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2 Overall objectives

The Flowers project-team, at Inria, University of Bordeaux and Ensta ParisTech, studies models of
open-ended development and learning. These models are used as tools to help us understand better
how children learn, as well as to build machines that learn like children, i.e. developmental artificial
intelligence, with applications in educational technologies, automated discovery, robotics and human-
computer interaction.

A major scientific challenge in artificial intelligence and cognitive sciences is to understand how
humans and machines can efficiently acquire world models, as well as open and cumulative repertoires
of skills over an extended time span. Processes of sensorimotor, cognitive and social development
are organized along ordered phases of increasing complexity, and result from the complex interaction
between the brain/body with its physical and social environment.

To advance the fundamental understanding of mechanisms of development, the FLOWERS team
develops computational models that leverage advanced machine learning techniques such as
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intrinsically motivated deep reinforcement learning, in strong collaboration with developmental
psychology and neuroscience. In particular, the team focuses on models of intrinsically motivated
learning and exploration (also called curiosity-driven learning), with mechanisms enabling agents to
learn to represent and generate their own goals, self-organizing a learning curriculum for efficient
learning of world models and skill repertoire under limited resources of time, energy and compute. The
team also studies how autonomous learning mechanisms can enable humans and machines to acquire
grounded language skills, using neuro-symbolic architectures for learning structured representations
and handling systematic compositionality and generalization.

Beyond leading to new theories and new experimental paradigms to understand human
development in cognitive science, as well as new fundamental approaches to developmental machine
learning, the team explores how such models can find applications in robotics, human-computer
interaction, multi-agent systems, automated discovery and educational technologies. In robotics, the
team studies how artificial curiosity combined with imitation learning can provide essential building
blocks allowing robots to acquire multiple tasks through natural interaction with naïve human users, for
example in the context of assistive robotics. The team also studies how models of curiosity-driven
learning can be transposed in algorithms for intelligent tutoring systems, allowing educational software
to incrementally and dynamically adapt to the particularities of each human learner, and proposing
personalized sequences of teaching activities.

Research axes The work of FLOWERS is organized around the following axis:

• Curiosity-driven exploration and sensorimotor learning: intrinsic motivation are mechanisms
that have been identified by developmental psychologists to explain important forms of
spontaneous exploration and curiosity. In FLOWERS, we try to develop computational intrinsic
motivation systems, and test them on embodied machines, allowing to regulate the growth of
complexity in exploratory behaviours. These mechanisms are studied as active learning
mechanisms, allowing to learn efficiently in large inhomogeneous sensorimotor spaces and
environments;

• Cumulative learning of sensorimotor skills: FLOWERS develops machine learning algorithms
that can allow embodied machines to acquire cumulatively sensorimotor skills. In particular, we
develop optimization and reinforcement learning systems which allow robots to discover and learn
dictionaries of motor primitives, and then combine them to form higher-level sensorimotor skills.

• Natural and intuitive social learning: FLOWERS develops interaction frameworks and learning
mechanisms allowing non-engineer humans to teach a robot naturally. This involves two sub-
themes: 1) techniques allowing for natural and intuitive human-robot interaction, including simple
ergonomic interfaces for establishing joint attention; 2) learning mechanisms that allow the robot
to use the guidance hints provided by the human to teach new skills;

• Discovering and abstracting the structure of sets of uninterpreted sensors and motors:
FLOWERS studies mechanisms that allow a robot to infer structural information out of sets of
sensorimotor channels whose semantics is unknown, for example the topology of the body and the
sensorimotor contingencies (propriocetive, visual and acoustic). This process is meant to be
open-ended, progressing in continuous operation from initially simple representations to abstract
concepts and categories similar to those used by humans.

• Body design and role of the body in sensorimotor and social development: We study how the
physical properties of the body (geometry, materials, distribution of mass, growth, ...) can impact
the acquisition of sensorimotor and interaction skills. This requires to consider the body as an
experimental variable, and for this we develop special methodologies for designing and evaluating
rapidly new morphologies, especially using rapid prototyping techniques like 3D printing.

• Emergence of social behavior in multi-agent populations: We study how populations of
interacting learning agents can collectively acquire cooperative or competitive strategies in
challenging simulated environments. We specifically focus on the role of two factors: (i) Cognitive
architectures, including the role of curiosity-driven exploration in the emergence of complex social
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behavior ; (2) Environmental dynamics, including how task structure and environmental variability
influence emergent social behavior. Our work is grounded in principles and theories from
behavioral ecology and language evolution; and uses recent advances in multi-agent
reinforcement learning as a modeling framework.

• Curiosity and intrinsic motivations in cognitive learning: We are extending our research on the
role of curiosity and intrinsic motivations on learning through human experimentations, and
along two lines of research. The first aims to develop a lifelong approach for the role of intrinsic
motivation and curiosity in cognitive learning (e.g., spatial learning, attentional learning, etc.)
at all ages of life (children, young adults and older adults) in order to demonstrate the lifespan
developmental nature of these mechanisms in knowledge acquisition and cognitive development.
Basically, the aim is to examine whether curiosity/ intrinsic motivation is an essential ingredient
for tackling inter-individual variability in learning performance. The second axis aims to study
the links between states of curiosity, learning progress and metacognition. The aim is to address
the question of the role of metacognitive strategies of self-regulation in the generation of states of
curiosity and learning progress.

• Educational technologies and Intelligent Tutoring Systems: FLOWERS develops new educational
technologies or Intelligent Tutorial Systems, using both curiosity-related models and artificial
intelligence techniques (online optimization methods) in order to personalize learning sequences
for each individual and to maximize curiosity and learning in real world context (at school or on
MOOC platform). Two areas of research are being investigated : 1) the design of curiosity-driven
interactive education systems by introducing mechanisms for self-questioning and self-exploration
of knowledge during the learning process; 2) the design of Intelligent Tutoring systems promoting
individual learning progress while personalizing the learning path in the task space to be covered
by the learner. These two areas are enriched by applied studies in neuropsychological clinics
(aging, cognitive disorders related to neurodevelopmental syndromes such as autistic spectrum
or attentional disorders) where inter-individual variability is a critical challenge for designing
educational programs or cognitive training or remediation programs.

3 Research program

Research in artificial intelligence, machine learning and pattern recognition has produced a tremendous
amount of results and concepts in the last decades. A blooming number of learning paradigms -
supervised, unsupervised, reinforcement, active, associative, symbolic, connectionist, situated, hybrid,
distributed learning... - nourished the elaboration of highly sophisticated algorithms for tasks such as
visual object recognition, speech recognition, robot walking, grasping or navigation, the prediction of
stock prices, the evaluation of risk for insurances, adaptive data routing on the internet, etc... Yet, we are
still very far from being able to build machines capable of adapting to the physical and social
environment with the flexibility, robustness, and versatility of a one-year-old human child.

Indeed, one striking characteristic of human children is the nearly open-ended diversity of the skills
they learn. They not only can improve existing skills, but also continuously learn new ones. If evolution
certainly provided them with specific pre-wiring for certain activities such as feeding or visual object
tracking, evidence shows that there are also numerous skills that they learn smoothly but could not be
“anticipated” by biological evolution, for example learning to drive a tricycle, using an electronic piano toy
or using a video game joystick. On the contrary, existing learning machines, and robots in particular, are
typically only able to learn a single pre-specified task or a single kind of skill. Once this task is learnt, for
example walking with two legs, learning is over. If one wants the robot to learn a second task, for example
grasping objects in its visual field, then an engineer needs to re-program manually its learning structures:
traditional approaches to task-specific machine/robot learning typically include engineer choices of the
relevant sensorimotor channels, specific design of the reward function, choices about when learning
begins and ends, and what learning algorithms and associated parameters shall be optimized.

As can be seen, this requires a lot of important choices from the engineer, and one could hardly use the
term “autonomous” learning. On the contrary, human children do not learn following anything looking
like that process, at least during their very first years. Babies develop and explore the world by themselves,
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focusing their interest on various activities driven both by internal motives and social guidance from
adults who only have a folk understanding of their brains. Adults provide learning opportunities and
scaffolding, but eventually young babies always decide for themselves what activity to practice or not.
Specific tasks are rarely imposed to them. Yet, they steadily discover and learn how to use their body as
well as its relationships with the physical and social environment. Also, the spectrum of skills that they
learn continuously expands in an organized manner: they undergo a developmental trajectory in which
simple skills are learnt first, and skills of progressively increasing complexity are subsequently learnt.

A link can be made to educational systems where research in several domains have tried to study how
to provide a good learning or training experience to learners. This includes the experiences that allow
better learning, and in which sequence they must be experienced. This problem is complementary to that
of the learner who tries to progress efficiently, and the teacher here has to use as efficiently the limited
time and motivational resources of the learner. Several results from psychology [75] and neuroscience
[94] have argued that the human brain feels intrinsic pleasure in practicing activities of optimal difficulty
or challenge. A teacher must exploit such activities to create positive psychological states of flow [86]
for fostering the indivual engagement in learning activities. A such view is also relevant for reeducation
issues where inter-individual variability, and thus intervention personalization are challenges of the same
magnitude as those for education of children.

A grand challenge is thus to be able to build machines that possess this capability to discover, adapt
and develop continuously new know-how and new knowledge in unknown and changing environments,
like human children. In 1950, Turing wrote that the child’s brain would show us the way to intelligence:
“Instead of trying to produce a program to simulate the adult mind, why not rather try to produce one
which simulates the child’s” [152]. Maybe, in opposition to work in the field of Artificial Intelligence who
has focused on mechanisms trying to match the capabilities of “intelligent” human adults such as chess
playing or natural language dialogue [100], it is time to take the advice of Turing seriously. This is what a
new field, called developmental (or epigenetic) robotics, is trying to achieve [116] [156]. The approach
of developmental robotics consists in importing and implementing concepts and mechanisms from
developmental psychology [121], cognitive linguistics [85], and developmental cognitive neuroscience
[105] where there has been a considerable amount of research and theories to understand and explain
how children learn and develop. A number of general principles are underlying this research agenda:
embodiment [78] [130], grounding [98], situatedness [148], self-organization [150] [129], enaction [154],
and incremental learning [81].

Among the many issues and challenges of developmental robotics, two of them are of paramount
importance: exploration mechanisms and mechanisms for abstracting and making sense of initially
unknown sensorimotor channels. Indeed, the typical space of sensorimotor skills that can be encountered
and learnt by a developmental robot, as those encountered by human infants, is immensely vast and
inhomogeneous. With a sufficiently rich environment and multimodal set of sensors and effectors, the
space of possible sensorimotor activities is simply too large to be explored exhaustively in any robot’s life
time: it is impossible to learn all possible skills and represent all conceivable sensory percepts. Moreover,
some skills are very basic to learn, some other very complicated, and many of them require the mastery
of others in order to be learnt. For example, learning to manipulate a piano toy requires first to know how
to move one’s hand to reach the piano and how to touch specific parts of the toy with the fingers. And
knowing how to move the hand might require to know how to track it visually.

Exploring such a space of skills randomly is bound to fail or result at best on very inefficient learning
[133]. Thus, exploration needs to be organized and guided. The approach of epigenetic robotics is to take
inspiration from the mechanisms that allow human infants to be progressively guided, i.e. to develop.
There are two broad classes of guiding mechanisms which control exploration:

1. internal guiding mechanisms, and in particular intrinsic motivation, responsible of spontaneous
exploration and curiosity in humans, which is one of the central mechanisms investigated in
FLOWERS, and technically amounts to achieve online active self-regulation of the growth of
complexity in learning situations;

2. social learning and guidance, a learning mechanisms that exploits the knowledge of other agents
in the environment and/or that is guided by those same agents. These mechanisms exist in many
different forms like emotional reinforcement, stimulus enhancement, social motivation, guidance,
feedback or imitation, some of which being also investigated in FLOWERS;
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Internal guiding mechanisms In infant development, one observes a progressive increase of the
complexity of activities with an associated progressive increase of capabilities [121], children do not learn
everything at one time: for example, they first learn to roll over, then to crawl and sit, and only when
these skills are operational, they begin to learn how to stand. The perceptual system also gradually
develops, increasing children perceptual capabilities other time while they engage in activities like
throwing or manipulating objects. This make it possible to learn to identify objects in more and more
complex situations and to learn more and more of their physical characteristics.

Development is therefore progressive and incremental, and this might be a crucial feature explaining
the efficiency with which children explore and learn so fast. Taking inspiration from these observations,
some roboticists and researchers in machine learning have argued that learning a given task could be
made much easier for a robot if it followed a developmental sequence and “started simple” [68] [89].
However, in these experiments, the developmental sequence was crafted by hand: roboticists manually
build simpler versions of a complex task and put the robot successively in versions of the task of increasing
complexity. And when they wanted the robot to learn a new task, they had to design a novel reward
function.

Thus, there is a need for mechanisms that allow the autonomous control and generation of the
developmental trajectory. Psychologists have proposed that intrinsic motivations play a crucial role.
Intrinsic motivations are mechanisms that push humans to explore activities or situations that have
intermediate/optimal levels of novelty, cognitive dissonance, or challenge [75] [86] [88]. Futher, the
exploration of critical role of intrinsic motivation as lever of cognitive developement for all and for
all ages is today expanded to several fields of research, closest to its original study, special education
or cognitive aging, and farther away, neuropsychological clinical research. The role and structure of
intrinsic motivation in humans have been made more precise thanks to recent discoveries in neuroscience
showing the implication of dopaminergic circuits and in exploration behaviours and curiosity [87] [101]
[145]. Based on this, a number of researchers have began in the past few years to build computational
implementation of intrinsic motivation [133] [131] [143] [71] [102] [118] [144]. While initial models were
developed for simple simulated worlds, a current challenge is to manage to build intrinsic motivation
systems that can efficiently drive exploratory behaviour in high-dimensional unprepared real world
robotic sensorimotor spaces [131, 133, 132, 142]. Specific and complex problems are posed by real
sensorimotor spaces, in particular due to the fact that they are both high-dimensional as well as (usually)
deeply inhomogeneous. As an example for the latter issue, some regions of real sensorimotor spaces
are often unlearnable due to inherent stochasticity or difficulty, in which case heuristics based on the
incentive to explore zones of maximal unpredictability or uncertainty, which are often used in the field
of active learning [84] [99] typically lead to catastrophic results. The issue of high dimensionality does
not only concern motor spaces, but also sensory spaces, leading to the problem of correctly identifying,
among typically thousands of quantities, those latent variables that have links to behavioral choices.
In FLOWERS, we aim at developing intrinsically motivated exploration mechanisms that scale in those
spaces, by studying suitable abstraction processes in conjunction with exploration strategies.

Socially Guided and Interactive Learning Social guidance is as important as intrinsic motivation in
the cognitive development of human babies [121]. There is a vast literature on learning by demonstration
in robots where the actions of humans in the environment are recognized and transferred to robots [67].
Most such approaches are completely passive: the human executes actions and the robot learns from the
acquired data. Recently, the notion of interactive learning has been introduced in [151, 77], motivated by
the various mechanisms that allow humans to socially guide a robot [139]. In an interactive context the
steps of self-exploration and social guidance are not separated and a robot learns by self exploration and
by receiving extra feedback from the social context [151, 109, 119].

Social guidance is also particularly important for learning to segment and categorize the perceptual
space. Indeed, parents interact a lot with infants, for example teaching them to recognize and name
objects or characteristics of these objects. Their role is particularly important in directing the infant
attention towards objects of interest that will make it possible to simplify at first the perceptual space
by pointing out a segment of the environment that can be isolated, named and acted upon. These
interactions will then be complemented by the children own experiments on the objects chosen according
to intrinsic motivation in order to improve the knowledge of the object, its physical properties and the
actions that could be performed with it.
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In FLOWERS, we are aiming at including intrinsic motivation system in the self-exploration part thus
combining efficient self-learning with social guidance [126, 127]. We also work on developing perceptual
capabilities by gradually segmenting the perceptual space and identifying objects and their characteristics
through interaction with the user [117] and robots experiments [103]. Another challenge is to allow for
more flexible interaction protocols with the user in terms of what type of feedback is provided and how it
is provided [114].

Exploration mechanisms are combined with research in the following directions:

Cumulative learning, reinforcement learning and optimization of autonomous skill learning
FLOWERS develops machine learning algorithms that can allow embodied machines to acquire
cumulatively sensorimotor skills. In particular, we develop optimization and reinforcement learning
systems which allow robots to discover and learn dictionaries of motor primitives, and then combine
them to form higher-level sensorimotor skills.

Autonomous perceptual and representation learning In order to harness the complexity of
perceptual and motor spaces, as well as to pave the way to higher-level cognitive skills, developmental
learning requires abstraction mechanisms that can infer structural information out of sets of
sensorimotor channels whose semantics is unknown, discovering for example the topology of the body
or the sensorimotor contingencies (proprioceptive, visual and acoustic). This process is meant to be
open- ended, progressing in continuous operation from initially simple representations towards abstract
concepts and categories similar to those used by humans. Our work focuses on the study of various
techniques for:

• autonomous multimodal dimensionality reduction and concept discovery;

• incremental discovery and learning of objects using vision and active exploration, as well as of
auditory speech invariants;

• learning of dictionaries of motion primitives with combinatorial structures, in combination with
linguistic description;

• active learning of visual descriptors useful for action (e.g. grasping).

Embodiment and maturational constraints FLOWERS studies how adequate morphologies and
materials (i.e. morphological computation), associated to relevant dynamical motor primitives, can
importantly simplify the acquisition of apparently very complex skills such as full-body dynamic walking
in biped. FLOWERS also studies maturational constraints, which are mechanisms that allow for the
progressive and controlled release of new degrees of freedoms in the sensorimotor space of robots.

Discovering and abstracting the structure of sets of uninterpreted sensors and motors FLOWERS
studies mechanisms that allow a robot to infer structural information out of sets of sensorimotor channels
whose semantics is unknown, for example the topology of the body and the sensorimotor contingencies
(proprioceptive, visual and acoustic). This process is meant to be open-ended, progressing in continuous
operation from initially simple representations to abstract concepts and categories similar to those used
by humans.

Emergence of social behavior in multi-agent populations FLOWERS studies how populations of
interacting learning agents can collectively acquire cooperative or competitive strategies in challenging
simulated environments. This differs from "Social learning and guidance" presented above: instead of
studying how a learning agent can benefit from the interaction with a skilled agent, we rather consider
here how social behavior can spontaneously emerge from a population of interacting learning agents. We
focus on studying and modeling the emergence of cooperation, communication and cultural innovation
based on theories in behavioral ecology and language evolution, using recent advances in multi-agent
reinforcement learning.
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Cognitive variability across Lifelong development and (re)educational Technologies Over the past
decade, the progress in the field of curiosity-driven learning generates a lot of hope, especially with regard
to a major challenge, namely the inter-individual variability of developmental trajectories of learning,
which is particularly critical during childhood and aging or in conditions of cognitive disorders. With the
societal purpose of tackling of social inegalities, FLOWERS deals to move forward this new research avenue
by exploring the changes of states of curiosity across lifespan and across neurodevelopemental conditions
(neurotypical vs. learning disabilities) while designing new educational or rehabilitative technologies for
curiosity-driven learning. The information gaps or learning progress, and their awareness are the core
mechanisms of this part of research program due to high value as brain fuel by which the individual’s
internal intrinsic state of motivation is maintained and leads him/her to pursue his/her cognitive efforts
for acquisitions /rehabilitations. Accordingly, a main challenge is to understand these mechanisms in
order to draw up supports for the curiosity-driven learning, and then to embed them into (re)educational
technologies. To this end, two-ways of investigations are carried out in real-life setting (school, home,
work place etc): 1) the design of curiosity-driven interactive systems for learning and their effectiveness
study ; and 2) the automated personnalization of learning programs through new algorithms maximizing
learning progress in ITS.

