

3.1 Mixed-effect models and statistical approaches

Most of biological and medical data our team has to deal with consist in time series of experimental
measurements (cell counts, gene expression level, etc.). The intrinsic variability of any biological system
complicates its confrontation to models. The trivial use of means, eliminating the data variance, is but a
second-best solution. Furthermore, the amount of data that can be experimentally generated often limits
the use of classical mathematical approaches because model’s identifiability or parameter identifiability
cannot be obtained. In order to overcome this issue and to efficiently take advantage of existing and
available data, we plan to use mixed effect models for various applications (for instance: leukemia
treatment modeling, immune response modeling). Such models were initially developed to account for
individual behaviors within a population by characterizing distributions of parameter values instead of a
unique parameter value. We plan to use those approaches both within that frame (for example, taking
into account longitudinal studies on different patients, or different mice) but also to extend its validity in
a different context: we will consider different ex vivo experiments as being “different individuals”: this
will allow us to make the most of the experience-to-experience variations.

Such approaches need expertise in statistics to be correctly implemented, and we will rely on the
presence of Céline Vial in the team to do so. Céline Vial is an expert in applied statistics and her experience
already motivated the use of better statistical methods in various research themes. The increasing use of
single cell technologies in biology make such approaches necessary and it is going to be critical for the
project to acquire such skills.

3.2 Development of a simulation platform

We have put some effort in developing the SiMuScale platform, a software coded in C++ dedicated to
exploring multiscale population models, since 2014. In order to answer the challenges of multi-scale
modeling it is necessary to possess an all-purpose, fast and flexible modeling tool, and SiMuScale is the
choice we made. Since it is based on a core containing the simulator, and on plug-ins that contain the
biological specifications of each cell, this software will make it easier for members of the team – and
potentially other modelers – to focus on the model and to capitalize on existing models, which all share
the same framework and are compatible with each other. Within the next four years, SiMuScale should
be widely accessible and daily used in the team for multi-scale modeling. It will be developed into a
real-case context, the modeling of the hematopoietic stem cell niche, in collaboration with clinicians
(Eric Solary, INSERM) and physicists (Bertrand Laforge, UPMC).

3.3 Mathematical and computational modeling

Multi-scale modeling of hematopoiesis is one of the key points of the project that has started in the early
stage of the Dracula team. Investigated by the team members, it took many years of close discussion with
biologists to get the best understanding of the key role played by the most important molecules, hormones,
kinase cascade, cell communication up to the latest knowledge. An approach that we used is based
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on hybrid discrete-continuous models, where cells are considered as individual objects, intracellular
regulatory networks are described with ordinary differential equations, extracellular concentrations with
diffusion or diffusion-convection equations (see Figure 1). These modeling tools require the expertise of
all team members to get the most qualitative satisfactory model. The obtained models will be applied
particularly to describe normal and pathological hematopoiesis as well as immune response.

3.4 From hybrid dynamics to continuum mechanics

Hybrid discrete-continuous methods are well adapted to describe biological cells. However, they are not
appropriate for the qualitative investigation of the corresponding phenomena. Therefore, hybrid model
approach should be combined with continuous models. If we consider cell populations as a continuous
medium, then cell concentrations can be described by reaction-diffusion systems of equations with
convective terms. The diffusion terms correspond to a random cell motion and the reaction terms to cell
proliferation, differentiation and death. We will continue our studies of stability, nonlinear dynamics
and pattern formation. Theoretical investigations of reaction-diffusion models will be accompanied by
numerical simulations and will be applied to study cell population dynamic.

3.5 Structured partial differential equations

Hyperbolic problems are also of importance when describing cell population dynamics. They are struc-
tured transport partial differential equations, in which the structure is a characteristic of the considered
population, for instance age, size, maturity, etc. In the scope of multi-scale modeling, protein con-
centrations as structure variables can precisely indicate the nature of cellular events cells undergo
(differentiation, apoptosis), by allowing a representation of cell populations in a multi-dimensional space.
Several questions are still open in the study of this problem, yet we will continue our analysis of these
equations by focusing in particular on the asymptotic behavior of the system (stability, oscillations) and
numerical simulations.

3.6 Delay differential equations

The use of age structure in PDE often leads to a reduction (by integration over the age variable) to
delay differential equations. Delay differential equations are particularly useful for situations where
the processes are controlled through feedback loops acting after a certain time. For example, in the
evolution of cell populations the transmission of control signals can be related to some processes as
division, differentiation, maturation, apoptosis, etc. Delay differential equations offer good tools to study
the behavior of the systems. Our main investigation will be the effect of perturbations of the parameters,
as cell cycle duration, apoptosis, differentiation, self-renewal, etc., on the behavior of the system, in
relation for instance with some pathological situations. The mathematical analysis of delay differential
equations is often complicated and needs the development of new criteria to be performed.

3.7 Multi-scale modeling of the immune response

The main objective of this part is to develop models that make it possible to investigate the dynamics
of the adaptive CD8 T cell immune response, and in particular to focus on the consequences of early
molecular events on the cellular dynamics few days or weeks later: this would help developing predictive
tools of the immune response in order to facilitate vaccine development and reduce costs. This work
requires a close and intensive collaboration with immunologist partners.

We recently published a model of the CD8 T cell immune response characterizing differentiation
stages, identified by biomarkers, able to predict the quantity of memory cells from early measurements (
[38]). In parallel, we improved our multiscale model of the CD8 T cell immune response, by implementing
a full differentiation scheme, from naïve to memory cells, based on a limited set of genes and transcription
factors.

Our first task will be to infer an appropriate gene regulatory network (GRN) using single cell data
analysis (generate transcriptomics data of the CD8 T cell response to diverse pathogens), the previous
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biomarkers we identified and associated to differentiation stages, as well as piecewise-deterministic
Markov processes (Ulysse Herbach’s PhD thesis, ongoing).

Our second task will be to update our multiscale model by first implementing the new differentiation
scheme we identified ( [38]), and second by embedding CD8 T cells with the GRN obtained in our first
task (see above). This will lead to a multi-scale model incorporating description of the CD8 T cell immune
response both at the molecular and the cellular levels (Simon Girel’s PhD thesis, ongoing).

In order to further develop our multiscale model, we will consider an agent-based approach for the
description of the cellular dynamics. Yet, such models, coupled to continuous models describing GRN
dynamics, are computationally expensive, so we will focus on alternative strategies, in particular on
descriptions of the cellular dynamics through both continuous and discrete models, efficiently coupled.
Using discrete models for low cell numbers and continuous (partial differential equations) models for
large cell numbers, with appropriate coupling strategies, can lead to faster numerical simulations, and
consequently can allow performing intense parameter estimation procedures that are necessary to
validate models by confronting them to experimental data, both at the molecular and cellular scales.

The final objective will be to capture CD8 T cell responses in different immunization contexts (different
pathogens, tumor) and to predict cellular outcomes from molecular events.

3.8 Dynamical network inference from single-cell data

Up to now, all of our multiscale models have incorporated a dynamical molecular network that was
build “by hand” after a thorough review of the literature. It would be highly valuable to infer it directly
from gene expression data. However, this remains very challenging from a methodological point of view.
We started exploring an original solution for such inference by using the information contained within
gene expression distributions. Such distributions can be acquired through novel techniques where gene
expression levels are quantified at the single cell level. We propose to view the inference problem as a
fitting procedure for a mechanistic gene network model that is inherently stochastic and takes not only
protein, but also mRNA levels into account. This approach led to very encouraging results [39] and we
will actively pursue in that direction, especially in the light of the foreseeable explosion of single cell data.

3.9 Leukemia modeling

Imatinib and other tyrosine kinase inhibitors (TKIs) have marked a revolution in the treatment of Chronic
Myelogenous Leukemia (CML). Yet, most patients are not cured, and must take their treatment for
life. Deeper mechanistic understanding could improve TKI combination therapies to better control the
residual leukemic cell population. In a collaboration with the Hospital Lyon Sud and the University of
Maryland, we have developed mathematical models that integrate CML and an autologous immune
response ( [35], [36] and [37]). These studies have lent theoretical support to the idea that the immune
system plays a rôle in maintaining remission over long periods. Our mathematical model predicts that
upon treatment discontinuation, the immune system can control the disease and prevent a relapse.
There is however a possibility for relapse via a sneak-though mechanism [35]. Research in the next four
years will focus in the Phase III PETALS trial. In the PETALS trial (https://clinicaltrials.gov/c
t2/show/NCT02201459), the second generation TKI Nilotinib is combined with Peg-IFN, an interferon
that is thought to enhance the immune response. We plan to: 1) Adapt the model to take into account
the early dynamics (first three months). 2) Use a mixed-effect approach to analyse the effect of the
combination, and find population and individual parameters related to treatment efficacy and immune
system response. 3) Optimise long-term treatment strategies to reduce or cease treatment and make
personalised predictions based on mixed-effect parameters, to minimise the long-term probability of
relapse.

4 Application domains

See the previous sections.

https://clinicaltrials.gov/ct2/show/NCT02201459
https://clinicaltrials.gov/ct2/show/NCT02201459
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5 New software and platforms

5.1 New software

5.1.1 CelDyn

Keywords: Modeling, Bioinformatics, Biology

Functional Description: Software "Celdyn" is developed in order to model cell population dynamics for
biological applications. Cells are represented either as soft spheres or they can have more complex
structure. Cells can divide, move, interact with each other or with the surrounding medium.
Different cell types can be introduced. When cells divide, the types of daughter cells are specified.
A user interface is developed.

Authors: Nikolai Bessonov, Vitaly Volpert

Contacts: Nicolas Jourdan, Vitaly Volpert

Participants: Alen Tosenberger, Laurent Pujo-Menjouet, Nikolai Bessonov, Vitaly Volpert

6 New results

6.1 Models of immune response

6.1.1 Modeling and characterization of inter-individual variability in CD8 T cell responses

To develop vaccines, it is mandatory yet challenging to account for inter-individual variability during
immune responses. Even in laboratory mice, T cell responses of single individuals exhibit a high het-
erogeneity that may come from genetic backgrounds, intra-specific processes (e.g. antigen-processing
and presentation) and immunization protocols. To account for inter-individual variability in CD8 T cell
responses in mice, we propose in [4], a dynamical model coupled to a statistical, nonlinear mixed effects
model. Average and individual dynamics during a CD8 T cell response are characterized in different
immunization contexts (vaccinia virus and tumor). On one hand, we identify biological processes that
generate inter-individual variability (activation rate of naive cells, the mortality rate of effector cells,
and dynamics of the immunogen). On the other hand, introducing categorical covariates to analyze
two different immunization regimens, we highlight the steps of the response impacted by immunogens
(priming, differentiation of naive cells, expansion of effector cells and generation of memory cells). The
robustness of the model is assessed by confrontation to new experimental data. Our approach allows
to investigate immune responses in various immunization contexts, when measurements are scarce or
missing, and contributes to a better understanding of inter-individual variability in CD8 T cell immune
responses.