4 Application domains

Neuroscience, Developmental Psychology and Cognitive Sciences The computational modelling of
life-long learning and development mechanisms achieved in the team centrally targets to contribute to
our understanding of the processes of sensorimotor, cognitive and social development in humans. In
particular, it provides a methodological basis to analyze the dynamics of the interaction across learning
and inference processes, embodiment and the social environment, allowing to formalize precise
hypotheses and later on test them in experimental paradigms with animals and humans. A paradigmatic
example of this activity is the Neurocuriosity project achieved in collaboration with the cognitive
neuroscience lab of Jacqueline Gottlieb, where theoretical models of the mechanisms of information
seeking, active learning and spontaneous exploration have been developed in coordination with
experimental evidence and investigation, see
https://flowers.inria.fr/neurocuriosityproject/. Another example is the study of the role of
curiosity in learning in the elderly, with a view to assessing its positive value against the cognitive aging as
a protective ingredient (i.e, Industrial project with Onepoint and joint project with M. Fernendes from
the Cognitive neursocience Lab of the University of Waterloo).

Personal and lifelong learning assistive agents Many indicators show that the arrival of personal
assistive agents in everyday life, ranging from digital assistants to robots, will be a major fact of the
21st century. These agents will range from purely entertainment or educative applications to social
companions that many argue will be of crucial help in our society. Yet, to realize this vision, important
obstacles need to be overcome: these agents will have to evolve in unpredictable environments and
learn new skills in a lifelong manner while interacting with non-engineer humans, which is out of reach
of current technology. In this context, the refoundation of intelligent systems that developmental AI
is exploring opens potentially novel horizons to solve these problems. In particular, this application
domain requires advances in artificial intelligence that go beyond the current state-of-the-art in fields
like deep learning. Currently these techniques require tremendous amounts of data in order to function
properly, and they are severely limited in terms of incremental and transfer learning. One of our goals is to
drastically reduce the amount of data required in order for this very potent field to work when humans are
in-the-loop. We try to achieve this by making neural networks aware of their knowledge, i.e. we introduce
the concept of uncertainty, and use it as part of intrinsically motivated multitask learning architectures,
and combined with techniques of learning by imitation.

Educational technologies that foster curiosity-driven and personalized learning. Optimal
teaching and efficient teaching/learning environments can be applied to aid teaching in schools aiming
both at increase the achievement levels and the reduce time needed. From a practical perspective,
improved models could be saving millions of hours of students’ time (and effort) in learning. These
models should also predict the achievement levels of students in order to influence teaching practices.
The challenges of the school of the 21st century, and in particular to produce conditions for active

https://flowers.inria.fr/neurocuriosityproject/
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learning that are personalized to the student’s motivations, are challenges shared with other applied
fields. Special education for children with special needs, such as learning disabilities, has long recognized
the difficulty of personalizing contents and pedagogies due to the great variability between and within
medical conditions. More remotely, but not so much, cognitive rehabilitative carers are facing the same
challenges where today they propose standardized cognitive training or rehabilitation programs but for
which the benefits are modest (some individuals respond to the programs, others respond little or not at
all), as they are highly subject to inter- and intra-individual variability. The curiosity-driven technologies
for learning and STIs could be a promising avenue to address these issues that are common to
(mainstream and specialized)education and cognitive rehabilitation.

Automated discovery in science. Machine learning algorithms integrating intrinsically-motivated
goal exploration processes (IMGEPs) with flexible modular representation learning are very promising
directions to help human scientists discover novel structures in complex dynamical systems, in fields
ranging from biology to physics. The automated discovery project lead by the FLOWERS team aims to
boost the efficiency of these algorithms for enabling scientist to better understand the space of dynamics
of bio-physical systems, that could include systems related to the design of new materials or new drugs
with applications ranging from regenerative medicine to unraveling the chemical origins of life. As an
example, Grizou et al. [96] recently showed how IMGEPs can be used to automate chemistry experiments
addressing fundamental questions related to the origins of life (how oil droplets may self-organize into
protocellular structures), leading to new insights about oil droplet chemistry. Such methods can be
applied to a large range of complex systems in order to map the possible self-organized structures. The
automated discovery project is intended to be interdisciplinary and to involve potentially non-expert
end-users from a variety of domains. In this regard, we are currently collaborating with Poietis (a bio-
printing company) and Bert Chan (an independant researcher in artificial life) to deploy our algorithms.
To encourage the adoption of our algorithms by a wider community, we are also working on an interactive
software which aims to provide tools to easily use the automated exploration algorithms (e.g. curiosity-
driven) in various systems.

Human-Robot Collaboration. Robots play a vital role for industry and ensure the efficient and
competitive production of a wide range of goods. They replace humans in many tasks which otherwise
would be too difficult, too dangerous, or too expensive to perform. However, the new needs and desires
of the society call for manufacturing system centered around personalized products and small series
productions. Human-robot collaboration could widen the use of robot in this new situations if robots
become cheaper, easier to program and safe to interact with. The most relevant systems for such
applications would follow an expert worker and works with (some) autonomy, but being always under
supervision of the human and acts based on its task models.

Environment perception in intelligent vehicles. When working in simulated traffic environments,
elements of FLOWERS research can be applied to the autonomous acquisition of increasingly abstract
representations of both traffic objects and traffic scenes. In particular, the object classes of vehicles and
pedestrians are if interest when considering detection tasks in safety systems, as well as scene categories
(”scene context”) that have a strong impact on the occurrence of these object classes. As already indicated
by several investigations in the field, results from present-day simulation technology can be transferred
to the real world with little impact on performance. Therefore, applications of FLOWERS research
that is suitably verified by real-world benchmarks has direct applicability in safety-system products for
intelligent vehicles.

5 Social and environmental responsibility

5.1 Footprint of research activities

AI is a field of research that currently requires a lot of computational resources, which is a challenge as
these resources have an environmental cost. In the team we try to address this challenge in two ways:

• by working on developmental machine learning approaches that model how humans manage to
learn open-ended and diverse repertoires of skills under severe limits of time, energy and compute:
for example, curiosity-driven learning algorithms can be used to guide agent’s exploration of their
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environment so that they learn a world model in a sample efficient manner, i.e. by minimizing the
number of runs and computations they need to perform in the environment;

• by monitoring the number of CPU and GPU hours required to carry out our experiments. For
instance, our work [43] used a total of 2.5 cpu years. More globally, our work uses large scale
computational resources, such as the Jean Zay supercomputer platform, for which we obtained a
credit of 2 millions hours of GPU and CPU for year 2021.

5.2 Impact of research results

Our research activities are organized along two fundamental research axis (models of human learning and
algorithms for developmental machine learning) and one application research axis (involving multiple
domains of application, see the Application Domains section). This entails different dimensions of
potential societal impact:

• Towards autonomous agents that can be shaped to human preferences and be explainable We
work on reinforcement learning architectures where autonomous agents interact with a social
partner to explore a large set of possible interactions and learn to master them, using language as a
key communication medium. As a result, our work contributes to facilitating human intervention
in the learning process of agents (e.g. digital assistants, video games characters, robots), which we
believe is a key step towards more explainable and safer autonomous agents.

• Reproducibility of research: By releasing the codes of our research papers, we believe that we help
efforts in reproducible science and allow the wider community to build upon and extend our work
in the future. In that spirit, we also provide clear explanations on the statistical testing methods
when reporting the results.

• AI and personalized educational technologies that support inclusivity and diversity and
reduce inequalities The Flowers team develops AI technologies aiming to personalize sequences
of educationa activities in digital educational apps: this entails the central challenge of designing
systems which can have equitable impact over a diversity of students and reduce inequalitie. Using
models of curiosity-driven learning to design AI algorithms for such personalization, we have been
working to enable them to be positively and equitably impactful across several dimensions of
diversity: for young learners or for aging populations; for learners with low initial levels as well as
for learners with high initial levels; for "normally" developping children and for children with
developmental disorders; and for learners of different socio-cultural backgrounds (e.g. we could
show in the KidLearn project that the system is equally impactful along these various kinds of
diversities).

• Health: Bio-printing The Flowers team is studying the use of curiosity-driven exploraiton
algorithm in the domain of automated discovery, enabling scientists in physics/chemistry/biology
to efficiently explore and build maps of the possible structures of various complex systems. One
particular domain of application we are studying is bio-printing, where a challenge consists in
exploring and understanding the space of morphogenetic structures self-organized by bio-printed
cell populations. This could facilitate the design and bio-printing of personalized skins or
organoids for people that need transplants, and thus could have major impact on the health of
people needing such transplants.

• Tools for human creativity and the arts Curiosity-driven exploration algorithms could also in
principle be used as tools to help human users in creative activities ranging from writing stories to
painting or musical creation, which are domains we aim to consider in the future, and thus this
constitutes another societal and cultural domain where our research could have impact.

• Education to AI As artificial intelligence takes a greater role in human society, it is of foremost
importance to empower individuals with understanding of these technologies. For this purpose,
the Flowers lab has been actively involved in educational and popularization activities, in particular
by designing educational robotics kits that form a motivating and tangible context to understand
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basic concepts in AI: these include the Inirobot kit (used by >30k primary school students in
France, see https://pixees.fr/dm1r.fr/ and the Poppy Education kit (https://www.popp
y-education.org) now supported by the Poppy Station educational consortium (see https:
//www.poppy-station.org)

6 Highlights of the year

Automated discovery in the sciences The team made major progress in developping the new
application domain of automated discovery in the sciences. We formalized this new research area, and
introduced proof-of-concept results showing how intrinsically motivated goal exploration algorithms can
be used as a tool to explore, map and learn to represent a diversity of self-organized patterns in complex
dynamical systems. This opens stimulating perspectives in domains ranging from biology to chemistry
and physiscs. This work was presented in two papers accepted for oral presentation (< 1.5 % acceptance
rate) at Neurips and ICLR 2020 conference. The work was achieved by Mayalen Etcheverry (CIFRE PhD
with the Poïetis company, for ICLR and Neurips) and Chris Reinke (Postdoc, for ICLR), and co-supervised
by C. Moulin-Frier (Neurips) and PY Oudeyer (ICLR and Neurips). See [38] (ICLR paper) and [35], as well
as the blog post h t t p s :
//developmentalsystems.org/intrinsically_motivated_discovery_of_diverse_patterns.
We also started a large software development project to enable users from multiple disciplines to use
these automated discovery algorithms, supported by an ADT Plan IA grant.

Language-guided curiosity-driven deep reinforcement learning with systematic generalization
The team made major advances in developmental machine learning, introducing techniques enabling
autonomous agents to use language as a cognitive tool to imagine goals in intrinsically motivated
exploration. This enables new forms of creative exploration, where agents can imagine goals that are
outside the distribution of goals known so far. This approach, conceptually rooted in developmental
psychology ideas from Vygotsky also leverages modular deep learning techniques enabling agents to
generalize its understanding of new sentences. This work was published at Neurips [43]. This work was
published at Neurips 2020 [43] First authors were Cécric Colas, Tristan Karch, Nicolas Lair, with
co-supervision from PY Oudeyer, PF. Dominey, C. Moulin-Frier.

Educational technologies that foster curiosity-driven learning in humans Together with the edTech
industrial consortium Adaptiv’Maths (https://www.adaptivmath.fr), we integrated our ZPDES
machine learning algorithm, leveraging models of intrinsic motivation in humans, to personalize
sequences of exercises in an educational software aiming to be used at large scale in the French
educational system and beyond. This work was achieved by Benjamin Clément, co-supervised by Didier
Roy and PY Oudeyer. We also started a new line of research investigating technologies that can help
children to practice skills that are essential to foster curiosity-driven learning, such as question asking
and meta-cognitive monitoring. This led to a first publication at CHI 2020 [33], with work co-supervised
by Hélène Sauzéon in collaboration with Edith Law’s team at the University of Waterloo.

Awards PY Oudeyer was awarded an individual ANR Chair in Artificial Intelligence, and elected as
Distinguised speaker of the IEEE Computational Ingelligence Society. C Moulin-Frier obtained an ANR
JCJC grant, an Inria Exploratory Action and an Inria Cordi PhD grant in 2020 (see 10 for detail).

7 New software and platforms

7.1 New software

7.1.1 Explauto

Name: an autonomous exploration library

Keyword: Exploration

https://pixees.fr/dm1r.fr/
https://www.poppy-education.org
https://www.poppy-education.org
https://www.poppy-station.org
https://www.poppy-station.org
https://developmentalsystems.org/intrinsically_motivated_discovery_of_diverse_patterns
https://developmentalsystems.org/intrinsically_motivated_discovery_of_diverse_patterns
https://www.adaptivmath.fr
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Scientific Description: An important challenge in developmental robotics is how robots can be
intrinsically motivated to learn efficiently parametrized policies to solve parametrized multi-task
reinforcement learning problems, i.e. learn the mappings between the actions and the problem
they solve, or sensory effects they produce. This can be a robot learning how arm movements make
physical objects move, or how movements of a virtual vocal tract modulates vocalization sounds.
The way the robot will collects its own sensorimotor experience have a strong impact on learning
efficiency because for most robotic systems the involved spaces are high dimensional, the
mapping between them is non-linear and redundant, and there is limited time allowed for learning.
If robots explore the world in an unorganized manner, e.g. randomly, learning algorithms will be
often ineffective because very sparse data points will be collected. Data are precious due to the
high dimensionality and the limited time, whereas data are not equally useful due to non-linearity
and redundancy. This is why learning has to be guided using efficient exploration strategies,
allowing the robot to actively drive its own interaction with the environment in order to gather
maximally informative data to optimize the parametrized policies. In the recent year, work in
developmental learning has explored various families of algorithmic principles which allow the
efficient guiding of learning and exploration.

Explauto is a framework developed to study, model and simulate curiosity-driven learning and
exploration in real and simulated robotic agents. Explauto’s scientific roots trace back from
Intelligent Adaptive Curiosity algorithmic architecture [134], which has been extended to a more
general family of autonomous exploration architectures by [70] and recently expressed as a
compact and unified formalism [124]. The library is detailed in [125]. In Explauto, interest models
are implementing the strategies of active selection of particular problems / goals in a parametrized
multi-task reinforcement learning setup to efficiently learn parametrized policies. The agent can
have different available strategies, parametrized problems, models, sources of information, or
learning mechanisms (for instance imitate by mimicking vs by emulation, or asking help to one
teacher or to another), and chooses between them in order to optimize learning (a processus called
strategic learning [128]). Given a set of parametrized problems, a particular exploration strategy is
to randomly draw goals/ RL problems to solve in the motor or problem space. More efficient
strategies are based on the active choice of learning experiments that maximize learning progress
using bandit algorithms, e.g. maximizing improvement of predictions or of competences to solve
RL problems [134]. This automatically drives the system to explore and learn first easy skills, and
then explore skills of progressively increasing complexity. Both random and learning progress
strategies can act either on the motor or on the problem space, resulting in motor babbling or goal
babbling strategies.

• Motor babbling consists in sampling commands in the motor space according to a given
strategy (random or learning progress), predicting the expected effect, executing the command
through the environment and observing the actual effect. Both the parametrized policies and
interest models are finally updated according to this experience.

• Goal babbling consists in sampling goals in the problem space and to use the current policies
to infer a motor action supposed to solve the problem (inverse prediction). The robot/agent
then executes the command through the environment and observes the actual effect. Both the
parametrized policies and interest models are finally updated according to this experience.It
has been shown that this second strategy allows a progressive solving of problems much more
uniformly in the problem space than with a motor babbling strategy, where the agent samples
directly in the motor space [70].

Functional Description: This library provides high-level API for an easy definition of:

• Real and simulated robotic setups (Environment level),

• Incremental learning of parametrized policies (Sensorimotor level),

• Active selection of parametrized RL problems (Interest level).
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Figure 1: Complex parametrized policies involve high dimensional action and effect spaces. For the sake of
visualization, the motor M and sensory S spaces are only 2D each in this example. The relationship between M and S
is non-linear, dividing the sensorimotor space into regions of unequal stability: small regions of S can be reached very
precisely by large regions of M, or large regions in S can be very sensitive to variations in M.: s as well as a non-linear
and redundant relationship. This non-linearity can imply redundancy, where the same sensory effect can be attained
using distinct regions in M.

The library comes with several built-in environments. Two of them corresponds to simulated
environments: a multi-DoF arm acting on a 2D plan, and an under-actuated torque-controlled
pendulum. The third one allows to control real robots based on Dynamixel actuators using the
Pypot library. Learning parametrized policies involves machine learning algorithms, which are
typically regression algorithms to learn forward models, from motor controllers to sensory effects,
and optimization algorithms to learn inverse models, from sensory effects, or problems, to the
motor programs allowing to reach them. We call these sensorimotor learning algorithms
sensorimotor models. The library comes with several built-in sensorimotor models: simple
nearest-neighbor look-up, non-parametric models combining classical regressions and
optimization algorithms, online mixtures of Gaussians, and discrete Lidstone distributions.
Explauto sensorimotor models are online learning algorithms, i.e. they are trained iteratively
during the interaction of the robot in theenvironment in which it evolves. Explauto provides also a
unified interface to define exploration strategies using the InterestModel class. The library comes
with two built-in interest models: random sampling as well as sampling maximizing the learning
progress in forward or inverse predictions.

Explauto environments now handle actions depending on a current context, as for instance in an
environment where a robotic arm is trying to catch a ball: the arm trajectories will depend on the
current position of the ball (context). Also, if the dynamic of the environment is changing over
time, a new sensorimotor model (Non-Stationary Nearest Neighbor) is able to cope with those
changes by taking more into account recent experiences. Those new features are explained in
Jupyter notebooks.

This library has been used in many experiments including:

• the control of a 2D simulated arm,

• the exploration of the inverse kinematics of a poppy humanoid (both on the real robot and on
the simulated version),

• acoustic model of a vocal tract.

Explauto is crossed-platform and has been tested on Linux, Windows and Mac OS. It has been
released under the GPLv3 license.

URL: https://github.com/flowersteam/explauto

Contacts: Clément Moulin-Frier, Pierre Rouanet, Sebastien Forestier

https://github.com/flowersteam/explauto
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Figure 2: Four principal regions are defined in the graphical interface. The first is the wallet location where users can
pick and drag the money items and drop them on the repository location to compose the correct price. The object
and the price are present in the object location. Four different types of exercises exist: M : customer/one object, R :
merchant/one object, MM : customer/two objects, RM : merchant/two objects.

7.1.2 KidBreath

Keyword: Machine learning

Functional Description: KidBreath is a web responsive application composed by several interactive
contents linked to asthma and displayed to different forms: learning activities with quiz, short
games and videos. There are profil creation and personalization, and a part which describes historic
and scoring of learning activities, to see evolution of Kidreath use. To test Kidlearn algorithm, it
is iadapted and integrated on this platform. Development in PHP, HTML-5, CSS, MySQL, JQuery,
Javascript. Hosting in APACHE, LINUX, PHP 5.5, MySQL, OVH.

Contacts: Pierre-Yves Oudeyer, Manuel Lopes, Alexandra Delmas

Partner: ItWell SAS

7.1.3 Kidlearn: money game application

Functional Description: The games is instantiated in a browser environment where students are
proposed exercises in the form of money/token games (see Figure 2). For an exercise type, one
object is presented with a given tagged price and the learner has to choose which combination of
bank notes, coins or abstract tokens need to be taken from the wallet to buy the object, with
various constraints depending on exercises parameters. The games have been developed using
web technologies, HTML5, javascript and Django.