6.1.2 Multiscale modeling of germinal center recapitulates the temporal transition from memory B
cells to plasma cells

Germinal centers play a key role in the adaptive immune system since they are able to produce memory
B cells and plasma cells that produce high affinity antibodies for an effective immune protection. The
mechanisms underlying cell-fate decisions are not well understood but asymmetric division of antigen, B-
cell receptor affinity, interactions between B-cells and T follicular helper cells (triggering CD40 signaling),
and regulatory interactions of transcription factors have all been proposed to play a role. In addition, a
temporal switch from memory B-cell to plasma cell differentiation during the germinal center reaction
has been shown. To investigate if antigen affinity-based Tfh cell help recapitulates the temporal switch
we implemented (see [20]) a multiscale model that integrates cellular interactions with a core gene
regulatory network comprising BCL6, IRF4, and BLIMP1. Using this model we show that affinity-based
CD40 signaling in combination with asymmetric division of B-cells result in switch from memory B-cell
to plasma cell generation during the course of the germinal center reaction. We also show that cell fate
division is unlikely to be (solely) based on asymmetric division of Ag but that BLIMP1 is a more important
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factor. Altogether, our model enables to test the influence of molecular modulations of the CD40 signaling
pathway on the production of germinal center output cells.

6.1.3 Maternal passive immunity and dengue hemorrhagic fever in infants

Dengue hemorrhagic fever (DHF) can occur in primary dengue virus infection of infants less than one
year of age. To understand the presumed role of maternal dengue-specific antibodies received until
birth in the development of this primary DHF in infants, we investigated in [2] a mathematical model
based on a system of nonlinear ordinary differential equations that mimics cells, virus and antibodies
interactions. The neutralization and enhancement activities of maternal antibodies against the virus are
represented by a function derived from experimental data and knowledge from the medical literature.
The analytic study of the model shows the existence of two equilibriums, a disease-free equilibrium and
an endemic one. We performed the asymptotic stability analysis for these two equilibriums. The local
asymptotic stability of the endemic equilibrium (DHF equilibrium) corresponds to the occurrence of
DHF. Numerical results are also presented in order to illustrate the mathematical analysis performed,
highlighting the most important parameters that drive model dynamics. We defined the age at which
DHF occurs as the time when the infection takes off that means at the inflection point of the curve of
infected cell population. We showed that this age corresponds to the one at which maximum enhancing
activity for dengue infection appears. This critical time for the occurrence of DHF is calculated from the
model to be approximately two months after the time for maternal dengue neutralizing antibodies to
degrade below a protective level, which corresponds to what is observed in the experimental data from
the literature.

6.1.4 Viral infection model with CTL immunity

A mathematical model describing viral dynamics in the presence of the latently infected cells and the
cytotoxic T-lymphocytes cells (CTL), taking into consideration the spatial mobility of free viruses, is
presented and studied in [16]. The model includes five nonlinear differential equations describing the
interaction among the uninfected cells, the latently infected cells, the actively infected cells, the free
viruses, and the cellular immune response. First, we establish the existence, positivity, and boundedness
for the suggested diffusion model. Moreover, we prove the global stability of each steady state by con-
structing some suitable Lyapunov functionals. Finally, we validated our theoretical results by numerical
simulations for each case. A review on mathematical modeling of the immune system in homeostasis,
infection and disease is presented in [17].

6.1.5 Genotype-dependent virus distribution and competition of virus strains

Virus density distribution as a function of genotype considered as a continuous variable and of time is
studied with a nonlocal reaction-diffusion equation taking into account virus competition for the host
cells and its elimination by the immune response and by the genotype-dependent mortality, [9]. The
existence of virus strains, that is, of positive stable stationary solutions decaying at infinity, is determined
by the admissible intervals in the genotype space where the genotype-dependent mortality is less than
the virus reproduction rate, and by the immune response under some appropriate assumptions on the
immune response function characterizing virus elimination by immune cells. The competition of virus
strains is studied, first, without immune response and then with the immune response. In the absence of
immune response, the strain dynamics is different in a short time scale where they converge to some
intermediate slowly evolving solutions depending on the initial conditions, and in a long time scale where
their distribution converges to a stationary solution. Immune response can essentially influence the
strain dynamics either stabilizing them or eliminating one of the strains. An antiviral treatment can also
influence the competition of virus strains, and it can lead to the emergence of resistant strains, which
were absent before the treatment because of the competition with susceptible strains.

6.1.6 Reaction–diffusion waves in a model of immune response

In [25], existence of travelling waves is studied for a reaction-diffusion system of equations describing
the distribution of viruses and immune cells in the tissue. The proof uses the Leray-Schauder method
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based on the topological degree for elliptic operators in unbounded domains and on a priori estimates of
solutions in weighted spaces.

6.1.7 Nonlocal reaction–diffusion model of viral evolution: emergence of virus strains

The paper [10] is devoted to the investigation of virus quasi-species evolution and diversification due
to mutations, competition for host cells, and cross-reactive immune responses. The model consists of
a nonlocal reaction-diffusion equation for the virus density depending on the genotype considered to
be a continuous variable and on time. This equation contains two integral terms corresponding to the
nonlocal effects of virus interaction with host cells and with immune cells. In the model, a virus strain is
represented by a localized solution concentrated around some given genotype. Emergence of new strains
corresponds to a periodic wave propagating in the space of genotypes. The conditions of appearance of
such waves and their dynamics are described.

6.2 Cell population dynamics

Platelets upregulate the generation of thrombin and reinforce the fibrin clot which increases the incidence
risk of venous thromboembolism (VTE). However, the role of platelets in the pathogenesis of venous
cardiovascular diseases remains hard to quantify. An experimentally validated model of thrombin
generation dynamics is formulated in [12]. The model predicts that a high platelet count increases
the peak value of generated thrombin as well as the endogenous thrombin potential (ETP) as reported
in experimental data. To investigate the effects of platelets density, shear rate, and wound size on
the initiation of blood coagulation, we calibrate a previously developed model of venous thrombus
formation and implement it in 3D using a novel cell-centered finite-volume solver. We conduct numerical
simulations to reproduce in vitro experiments of blood coagulation in microfluidic capillaries. Then,
we derive a reduced one-equation model of thrombin distribution from the previous model under
simplifying hypotheses and we use it to determine the conditions of clotting initiation on the platelet
count, the shear rate, and the plasma composition. The initiation of clotting also exhibits a threshold
response to the size of the wounded region in good agreement with the reported experimental findings.