URL: https://flowers.inria.fr/research/kidlearn/

Contact: Benjamin Clement

7.1.4 Kidlearn: script for Kidbreath use

Keyword: PHP

https://flowers.inria.fr/research/kidlearn/
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Functional Description: A new way to test Kidlearn algorithms is to use them on Kidbreath Plateform.
The Kidbreath Plateform use apache/PHP server, so to facilitate the integration of our algorithm,
a python script have been made to allow PHP code to use easily the python library already made
which include our algorithms.

URL: https://flowers.inria.fr/research/kidlearn/

Contact: Benjamin Clement

7.1.5 KidLearn

Keyword: Automatic Learning

Functional Description: KidLearn is a software which adaptively personalize sequences of learning
activities to the particularities of each individual student. It aims at proposing to the student the
right activity at the right time, maximizing concurrently his learning progress and its motivation.

URL: https://flowers.inria.fr/research/kidlearn/

Authors: Benjamin Clement, Didier Roy, Pierre-Yves Oudeyer, Manuel Lopes

Contacts: Benjamin Clement, Pierre-Yves Oudeyer

Participants: Benjamin Clement, Didier Roy, Manuel Lopes, Pierre Yves Oudeyer

7.1.6 Poppy

Keywords: Robotics, Education

Functional Description: The Poppy Project team develops open-source 3D printed robots platforms
based on robust, flexible, easy-to-use and reproduce hardware and software. In particular, the use
of 3D printing and rapid prototyping technologies is a central aspect of this project, and makes it
easy and fast not only to reproduce the platform, but also to explore morphological variants. Poppy
targets three domains of use: science, education and art.

In the Poppy project we are working on the Poppy System which is a new modular and open-source
robotic architecture. It is designed to help people create and build custom robots. It permits, in a
similar approach as Lego, building robots or smart objects using standardized elements.

Poppy System is a unified system in which essential robotic components (actuators, sensors...) are
independent modules connected with other modules through standardized interfaces:

• Unified mechanical interfaces, simplifying the assembly process and the design of 3D
printable parts.

• Unified communication between elements using the same connector and bus for each
module.

• Unified software, making it easy to program each module independently.

Our ambition is to create an ecosystem around this system so communities can develop custom
modules, following the Poppy System standards, which can be compatible with all other Poppy
robots.

URL: https://www.poppy-project.org/

Contacts: Matthieu Lapeyre, Pierre Rouanet, Pierre-Yves Oudeyer, Didier Roy, Stephanie Noirpoudre,
Theo Segonds, Damien Caselli, Nicolas Rabault

Participants: Jonathan Grizou, Matthieu Lapeyre, Pierre Rouanet, Pierre-Yves Oudeyer

https://flowers.inria.fr/research/kidlearn/
https://flowers.inria.fr/research/kidlearn/
https://www.poppy-project.org/
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7.1.7 Poppy Ergo Jr

Name: Poppy Ergo Jr

Keywords: Robotics, Education

Functional Description: Poppy Ergo Jr is an open hardware robot developed by the Poppy Project to
explore the use of robots in classrooms for learning robotic and computer science.

It is available as a 6 or 4 degrees of freedom arm designed to be both expressive and low-cost. This
is achieved by the use of FDM 3D printing and low cost Robotis XL-320 actuators. A Raspberry Pi
camera is attached to the robot so it can detect object, faces or QR codes.

The Ergo Jr is controlled by the Pypot library and runs on a Raspberry pi 2 or 3 board.
Communication between the Raspberry Pi and the actuators is made possible by the Pixl board we
have designed.

Figure 3: Poppy Ergo Jr, 6-DoFs arm robot for education

The Poppy Ergo Jr robot has several 3D printed tools extending its capabilities. There are currently
the lampshade, the gripper and a pen holder.

Figure 4: The available Ergo Jr tools: a pen holder, a lampshade and a gripper

With the release of a new Raspberry Pi board early 2016, the Poppy Ergo Jr disk image was updated
to support Raspberry Pi 2 and 3 boards. The disk image can be used seamlessly with a board or the
other.
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URL: https://github.com/poppy-project/poppy-ergo-jr

Contacts: Theo Segonds, Damien Caselli

7.1.8 S-RL Toolbox

Name: Reinforcement Learning (RL) and State Representation Learning (SRL) for Robotics

Keywords: Machine learning, Robotics

Functional Description: This repository was made to evaluate State Representation Learning methods
using Reinforcement Learning. It integrates (automatic logging, plotting, saving, loading of trained
agent) various RL algorithms (PPO, A2C, ARS, ACKTR, DDPG, DQN, ACER, CMA-ES, SAC, TRPO)
along with different SRL methods (see SRL Repo) in an efficient way (1 Million steps in 1 Hour with
8-core cpu and 1 Titan X GPU).

URL: https://github.com/araffin/robotics-rl-srl

Contact: David Filliat

Partner: ENSTA

7.1.9 Deep-Explauto

Name: Deep-Explauto

Keywords: Deep learning, Unsupervised learning, Learning, Experimentation

Functional Description: Until recently, curiosity driven exploration algorithms were based on classic
learning algorithms, unable to handle large dimensional problems (see explauto). Recent advances
in the field of deep learning offer new algorithms able to handle such situations.

Deep explauto is an experimental library, containing reference implementations of curiosity driven
exploration algorithms. Given the experimental aspect of exploration algorithms, and the low
maturity of the libraries and algorithms using deep learning, proposing black-box implementations
of those algorithms, enabling a blind use of those, seem unrealistic.

Nevertheless, in order to quickly launch new experiments, this library offers an set of objects,
functions and examples, allowing to kickstart new experiments.

Contact: Alexandre Pere

7.1.10 Orchestra

Name: Orchestra

Keyword: Experimental mechanics

Functional Description: Ochestra is a set of tools meant to help in performing experimental campaigns
in computer science. It provides you with simple tools to:

+ Organize a manual experimental workflow, leveraging git and lfs through a simple interface.
+ Collaborate with other peoples on a single experimental campaign. + Execute pieces of code
on remote hosts such as clusters or clouds, in one line. + Automate the execution of batches of
experiments and the presentation of the results through a clean web ui.

A lot of advanced tools exists on the net to handle similar situations. Most of them target very
complicated workflows, e.g. DAGs of tasks. Those tools are very powerful but lack the simplicity
needed by newcomers. Here, we propose a limited but very simple tool to handle one of the
most common situation of experimental campaigns: the repeated execution of an experiment on
variations of parameters.

https://github.com/poppy-project/poppy-ergo-jr
https://github.com/araffin/robotics-rl-srl
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In particular, we include three tools: + expegit: a tool to organize your experimental campaign
results in a git repository using git-lfs (large file storage). + runaway: a tool to execute code on
distant hosts parameterized with easy to use file templates. + orchestra: a tool to automate the use
of the two previous tools on large campaigns.

Contact: Alexandre Pere

7.1.11 Curious

Name: Curious: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

Keywords: Exploration, Reinforcement learning, Artificial intelligence

Functional Description: This is an algorithm enabling to learn a controller for an agent in a modular
multi-goal environment. In these types of environments, the agent faces multiple goals classified
in different types (e.g. reaching goals, grasping goals for a manipulation robot).

Contact: Cedric Colas

7.1.12 teachDeepRL

Name: Teacher algorithms for curriculum learning of Deep RL in continuously parameterized
environments

Keywords: Machine learning, Git

Functional Description: Codebase from our CoRL2019 paper https://arxiv.org/abs/1910.07224

This github repository provides implementations for the following teacher algorithms: - Absolute
Learning Progress-Gaussian Mixture Model (ALP-GMM), our proposed teacher algorithm - Robust
Intelligent Adaptive Curiosity (RIAC), from Baranes and Oudeyer, R-IAC: robust intrinsically
motivated exploration and active learning. - Covar-GMM, from Moulin-Frier et al.,
Self-organization of early vocal development in infants and machines: The role of intrinsic
motivation.

URL: https://github.com/flowersteam/teachDeepRL

Author: Remy Portelas

Contact: Remy Portelas

7.1.13 Automated Discovery of Lenia Patterns

Keywords: Exploration, Cellular automaton, Deep learning, Unsupervised learning

Scientific Description: In many complex dynamical systems, artificial or natural, one can observe
selforganization of patterns emerging from local rules. Cellular automata, like the Game of Life
(GOL), have been widely used as abstract models enabling the study of various aspects of
self-organization and morphogenesis, such as the emergence of spatially localized patterns.
However, findings of self-organized patterns in such models have so far relied on manual tuning of
parameters and initial states, and on the human eye to identify “interesting” patterns. In this paper,
we formulate the problem of automated discovery of diverse self-organized patterns in such
high-dimensional complex dynamical systems, as well as a framework for experimentation and
evaluation. Using a continuous GOL as a testbed, we show that recent intrinsically-motivated
machine learning algorithms (POP-IMGEPs), initially developed for learning of inverse models in
robotics, can be transposed and used in this novel application area. These algorithms combine
intrinsically motivated goal exploration and unsupervised learning of goal space representations.
Goal space representations describe the “interesting” features of patterns for which diverse
variations should be discovered. In particular, we compare various approaches to define and learn
goal space representations from the perspective of discovering diverse spatially localized patterns.

https://github.com/flowersteam/teachDeepRL
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Moreover, we introduce an extension of a state-of-the-art POP-IMGEP algorithm which
incrementally learns a goal representation using a deep auto-encoder, and the use of CPPN
primitives for generating initialization parameters. We show that it is more efficient than several
baselines and equally efficient as a system pre-trained on a hand-made database of patterns
identified by human experts.

Functional Description: Python source code of experiments and data analysis for the paper "
Intrinsically Motivated Discovery of Diverse Patterns in Self-Organizing Systems" (Chris Reinke,
Mayalen Echeverry, Pierre-Yves Oudeyer in Submitted to ICLR 2020). The software includes: Lenia
environment, exploration algorithms (IMGEPs, random search), deep learning algorithms for
unsupervised learning of goal spaces, tools and configurations to run experiments, and data
analysis tools.

URL: https://github.com/flowersteam/automated_discovery_of_lenia_patterns

Contacts: Chris Reinke, Mayalen Etcheverry

7.1.14 ZPDES_ts

Name: ZPDES in typescript

Keywords: Machine learning, Education

Functional Description: ZPDES is a machine learning-based algorithm that allows you to customize the
content of training courses for each learner’s level. It has already been implemented in the Kidlern
software in python with other algorithms. Here, ZPDES is implemented in typescript.

URL: https://flowers.inria.fr/research/kidlearn/

Authors: Benjamin Clement, Pierre-Yves Oudeyer, Didier Roy, Manuel Lopes

Contact: Benjamin Clement

7.1.15 GEP-PG

Name: Goal Exploration Process - Policy Gradient

Keywords: Machine learning, Deep learning

Functional Description: Reinforcement Learning algorithm working with OpenAI Gym environments.
A first phase implements exploration using a Goal Exploration Process (GEP). Samples collected
during exploration are then transferred to the memory of a deep reinforcement learning algorithm
(deep deterministic policy gradient or DDPG). DDPG then starts learning from a pre-initialized
memory so as to maximize the sum of discounted rewards given by the environment.

Contact: Cedric Colas

7.1.16 EpidemiOptim

Name: EpidemiOptim: a toolbox for the optimization of control policies in epidemiological models

Keywords: Epidemiology, Optimization, Dynamical system, Reinforcement learning, Multi-objective
optimisation

Functional Description: This toolbox proposes a modular set of tools to optimize intervention strategies
in epidemiological models. The user can define or use a pre-coded epidemiological model to
represent an epidemic. He/she can define a set of cost functions to define a particular optimization
problem. Finally, given an optimization problem (epidemiological model and cost functions and
action modalities), the user can define/reuse optimization algorithms to optimize intervention
strategies that minimize the costs. Finally, the toolbox contains visualization and comparison tools.
This allows to investigate various hypotheses easily.

https://github.com/flowersteam/automated_discovery_of_lenia_patterns
https://flowers.inria.fr/research/kidlearn/
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URL: https://github.com/flowersteam/EpidemiOptim

Contacts: Cedric Colas, Clément Moulin-Frier, Melanie Prague

7.1.17 IMAGINE

Keywords: Exploration, Reinforcement learning, Modeling language, Artificial intelligence

Functional Description: This software provides: 1. An environment modelling the social interaction
between an autonomous agent and a social partner. The social partner gives natural language
descriptions when the agent performs something interesting in the environment. 2. A modular
architecture allowing the autonomous agent to manipulate and to target goals expressed in natural
language. This architecture is divided into three modules: 2.a. A goal achievement function
mapping language descriptions and the agent’s observations to a reward signal 2.b. A goal
conditioned-policy that uses the reward signal in order to learn the behaviour required to reach the
goal (expressed in natural language). This module is trained via Reinforcement Learning 2.c. A goal
imagination module allowing the agent to compose known goals into new sentences in order to
creatively explore new outcomes in its environment.

URL: https://github.com/flowersteam/Imagine

Contacts: Tristan Karch, Cedric Colas, Clément Moulin-Frier, Pierre-Yves Oudeyer

7.1.18 DECSTR

Name: Grouding Language to Autonomously-Acquired Skills via Goal Generation

Keywords: Reinforcement learning, Curiosity, Intrinsic motivations

Functional Description: DECSTR is a learning algorithm that trains an agent to reach semantic goals
made of predicates characterizing spatial relations between pairs of blocks. After this first skill
learning phase, the agent trains a language generation module that converts linguistic inputs into
semantic goals. This module enables efficient language grounding.

Contact: Cedric Colas

7.1.19 holmes

Name: IMGEP-HOLMES, an algorithm for meta-diversity search applied to the automated discovery of
novel structures in complex dynamical systems

Keywords: Exploration, Incremental learning, Unsupervised learning, Hierarchical architecture, Intrinsic
motivations, Cellular automaton, Complexity

Functional Description: Python source code to reproduce the experiments and data analysis for the
paper "Hierarchically Organized Latent Modules for Exploratory Search in Morphogenetic Systems"
(Mayalen Echeverry, Clément Moulin-Frier and Pierre-Yves Oudeyer, published at NeurIPS 2020).
The user can define a complex system he would like to explore, or use the Lenia environment
which is already provided. He/she can select an explorer to explore this system (Random or IMGEP
explorer). For the IMGEP explorer, many variants of goal space representations are provided in the
source code: hand-defined descriptors of the Lenia system, unsupervisedly learned descriptors
that can be trained online during the course of exploration (VAE variants and Contrastive Learning
variants) and the hierarchical progressively-learned architecture presented in the paper (HOLMES).
To this purpose, the software includes tools and configurations to run experiments and for data
analysis and comparison of the results, as well as for running the scripts on super-computers
(SLURM job manager).

URL: https://github.com/flowersteam/holmes

Contact: Mayalen Etcheverry

https://github.com/flowersteam/EpidemiOptim
https://github.com/flowersteam/Imagine
https://github.com/flowersteam/holmes
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7.1.20 metaACL

Name: Meta Automatic Curriculum Learning

Keywords: Machine learning, Git

Functional Description: Codebase from our arxiv paper https://arxiv.org/abs/2011.08463

This github repository provides implementations for AGAIN (Alp-Gmm and Inferred Progress
Niches), our proposed Meta automatic curriculum learning teacher algorithm.

URL: https://github.com/flowersteam/meta-acl

Contact: Remy Portelas

7.1.21 EmComPartObs

Name: Studying the joint role of partial observability and channel reliability in emergent communication

Keywords: Multi-agent, Reinforcement learning, Emergent communication

Functional Description: This source code contains a new grid-world environment where two agents
interact to solve a task, Multi-Agent Reinforcement algorithms that solve that task, as well as
plotting utilities.

URL: https://github.com/UnrealLink/emergent_communication

Publication: hal-03100681

Contacts: Valentin Villecroze, Clément Moulin-Frier

7.1.22 grimgep

Name: GRIMGEP: Learning Progress for Robust Goal Sampling in Visual Deep Reinforcement Learning

Keywords: Machine learning, Reinforcement learning, Artificial intelligence, Exploration, Intrinsic
motivations, Git, Deep learning

Functional Description: Source code for the GRIMGEP paper (https://arxiv.org/abs/2008.04388)
Contains: - Implementation of the GRIMGEP framework on top of three different underlying
imgeps (Skew-fit, CountBased, OnlineRIG). - image-based 2D environment (PlaygroundRGB)

URL: https://gitlab.com/Grg/grimgep

Contacts: Grgur Kovac, Adrien Laversanne-Finot, Pierre-Yves Oudeyer

7.1.23 flowers-OL

Name: flowers-open-lab

Keyword: Experimentation

Functional Description: This web platform designed for planning and implementing remote
behavioural studies provides the following features: - Registration and login of participants -
Presentation of the instructions concerning the experience and get informed consent - Behavioural
task and questionnaires - Automatic management of a participant’s schedule (sends emails before
the user’s appointments) - Quick and easy addition of new experimental conditions

URL: https://flowers-mot.bordeaux.inria.fr/

Contacts: Alexandr Ten, Maxime Adolphe

https://github.com/flowersteam/meta-acl
https://github.com/UnrealLink/emergent_communication
https://hal.inria.fr/hal-03100681
https://gitlab.com/Grg/grimgep
https://flowers-mot.bordeaux.inria.fr/
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8 New results

8.1 Computational Models of Curiosity-Driven Learning in Humans

8.1.1 Testing the Learning Progres Hypothesis in Curiosity-Driven explortion in Human Adults

Participants Pierre-Yves Oudeyer (correspondant), Alexandr Ten.

This project involves a collaboration between the Flowers team and the Cognitive Neuroscience
Lab of J. Gottlieb at Columbia Univ. (NY, US), on the understanding and computational modeling of
mechanisms of curiosity, attention and active intrinsically motivated exploration in humans.

It is organized around the study of the hypothesis that subjective meta-cognitive evaluation of
information gain (or control gain or learning progress) could generate intrinsic reward in the brain (living
or artificial), driving attention and exploration independently from material rewards, and allowing for
autonomous lifelong acquisition of open repertoires of skills. The project combines expertise about
attention and exploration in the brain and a strong methodological framework for conducting
experimentations with monkeys, human adults and children together with computational modeling of
curiosity/intrinsic motivation and learning.

Such a collaboration paves the way towards a central objective, which is now a central strategic
objective of the Flowers team: designing and conducting experiments in animals and humans informed
by computational/mathematical theories of information seeking, and allowing to test the predictions of
these computational theories.

Context Curiosity can be understood as a family of mechanisms that evolved to allow agents to
maximize their knowledge (or their control) of the useful properties of the world - i.e., the regularities
that exist in the world - using active, targeted investigations. In other words, we view curiosity as a
decision process that maximizes learning/competence progress (rather than minimizing uncertainty)
and assigns value ("interest") to competing tasks based on their epistemic qualities - i.e., their estimated
potential allow discovery and learning about the structure of the world.

Because a curiosity-based system acts in conditions of extreme uncertainty (when the distributions
of events may be entirely unknown) there is in general no optimal solution to the question of which
exploratory action to take [115],[132, 141]. Therefore we hypothesize that, rather than using a single
optimization process as it has been the case in most previous theoretical work [95], curiosity is comprised
of a family of mechanisms that include simple heuristics related to novelty/surprise and measures of
learning progress over longer time scales[133] [72, 122]. These different components are related to
the subject’s epistemic state (knowledge and beliefs) and may be integrated with fluctuating weights
that vary according to the task context. Our aim is to quantitatively characterize this dynamic, multi-
dimensional system in a computational framework based on models of intrinsically motivated exploration
and learning.

Because of its reliance on epistemic currencies, curiosity is also very likely to be sensitive to individual
differences in personality and cognitive functions. Humans show well-documented individual differences
in curiosity and exploratory drives [113, 140], and rats show individual variation in learning styles
and novelty seeking behaviors [90], but the basis of these differences is not understood. We postulate
that an important component of this variation is related to differences in working memory capacity
and executive control which, by affecting the encoding and retention of information, will impact the
individual’s assessment of learning, novelty and surprise and ultimately, the value they place on these
factors [135, 149, 66, 153]. To start understanding these relationships, about which nothing is known, we
will search for correlations between curiosity and measures of working memory and executive control
in the population of children we test in our tasks, analyzed from the point of view of a computational
models of the underlying mechanisms.

A final premise guiding our research is that essential elements of curiosity are shared by humans and
non-human primates. Human beings have a superior capacity for abstract reasoning and building causal
models, which is a prerequisite for sophisticated forms of curiosity such as scientific research. However,
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if the task is adequately simplified, essential elements of curiosity are also found in monkeys [113, 107]
and, with adequate characterization, this species can become a useful model system for understanding
the neurophysiological mechanisms.

Objectives Our studies have several highly innovative aspects, both with respect to curiosity and to the
traditional research field of each member team.

• Linking curiosity with quantitative theories of learning and decision making: While existing
investigations examined curiosity in qualitative, descriptive terms, here we propose a novel
approach that integrates quantitative behavioral and neuronal measures with computationally
defined theories of learning and decision making.

• Linking curiosity in children and monkeys: While existing investigations examined curiosity in
humans, here we propose a novel line of research that coordinates its study in humans and non-
human primates. This will address key open questions about differences in curiosity between
species, and allow access to its cellular mechanisms.

• Neurophysiology of intrinsic motivation: Whereas virtually all the animal studies of learning and
decision making focus on operant tasks (where behavior is shaped by experimenter-determined
primary rewards) our studies are among the very first to examine behaviors that are intrinsically
motivated by the animals’ own learning, beliefs or expectations.

• Neurophysiology of learning and attention: While multiple experiments have explored the
single-neuron basis of visual attention in monkeys, all of these studies focused on vision and eye
movement control. Our studies are the first to examine the links between attention and learning,
which are recognized in psychophysical studies but have been neglected in physiological
investigations.

• Computer science: biological basis for artificial exploration: While computer science has proposed
and tested many algorithms that can guide intrinsically motivated exploration, our studies are the
first to test the biological plausibility of these algorithms.

• Developmental psychology: linking curiosity with development: While it has long been appreciated
that children learn selectively from some sources but not others, there has been no systematic
investigation of the factors that engender curiosity, or how they depend on cognitive traits.

Results We provide empirical evidence that humans are sensitive to variation learniing progress (LP) by
means of a novel experimental paradigm and computational modeling. We showed that while humans
rely on competence information to avoid easy tasks, models that include an LP component provide
the best fit to task selection data. These results provide a new bridge between research on artificial
and biological curiosity, reveal strategies that are used by humans but have not been considered in
computational research, and provide new tools for probing how humans become intrinsically motivated
to learn and acquire interests and skills on extended time scales. The results were submitted to the journal
Nature Communications and are currently under revision.

Participants (N = 330) performed an online task in which they could freely engage with a set of
learning activities (Fig. 5a). Each trial started with a free-choice panel prompting the participant to
choose one of 4 activities depicted as families of “monsters” (Fig. 5a, (1)) and, after making a choice,
received a randomly drawn member from the chosen family, made a binary guess about which food that
member liked to eat (Fig. 5a, (2)), and received immediate feedback regarding their guess (Fig. 5a, (3)). To
understand how participants self-organized their learning curriculum, we required them to complete 250
trials but did not impose any other constraint on their choice of activity.

Our key questions were (1) how people self-organize their exploration over a set of activities of
variable difficulty, and (2) whether they spontaneously adopt learning maximization objectives when
they do not receive explicit instructions. To examine these questions, we manipulated the difficulty of
the available activities as a within-participant variable, and the instructions participants received as
an across-participant variable. Difficulty was controlled by the complexity of the categorization rule
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Figure 5: Task behavior. a, Trial structure during free play. The panels show 3 example free-choice trials consisting of
3 steps each. Each trial begins with a choice of the stimulus family among the 4 icons on the left (1). This is followed
by presentation of a randomly drawn individual from that family and a prompt to guess which food the individual
likes to eat (2). After making the guess (2), the participant receives immediate feedback (3) and the next trial begins.
For the next trial, the participant can either switch to a new monster family (e.g. trial t +1) or repeat the previously
sampled activity (e.g. trial t +2). b, Performance during the forced-choice familiarization stage. Each box plot shows
the correct (PC) during the 15 familiarization trials on each activity, across all participants in the IG (blue) and EG
(red) groups. Horizontal bars inside boxes are the median values, while whiskers show extreme values (1.5× IQR).
Diamonds show outliers outside the extreme values.
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governing the food preferences in each activity. In the easiest activity (A1), individual monster-family
members differed in only one feature and that feature governed their food preference (e.g., a short octopus
liked steak and a tall octopus liked broccoli; 1-dimensional categorization). In the next easiest level (A2),
family members varied along two features but only one feature determined preference (1-dimensional
with an irrelevant feature). In the most difficult learnable activity (A3) food preferences were determined
by a conjunction of 2 variable features (2-dimensional categorization). Finally, the 4th activity (A4) was
random and unlearnable: individual monsters had two variable features, but their food preferences were
assigned randomly each time a new monster was sampled.

Learning objectives were manipulated across two randomly selected participant groups. Participants
in the “external goal” group (EG; N = 176) were asked to maximize learning across all the activities and
were told that they will be tested at the end of the session. In contrast, participants in the “internal
goal” group (IG, N = 154) were told to choose any activity they wished with no constraint except for
completing 250 trials. Except for this difference in instructions (and the fact that the EG group received the
announced test), the two groups received identical treatments. Each group started with 15 forced-choice
familiarization trials on each activity, followed by a 250-trial free-play stage, and gave several subjective
ratings of the activities before and after the free play stage.

As shown in Fig. 5, our difficulty manipulation worked as expected in both groups. Average accuracy
on the more difficult activites was lower than on easier activities.

To investigate whether LP played a role in self-determined study curriculum we fit the participants’
activity choices with a simple softmax choice model in which the utility of an activity was a linear
combination of PC and LP:

Ui ,t = wPC ×PCi ,t +wLP ×LPi ,t (1)

PC and LP were dynamically evaluated for each activity i at each trial t based on the recent feedback
history. PC was defined as the number of correct guesses over the last 15 trials of activity i , and LP
was defined as the difference in PC between first versus second parts of the same interval. We fit each
participants’ data as a probabilistic (softmax) choice over 4 discrete classes, using maximum likelihood
estimation with 3 free parameters - the softmax temperature (capturing choice stochasticity) and weights
wPC , wLP indicating the extent to which each participant was sensitive to, respectively, PC and LP
(Methods, Computational modeling).

The bivariate form of the model that included both LP and PC (eq. 1) provided a superior fit to the
data (average AIC score of M = 549.023, SD = 128.010)) relative to an alternative model based on random
selection (AIC = 693.147). Importantly, the bivariate model also outperformed univariate models that
included only LP or only PC terms in each instruction group (Fig. 6a). Moreover, the bivariate models
had the lowest AIC scores in 75.63% of participants, and at least a 2 point lead from the next-best model
in 63.13% (average minimum pairwise difference in AIC scores of 21.018,SD = 38.276; Z = 78, p < .001,
Wilcoxon signed-rank test for repeated measurements). This provides direct evidence that participants
are sensitive to LP – a heuristic for the temporal derivative of PC – above and beyond overall error rates.

The fitted bivariate models were successful at qualitatively reproducing time-allocation patterns
across learning activities and groups of participants (Fig. 6b). As shown in Fig. 6b, the fitted models
captured the behavioral tendencies of individual subgroups in our data.

Next, we examined the fitted model coefficients from the bivariate models. The normalized
coefficients ŵPC coefficients were, on average, positive in the IG group and negative in the EG group (IG:
M = 0.158, SD = 0.730; EG: M = −0.325, SD = 0.697; 1-way ANOVA; main effect of instruction,
F (1,318) = 36.566, p < .001) consistent with the fact that the EG group were relatively more attracted to
challenging activities with higher error rates. In contrast, the ŵLP coefficients did not differ by
instruction (IG: M = 0.095,SD = 0.664;EG : M = 0.075, SD = 0.640; 1-way ANOVA; main effect of
instruction, F (1,318) = 0.073, p = .787) suggesting that they captured a different aspect of the
participants’ choices.

These differences are consistent with computational studies suggesting that sensitivities to PC and LP
play distinct roles. A sensitivity to PC may motivate people to learn by steering them away from overly easy
activities, while a sensitivity to LP may steer learners away from overly difficult or impossible activities.
To examine this hypothesis, we analyzed how the two coefficients correlated with individual preferences
for challenging over easier activities when the more challenging activity was, respectively, learnable or
unlearnable. Figure 6 shows that while PC helped participant in engaging with more challening activities,
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Figure 6: Computational modeling results. a, The full bivariate model was the best on average. Compared to the
random-choice model as well as the two univaraiate models, the bivariate models had better AIC scores on average
both across and within groups. The box boundaries show the 25th and 75th percentiles, and the lines inside show
the medians. Whiskers indicate the full distribution range. b, Fitted coefficients reproduce choice patterns across
instruction and NAM groups. The panels show the average time allocation patterns obtained by simulating activity
choices over 250 trials using 500 randomly sampled coefficients from the pool of all fitted bivariate models. b,
Subfigure description. Legend for subfigure.
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LP seemed to have this effect only in the context of A3 vs A1, but not A4 vs A3, suggesting that LP does not
lead people to the unlearnability trap as PC does.

8.1.2 Examining the effect of time on subjective judgments of learning dynamics

Participants Alexandr Ten (correspondant), Pierre-Yves Oudeyer, Hélène Sauzéon,
Maxime Balan.

Our previous work left open the question of what is an optimal time period for which humans can
accurately estimate their progress in learning a skill that requires a prolonged exposure or practice time to
be mastered. Thus, this ongoing project aims to investigate veridical time scales for estimating progress
in competence in humans. For this, we designed a behavioral sensorimotor task that requires some
extended amount of time to be learned. The task is presented in the form of a video game, similar to the
arcade game Lunar Lander, where the objective is to control a spacecraft and safely land it on the surface.
As participants practice the task, we will record their performance (e.g. time to complete a single trial,
success rate etc.), which will allow us to examine the accuracy of their subjective judgments about their
performance. The subjective judgments of performance, along with different control measures, will be
obtained via verbal questionnaires.

Crucially, we control the time frames in which we sollicit the participant’s subjective judgments of
learning in order examine the link between how much time has passed (5 minutes, 2 days, 5 days) and
the accuracy of participants’ beliefs about their ongoing progress. We designed a tool which can be used
to administer this experiment remotely via the internet. Participants will be asked to log in and complete
part of the task on 3 different days, each day consisting the same 3 phases: (1) 5 minute of practice (2)
questionnaire (3) optional practice. The last, optional practice phase can be engaged by participants
but is not required as part of the experiment. This will let us measure behaviorally, the level of interest /
enthusiasm participants have for playing the game, which is hypothesized to be a function of the learning
progress they experience.

8.2 Intrinsically Motivated Learning in Artificial Intelligence

Participants Pierre-Yves Oudeyer (correspondant), Olivier Sigaud, Cédric Colas,
Adrien Laversanne-Finot, Rémy Portelas, Tristan Karch, Grgur Kovac.

8.2.1 Intrinsically Motivated Goal-Conditioned Reinforcement Learning: a Short Survey

Building autonomous machines that can explore open-ended environments, discover possible
interactions and autonomously build repertoires of skills is a general objective of artificial intelligence.
Developmental approaches argue that this can only be achieved by autonomous and intrinsically
motivated learning agents that can generate, select and learn to solve their own problems. In recent
years, we have seen a convergence of developmental approaches, and developmental robotics in
particular, with deep reinforcement learning (RL) methods, forming the new domain of developmental
machine learning. Within this new domain, we review here a set of methods where deep RL algorithms
are trained to tackle the developmental robotics problem of the autonomous acquisition of open-ended
repertoires of skills. Intrinsically motivated goal-conditioned RL algorithms train agents to learn to
represent, generate and pursue their own goals. The self-generation of goals requires the learning of
compact goal encodings as well as their associated goal-achievement functions, which results in new
challenges compared to traditional RL algorithms designed to tackle pre-defined sets of goals using
external reward signals. This project [58] proposes a typology of these methods at the intersection of
deep RL and developmental approaches, surveys recent approaches and discusses future avenues.

8.2.2 Intrinsically Motivated Exploration of Learned Goal Spaces
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Figure 7: Sensorimotor task. The goal of the task is to control the lander (2) to land on the platform (1). If the lander
body contacts the ground, the lander crashes and a new trial begins. Participants will play 5 minutes each session in
order to improve their skill of landing the lander on the platform. Remaining time (3) is displayed.
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Figure 8: Representation of the different learning modules in a Goal-conditioned Intrinsically Motivated Process
algorithm.
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Participants Adrien Laversanne-Finot (correspondant), Pierre-Yves Oudeyer.

Finding algorithms that allow agents to discover a wide variety of skills efficiently and autonomously,
remains a challenge of Artificial Intelligence. Intrinsically Motivated Goal Exploration Processes (IMGEPs)
have been shown to enable real world robots to learn repertoires of policies producing a wide range of
diverse effects. They work by enabling agents to autonomously sample goals that they then try to achieve.
In practice, this strategy leads to an efficient exploration of complex environments with high-dimensional
continuous actions. Until recently, it was necessary to provide the agents with an engineered goal space
containing relevant features of the environment. In this article we show that the goal space can be
learned using deep representation learning algorithms, effectively reducing the burden of designing
goal spaces. Our results pave the way to autonomous learning agents that are able to autonomously
build a representation of the world and use this representation to explore the world efficiently. We
present experiments in two environments using population-based IMGEPs. The first experiments are
performed on a simple, yet challenging, simulated environment. Then, another set of experiments tests
the applicability of those principles on a real-world robotic setup, where a 6-joint robotic arm learns to
manipulate a ball inside an arena, by choosing goals in a space learned from its past experience. This
work was published in [28]

8.2.3 GRIMGEP: Learning Progress for Robust Goal Sampling in Visual Deep Reinforcement
Learning

Participants Grgur Kovač (correspondant), Adrien Laversanne-Finot, Pierre-
Yves Oudeyer.

Autonomous agents using novelty based goal exploration are often efficient in environments that
require exploration. However, they get attracted to various forms of distracting unlearnable regions. To
solve this problem, Absolute Learning Progress (ALP) has been used in reinforcement learning agents
with predefined goal features and access to expert knowledge. This work extends those concepts to
unsupervised image-based goal exploration.

We present the GRIMGEP framework: it provides a learned robust goal sampling prior that can be
used on top of current state-of-the-art novelty seeking goal exploration approaches, enabling them to
ignore noisy distracting regions while searching for novelty in the learnable regions. It clusters the goal
space and estimates ALP for each cluster. These ALP estimates can then be used to detect the distracting
regions, and build a prior that enables further goal sampling mechanisms to ignore them.

Figure 9: Goal sampling procedure in the GRIMGEP framework. 1) The goal space is clustered. 2) The absolute
learning progress (ALP) of each cluster is computed. 3) A cluster is sampled using the ALP estimates. The goal
sampling prior is then constructed as the masking distribution assigning a uniform probability over goals inside the
sampled cluster and 0 probability to goals outside the cluster. 4) A goal is sampled from the distribution formed by
combining the goal sampling prior and the underlying IMGEP’s goal sampling distribution.

We construct an image based environment with distractors, on which we show that wrapping current
state-of-the-art goal exploration algorithms with our framework allows them to concentrate on interesting
regions of the environment and drastically improve performances.
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This work is available as a preprint in [60] and the source code is available at https://gitlab.com
/Grg/grimgep.

Figure 10: Comparison of three algorithms alone and in combination with the GRIMGEP framework. Skewfit and
CountBased look for novelty and OnlineRIG has not exploration bonuses.

8.2.4 Language Augmented Intrinsically Motivated Agents

Participants Cédric Colas (correspondant), Tristan Karch, Pierre-Yves Oudeyer.

Language as a Cognitive Tool to Imagine Goals in Curiosity-Driven Exploration In this project, we
investigate how autonomous multi-goal reinforcement learning agents can use language as a cognitive
tool in order to creatively explore their environment and grow repertoires of skills. We follow a
developmental approach inspired by how children learn to manipulate language, using it as a way to
represent goals and to make plans in their heads.

We develop an algorithm called IMAGINE [43] enabling an intrinsically motivated agent to build
a repertoire of skills only from natural language descriptions given by a Social Partner. In our setup,
the agent starts without knowing any potential goal and acts randomly. As it reaches outcomes that
are meaningful for the social partner, the social partner provides descriptions of the scene in natural
language. The agent then converts these natural descriptions into targetable goals and learns to reach
them.

This new learning algorithm offers several benefits over previous intrinsically motivated multi-goal
reinforcement learning agents that do not use language to describe goals.

First, using linguistic descriptions as sole supervision helps get rid of the need to define hand-crafted
reward functions for each of the reachable goals in the environment. In curious, for instance, the agent
needed to have access to the description of each of the goal types as well as their associated reward
functions in order to reach them. In IMAGINE, the agent builds its own internal reward function mapping
natural language descriptions to binary rewards and uses this signal to train a goal-conditioned policy.

Second, using language to represent goals enables the agent to leverage language compositionality so
as to imagine new goals, assembling pieces of descriptions communicated by the social partner in order

https://gitlab.com/Grg/grimgep
https://gitlab.com/Grg/grimgep
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to form new targetable goals. For instance, consider an agent that received the following descriptions:
“Grasp red cat”, “Grow red cat” and “Grasp red plant”. This agent can imagine the goal “Grow red plant”
and use it as a target in order to discover new outcomes in its environment. We call this mechanism goal
imagination. We argue that goal imagination is key to be able to make creative discoveries because the
corresponding targeted behaviors are out of the distribution of the outcomes communicated by the social
partner. This sort of out-of-distribution goal generation can only be achieved with goals represented as
language.

Imagining and training on new goals 

"Grasp red water"

(a) (c)(b)

Discovering new goals through free exploration and language descriptions from a social partner

"You grasp red water"

Autonomous training of policy network to achieve known goals

"Grow blue lion" "Grow red tree" 
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- Grasp red water
- Grasp blue lion
- Grasp red tree
- Grow blue lion
- ....

Internal Reward
Function
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- Grow red tree(d) (e) (f)
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Figure 11: IMAGINE overview. In the Playground environment, the agent (hand) can move, grasp objects and grow
some of them. Scenes are generated procedurally with objects of different types, colors and sizes. A social partner
provides descriptive feedback (orange), that the agent converts into targetable goals (red bubbles).

We carried out experiments in order to evaluate the benefits from goal imagination in intrinsically
motivated learning. Experiments are split into two phases. In the first one, the agent interacts with the
social partners, collects descriptions of goals and stores them in a set of known goal descriptions. The
agent uses these descriptions paired with its observations in order to learn an internal reward function
that detects when the goal represented by the descriptions are achieved in a given scene. Once this
internal reward function is obtained, the agent uses its output (the reward signal) in order to train a
goal-conditioned policy enabling it to reach any goal.