6.3 Model for the propagation of prion proteins in yeast system

The use of yeast systems to study the propagation of prions and amyloids has emerged as a crucial aspect
of the global endeavor to understand those mechanisms. Yeast prion systems are intrinsically multi-scale:
the molecular chemical processes are indeed coupled to the cellular processes of cell growth and division
to influence phenotypical traits, observable at the scale of colonies. We introduce in [18] a novel modeling
framework to tackle this difficulty using impulsive differential equations. We apply this approach to the
[PSI+] yeast prion, which is associated with the misconformation and aggregation of Sup35. We build a
model that reproduces and unifies previously conflicting experimental observations on [PSI+] and thus
sheds light onto characteristics of the intracellular molecular processes driving aggregate replication.
In particular our model uncovers a kinetic barrier for aggregate replication at low densities, meaning
the change between prion or prion-free phenotype is a bi-stable transition. This result is based on the
study of prion curing experiments, as well as the phenomenon of colony sectoring, a phenotype which
is often ignored in experimental assays and has never been modeled. Furthermore, our results provide
further insight into the effect of guanidine hydrochloride (GdnHCl) on Sup35 aggregates. To qualitatively
reproduce the GdnHCl curing experiment, aggregate replication must not be completely inhibited, which
suggests the existence of a mechanism different than Hsp104-mediated fragmentation. Those results
are promising for further development of the [PSI+] model, but also for extending the use of this novel
framework to other yeast prion or amyloid systems.

6.4 Mathematical models for treatment of cancer

6.4.1 A mathematical model for treatment of papillary thyroid cancer using the allee effect

The incidence of thyroid cancer is rising all over the world, and the papillary subtype (PTC) is the primary
factor for this increase. The presence of thyroid tumors is commonly associated with increased levels
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of cytokines, such as interleukin 6 (IL-6). Considering PTC patients treated with thyroidectomy and
radioactive iodine (RAI), we propose in [15] an ordinary differential system using four variables: the
RAI activity, the number of cancer cells and the serum concentrations of IL-6 and thyroglobulin (Tg).
Our objective is to study the efficacy of different therapeutic doses of RAI in the treatment of thyroid
cancer. The Allee effect is taken into account when modeling cancer cells growth under the influence of
IL-6. From the results obtained, the main factors and conditions correlated with successful treatment,
such as the RAI activity used and the tumor response are addressed. The detection of minimal doses of
RAI that can cause tumor extinction is performed, though this has also meant longer periods for tumor
cell elimination. The critical number of tumor cells due to the Allee effect is analyzed and linked to the
immune system or biological factors that can slow the progression of the tumor but are insufficient after
thyroid resection surgery.

6.4.2 A multiscale model to design therapeutic strategies that overcome drug resistance to tyrosine
kinase inhibitors in multiple myeloma

Drug resistance (DR) is a phenomenon characterized by the tolerance of a disease to pharmaceutical
treatment. In cancer patients, DR is one of the main challenges that limit the therapeutic potential of the
existing treatments. Therefore, overcoming DR by restoring the sensitivity of cancer cells would be greatly
beneficial. In this context, mathematical modeling can be used to provide novel therapeutic strategies
that maximize the efficiency of anti-cancer agents and potentially overcome DR. In [13], we present a
new multiscale model devoted to the interaction of potential treatments with multiple myeloma (MM)
development. In this model, MM cells are represented as individual objects that move, divide, and die
by apoptosis. The fate of each cell depends on intracellular and extracellular regulation, as well as the
administered treatment. The model is used to explore the combined effects of a tyrosine-kinase inhibitor
(TKI) with a pentose phosphate pathway (PPP) inhibitor. We use numerical simulations to tailor effective
and safe treatment regimens that may eradicate the MM tumors. The model suggests that an interval for
the daily dose of the PPP inhibitor can maximize the responsiveness of MM cells to the treatment with
TKIs. Then, it demonstrates that the combination of high-dose pulsatile TKI treatment with high-dose
daily PPP inhibitor therapy can potentially eradicate the tumor. Predictions of numerical simulations
using such a model can be considered as testable hypotheses in future pre-clinical experiments and
clinical studies.

6.5 COVID-19 (SARS-CoV-2) and epidemiological models

6.5.1 Coronavirus - Scientific insights and societal aspects

In December 2019, the first case of infection with a new virus COVID-19 (SARS-CoV-2), named coron-
avirus, was reported in the city of Wuhan, China. At that time, almost nobody paid any attention to it. The
new pathogen, however, fast proved to be extremely infectious and dangerous. Over the few months that
followed, coronavirus has spread over entire world. At the end of March, the total number of infections
is fast approaching the psychological threshold of one million, resulting so far in tens of thousands of
deaths. Due to the high number of lives already lost and the virus high potential for further spread, and
due to its huge overall impact on the economies and societies, it is widely admitted that coronavirus
poses the biggest challenge to the humanity after the second World war. The COVID-19 epidemic is
provoking numerous questions at all levels. It also shows that modern society is extremely vulnerable
and unprepared to such events. A wide scientific and public discussion becomes urgent. Some possible
directions of this discussion are suggested in [26] and [27].