In the second phase, the social partner disappears and the agent starts imagining new goals by
composing the descriptions stored in the set of known goals. The agent then targets these new goals
and by doing so, discovers new interactions. This creative goal exploration process can only be efficient
if imagined goal descriptions have a sufficient probability to be meaningful in the environment. As a
result, we leveraged the construction grammar framework used to model child language acquisition
with discovery of word equivalence classes in order to make sure that imagined goals follow the same
construction rules as the descriptions communicated by the social partner. It is also important to note,
that in order for goal imagination to work, the internal reward function trained from the social partner’s
description must generalize. In other words, it should be able to detect if imagined goals are reached
without receiving any new description from the social partner. To this end, we developed an object-
factored learning architecture coupled with attention mechanisms [47] that facilitates generalization to
new descriptions.

Finally, we measured the success rate of agents on a wide set of different skills and observed that
agents that do not imagine goals (that stop at phase 1) master a smaller set of skills than agents that do
imagine goals.

Grounding Language to Autonomously-Acquired Skills via Goal Generation We are interested in the
autonomous acquisition of repertoires of skills. Language-conditioned reinforcement learning (LC-RL)
approaches are great tools in this quest, as they allow us to express abstract goals as sets of constraints
on the states. However, most LC-RL agents are not autonomous and cannot learn without external
instructions and feedback. Besides, their direct language condition cannot account for the goal-directed
behavior of pre-verbal infants and strongly limits the expression of behavioral diversity for a given
language input. To resolve these issues, we propose a new conceptual approach to language-conditioned
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Figure 12: IMAGINE results. Agents that start imagining goals early or half-way master a wider set of skill than
agents that do not imagine goals

RL: the Language-Goal-Behavior architecture (LGB). LGB decouples skill learning and language grounding
via an intermediate semantic representation of the world—see Figure 13. To showcase the properties of
LGB, we present a specific implementation called DECSTR. DECSTR is an intrinsically motivated learning
agent endowed with an innate semantic representation describing spatial relations between physical
objects–see Figure 14. In a first stage (G→B), it freely explores its environment and targets self-generated
semantic configurations. In a second stage (L→G), it trains a language-conditioned goal generator to
generate semantic goals that match the constraints expressed in language-based inputs. We showcase the
additional properties of LGB w.r.t. both an end-to-end LC-RL approach and a similar approach leveraging
non-semantic, continuous intermediate representations. Intermediate semantic representations help
satisfy language commands in a diversity of ways, enable strategy switching after a failure and facilitate
language grounding. This project led to a publication in the ICLR conference proceeding [56, 32].

8.2.5 Intrinsically Motivated Open-Ended Multi-Task Learning Using Transfer Learning to Discover
Task Hierarchy

Participants Nicolas Duminy, Sao Mai Nguyen, Junshuai Zhu, Dominique Duhaut,
Jerome Kerdreux.

In open-ended continuous environments, robots need to learn multiple parameterised control tasks
in hierarchical reinforcement learning. We hypothesise that the most complex tasks can be learned more
easily by transferring knowledge from simpler tasks, and faster by adapting the complexity of the actions to
the task. We propose a task-oriented representation of complex actions, called procedures, to learn online
task relationships and unbounded sequences of action primitives to control the different observables
of the environment. Combining both goal-babbling with imitation learning, and active learning with
transfer of knowledge based on intrinsic motivation, our algorithm self-organises its learning process. It
chooses at any given time a task to focus on; and what, how, when and from whom to transfer knowledge.
We show with a simulation and a real industrial robot arm, in cross-task and cross-learner transfer
settings, that task composition is key to tackle highly complex tasks. Task decomposition is also efficiently
transferred across different embodied learners and by active imitation, where the robot requests just a
small amount of demonstrations and the adequate type of information. The robot learns and exploits
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Figure 13: Language-Goal-Behavior architecture. The Language-Behavior architecture (left) is standard, but does
not allow sensorimotor learning decoupled from language. We propose the LGB architecture to decouple skill
learning and language grounding. Agents can learn to master skills oriented towards particular abstract perceptual
configurations (pyramid of cubes, stacks of cubes) then, in a second phase, can learn to map instructions (inst.) to
these semantic configurations via a semantic goal generator conditioned on language inputs (green).

task dependencies so as to learn tasks of every complexity.
This work lead to a publication in MDPI Applied Siences [45].

8.3 Object-Based and Relational Representations for Autonomous Agents

Participants Laetitia Teodorescu (correspondant), Tristan Karch, Cedric Colas,
Katja Hoffman, Pierre-Yves Oudeyer.

In deep reinforcement learning, especially in approaches operating in symbolic observation spaces
(the inputs are not images but the list of all object’s x-y positions for instance), it is common to feed the
agent’s networks with a vector of the concatenation of all the symbolic features. However, in practice
there is a lot of redundant structure in this observation space: if the first object has a feature describing it
as "red" or if the second object has a feature describing it as "red", there should be a prior (or inductive
bias) in the architecture reflecting the fact that these two situations should be processed in the same
way. All objects share the same semantics no matter in what order they are listed. We can call this the
object-centered prior. In addition to that, for acting on collections of objects, an agent often has to
process information about the relations between objects. We can call this the relational prior (or inductive
bias). A detailed discussion of these inductive biases can be found in [73].

8.3.1 Relational inductive biases for recognizing configurations of objects

Since the structure "objects + relations" is naturally present in the world, a good idea is to implement
it into the neural networks we are training. Set structures can be used for representing collections of
objects, and the Deep Set architecture is well-suited for learning on sets. Graph structures can be used
for representing collections of objects and their relations; the Graph Neural Network (GNN) family is
well-suited for learning on graphs. Additionnally, we should observe differences between performance
and sample efficiency of architectures having only the object-centered prior versus the ones that have
the object-centered and relational priors in tasks that require processing of relational information.

We have tested this hypothesis in the case of learning to recognize spatial configurations of symbolic
objects. For this purpose, we have created a benchmark dataset called SpatialSim that defines two tasks.
The first task, called Identification, is learning to recognize a reference configuration of objects (up to an
affine transformation) from a scene with the same objects but with their positions randomly reshuffled.
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Figure 14: DECSTR agent. The DECSTR agent faces three cubes and is endowed with an innate semantic
representation of their spatial relations. Here, the pyramid is perceived via binary spatial relations (blue above
green, blue above red, red close to green, etc). The agent can explore this representation space, discover and master
new configurations (pyramids, stacks, etc.)

The second task, called Comparison, consists in comparing two different configurations of objects and
deciding if they are the same (up to an affine transformation).

In this context, we have trained architectures implementing increasing levels of relational
computation: Deep Sets, Recurrent Deep Sets and Message-Passing GNNs. We have observed that the
models with more relational computation perform better, especially in the Comparison task where Deep
Set performance is very poor. This suggests that relational models are crucial for learning to compare
configurations of objects.

This work has been presented as a spotlight talk at the Bridge Between Perception and Reasoning,
Graph Neural Networks and Beyond workshop at ICLR 2020 [63].

8.3.2 Extracting object representations from images

The previous work was concerned with symbolic objects described by their features such as position,
orientation, etc. In a realistic setting we need to be able to learn to extract these object representations
directly from raw images in an unsupervised representation learning scheme, and in a disentangled
manner, such that each object is represented by a unique vector, and that each of that vector’s coordinates
represents a unique factor of variation (such as x or y position, color, etc). In the best case, this would
recover the symbolic representations such as the ones used in the approach above.

Two architectures for object-centered unsupervised representation learning have been investigated:
MONet [79] (an object-based variational autoencoder) and Contrastive-Structured World Models [108]
(an architecture learning to extract objects from images by learning a world model expressed as an
interaction graph). Integrating these approaches (along with mechanisms for object permanence) into
an intrinsically motivated deep RL setting is still ongoing work.

8.3.3 In language-conditioned Deep RL agents

The impact of object-centered architectures in a deep RL setting has also been investigated. We have
benchmarked their importance in the language-imagination deep rl setting given in 8.2.4. We have
observed dramatic improvements in sample efficiency in this setting when we use Deep Sets as opposed
to flat, unstructured architectures (such as regular Multi-Layer Perceptrons).

In addition to that, we observe increased generalization performance in this setting (see Figures 15
and 16), suggesting that the bias that all objects should be represented and processed in the same way
(and the weight-sharing that is implied by this bias in the neural networks) is helpful for transferring skills
across objects.

These object-based architectures are robust to the number of objects, contrary to their flat
counterparts. Additionally, architectures that present biases for encoding relations between objects
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Figure 15: Generalization performance (F1 score) of differrent architectures for the reward function in the IMAGINE
setting. MA denotes an architecture based on deep sets posessing the object-centered bias; FA and FC denote flat,
non-object-centered baselines. Stars indicate significant difference.
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Figure 16: Train (plain line) and test (dotted line) success rates over the course of training of different policy
architectures. The object-centered (MA) variant performs significantly better in fewer training steps.
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demonstrate increased performance in tasks that require interaction between objects, such as grasping
objects that are identified by their position relative to another object.

This work was presented at the Beyond Tabula Rasa in RL ICLR 2020 workshop [47].

8.4 Automatic Curriculum Learning in Deep RL

8.4.1 Teacher algorithms for curriculum learning of Deep RL in continuously parameterized
environments

Participants Remy Portelas (correspondant), Katja Hoffman, Pierre-Yves Oudeyer.

In this work we considered the problem of how a teacher algorithm can enable an unknown Deep
Reinforcement Learning (DRL) student to become good at a skill over a wide range of diverse
environments. To do so, we studied how a teacher algorithm can learn to generate a learning curriculum,
whereby it sequentially samples parameters controlling a stochastic procedural generation of
environments. Because it does not initially know the capacities of its student, a key challenge for the
teacher is to discover which environments are easy, difficult or unlearnable, and in what order to propose
them to maximize the efficiency of learning over the learnable ones. To achieve this, this problem is
transformed into a surrogate continuous bandit problem where the teacher samples environments in
order to maximize absolute learning progress of its student. We presented ALP-GMM (see figure 17), a
new algorithm modeling absolute learning progress with Gaussian mixture models. We also adapted
existing algorithms and provided a complete study in the context of DRL. Using parameterized variants
of the BipedalWalker environment, we studied their efficiency to personalize a learning curriculum for
different learners (embodiments), their robustness to the ratio of learnable/unlearnable environments,
and their scalability to non-linear and high-dimensional parameter spaces. Videos and code are available
at https://github.com/flowersteam/teachDeepRL.

Figure 17: Schematic view of an ALP-GMM teacher’s workflow

Overall, this work demonstrated that LP-based teacher algorithms could successfully guide DRL
agents to learn in difficult continuously parameterized environments with irrelevant dimensions and
large proportions of unfeasible tasks. With no prior knowledge of its student’s abilities and only loose
boundaries on the task space, ALP-GMM, our proposed teacher, consistently outperformed random

https://github.com/flowersteam/teachDeepRL
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Figure 18: Teacher-Student approaches in Hexagon Tracks. Left: Evolution of mastered tracks for Teacher-Student
approaches in Hexagon Tracks. 32 seeded runs (25 for Random) of 80 Millions steps where performed for each
condition. The mean performance is plotted with shaded areas representing the standard error of the mean. Right:
A visualization of which track distributions of the test-set are mastered (i.e rt > 230, shown by green dots) by an
ALP-GMM run after 80 million steps.

heuristics and occasionally even expert-designed curricula (see figure 18). This work was presented at
CoRL 2019 [138].

ALP-GMM, which is conceptually simple and has very few crucial hyperparameters, opens-up exciting
perspectives inside and outside DRL for curriculum learning problems. Within DRL, it could be applied
to previous work on autonomous goal exploration through incremental building of goal spaces [111].
In this case several ALP-GMM instances could scaffold the learning agent in each of its autonomously
discovered goal spaces. Another domain of applicability is assisted education, for which current state of
the art relies heavily on expert knowledge [83] and is mostly applied to discrete task sets.

8.4.2 Meta Automatic Curriculum Learning

Participants Remy Portelas (correspondant), Clement Romac, Katja Hoffman,
Pierre-Yves Oudeyer.

In this work we identified that a major challenge in the Deep RL (DRL) community is to train agents
able to generalize their control policy over situations never seen in training. Training on diverse tasks
has been identified as a key ingredient for good generalization, which pushed researchers towards using
rich procedural task generation systems controlled through complex continuous parameter spaces. In
such complex task spaces, it is essential to rely on some form of Automatic Curriculum Learning (ACL)
to adapt the task sampling distribution to a given learning agent, instead of randomly sampling tasks,
as many could end up being either trivial or unfeasible. Since it is hard to get prior knowledge on such
task spaces, many ACL algorithms explore the task space to detect progress niches over time, a costly
tabula-rasa process that needs to be performed for each new learning agents, although they might have
similarities in their capabilities profiles.

To address this limitation, we introduced the concept of Meta-ACL (see fig. 19, and formalized it in
the context of black-box RL learners, i.e. algorithms seeking to generalize curriculum generation to an
(unknown) distribution of learners. We then presented AGAIN (see fig. 20), a first instantiation of
Meta-ACL, and showcased its benefits for curriculum generation over classical ACL in multiple simulated
environments including procedurally generated parkour environments with learners of varying
morphologies. Videos and code are available at https://sites.google.com/view/meta-acl

This work is available as preprint [62] and will be submitted to ICML 2021. In future work, AGAIN could be
improved by using adaptive approaches to build compact pre-test sets, e.g. using decision tree based test pruning
methods, or by combining curriculum priors from multiple previously trained learners. While AGAIN is built on
top of an existing ACL algorithm, developing an end-to-end Meta-ACL algorithm that generates curricula using a
DRL teacher policy trained across multiple students is also a promising line of work to follow. Additionally, this work
opens-up exciting new perspectives in transferring Meta-ACL methods to educational data-mining, e.g. in MOOC
scenarios, given a previously trained pilot classroom, one could use Meta-ACL to infer adaptive curricula for new
students.

https://sites.google.com/view/meta-acl
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Figure 19: Schematic view of an ALP-GMM teacher’s workflow
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Figure 20: Schematic view of an ALP-GMM teacher’s workflow

8.4.3 Automatic Curriculum Learning for Deep RL in Procedural Task Spaces: a Benchmark

Participants Clement Romac (correspondant), Remy Portelas, Katja Hoffman, Pierre-
Yves Oudeyer.

Training autonomous agents able to generalize to a multiplicity of environments/tasks is a key desiderata in
current Deep Reinforcement Learning (DRL) research. In parallel to searching for DRL architectures able to learn sets
of tasks, many works on Automatic Curriculum Learning (ACL) studied how to emancipate from the usual random
task curriculum and instead use teacher algorithms to adapt task selection to the evolving abilities of black-box DRL
agents. While multiple standard benchmarks exist to compare DRL agents, there is currently no such thing for ACL
algorithms, which makes comparing existing approaches difficult, as too many experimental parameters differ from
paper to paper.

In this work, we identified the following key challenges faced by ACL algorithms:

• Mostly unfeasible task spaces - Given the task space is large, as in PCG-encoding task spaces, there might be a
predominant amount of unfeasible tasks (or at least initially unfeasible). A good teacher algorithm must have
the ability to quickly detect and exploit promising task subspaces for its learner.

• Mostly trivial task spaces - On the contrary, w.r.t. a given student, the task space might be mostly trivial. In that
case the teacher has to efficiently detect and exploit the small portion of subspaces of relevant difficulty.

• Forgetting students - DRL learners are prone to catastrophic forgetting, i.e. to overwrite important skills while
training new ones. This has to be detected and dealt with by the teacher for optimal curriculum generation.

• Robustness to diverse students - Being able to adapt curriculum generation to diverse students is an important
desiderata to ensure a given ACL mechanism has good chances to transfer to novel scenarios.

• Rugged difficulty landscapes - Another important property for ACL algorithms is to be able to deal with task
spaces for which the optimal curriculum is not a smooth task distribution sampling drift across the space but
rather a series of distribution jumps, e.g. as in complex PCG-task spaces.

• Working with no or few expert knowledge - Prior knowledge over a task space w.r.t. a given student is a costly
information gathering process that needs to be repeated for each new problem/student. Relying on as little
expert knowledge as possible is therefore a desirable property for ACL algorithms (especially if aiming for
out-of-the-lab applications).

Based on these, we presented TeachMyAgent (TA), a benchmark of current ACL algorithms including 1) skill-
specific unit-tests using variants of a procedural Box2D bipedal walker environment, and 2) a new procedural
Parkour environment combining most ACL challenges, making it ideal for global performance assessment. We then
leveraged TeachMyAgent to conduct a comparative study of existing approaches, showcasing the competitiveness of
expert-knowledge-free ACL approaches, and showing that our Parkour environment remains an open problem.
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Challenge-specific comparison with Stump Tracks In order to propose a comparison of the different ACL
methods on each of the challenges introduced above, we leveraged the Stump Tracks environment introduced in
[138] to create five experiments, each of them designed to highlight the ability of a teacher in one the first five ACL
challenges. Additionnaly, in order to analyse separately the expert knowledge challenge, we performed each of the
experiments above in three prior knowledge conditions:

• No expert knowledge

• Low expert knowledge

• High expert knowledge

Using these 15 experiments, we compared 7 ACL methods in addition of a baseline teacher sampling tasks
uniformly random over the task space. In each experiment, a DRL student is trained for 20 millions steps using
an ACL algorithm to set the procedural generation of the environment at every episode. We monitored the DRL
student’s performances on a pre-defined test set composed of 100 tasks every 500000 steps and reported the average
percentage of mastered tasks (i.e. task on which the agent obtained an episodic reward greater than 230). Results are
gathered in figure 21 and presented as an order of magnitude of the Random teacher (using 32 seeds per experiment).

Figure 21: EK: Expert Knowledge. Performances of each ACL method on the challenges identified given allowed
expert knowledge. Stars show the performance obtained by the best teacher on the original task w.r.t. the expert
knowledge given, except for the variety of students challenge which does not use the same embodiment.

While these results highlighted the strenghs and weaknesses of each method (e.g. the inability of ADR to deal
with rugged difficulty landscapes or the inertia of GoalGAN in adapting the curriculum to forgetting students), it
also showed how competitive expert-knowledge-free methods like ALP-GMM are, even when compared to methods
having access to a high amount of prior knowledge.

Global performances analysis using the Parkour We then assessed the different ACL methods’ performances
on our Box2D Parkour track environment (see figure 22) which features most of the previously discussed ACL
challenges: 1) most tasks are unfeasible, 2) Before each run, unknown to the teacher, the student’s embodiment
is uniformly sampled among three morphologies (bipedal walker, fish and chimpanzee), requiring the teacher to
adapt curriculum generation to its current student’s abilities, and 3) tasks are generated through a CCPN-based PCG,
creating a rich task space with rugged difficulty landscape and hardly-definable prior knowledge.

We trained a DRL student for 20 millions steps with 48 different seeds (16 per morphology) and monitored the
percentage of mastered tasks as in our Stump Tracks experiments. As few expert knowledge is accessible, our results
(figure 23) showed to poor performances from expert-knowledge-depend teachers (e.g. ADR or SPDL). Additionally,
overall results awerere quite low, especially for the seeds using our chimpanzee embodiment, where none of the ACL
methods managed to master more than 1% of the test set. This thus leaves our Parkour track as an open challenge for
future design of ACL methods.
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Figure 22: An overview of our bestiary of embodiments constituted of walkers, swimmers and climbers. From left
to right, classic bipedal (walker), climbing chimpanzee (climber), fish (swimmer), spider (walker), quadrupedal
(walker), millipede (walker), short bipedal (walker) and wheel (walker). We here also show three randomly generated
tasks from the Parkour environment.

Figure 23: Average performance (with standard error of the mean) on test sets for each ACL method on the Parkour
track. Results are averaged over 48 seeds (16 per type of embodiment).
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8.4.4 Other
Sensory Commutativity of Action Sequences

Participants Hugo Caselles-Dupré (correspondant), David Filliat.

We study perception in the scenario of an embodied agent equipped with first-person sensors and a continuous
motor space with multiple degrees of freedom. We consider the commutative properties of action sequences with
respect to sensory information perceived by such an embodied agent. We introduce the Sensory Commutativity
Probability (SCP) criterion which measures how much an agent’s degree of freedom affects the environment in
embodied scenarios. We show how to compute this criterion in different environments, including realistic robotic
setups. We empirically illustrate how SCP and the commutative properties of action sequences can be used to learn
about objects in the environment and improve sample efficiency in Reinforcement Learning.

Our research was published in the Workshop on Learning in Artificial Open Worlds at ICML20 [42] and NeurIPS
2020 Workshop on BabyMind [41].

Should artificial agents ask for help in human-robot collaborative problem-solving?

Participants Adrien Bennetot, Vicky Charisi, Natalia Díaz-Rodríguez.

Transferring as fast as possible the functioning of our brain to artificial intelligence is an ambitious goal that
would help advance the state of the art in AI and robotics. It is in this perspective that we propose to start from
hypotheses derived from an empirical study in a human-robot interaction and to verify if they are validated in the
same way for children as for a basic reinforcement learning algorithm [40]. Thus, we check whether receiving help
from an expert when solving a simple close-ended task (the Towers of Hanoï) allows to accelerate or not the learning
of this task, depending on whether the intervention is canonical or requested by the player. Our experiences have
allowed us to conclude that, whether requested or not, a Q-learning algorithm benefits in the same way from expert
help as children do.

8.5 Multi-agent Reinforcement learning for Ecologically-valid Artificial
Intelligence

8.5.1 Grounding Artificial Intelligence in the Origins of Human Behavior

Participants Clément Moulin-Frier (correspondant), , Eleni Nisioti, Julius Taylor.

Introduction One of the most ambitious goal in Artificial Intelligence (AI) is the realization of a so-called Artificial
General Intelligence (AGI), i.e. AI that is not limited to the realization of a predefined set of tasks but is able to
generalize its capabilities to any cognitive task that can be solved by human intelligence. This is obviously a long-
term objective but recent advances in AI have revived research in this field, with the vast majority of contributions
focusing on 1. new cognitive architectures and learning algorithms [146]; 2. new cost functions to be optimized [97] ;
3. new databases to learn from [104]. However, although AGI is fundamentally related to the characteristics of human
intelligence, research in this field rarely considers the processes that may have guided the emergence of complex
cognitive capacities during the evolution of the species. Research in Human Behavioral Ecology (HBE) [76] seeks
to understand how the behaviors characterizing human nature can be conceived as adaptive responses to major
changes in the structure of our ecological niche. However, very little work in AI proposes to study how this long-term
environmental dynamics can potentially guide and improve the acquisition of complex behaviors in artificial systems
(see however recent contributions [155], including from our research group [138, 23]). Moreover, to our knowledge,
modern AI methods for learning behaviors in sequential environments have not yet been applied to test hypotheses
in HBE (although it has been recently proposed [92]).

An inter-disciplinary dialogue between AI and HBE As a first step in our project, we conducted a targeted
yet extensive literature review on HBE, in particular works studying the effect that climate complexity has had on the
emergence of adaptability, cooperation and cultural repertoire in human evolution. In parallel, we have reviewed
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Figure 24: Environmental complexity as a main driver in human behavioral ecology. Feed-forward and feedback
arrows indicate relationships between the different ecological components, analyzed in the corresponding references
from BE literature provided as labels.

the state-of-the-art in the study of open-ended skill acquisition in, in particular, the AI sub-fields of multi-agent
reinforcement and meta reinforcement learning. We have compiled our review in a position paper that summarizes
the project’s objectives [61]. An important objective at this stage was to justify the proposed exchange of ideas
between the two fields by identifying their commonalities in terms of research challenges. In Figure 24, we introduce
a conceptual framework that recognizes important ecological components, as well as the feedforward and feedback
links that relate them. This figure was presented in our preprint [61].

Objectives In our next steps, we plan to work on the lines of improving the state-of-the-art in meta RL and
multi-agent RL by leveraging hypotheses from HBE. Simultaneously, in a similar spirit to our group’s proposal of
using multi-agent RL as a computational tool for studying language development [123], we will employ RL as a
computational tool for evaluating HBE hypotheses. In particular, our review has identified the following research
challenges:

• identifying the effect that environmental variability has on the adaptability of meta RL agents. The rate of
environmental change is an important hyper-parameter for meta RL algorithms but has only recently attracted
attention [110]. Our plan is to ground this investigation in HBE theories from climate variability, which
state that the adaptability of species is achieved through mechanisms whose form depends on properties of
the environment. If the environment is constant across time and space, natural selection may favor innate
behaviors. By contrast, if the environment varies, natural selection might favor behavioral plasticity: based on
environmental observations an agent may be able to switch between different behaviors following innate,
and not learned instructions [92]. In cases where the environment changes noticeably across generations but
slowly enough within a generation, behavioral plasticity is guided by a process of developmental selection, an
example of which is the learning process, where an agent’s past behavior guide its future behavior.

• studying the effect that environmental properties such as predator pressure and resource availability have on
groups of RL agents. Emergent autocurricula in multi-agent RL have been observed to lead to open-ended skill
acquisition in various works [69, 112]. We plan to investigate how group properties, such as size and structure,
are influenced by their environment and create feedback loops that lead to the emergence of autocurricula.
Preliminary work was realized in this direction during the Master internship of Younès Rabii (February to
August 2020), who implemented predator-preys complex systems within a multi-agent simulated environment.
This work initiated a collaboration with Michael Garcia-Ortiz from City University in London (UK).

• cultural repertoire in large-scale groups of RL agents. According to the social complexity hypothesis [93],
uniquely human skills such as language, social norms and institutions emerged as a need to regulate
interactions in social systems of increasing size and structural complexity. We plan to study emergent
communication in MARL as part of the ongoing Phd thesis of Julius Taylor (started November 2020, see also
our recent position paper [48]). We also recently started a collaboration with Microsoft Research New-York
(USA) on a project that studies the role of fireside chats in the emergence of rich communication systems in
groups of RL agent, in relation with theories of language evolution. We have recently published a paper on the
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Figure 25: Left: (a) A grid world with two agents and a target (top view). The listener agent can navigate in the grid
world but has a limited observability of its surroundings, whereas the speaker agent has full observability of the
environment but can’t navigate in it. The objective is to learn a communication system allowing the speaker to guide
the listener towards the target. (b) Visual partial observation received by the listener, and one-hot message sent
from the speaker to the listener. Right: Causal Influence of Communication (CIC) as a function of the view size
of the listener and the noise of the communication channel. Intuitively, a high CIC value indicates that messages
from the speaker have a high influence on the listener’s actions. We observe that: (i) Without noise, CIC is maximal
whatever the observability is, because learning from speaker messages is easier than from visual observation. (ii)
Without observability, the CIC is maximal whatever the noise level is, because the listener can only rely on the speaker
messages. (iii) Increasing the observability or the noise both reduces the CIC, the reason being that observability
increases the ability of the listener agent to solve the task by itself, whereas noise reduces the reliability of the speaker
messages.

emergence of social conventions in collaboration with University Popeu Fabra in Spain [24]. Finally,
preliminary experiments on the role of partial observability and channel reliability in emergent
communication were realized during the Master internship of Valentin Villecroze (April to August 2020). This
work was published as a workshop paper ([53]) and an extract of the results is presented in figure 25.

8.6 Applications in Educational Technologies

8.6.1 Machine Learning for Adaptive Personalization in Intelligent Tutoring Systems

Participants Pierre-Yves Oudeyer (correspondant), Benjamin Clément, Didier Roy,
Hélène Sauzeon.

The Kidlearn project Kidlearn is a research project studying how machine learning can be applied to intelligent
tutoring systems. It aims at developing methodologies and software which adaptively personalize sequences of
learning activities to the particularities of each individual student. Our systems aim at proposing to the student the
right activity at the right time, maximizing concurrently his learning progress and his motivation. In addition to
contributing to the efficiency of learning and motivation, the approach is also made to reduce the time needed to
design ITS systems.

We continued to develop an approach to Intelligent Tutoring Systems which adaptively personalizes sequences
of learning activities to maximize skills acquired by students, taking into account the limited time and motivational
resources. At a given point in time, the system proposes to the students the activity which makes them progress
faster. We introduced two algorithms that rely on the empirical estimation of the learning progress, RiARiT that uses
information about the difficulty of each exercise and ZPDES that uses much less knowledge about the problem.
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The system is based on the combination of three approaches. First, it leverages recent models of intrinsically
motivated learning by transposing them to active teaching, relying on empirical estimation of learning progress
provided by specific activities to particular students. Second, it uses state-of-the-art Multi-Arm Bandit (MAB)
techniques to efficiently manage the exploration/exploitation challenge of this optimization process. Third, it
leverages expert knowledge to constrain and bootstrap initial exploration of the MAB, while requiring only coarse
guidance information of the expert and allowing the system to deal with didactic gaps in its knowledge. The system
was evaluated in several large-scale experiments relying on a scenario where 7-8 year old schoolchildren learn how to
decompose numbers while manipulating money [83]. Systematic experiments were also presented with simulated
students.

Kidlearn Experiments 2018-2019: Evaluating the impact of ZPDES and choice on learning efficiency
and motivation An experiment was held between mars 2018 and July 2019 in order to test the Kidlearn framework
in classrooms in Bordeaux Metropole. 600 students from Bordeaux Metropole participated in the experiment. This
study had several goals. The first goal was to evaluate the impact of the Kidlearn framework on motivation and
learning compared to an Expert Sequence without machine learning. The second goal was to observe the impact of
using learning progress to select exercise types within the ZPDES algorithm compared to a random policy. The third
goal was to observe the impact of combining ZPDES with the ability to let children make different kinds of choices
during the use of the ITS. The last goal was to use the psychological and contextual data measures to see if correlation
can be observed between the students psychological state evolution, their profile, their motivation and their learning.
The different observations showed that generally, algorithms based on ZPDES provided a better learning experience
than an expert sequence. In particular, they provide a more motivating and enriching experience to self-determined
students. Details of these new results, as well as the overall results of this project, are presented in Benjamin Clément
PhD thesis [82] and are currently being processed to be published.

Kidlearn and Adaptiv’Math The algorithms developed during the Kidlearn project and Benjamin Clement
thesis [82] are being used in an innovation partnership for the development of a pedagogical assistant based on
artificial intelligence intended for teachers and students of cycle 2. The algorithms are being written in typescript
for the need of the project. The expertise of the team in creating the pedagogical graph and defining the graph
parameters used for the algorithms is also a crucial part of the role of the team for the project. One of the main goal of
the team here is to transfer technologies developed in the team in a project with the perspective of industrial scaling
and see the impact and the feasibility of such scaling.

Kidlearn for numeracy skills with individuals with autism spectrum disorders Few digital interventions
targeting numeracy skills have been evaluated with individuals with autism spectrum disorder (ASD) [55][120].
Yet, some children and adolescents with ASD have learning difficulties and/or a significant academic delay in
mathematics. While ITS are successfully developed for typically developed students to personnalize learning
curriculum and then to foster the motivation-learning coupling, they are not or fewly proposed today to student with
specific needs. The objective of this pilot study is to test the feasibility of a digital intervention using an STI with high
school students with ASD and/or intellectual disability. This application (KidLearn) provides calculation training
through currency exchange activities, with a dynamic exercise sequence selection algorithm (ZPDES). 24 students
with ASD and/or DI enrolled in specialized classrooms were recruited and divided into two groups: 14 students used
the KidLearn application, and 10 students received a control application. Pre-post evaluations show that students
using KidLearn improved their calaculation performance, and had a higher level of motivation at the end of the
intervention than the control group. These results encourage the use of an STI with students with specific needs to
teach numeracy skills, but need to be replicated on a larger scale. Suggestions for adjusting the interface and teaching
method are suggested to improve the impact of the application on students with autism. (Paper is submitted).

8.6.2 Machine learning for adaptive cognitive training

Participants Pierre-Yves Oudeyer, Hélène Sauzéon (correspondant), Masataka Sawayama,
Benjamin Clément, Maxime Adolphe.

Because of its cross-cutting nature to all cognitive activities such as learning tasks, attention is a hallmark of good
cognitive health throughout life and more particularly in the current context of societal crisis of attention. Recent
works have shown the great potential of computerized attention training for an example of attention training, with
efficient training transfers to other cognitive activities, and this, over a wide spectrum of individuals (children, elderly,
individuals with cognitive pathology such as Attention Deficit and Hyperactivity Disorders). Despite this promising
result, a major hurdle is challenging: the high inter-individual variability in responding to such interventions. Some
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individuals are good responders (significant improvement) to the intervention, others respond variably, and finally
some respond poorly, not at all, or occasionally. A central limitation of computerized attention training systems
is that the training sequences operate in a linear, non-personalized manner: difficulty increases in the same way
and along the same dimensions for all subjects. However, different subjects require in principle a progression at a
different, personalized pace according to the different dimensions that characterize attentional training exercises.

To tackle the issue of inter-individual variability, the present project proposes to apply some principles from
intelligent tutorial systems (ITS) to the field of attention training. In this context, we have already developed automatic
curriculum learning algorithms such as those developed in the KidLearn project, which allow to customize the
learner’s path according to his/her progress and thus optimize his/her learning trajectory while stimulating his/her
motivation by the progress made. ITS are widely identified in intervention research as a successful way to address
the challenge of personalization, but no studies to date have actually been conducted for attention training. Thus,
whether ITS, and in particular personalization algorithms, can optimize the number of respondents to an attention
training program remains an open question.

To investigate this question, a web platform has been designed for planning and implementing remote
behavioural studies. This tool provides means for registering recruited participants remotely and executing complete
experimental protocols: from presenting instructions and obtaining informed consents, to administering
behavioural tasks and questionnaires, potentially throughout multiple sessions spanning days or weeks. As a result,
several studies using this tool will be conducted during the following months.

8.6.3 Interactive systems that foster curiosity for education

Participants Pierre-Yves Oudeyer, Hélène Sauzéon (correspondant), Mehdi Alami,
Rania Abdelghani, Didier Roy, Edith Law.

Since 2019 via the renewal of the Idex cooperation fund (between the University of Bordeaux and the University
of Waterloo, Canada) led by the Flowers team and also involving F. Lotte from the Potioc team, we continue our work
on the development of new curiosity-driven interaction systems. Although experimentations have been slowed down
by sanitary conditions, progress has been made in this area of application of FLOWERS works. In particular, three
studies have been completed.

The first study regards a new interactive educational application to foster curiosity-driven question-asking
in children. This study has been performed during the Master 2 internship of Mehdi Alaimi co-supervised by H.
Sauzéon, E. Law and PY Oudeyer. It addresses a key challenge for 21st-century schools, i.e., teaching diverse students
with varied abilities and motivations for learning, such as curiosity within educational settings. Among variables
eliciting curiosity state, one is known as « knowledge gap », which is a motor for curiosity-driven exploration and
learning. It leads to question-asking which is an important factor in the curiosity process and the construction of
academic knowledge. However, children questions in classroom are not really frequent and don’t really necessitate
deep reasoning. Determined to improve children’s curiosity, we developed a digital application aiming to foster
curiosity-related question-asking from texts and their perception of curiosity. To assess its efficiency, we conducted
a study with 95 fifth grade students of Bordeaux elementary schools. Two types of interventions were designed,
one trying to focus children on the construction of low-level question (i.e. convergent) and one focusing them on
high-level questions (i.e. divergent) with the help of prompts or questions starters models. We observed that both
interventions increased the number of divergent questions, the question fluency performance, while they did not
significantly improve the curiosity perception despite high intrinsic motivation scores they have elicited in children.
The curiosity-trait score positively impacted the divergent question score under divergent condition, but not under
convergent condition. The overall results supported the efficiency and usefulness of digital applications for fostering
children’s curiosity that we need to explore further. The overall results are published in CHI’20 [33].

The second study investigates the neurophysiological underpinnings of curiosity and the opportunities of their
use for Brain-computer interactions [34]. Understanding the neurophysiological mechanisms underlying curiosity
and therefore being able to identify the curiosity level of a person, would provide useful information for researchers
and designers in numerous fields such as neuroscience, psychology, and computer science. A first step to uncovering
the neural correlates of curiosity is to collect neurophysiological signals during states of curiosity, in order to develop
signal processing and machine learning (ML) tools to recognize the curious states from the non-curious ones. Thus,
we ran an experiment in which we used electroencephalography (EEG) to measure the brain activity of participants
as they were induced into states of curiosity, using trivia question and answer chains. We used two ML algorithms, i.e.
Filter Bank Common Spatial Pattern (FBCSP) coupled with a Linear Discriminant Algorithm (LDA), as well as a Filter
Bank Tangent Space Classifier (FBTSC), to classify the curious EEG signals from the non-curious ones. Global results
indicate that both algorithms obtained better performances in the 3-to-5s time windows, suggesting an optimal time
window length of 4 seconds to go towards curiosity states estimation based on EEG signals.
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Finally, the third study investigates the role of intrinsic motivation in spatial learning in children (paper in
progress). In this study, the state curiosity is manipulated as a preference for a level of uncertainty during the
exploration of new environments. To this end, a series of virtual environments have been created and is presented to
children. During encoding, participants explore routes in environments according the three levels of uncertainty (low,
medium, and high), thanks to a virtual reality headset and controllers and, are later asked to retrace their travelled
routes . The exploration area and the wayfinding. ie the route overlap between encoding and retrieval phase, (an
indicator of spatial memory accuracy) are measured. Neuropsychological tests are also performed. Preliminary
results showed that there are better performances under the medium uncertainty condition in terms of exploration
area and wayfinding score. These first results supports the idea that curiosity states are a learning booster.

At the end of 2020, we started an industrial collaboration project with EvidenceB on this topic (CIFRE contract of
Rania Abdelghani currently submitted to the ANRT). The overall objective of the thesis is to propose new educational
technologies driven by epistemic curiosity, and allowing children to express themselves more and learn better. To
this end, a central question of the work will be to specify the impact of self-questioning aroused by states of curiosity
about student performance. Another objective will be to create and study the pedagogical impact of new educational
technologies in real situations (schools) promoting an active education of students based on their curiosity.

8.6.4 A computer science and robotics integration model for primary school

Participants Didier Roy (correspondant).

Integrating computer science (CS) into school curricula has become a worldwide preoccupation. Therefore, we
present a CS and Robotics integration model and its validation through a large-scale pilot study in the administrative
region of the Canton Vaud in Switzerland. Approximately 350 primary school teachers followed a mandatory CS
continuing professional development program (CPD) of adapted format with a curriculum scaffolded by instruction
modality. This included CS Unplugged activities that aim to teach CS concepts without the use of screens, and
Robotics Unplugged activities that employed physical robots, without screens, to learn about robotics and CS
concepts. Teachers evaluated positively the CPD and their representation of CS improved. Voluntary adoption rates
reached 97 percent during the CPD and 80 percent the following year. These results combined with the underpinning
literature support the generalisability of the model to other contexts. This work was published in [25] and led by our
colleagues at EPFL.