6.5.2 On a quarantine model of coronavirus infection and data analysis

Attempts to curb the spread of coronavirus by introducing strict quarantine measures apparently have
different effect in different countries: while the number of new cases has reportedly decreased in China
and South Korea, it still exhibit significant growth in Italy and other countries across Europe. In the
brief note [28], we endeavour to assess the efficiency of quarantine measures by means of mathematical
modelling. Instead of the classical SIR model, we introduce a new model of infection progression under
the assumption that all infected individual are isolated after the incubation period in such a way that they
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cannot infect other people. Disease progression in this model is determined by the basic reproduction
number R0 (the number of newly infected individuals during the incubation period), which is different
compared to that for the standard SIR model. If R0>1, then the number of latently infected individuals
exponentially grows. However, if R0<1 (e.g. due to quarantine measures and contact restrictions imposed
by public authorities), then the number of infected decays exponentially. We then consider the available
data on the disease development in different countries to show that there are three possible patterns:
growth dynamics, growth-decays dynamics, and patchy dynamics (growth-decay-growth). Analysis of
the data in China and Korea shows that the peak of infection (maximum of daily cases) is reached about
10 days after the restricting measures are introduced. During this period of time, the growth rate of the
total number of infected was gradually decreasing. However, the growth rate remains exponential in Italy.
Arguably, it suggests that the introduced quarantine is not sufficient and stricter measures are needed.

6.5.3 Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model
with age-structured protection phase

In [1], we are concerned with an epidemic model of susceptible, infected and recovered (SIR) population
dynamic by considering an age-structured phase of protection with limited duration, for instance due to
vaccination or drugs with temporary immunity. The model is reduced to a delay differential-difference
system, where the delay is the duration of the protection phase. We investigate the local asymptotic
stability of the two steady states: disease-free and endemic. We also establish when the endemic steady
state exists, the uniform persistence of the disease. We construct quadratic and logarithmic Lyapunov
functions to establish the global asymptotic stability of the two steady states. We prove that the global
stability is completely determined by the basic reproduction number.

6.6 Stochastic intracellular regulation can remove oscillations in a model of tissue
growth

The paper [5] is devoted to the analysis of cell population dynamics where cells make a choice between
differentiation and apoptosis. This choice is based on the values of intracellular proteins whose concen-
trations are described by a system of ordinary differential equations with bistable dynamics. Intracellular
regulation and cell fate are controlled by the extracellular regulation through the number of differentiated
cells. It is shown that the total cell number necessarily oscillates if the initial condition in the intracellular
regulation is fixed. These oscillations can be suppressed if the initial condition is a random variable with
a sufficiently large variation. Thus, the result of the work suggests a possible answer to the question about
the role of stochasticity in the intracellular regulation.

6.7 Phenotypic noise and the cost of complexity

Experimental studies demonstrate the existence of phenotypic diversity despite constant genotype
and environment. Theoretical models based on a single phenotypic character predict that during an
adaptation event, phenotypic noise should be positively selected far from the fitness optimum because
it increases the fitness of the genotype, and then be selected against when the population reaches the
optimum. It is suggested that because of this fitness gain, phenotypic noise should promote adaptive
evolution. However, it is unclear how the selective advantage of phenotypic noise is linked to the rate
of evolution, and whether any advantage would hold for more realistic, multidimensional phenotypes.
Indeed, complex organisms suffer a cost of complexity, where beneficial mutations become rarer as the
number of phenotypic characters increases. Using a quantitative genetics approach, we first show, [23],
that for a one-dimensional phenotype, phenotypic noise promotes adaptive evolution on plateaus of
positive fitness, independently from the direct selective advantage on fitness. Second, we show that
for multidimensional phenotypes, phenotypic noise evolves to a low-dimensional configuration, with
elevated noise in the direction of the fitness optimum. Such a dimensionality reduction of the phenotypic
noise promotes adaptive evolution and numerical simulations show that it reduces the cost of complexity.
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6.8 Population dynamics and ecology

6.8.1 Prey-predator model with nonlocal and global consumption in the prey dynamics

A prey-predator model with a nonlocal or global consumption of resources by prey is studied in [6].
Linear stability analysis about the homogeneous in space stationary solution is carried out to determine
the conditions of the bifurcation of stationary and moving pulses in the case of global consumption.
Their existence is confirmed in numerical simulations. Periodic travelling waves and multiple pulses are
observed for the nonlocal consumption.

6.8.2 Modeling the dynamics of Wolbachia-infected and uninfected A edes aegypti populations by
delay differential equations

In the paper [7], starting from an age structured partial differential model, constructed taking into account
the mosquito life cycle and the main features of the Wolbachia-infection, we derived a delay differential
model using the method of characteristics, to study the colonization and persistence of the Wolbachia-
transinfected Aedes aegypti mosquito in an environment where the uninfected wild mosquito population
is already established. Under some conditions, the model can be reduced to a Nicholson-type delay
differential system; here, the delay represents the duration of mosquito immature phase that comprises
egg, larva and pupa. In addition to mortality and oviposition rates characteristic of the life cycle of
the mosquito, other biological features such as cytoplasmic incompatibility, bacterial inheritance, and
deviation on sex ratio are considered in the model. The model presents three equilibriums: the extinction
of both populations, the extinction of Wolbachia-infected population and persistence of uninfected one,
and the coexistence. The conditions of existence for each equilibrium are obtained analytically and
have been interpreted biologically. It is shown that the increase of the delay can promote, through Hopf
bifurcation, stability switch towards instability for the nonzero equilibriums. Overall, when the delay
increases and crosses predetermined thresholds, the populations go to extinction.

6.8.3 Spatio-temporal Bazykin’s model for prey-predator interaction

The paper [22] deals with a reaction-diffusion model for prey-predator interaction with Bazykin’s reaction
kinetics and a nonlocal interaction term in prey growth. The kernel of the integral characterizes nonlocal
consumption of resources and depends on space and time. Linear stability analysis determines the
conditions of the emergence of Turing patterns without and with nonlocal term, while weakly nonlinear
analysis allows the derivation of amplitude equations. The bifurcation analysis and numerical simulation
carried out in this work reveal the existence of stationary and dynamic patterns appearing due to the loss
of stability of the coexistence homogeneous steady-state.

6.8.4 Dynamics of a diffusive two-prey-one-predator model with nonlocal intra-specific competi-
tion for both the prey species

Investigation of interacting populations is an active area of research, and various modeling approaches
have been adopted to describe their dynamics. Mathematical models of such interactions using differ-
ential equations are capable to mimic the stationary and oscillating (regular or irregular) population
distributions. Recently, some researchers have paid their attention to explain the consequences of tran-
sient dynamics of population density (especially the long transients) and able to capture such behaviors
with simple models. Existence of multiple stationary patches and settlement to a stable distribution
after a long quasi-stable transient dynamics can be explained by spatiotemporal models with nonlocal
interaction terms. However, the studies of such interesting phenomena for three interacting species are
not abundant in literature. Motivated by these facts here we have considered in [19] a three species prey-
predator model where the predator is generalist in nature as it survives on two prey species. Nonlocalities
are introduced in the intra-specific competition terms for the two prey species in order to model the
accessibility of nearby resources. Using linear analysis, we have derived the Turing instability conditions
for both the spatiotemporal models with and without nonlocal interactions. Validation of such conditions
indicates the possibility of existence of stationary spatially heterogeneous distributions for all the three
species. Existence of long transient dynamics has been presented under certain parametric domain.
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Exhaustive numerical simulations reveal various scenarios of stabilization of population distribution
due to the presence of nonlocal intra-specific competition for the two prey species. Chaotic oscillation
exhibited by the temporal model is significantly suppressed when the populations are allowed to move
over their habitat and prey species can access the nearby resources.

6.9 Periodic waves in neural field models

6.9.1 Dynamics of periodic waves in a neural field model

Periodic traveling waves are observed in various brain activities, including visual, motor, language,
sleep, and so on. There are several neural field models describing periodic waves assuming nonlocal
interaction, and possibly, inhibition, time delay or some other properties. In [8], we study the influences
of asymmetric connectivity functions and of time delay for symmetric connectivity functions on the
emergence of periodic waves and their properties. Nonlinear wave dynamics are studied, including
modulated and aperiodic waves. Multiplicity of waves for the same values of parameters is observed.
External stimulation in order to restore wave propagation in a damaged tissue is discussed.

6.9.2 Nonlinear analysis of periodic waves in a neural field model

In the paper [14], we consider the possible role of epicenters and explore a neural field model with two
nonlinear integrodifferential equations for the distributions of activating and inhibiting signals. It is
studied with symmetric connectivity functions characterizing signal exchange between two populations
of neurons, excitatory and inhibitory. Bifurcation analysis is used to investigate the emergence of periodic
traveling waves and of standing oscillations from the stationary, spatially homogeneous solutions, and
the stability of these solutions. Both types of solutions can be started by local oscillations indicating a
possible role of epicenters in the initiation of wave propagation.

6.9.3 Cortical stimulation in aphasia following ischemic stroke

The aim of the paper [11] is to integrate different bodies of research including brain traveling waves,
brain neuromodulation, neural field modeling and post-stroke language disorders in order to explore the
opportunity of implementing model-guided, cortical neuromodulation for the treatment of post-stroke
aphasia. Worldwide according to WHO, strokes are the second leading cause of death and the third
leading cause of disability. In ischemic stroke, there is not enough blood supply to provide enough oxygen
and nutrients to parts of the brain, while in hemorrhagic stroke, there is bleeding within the enclosed
cranial cavity. The present paper focuses on ischemic stroke. We first review accumulating observations of
traveling waves occurring spontaneously or triggered by external stimuli in healthy subjects as well as in
patients with brain disorders. We examine the putative functions of these waves and focus on post-stroke
aphasia observed when brain language networks become fragmented or partly silent, thus perturbing the
progression of traveling waves across perilesional areas. Secondly, we focus on a simplified model based
on the current literature in the field and describe cortical traveling wave dynamics and their modulation.
This model uses a biophysically realistic integrodifferential equation describing spatially distributed and
synaptically coupled neural networks producing traveling wave solutions. The model is used to calculate
wave parameters (speed, amplitude and frequency) and to guide the reconstruction of the perturbed
wave. A stimulation term is included in the model to restore wave propagation to a reasonably good level.
Thirdly, we examine various issues related to the implementation model-guided neuromodulation in the
treatment of post-stroke aphasia given that closed-loop invasive brain stimulation studies have recently
produced encouraging results. Finally, we suggest that modulating traveling waves by acting selectively
and dynamically across space and time to facilitate wave propagation is a promising therapeutic strategy
especially at a time when a new generation of closed-loop cortical stimulation systems is about to arrive
on the market.