8.6.5 How An Automated Gesture Imitation Game Can Improve Social Interactions With Teenagers
With ASD

Participants Linda Nanan Vallée, Sao Mai Nguyen, Christophe Lohr, Ioannis Kanellos,
Olivier Asseu.

With the outlook of improving communication and social abilities of people with ASD, we propose to extend the
paradigm of robot-based imitation games to ASD teenagers. In this paper [52], we present an interaction scenario
adapted to ASD teenagers, propose a computational architecture using the latest machine learning algorithm
Openpose for human pose detection, and present the results of our basic testing of the scenario with human
caregivers. These results are preliminary due to the number of session (1) and participants (4). They include a
technical assessment of the performance of Openpose, as well as a preliminary user study to confirm our game
scenario could elicit the expected response from subjects.

8.7 Applications to Automated Discovery in Self-Organizing Systems

8.7.1 Curiosity-driven Learning for Automated Discovery of Physico-Chemical Structures

Participants Chris Reinke (correspondant), Mayalen Etcheverry, Pierre-Yves Oudeyer.

Introduction Intrinsically motivated goal exploration algorithms (IMGEPs) enable machines to discover
repertoires of action policies that produce a diversity of effects in complex environments. In robotics, these
exploration algorithms have been shown to allow real world robots to acquire skills such as tool use [91] [70]. In other
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domains such as chemistry and physics, they open the possibility to automate the discovery of novel chemical or
physical structures produced by complex dynamical systems [137]. However, they have so far assumed that
self-generated goals are sampled in a specifically engineered feature space, limiting their autonomy. Recent work has
shown how unsupervised deep learning approaches could be used to learn goal space representations[136] but they
have used precollected data to learn the representations. This project studies how IMGEPs can be extended and used
for automated discovery of behaviours of dynamical systems in physics or chemistry without using assumptions or
knowledge about such systems.

As a first step towards this goal we choose Lenia [80], a simulated high-dimensional complex dynamical system,
as a target system. Lenia is a continuous cellular automaton where diverse visual structures can self-organize (Fig.26,
c). It consists of a two-dimensional grid of cells A ∈ [0,1]256×256 where the state of each cell is a real-valued scalar
activity At (x) ∈ [0,1]. The state of cells evolves over discrete time steps t . The activity change is computed by
integrating the activity of neighbouring cells. Lenia’s behavior is controlled by its initial pattern At=1 and several
settings that control the dynamics of the activity change. Lenia can produce diverse patterns with different dynamics.
Most interesting, spatially localized coherent patterns that resemble in their shapes microscopic animals can emerge.
Our goal was to develop methods that allow to explore a high diversity of such animal patterns.

Figure 26: Example patterns produced by the Lenia system. Illustration of the dynamical morphing from an initial
CPPN image to an animal (a). The automated discovery (b) is able to find similar complex animals as a human-expert
manual search (c) by [80].

We could successfully accomplish this goal [38] based on two key contributions of our research: 1) the usage
of compositional pattern producing networks (CPPNs) for the generation of initial states for Lenia, and 2) the
development of a novel IMGEP algorithm that learns goal representations online during the exploration of the
system.

1) CPPNs for the generation of initial states A key role in the generation of patterns in dynamical systems
is their initial state At=1. IMGEPs sample these initial states and apply random perturbations to them during the
exploration. For Lenia this state is a two-dimensional grid with 256×256 cells. Performing directly a random sampling
of the 256×256 grid cells results in initial patterns that resemble white noise. Such random states result mainly in the
emergence of global patterns that spread over the whole state space, complicating the search for spatially localized
patterns. We solved the sampling problem for the initial states by using compositional pattern producing networks
(CPPNs) [147]. CPPNs are recurrent neural networks that allow the generation of structured initial states (Fig.26, a).
The CPPNs are used as part of the system parameters which are explored by the algorithms. They are defined by their
network structure (number of neurons, connections between neurons) and their connection weights. They include a
mechanism for random mutation of the weights and structure.

2) IMGEP for Online Learning of Goal Space Representations We proposed an online goal space learning
IMGEP (IMGEP-OGL), which learns the goal space incrementally during the exploration process. A variational
autoencoder (VAE) is used to encode Lenia patterns into a 8-dimensional latent representation used as goal space.
The training procedure of the VAE is integrated in the goal sampling exploration process by first initializing the VAE
with random weights. The VAE network is then trained every K explorations for E epochs on the previously idetnfied
patterns during the exploration.
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Experiments We evaluated the performance of the novel IMGEP-OGL to other exploration algorithms by
comparing the diversity of their identified patterns. Diversity is measured by the spread of the exploration in an
analytic behavior space. This space is defined by a latent representation space that was build through the training of
a VAE to learn the important features over a very large dataset of Lenia patterns identified during the many
experiments over all evaluated algorithms. We then augmented that space by concatenating hand-defined features.
Each identified Lenia pattern is represented by a specific point in this space. The space was then discretized in a
fixed number of areas/bins of equal size. The final diversity measure of each algorithm is the number of areas/bins in
which at least one explored pattern exists.

We compared different exploration algorithms to the novel IMGEP-OGL: 1) Random exploration of system
parameters, 2) IMGEP-HGS: IMGEP with a hand-defined goal space, 3) IMGEP-PGL: IMGEP with a learned goal
space via an VAE by a precollected dataset of Lenia patterns, and 4) IMGEP-RGS: IMGEP with a VAE with random
weights that defines the goal space.

The system parameters θ consisted of a CPPN that generates the initial state At=1 for Lenia and 6 further settings
defining Lenia’s dynamics: θ = [CPPN → At=1,R,T,µ,σ,β1,β2,β3]. The CPPNs were initialized and mutated by a
random process that defines their structure and connection weights as done. The random initialization of the other
Lenia settings was done by an uniform distribution and their mutation by a Gaussian distribution around the original
values.

Results The diversity of identified patterns in the analytic behavior space show that IMGEP approaches with
learned goal spaces via VAEs (PGL, OGL) could identify the highest diversity of patterns overall (Fig. 27, a). They were
followed by the IMGEP with a hand-defined goal space (HGS). The lowest performance had the random exploration
and the IMGEP with a random goal space (RGS). The advantage of learned goals space approaches (PGL, OGL) over
all other approaches was even stronger for the diversity of animal patterns, i.e. the main goal of our exploration
(Fig. 27, b).

(a) Diversity of all identified Patterns (b) Diversity of Animal Patterns
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Figure 27: (a) All IMGEPs reach a higher diversity in the analytic behavior space over all patterns than random search.
(b) IMGEPs with a learned goal space are especially successful in identifying a diversity of animal patterns. Depicted
is the average diversity (n = 10) with the standard deviation as shaded area (for some not visible because it is too
small).

Conclusion Our goal was to investigate new techniques based on intrinsically motivated goal exploration for the
automated discovery of patterns and behaviors in complex dynamical systems. We introduced a new algorithm
(IMGEP-OGL) which is capable of learning unsupervised goal space representations during the exploration of
an unknown system. Our results for Lenia, a high-dimensional complex dynamical system, show its superior
performance over hand-defined goal spaces or random exploration. It shows the same performance as a learned
goal space based on precollected data, showing that such a precollection of data is not necessary. We furthermore
introduced the usage of CPPNs for the successful initialization of the intial states of the dynamical systems. Both
advances allowed us to explore an unknown and high-dimensional dynamical system which shares many similarities
with different physical or chemical systems.

This work is published at ICLR 2020 [38]. The project website with videos and additional results can be found at
https://automated-discovery.github.io/, and the source code is available at https://github.com/flowe
rsteam/automated_discovery_of_lenia_patterns.

8.7.2 Hierarchically Organized Latent Modules for Meta-Diversity Search in Morphogenetic
Systems

https://automated-discovery.github.io/
https://github.com/flowersteam/automated_discovery_of_lenia_patterns
https://github.com/flowersteam/automated_discovery_of_lenia_patterns
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Figure 28: Although IMGEPs succeed to reach a high-diversity in their respective BC space, they are poorly-diverse in
all the others. (left) Diversity for all IMGEP variants measured in each analytic BC space. For better visualisation the
resulting diversities are divided by the maximum along each axis. Mean and std-deviation shaded area curves are
depicted. (right). Examples of patterns discovered by the IMGEPs that are consider diverse in their respective BC
space.

Participants Mayalen Etcheverry (correspondant), Clément Moulin-Frier, Pierre-
Yves Oudeyer.

In the previous paper [38], the problem of automated diversity-driven discovery in morphogenetic systems was
introduced, highlighting that two key ingredients are autonomous exploration and unsupervised representation
learning to describe "relevant" degrees of variations in the patterns. Yet, standard diversity-driven approaches
assume that the intuitive notion of diversity can be captured within a single behavioral characterization (BC) space.

In this project, we follow the proposed experimental testbed of Reinke et al.(2020) [38] on a continuous game-of-
life system (Lenia, [80]). We provide empirical evidence that the discoveries of an IMGEP operating in a monolithic
BC space are highly-diverse in that space, yet tend to be poorly-diverse in other potentially-interesting BC spaces
(see Figure 28). This draws several limitations when it comes to applying such system as a tool for assisting discovery
in morphogenetic system, as the suggested discoveries are unlikely to align with the interests of a end-user.

To address these limits, the contributions of this project are threefold. First, we formulate the problem of meta-
diversity search as follows: an artificial “discovery assistant” incrementally learns a set of diverse BC spaces in an
outer loop; and searches to discover diverse patterns within each of them in an inner loop. With minimal external
feedback, a successful discovery assistant should be able to efficiently specialize the exploration strategy toward a
particular type of diversity, corresponding to the initially unknown preferences of the human evaluator.

Second, we present HOLMES, a dynamic and modular model architecture for unsupervised learning of diverse
representations where a hierarchy of module embedding networks is actively expanded. Additionally, we present
IMGEP-HOLMES (see Figure 29) which extends the standard IMGEP framework by replacing the monolithic
representation with the proposed hierarchy. We show that the hierarchical structure allows the IMGEP agent to target
goals in the different nodes in order to achieve diversity in each BC space.

Finally, we show how this architecture can easily be leveraged to drive exploration, opening interesting
perspectives for the integration of a human in the loop.

To conclude, this work shows that integrating flexible modular representation learning with
intrinsically-motivated goal exploration processes for meta-diversity search are very promising directions in the
context of automated discovery in morphogenetic systems. As an example, IMGEP-HOLMES was able to discover
many types of solitons including unseen pattern-emitting lifeforms in less than 15000 training steps without
guidance, when their existence remained an open question raised in the original Lenia paper [80].

Initial version of this work was presented at ICLR 2021 workshop "Beyond tabula rasa in Reinforcement Learning"
[46]. The final version of this work is published at NeurIPS 2020 [35]. The project website with videos and additional
results can be found at http://mayalenE.github.io/holmes/, and the source code is available at http:
//mayalenE.github.io/holmes/.

http://mayalenE.github.io/holmes/
http://mayalenE.github.io/holmes/
http://mayalenE.github.io/holmes/
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Figure 29: IMGEP-HOLMES framework integrates a goal-based intrinsically-motivated exploration process
(IMGEP) with the incremental learning of a hierarchy of behavioral characterization spaces (HOLMES). HOLMES
unsupervisedly clusters and encodes discovered patterns into the different nodes of the hierarchy of representations.
The exploratory loop and its interaction with the hierarchy of behavioral characterization (BC) spaces enables the
meta-diversity search.

8.7.3 Automated exploration of neuro-mechanical models or arms using goal exploration
algorithms

Participants Pierre-Yves Oudeyer (correspondant).

This work was led by Daniel Cattaert, Aymar de Rugy and their collaborators at Incia, with contributions from
Pierre-Yves Oudeyer.

Objective. Neuro-mechanical models are essential to increase our understanding of the fundamental
mechanisms underlying natural sensorimotor control, and to foster robotic designs using them. Yet, the complexity
of those models is such that current optimization methods are unsuited to establish the range of useful behaviors
they could produce, and their associated parameter settings. Our goal is to provide both using recent advances in
developmental machine learning. Approach. We designed a simplified neuro-mechanical model that nevertheless
has the complexity that make current optimization fail. This model consists of a single (elbow) joint actuated by two
muscles and their associated spindles, alpha and gamma motoneurons, receiving simple (non-dynamic) step
commands. To establish the range of movements this system is capable of doing, a goal exploration process was used
that built a repertoire of valid actions through iterative sampling of target behaviors, combined with stochastic
variation on the parameter settings that elicited their closest behaviors in this repertoire. Results obtained with this
process were compared to those obtained with alternative optimization methods. Main results. The goal exploration
was found to widely outperform optimization methods in terms of its capacity to rapidly establish a repertoire of
valid actions, and to find a large range of behaviors not otherwise found. The resulting repertoire also provides
diverse parameter sets for any given actions, akin to what is observed in natural control. Families of solutions
originating from few initial seeds should also be exploitable to generate novel behaviors through interpolation.
Significance. The proposed method provides rich perspectives to explore the structure and settings of lower-level
neural circuitry, and their associated descending commands, to produce a wide range of useful behaviors.
Comparison of behavioral space obtained after selective manipulation of various elements of neuro-mechanical
models should also help understand natural control, and promote its emulation in robotics. We have written an
article under review.

8.7.4 Design of an Interactive Software for Automated Discovery in Complex Systems

Participants Clément Romac (correspondant), Mayalen Etcheverry, Clément Moulin-Frier,
Pierre-Yves Oudeyer.

We recently showed how curiosity-driven algorithms can be used to guide the exploration of complex systems, such
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as morphogenetic systems [38][35]. While such methods could be applied to a large range of complex systems in
order to map the possible self-organized structures, they remain difficult to grasp for non-experts users, limiting
their deployment.

Additionally, [35] also showed that adding human in the exploration loop can be a key to obtain interesting
mappings. Designing interactive algorithms is thus an important step towards the adoption of automated exploration
and discovery of complex systems, as users previously using hand-made heuristics would still need to add their
expert knowledge in the exploration process.

Following these, we propose to design an interactive software which aims to provide tools to easily use exploration
algorithms (e.g. curiosity-driven) in various systems. Several challenges are to be faced in this project among the
possibility to use any complex system (numeric or physical), the need of a scalable architecture or having an
user-friendly interface with efficient and modular visualisation tools.

We propose to use a microservice architecture and leverage Docker to make the software easily installable and
modifiable by non-computer scientist users. We separate the front-end application on which the user will create
experiments and interact with them from the automated discovery process (making the scalability issues easier to
deal). We choose to use Python for Machine Learning code (as it offers a large community and efficient tools) as well
as recent web tools (e.g. Angular) to provide user-friendly interfaces. See figure 30 for an overview of the functional
architecture of our software.

Figure 30: Functional architecture of our software.

In the context of the project 8.7, we started a collaboration with Bert Chan, an independant researcher on
Artificial Life and author of the Lenia system [80]. During this collaboration, Bert Chan will help us design versions of
IMGEP usable by scientists (non ML-experts) end-users, which is the aim of project 8.7.4. Having himself created the
Lenia system, he is highly-interested to use our algorithms to automatically explore the space of possible emerging
structures and will provide valuable insights into end-user habits and concerns. Additionally, we will be working with
him to expand the set of discoveries of possible structures in continuous CAs, as a continuation of the project 8.7.2.

8.8 Tools for Understanding Deep Learning Systems

8.8.1 Explainable Deep Learning

Participants Natalia Díaz Rodríguez (correspondant), Adrien Bennetot.

Together with Segula Technologies and Sorbonne Université, ENSTA Paris has been working on eXplainable
Artificial Intelligence (XAI) in order to make machine learning more interpretable. While opaque decision systems
such as Deep Neural Networks have great generalization and prediction skills, their functioning does not allow
obtaining detailed explanations of their behaviour. The objective is to fight the trade-off between performance and
explainability by combining connectionist and symbolic paradigms [74].
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Figure 31: Trade-off between model interpretability and performance, and a representation of the area of
improvement where the potential of XAI techniques and tools resides [19].

Broad consensus exists on the importance of interpretability for AI models. However, since the domain has only
recently become popular, there is no collective agreement on the different definitions and challenges that constitute
XAI. The first step is therefore to summarize previous efforts made in this field. We presented a taxonomy of XAI
techniques in [19] and we are currently working on a prediction model that generates itself an explanation of its
rationale in natural language while keeping performance as close as possible to the the state of the art [74].

8.8.2 Knowledge engineering tools for neural-symbolic learning

Participants Natalia Díaz Rodríguez (correspondant), Adrien Bennetot.

Symbolic artificial intelligence methods are experiencing a come-back in order to provide deep representation
methods the explainability they lack. In this area, a survey on RDF stores to handle ontology-based triple databases
has been contributed [106], as well as the use of neural-symbolic tools that aim at integrating both neural and
symbolic representations [74].

8.8.3 Explainability in Deep Reinforcement Learning

Participants Alexandre Heuillet, Fabien Couthouis, Natalia Díaz-Rodríguez.

A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to
explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing
how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL),
has not been extensively studied. With this project [26], we review recent works in the direction to attain Explainable
Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in
general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical
situations where it is essential to justify and explain the agent’s behaviour, better explainability and interpretability
of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We
evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the
way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most
prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest
advances in RL, in the demanding present and future of everyday problems. We published this review

8.8.4 Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and
Challenges toward Responsible AI
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Participants Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier del Ser,
Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-
López, Daniel Molina, Richard Benjamins, Raja Chatila, Francisco Herrera.

In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of
expectations over many application sectors across the field. For this to occur, the entire community stands in front of
the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or
Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the
so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI
models. This overview [19] examines the existing literature in the field of XAI, including a prospect toward what is
yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel
definition that covers prior conceptual propositions with a major focus on the audience for which explainability
is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of
different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy
is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads
between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence,
namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model
explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference
material in order to stimulate future research advances, but also to encourage experts and professionals from other
disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

8.8.5 Interdisciplinary Research in Artificial Intelligence: Challenges and Opportunities

Participants Remy Kusters, Dusan Misevic, Hugues Berry, Antoine Cully, Yann Le Cunff,
Loic Dandoy, Natalia Díaz-Rodríguez, Marion Ficher, Jonathan Grizou,
Alice Othmani, Themis Palpanas, Matthieu Komorowski, Patrick Loiseau,
Clément Moulin-Frier, Santino Nanini, Daniele Quercia, Michele Sebag,
Françoise Soulié Fogelman, Sofiane Taleb, Liubov Tupikina, Vaibhav Sahu,
Jill-Jênn Vie, Fatima Wehbi.

The use of artificial intelligence (AI) in a variety of researchfields is speeding up multiple digital revolutions, from
shifting paradigms in healthcare, precision medicine and wearable sensing, to public services and education offered
to the masses around the world, to futurecities made optimally efficient by autonomous driving. When a revolution
happens, the consequences are not obvious straight away, and to date, there is no uniformly adaptedframework to
guide AI research to ensure a sustainable societal transition. To answer this need, here we analyze three key challenges
to interdisciplinary AI research, and deliver three broad conclusions [27]: 1) future development of AI should not
only impact other scientific domains but should also take inspiration and benefit from other fields of science, 2)
AI research must be accompanied by decision explainability, dataset bias transparency aswell as development of
evaluation methodologies and creation of regulatory agencies toensure responsibility, and 3) AI education should
receive more attention, efforts and innovation from the educational and scientific communities. Our analysis is of
interest notonly to AI practitioners but also to other researchers and the general public as it offers ways to guide the
emerging collaborations and interactions toward the most fruitful outcomes.