6.10 Radioprotective effects during human torpor on deep space missions

Human metabolic suppression is not a new concept, with 1950s scientific literature and movies demon-
strating its potential use for deep space travel (Hock, 1960). An artificially induced state of metabolic
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suppression in the form of torpor would improve the amount of supplies required and therefore lessen
weight and fuel required for missions to Mars and beyond (Choukèr et al., 2019). Transfer habitats for
human stasis to Mars have been conceived (Bradford et al., 2018). Evidence suggests that animals, when
hibernating, demonstrate relative radioprotection compared to their awake state. Experiments have also
demonstrated relative radioprotection in conditions of hypothermia as well as during sleep (Bellesi et al.,
2016 and Andersen et al., 2009). Circadian rhythm disrupted cells also appear to be more susceptible to
radiation damage compared to those that are under a rhythmic control (Dakup et al., 2018).
An induced torpor state for astronauts on deep space missions may provide a biological radioprotective
state due to a decreased metabolism and hypothermic conditions. A regular enforced circadian rhythm
might further limit DNA damage from radiation.
The As Low As Reasonably Achievable (A.L.A.R.A.) radiation protection concept defines time, distance
and shielding as ways to decrease radiation exposure. Whilst distance cannot be altered in space and
shielding either passively or actively may be beneficial, time of exposure may be drastically decreased
with improved propulsion systems. Whilst chemical propulsion systems have superior thrust to other
systems, they lack high changes in velocity and fuel efficiency which can be achieved with nuclear or
electric based propulsion systems.
Radiation toxicity could be limited by reduced transit times, combined with the radioprotective effects of
enforced circadian rhythms during a state of torpor or hibernation.
The objectives of the paper [24] are, first to investigate how the circadian clock and body temperature
may contribute to radioprotection during human torpor on deep space missions, and second to estimate
radiation dose received by astronauts during a transit to Mars with varying propulsion systems.
We simulated three types of conditions to investigate the potential radioprotective effect of the circadian
clock and decreased temperature on cells being exposed to radiation such that may be the case during
astronaut torpor. These conditions were: 1) Circadian clock strength: strong vs weak; 2) Light exposure:
dark-dark vs light-dark cycle; 3) Body temperature: 37C vs hypothermia vs torpor.
We estimated transit times for a mission to Mars from Earth utilizing chemical, nuclear and electrical
propulsion systems. Transit times were generated using the General Mission Analysis Tool (GMAT) and
Matlab. These times were then input into the National Aeronautics and Space Administration (NASA)
Online Tool for the Assessment of Radiation In Space (OLTARIS) computer simulator to estimate doses
received by an astronaut for the three propulsion methods.
Our simulation demonstrated an increase in radioprotection with decreasing temperature. The greatest
degree of radioprotection was shown in cells that maintained a strong circadian clock during torpor.
This was in contrast to relatively lower radioprotection in cells with a weak clock during normothermia.
We were also able to demonstrate that if torpor weakened the circadian clock, a protective effect could
be partially restored by an external drive such as lighting schedules to aid entrainment i.e.: Blue light
exposure for periods of awake and no light for rest times. For the propulsion simulation, estimated transit
times from Earth to Mars were 258 days for chemical propulsion with 165.9mSv received, 209 days for
nuclear propulsion with 134.4mSv received and 80 days for electrical propulsion with 51.4mSv received.
A state of torpor for astronauts on deep space missions may not only improve weight, fuel and storage
requirements but also provide a potential biological radiation protection strategy. Moreover, maintaining
a controlled circadian rhythm during torpor conditions may aid radioprotection. In the not too distant
future, propulsion techniques will be improved to limit transit time and hence decrease radiation dose to
astronauts. Limiting exposure time and enhancing physiological radioprotection during transit could
provide superior radioprotection benefits compared with active and passive radiation shielding strategies
alone.

6.11 Dynamics of solutions of reaction-diffusion equations and non-Fredholm integro-
differential equations

6.11.1 Dynamics of solutions of a reaction-diffusion equation with delayed inhibition

Reaction-diffusion equation with a logistic production term and a delayed inhibition term is studied
in [21]. Global stability of the homogeneous in space equilibrium is proved under some conditions on
the delay term. In the case where these conditions are not satisfied, this solution can become unstable
resulting in the emergence of spatiotemporal pattern formation studied in numerical simulations.
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6.11.2 Existence of solutions for some non-Fredholm integro-differential equations with the bi-Laplacian

In the paper [29], we prove the existence of solutions for some semilinear elliptic equations in the
appropriate spaces using the fixed-point technique where the elliptic equation contains fourth-order
differential operators with and without Fredholm property, generalizing the previous results.

6.11.3 Dynamics of convective thermal explosion in porous media

In the paper [3], we study complex dynamics of the interaction between natural convection and thermal
explosion in porous media. This process is modeled with the nonlinear heat equation coupled with the
nonstationary Darcy equation under the Boussinesq approximation for a fluid-saturated porous medium
in a rectangular domain. Numerical simulations with the Radial Basis Functions Method (RBFM) reveal
complex dynamics of solutions and transitions to chaos after a sequence of period doubling bifurcations.
Several periodic windows alternate with chaotic regimes due to intermittence or crisis. After the last
chaotic regime, a final periodic solution precedes transition to thermal explosion.

7 Partnerships and cooperations

7.1 International initiatives

7.1.1 Inria associate team not involved in an IIL

MathModelingHematopoiesis

Title: Mathematical modeling of hematopoietic stem cell dynamics in normal and pathological hematopoiesis
with optimal control for drug therapy

Duration: 2019 - 2020

Coordinator: Mostafa Adimy

Partners: Department of Mathematics, Presidency University, Kolkata (India)

Inria contact: Mostafa Adimy

Summary: The project proposes to develop and analyse new mathematical models of Hematopoietic
Stem Cell population dynamics in normal and pathological hematopoiesis. Two important ques-
tions will be explored in this project: i) the biological data concerning the hematopoiesis process
evolves constantly, and new understanding modifies the established mathematical models, ii)
modeling constraints us to simplify the complicated biological scenarios, which moving away from
the reality, but enabling us to reach a certain comprehension of the hematopoiesis process.
The project will shed new light on the different physiological mechanisms that converge toward
the continuous regeneration of blood cells, for example: the behavior of hematopoietic stem cells
under stress conditions, the understanding of deregulation of erythropoiesis under drug treatments
(this can lead to lack of red blood cells (anemia), or a surplus of red blood cells (erythrocytoses)),
the appearance of oscillations in patients with Chronic Myeloid Leukemia (CML); Or, the over-
production of blasts in patients with Acute Myeloid Leukemia (AML)). The effect of the immune
system and drug therapy in the presence of CML or AML will be included in the model and optimal
control method will also be used.

7.2 European initiatives

7.2.1 FP7 & H2020 Projects

COSMIC

Title: COmbatting disorders of adaptive immunity with Systems MedICine

Duration: 2018-2021
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Coordinator: Antpoine van Kampen

Partners:

• Bioinformatics Laboratory, Dept. of Pathology and Rheumatology and clinical immunology,
ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM (Netherlands)

• ANAXOMICS BIOTECH S.L. (ANX) (Spain)

• Biotecture (Netherlands)

• ELEVATE BV (Netherlands)

• ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (Greece)

• HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH (Germany)

• IBM RESEARCH GMBH (Switzerland)

• KAROLINSKA INSTITUTET (Sweden)

• REDOXIS AB (Sweden)

Inria contact: Olivier Gandrillon

Summary: COSMIC delivers the next generation of systems medicine professionals who successfully
combat complex human disorders. We will focus on B-cell lymphoma and rheumatoid arthritis,
diseases that originate from abnormal functioning of the adaptive immune system, in particular the
germinal center. COSMIC develops and integrates experimental and computational approaches,
and establishes a unique cross-fertilization between oncology and auto-immunity.

7.3 National initiatives

7.3.1 ANR

• ANR SinCity “Single cell transcriptomics on genealogically identified differentiating cells” (https:
//anr.fr/Projet-ANR-17-CE12-0031), 2017-2020.

Participants Olivier Gandrillon (Coordinator).

• Olivier Gandrillon participates in the ANR MEMOIRE (head Jacqueline Marvel) dedicated to “Multi-
scalE MOdeling of CD8 T cell Immune REsponses”, 2018-2021.

7.3.2 Other projects

• Thomas Lepoutre is a member of the ERC MESOPROBIO (head Vincent Calvez) dedicated to
"Mesoscopic models for propagation in biology", 2015-2020: (http://vcalvez.perso.math.c
nrs.fr/mesoprobio.html).

7.4 Regional initiatives

The Région ARA project INGERENCE dedicated to “INferring GEne REgulatory NEtworks from single CEll
Data to improve vaccine design", 2018-2021.
Participants : Olivier Gandrillon, Fabien Crauste [Coordinator].

https://anr.fr/Projet-ANR-17-CE12-0031
https://anr.fr/Projet-ANR-17-CE12-0031
http://vcalvez.perso.math.cnrs.fr/mesoprobio.html
http://vcalvez.perso.math.cnrs.fr/mesoprobio.html
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8 Dissemination

8.1 Teaching

• Licence: Laurent Pujo-Menjouet, Fondamentaux des mathématiques, 138h EQTD, L1, UCBL 1

• Licence: Laurent Pujo-Menjouet, 3ème année biosciences BIM, Systèmes Dynamiques et EDP, 45h
EQTD, INSA Lyon

• Licence : Léon Tine, Techniques mathématiques de base, 53h (EqTD), niveau L0, UCBL 1

• Licence : Léon Tine, Techniques mathématiques de base, 62h (EqTD), niveau L1, UCBL 1

• Licence : Léon Tine, Initiation LaTex+ stage, 12h (EqTD), niveau L3, UCBL 1

• Licence : Vincent Calvez, Cours de math pour étudiants médecins, cursus Médecine-Sciences
(2emr année fac de médecine), 40h, Lyon Est/Sud

• Master : Samuel Bernard, Population Dynamics, 36h ETD, M2, UCBL 1

• Master : Mostafa Adimy, Population Dynamics, 9h ETD, M2, UCBL, UCBL 1

• Master : Mostafa Adimy, Epidemiology, 21h ETD, M2, UCBL, UCBL 1

• Master: Thomas Lepoutre, préparation à l’option pour l’agrégation, 45 h eq TD, M2 UCBL 1

• Master: Laurent Pujo-Menjouet, Systèmes Dynamiques, 72 h EQTD, M1, UCBL1

• Master: Laurent Pujo-Menjouet, Systèmes complexes: modelling biology and medicine, M2, 9h
EQTD, ENS-Lyon

• Master: Laurent Pujo-Menjouet, 4ème année biosciences BIM: ED-EDP, 24h EQTD, INSA Lyon

• Master: Léon Tine, Maths en action, Remise à niveau analyse, 12h (EqTD), niveau M2, UCBL 1

• Master: Léon Tine, Maths en action, épidémiologie, 18h (EqTD), niveau M2, UCBL 1

• Master: Vincent Calvez, Modèles mathématiques et analyse pour Ecologie et Evolution, 24h, niveau
M2 avancé, ENS-Lyon

8.2 Supervision

• PhD in progress: Kyriaki Dariva , “Modélisation mathématique des interactions avec le système im-
munitaire en leucémie myéloide chronique”. Université Lyon 1, since September 2018, supervisor:
Thomas Lepoutre

• PhD in progress: Alexey Koshkin, “Inferring gene regulatory networks from single cell data”, ENS de
Lyon, since September 2018, supervisors: Olivier Gandrillon and Fabien Crauste

• PhD in progress: Paul Lemarre, “Modélisation des souches de prions”. Université Lyon 1, since May
2017, supervisors: Laurent Pujo-Menjouet et Suzanne Sindi (University of California, Merced)

• PhD in progress: Léonard Dekens, “Adaptation d’une population avec une reproduction sexuée
à un environnement hétérogène : modélisation mathématique et analyse asymptotique dans un
régime de petite variance”, Université Lyon 1, since September 2019, supervisor: Vincent Calvez.

• PhD in progress: Mete Demircigil, “Etude du mouvement collectif chez Dictyostelium Discoideum
et autres espèces. Modélisation, Analyse et Simulation”, ENS-Lyon, since September 2019, supervi-
sor: Vincent Calvez.

• PhD in progress: Ghada Abi Younes, “Modélisation mathématique des maladies inflammatoires”,
Université Lyon, since November 2019, supervisor: Vitaly Volpert.
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• PhD in progress: Elias Ventre, “Paysage et trajectoire - des réseaux de régulation génique aux
trajectoires cellulaires", ENS, since October 2019, supervisors: Olivier Gandrillons and Thibault
Espinasse.

• PhD in progress: Cheikh Gueye, “Problèmes inverses pour l’estimation de paramètre de modèles
mathématiques”, Université Lyon, since October 2019, supervisors: Laurent Pujo-Menjouet and
Léon Tine.
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