8.8.6 Accessible Cultural Heritage through Explainable Artificial Intelligence

Participants Natalia Díaz-Rodríguez, Galena Pisoni.

Ethics Guidelines for Trustworthy AI advocate for AI technology that is, among other things, more inclusive.
Explainable AI (XAI) aims at making state of the art opaque models more transparent, and defends AI-based
outcomes endorsed with a rationale explanation, i.e., an explanation that has as target the non-technical users.
XAI and Responsible AI principles defend the fact that the audience expertise should be included in the evaluation
of explainable AI systems. However, AI has not yet reached all public and audiences , some of which may need it
the most. One example of domain where accessibility has not much been influenced by the latest AI advances is
cultural heritage. In this project [44], we propose including minorities as special user and evaluator of the latest XAI
techniques. In order to define catalytic scenarios for collaboration and improved user experience, we pose some
challenges and research questions yet to address by the latest AI models likely to be involved in such synergy.
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8.9 Other

8.9.1 Machine Learning Optimization of Intervention Strategies for Epidemics

Participants Cédric Colas (correspondant), Clément Moulin-Frier, Pierre-Yves Oudeyer.

This project is a collaboration with the SISTM team from Inria Bordeaux. Modelling the dynamics of epidemics
helps proposing control strategies based on pharmaceutical and non-pharmaceutical interventions (contact
limitation, lock down, vaccination, etc). Hand-designing such strategies is not trivial because of the number of
possible interventions and the difficulty to predict long-term effects. This task can be cast as an optimization
problem where state-of-the-art machine learning algorithms such as deep reinforcement learning, might bring
significant value. However, the specificity of each domain – epidemic modelling or solving optimization problem –
requires strong collaborations between researchers from different fields of expertise. This is why we introduce
EpidemiOptim, a Python toolbox that facilitates collaborations between researchers in epidemiology and
optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a
standard interface commonly used by optimization practitioners (OpenAI Gym)—see Figure 32. Reinforcement
learning algorithms based on Q-Learning with deep neural networks (DQN) and evolutionary algorithms (NSGA-II)
are already implemented. We illustrate the use of EpidemiOptim to find optimal policies for dynamical on-off
lock-down control under the optimization of death toll and economic recess using a
Susceptible-Exposed-Infectious-Removed (SEIR) model for COVID-19. Using EpidemiOptim and its interactive
visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists)
can easily compare epidemiological models, costs functions and optimization algorithms to address important
choices to be made by health decision-makers. Trained models can be explored by experts and non-experts via a web
interface. This led to a submission at the journal JAIR (under review) [57]. This project also led to a web interface
where users can interact with trained lock-down intervention strategies, look at their effects on a models of the
COVID-19 epidemics and design their own intervention strategy: https://epidemioptim.bordeaux.inria.fr/.
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Figure 32: The EpidemiOptim formalization of the epidemic control problem. The optimization problem (left) is
built around 1) epidemiological models that predict the evolution of the considered epidemics; 2) pre-defined cost
functions that measure the cost of the epidemic propagation as well as the cost of interventions. The learning agent
(right) interacts with the environment (the epidemic) via interventions/actions (a), which triggers new epidemic
states (s) and associated costs (ci ). The learning algorithm then use this experience to improve the internvention
policy θ to as to minimize the expected cumulative cost.

8.9.2 Applications in Robotic myoelectric prostheses

Participants Pierre-Yves Oudeyer (correspondant), Aymar de Rugy, Daniel Cattaert,
Mick Sebastien.

Together with the Hybrid team at INCIA, CNRS (Sébastien Mick, Daniel Cattaert, Florent Paclet, Aymar de Rugy)
and Pollen Robotics (Matthieu Lapeyre, Pierre Rouanet), the Flowers team continued to work on a project related to
the design and study of myoelectric robotic prosthesis. The ultimate goal of this project is to enable an amputee to
produce natural movements with a robotic prosthetic arm (open-source, cheap, easily reconfigurable, and that can
learn the particularities/preferences of each user). This will be achieved by 1) using the natural mapping between
neural (muscle) activity and limb movements in healthy users, 2) developing a low-cost, modular robotic prosthetic
arm and 3) enabling the user and the prosthesis to co-adapt to each other, using machine learning and error signals

https://epidemioptim.bordeaux.inria.fr/
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from the brain, with incremental learning algorithms inspired from the field of developmental and human-robot
interaction.

Biological Plausibility of Arm Postures Influences the Controllability of Robotic Arm Teleoperation
We investigated how participants controlling a humanoid robotic arm’s 3D endpoint position by moving their
own hand are influenced by the robot’s postures. We hypothesized that control would be facilitated (impeded) by
biologically plausible (implausible) postures of the robot. Background: Kinematic redundancy, whereby different
arm postures achieve the same goal, is such that a robotic arm or prosthesis could theoretically be controlled with
less signals than constitutive joints. However, congruency between a robot’s motion and our own is known to
interfere with movement production. Hence, we expect the human-likeness of a robotic arm’s postures during
endpoint teleoperation to influence controllability. Method: Twenty-two able-bodied participants performed a
target-reaching task with a robotic arm whose endpoint’s 3D position was controlled by moving their own hand.
They completed a two-condition experiment corresponding to the robot displaying either biologically plausible or
implausible postures. Results: Upon initial practice in the experiment’s first part, endpoint trajectories were faster
and shorter when the robot displayed human-like postures. However, these effects did not persist in the second part,
where performance with implausible postures appeared to have benefited from initial practice with plausible ones.
Conclusion: Humanoid robotic arm endpoint control is impaired by biologically implausible joint coordinations
during initial familiarization but not afterwards, suggesting that the human-likeness of a robot’s postures is more
critical for control in this initial period. Application: These findings provide insight for the design of robotic arm
teleoperation and prosthesis control schemes, in order to favor better familiarization and control from their users.
This work was published in citemick:hal-03001362.

8.9.3 Traffic agent motion prediction

Participants David Filliat (correspondant), Vyshakh Palli Thazha.

For a vehicle to navigate autonomously, it needs to perceive its surroundings and estimate the future state of
the relevant traffic-agents with which it might interact as it navigates across public road networks. Predicting the
future state of the perceived entities is a challenge, as these might appear to move in a stochastic manner. However,
their motion is constrained to an extent by context, in particular the road network structure. Conventional machine
learning methods are mainly trained using data from the perceived entities without considering roads, as a result
trajectory prediction is difficult. In this paper, the notion of maps representing the road structure are included into
the machine learning process. For this purpose, 3D LiDAR points and maps in the form of binary masks are used.
These are used on a recurrent artificial neural network, the LSTM encoder-decoder based architecture to predict the
motion of the interacting traffic agents. A comparison between the proposed solution with one that is only sensor
driven (LiDAR) is included. For this purpose, NuScenes dataset is utilised, that includes annotated 3D point clouds.
The results have demonstrated the importance of context to enhance our prediction performance as well as the
capability of our machine learning framework to incorporate map information.

Our results were published at the 2020 VTC conference [49]

8.9.4 Egoshots, an ego-vision life-logging dataset and semantic fidelity metric to evaluate diversity
in image captioning models

Participants Pranav Agarwal, Alejandro Betancourt, Vana Panagiotou, Natalia Díaz-
Rodríguez.

Image captioning models have been able to generate grammatically correct and human understandable
sentences. However most of the captions convey limited information as the model used is trained on datasets that do
not caption all possible objects existing in everyday life. Due to this lack of prior information most of the captions are
biased to only a few objects present in the scene, hence limiting their usage in daily life. In this paper [39], we
attempt to show the biased nature of the currently existing image captioning models and present a new image
captioning dataset, Egoshots, consisting of 978 real life images with no captions. We further exploit the state of the
art pre-trained image captioning and object recognition networks to annotate our images and show the limitations
of existing works. Furthermore , in order to evaluate the quality of the generated captions, we propose a new image
captioning metric, object based Semantic Fidelity (SF). Existing image captioning metrics can evaluate a caption
only in the presence of their corresponding annotations; however, SF allows evaluating captions generated for
images without annotations, making it highly useful for real life generated captions.
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8.9.5 RobotDrlSim: A real time robot simulation platform for reinforcement learning and human
interactive demonstration learning

Participants Te Sun, Liang Gong, Xvdong Li, Shenghan Xie, Zhaorun Chen, Qizi Hu,
David Filliat.

Deep reinforcement learning (DRL) techniques give robotics research an AI boost in many applications. In order
to simultaneously accommodate the complex robotic behaviour simulation and DRL algorithm verification, a new
simulation platform, namely the RobotDrlSim, is proposed [51]. First, we design a standardized API interfacing
mechanism for coordinating diverse environments on RobotDrlSim platform, where PyBullet simulator is equipped
with an API to form a physical engine for robotics simulation. Second, benchmark DRL models are included in the
baseline library for evaluation. Third, real-time human-robot interactions can be captured and imported to drive
the RobotDrlSim tasks, which provide big data-stream for reinforcement learning. Experimentations show that
cutting-edge DRL algorithms developed in python can be seamlessly deployed to the robots, and human interactions
can be availed in training the robots. RobotDrlSim is valid for efficiently developing DRL algorithms for artificial
intelligence models of robots, and it is especially suitable for the robot educational purposes.

9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry
Autonomous Driving Commuter Car (Renault)

Participants David Filliat (correspondant), Emmanuel Battesti.

We developed planning algorithms for a autonomous electric car for Renault SAS in the continuation of the
previous ADCC project. We improved our planning algorithm in order to go toward navigation on open roads, in
particular with the ability to reach higher speed than previously possible, deal with more road intersection case
(roundabouts), and with multiple lane roads (overtake, insertion...).

9.2 Bilateral grants with industry
Curiosity-driven Learning Algorithms for Exploration of Video Game Environments (Ubisoft)

Participants Pierre-Yves Oudeyer (correspondant).

Financing of a postdoc grant for a 2 year project with Ubisoft and Région Aquitaine.

Intrinsically Motivated Exploration for Lifelong Deep Reinforcement Learning in the Malmo
Environment (Microsoft)

Participants Pierre-Yves Oudeyer (correspondant), Remy Portelas.

Financing of the PhD grant of Rémy Portelas by Microsoft Research.

Explainable continual learning for autonomous driving (Segula Technologies)

Participants Natalia Díaz Rodríguez (correspondant), Adrien Bennetot.

Financing of the CIFRE PhD grant of Adrien Bennetot by Segula Technologies.
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Automated Discovery of Self-Organized Structures (Poïetis)

Participants Pierre-Yves Oudeyer (correspondant), Mayalen Etcheverry.

Financing of the CIFRE PhD grant of Mayalen Etcheverry by Poietis.

Machine learning for adaptive cognitive training (OnePoint)

Participants Hélène Sauzéon (correspondant), Pierre-Yves Oudeyer, Maxime Adolph.

Financing (in progress) of the CIFRE PhD grant of Maxime Adolph by Onepoint.

Curiosity-driven interaction system for learning (evidenceB)

Participants Hélène Sauzéon (correspondant), Pierre-Yves Oudeyer, Rania Abdelghani.

Financing of the CIFRE PhD grant of Rania Adolph by EvidenceB.

Perception Techniques and Sensor Fusion for Level 4 Autonomous Vehicles (Renault)

Participants David Filliat (correspondant), Vyshakh Palli-Thazha.

Financing of the CIFRE PhD grant of Vyshakh Palli-Thazha by Renault.

Exploration of reinforcement learning algorithms for drone visual perception and control (CEA)

Participants David Filliat (correspondant), Florence Carton.

Financing of the CIFRE PhD grant of Florence Carton by CEA.

Incremental learning for sensori-motor control (Softbank Robotics)

Participants David Filliat (correspondant), Hugo Caselles Dupré.

Financing of the CIFRE PhD grant of Hugo Caselles-Dupré by Softbank Robotics.

9.3 Bilateral Grants with Fundation
School+ project (FIRAH)

Participants Hélène Sauzéon (correspondant), Cécile Mazon.

Financing of one year-postdoctoral position (recruitment in progress) and the app. development by the
International Foundation for Applied Research on Disability (FIRAH). The School+ project consists of a set of
educational technologies to promote inclusion for children with Autism Spectrum Disorder (ASD). School+ primary
aims at encouraging the acquisition of socio-adaptive behaviours at school while promoting self-determination
(intrinsic motivation), and has been created according to the methods of the User-Centred Design (UCD). Requested
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by the stakeholders (child, parent, teachers, and clinicians) of school inclusion, Flowers team works to the adding of
an interactive tool for a collaborative and shared monitoring of school inclusion of each child with ASD. This new
app will be assessed in terms of user experience (usability and elicited intrinsic motivation), self-efficacy of each
stakeholder and educational benefit for child. This project includes the Academie de Bordeaux –Nouvelle Aquitaine,
the CRA (Health Center for ASD in Aquitania), and the ARI association.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Inria international partners

Declared Inria international partners
Idex Bordeaux-Univ. Waterloo

• Title: Curiosity-driven learning and personalized (re-)education technologies across the lifespan

• International Partner (Institution - Laboratory - Researcher): University of Waterloo (Canada), Edith Law’s
HCI Lab and Dana Kulic’s Robotics lab.

• Start year: 2018

• Pierre-Yves Oudeyer, Hélène Sauzéon and Fabien Lotte collaborated with Edith Law’s and Myra Fernandes’s
research groups at University of Waterloo on the topic of "Curiosity in HCI system". They obtained a grant
from Univ. Bordeaux and Univ. Waterloo. They organized several cross visits and collaborated on the design
and experimentation of an educational interactive robotic system to foster curiosity-driven learning. This led
to two articles accepted at CHI 2019 and CHI2020 (see new results section).

Informal international partners

Didier Roy and PY Oudeyer have created a collaboration with LSRO EPFL and Pr Francesco Mondada, about
Robotics and education.

Didier Roy has created a collaboration with HEP Vaud (Teachers High School) and Bernard Baumberger and
Morgane Chevalier, about Robotics and education. Scientific discussions and shared professional training.

Didier Roy has created a collaboration with Biorob - EPFL, LEARN - EPFL, and Canton de Vaud, about Robotics
and Computer Science education. Scientific discussions and shared professional training.

PY Oudeyer and H Sauzéon started a collaboration with Daphne Bavelliers’s research group at the University of
Geneva on using machine learning for personalizing exercises in attention training educational software.

PY Oudeyer started a collaboration with Maxime Gasse (MILA, Montreal, Canada), Damien Grasset and Guillaume
Gaudron (IRT Saint-Exupery, Toulouse), in the context of the project DEEL, on causal theory and reinforccement
learning.

10.2 International research visitors

10.2.1 Visits of international scientists

Kevvyn Collins-Thompson, Univ. Michigan.

10.2.2 Invited talks

Germán Kruszewski (Facebook AI Research, Title: "The quest for compositional learning"), Guillermo Valle (Univ.
Oxford, UK; Title: "Simplicity bias and generalization in deep neural networks"), Ferran Alet (MIT, US, Title: "Meta-
learning curiosity algorithms"), Solande Denerveaud (Univ. Geneva, Switzerland; Title: "Error monitoring during
learning: Neural and behavioral comparison studies of Montessori and traditionally-schooled students"), Hugo
Cisneros (CIIRC, CTU in Prague, Title: "Artificial evolution and emergence in complex systems"), Remy van Trijt
(Sony CSL Paris, France, Title: "Fluid Construction Grammar").

10.3 National initiatives

Myoelectric prosthesis - PEPS CNRS PY Oudeyer collaborated with Aymar de Rugy, Daniel Cattaert, Mathilde
Couraud, Sébastien Mick and Florent Paclet (INCIA, CNRS/Univ. Bordeaux) about the design of myoelectric robotic
prostheses based on the Poppy platform, on the design of algorithms for co-adaptation learning between the
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human user and the prosthesis, and on the use of goal exploration algorithm to study the behaviour of models of
neuromuscular systems. This was funded by a PEPS CNRS grant.

ANR JCJC ECOCURL C Moulin-Frier obtained an ANR JCJC grant. The project is entitled "ECOCURL: Emergent
communication through curiosity-driven multi-agent reinforcement learning". The project starts in Feb 2021 for
a duration of 48 months. It will fund a PhD student (36 months) and a Research Engineer (18 months) as well as 4
Master internships (one per year).

Inria Exploratory Action ORIGINS Clément Moulin-Frier obtained an Exploratory Action from Inria. The
project is entitled "ORIGINS: Grounding artificial intelligence in the origins of human behavior". The project starts in
October 2020 for a duration of 24 months. It funds a post-doc position (24 months). Eleni Nisioti has been recruited
on this grant.

Inria Exploratory Action AIDE Didier Roy is collaborator of the Inria Exploratory Action AIDE "Artificial
Intelligence Devoted to Education", ported by Frédéric Alexandre (Inria Mnemosyne Project-Team), Margarida
Romero (LINE Lab) and Thierry Viéville (Inria Mnemosyne Project-Team, LINE Lab). The aim of this Exploratory
Action consists to explore to what extent approaches or methods from cognitive neuroscience, linked to machine
learning and knowledge representation, could help to better formalize human learning as studied in educational
sciences. AIDE is a four year project started middle 2020 until 2024. https://team.inria.fr/mnemosyne/aide/

Poppy Station structure

• Poppy Station Project : D. Roy, P.-Y. Oudeyer. This project aim to perpetuate the Poppy robot ecosystem by
creating an external structure from outside Inria, with various partners. After the Poppy Robot Project, the
Poppy Education Project has ended and Poppy Station structure is born. PerPoppy is the project which is
building the new structure, and Poppy Station is the name of the new structure. Poppy Station, which includes
Poppy robot ecosystem (hardware, software, community) from the beginning, is a place of excellence to
build future educational robots and to design pedagogical activities to teach computer science, robotics and
Artificial Intelligence. https://www.poppy-station.org

• Partners of Poppy Station : Inria, La Ligue de l’Enseignement, HESAM Université, IFÉ-ENS Lyon, MOBOTS –
EPFL, Génération Robots, Pollen Robotics, KONEXInc, Mobsya, CERN Microclub, LINE Lab (Université Nice),
Stripes, Canopé Martinique, Rights Tech Women, Editions Nathan.

10.3.1 Adaptiv’Math

• Adaptiv’Math

• Program: PIA

• Duration: 2019 - 2020

• Coordinator: EvidenceB

• Partners:

– EvidenceB

– Nathan

– APMEP

– LIP6

– INRIA

– ISOGRAD

– Daesign

– Schoolab

– BlueFrog

The solution Adaptiv’Math comes from an innovation partnership for the development of a pedagogical assistant
based on artificial intelligence. This partnership is realized in the context of a call for projects from the Ministry of
Education to develop a pedagogical plateform to propose and manage mathematical activities intended for teachers
and students of cycle 2. The role of Flowers team is to work on the AI of the proposed solution to personalize the

https://team.inria.fr/mnemosyne/aide/
https://www.poppy-station.org
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pedagogical content to each student. This contribution is based on the work done during the Kidlearn Project and
the thesis of Benjamin Clement [82], in which algorithms have been developed to manage and personalize sequence
of pedagogical activities. One of the main goal of the team here is to transfer technologies developed in the team in a
project with the perspective of industrial scaling.

10.4 Regional initiatives

Clément Moulin-Frier has started a project with InriaTech and the startup Gloo, located in Bordeaux.

Inria Cordi PhD grant Julius Taylor, supervised by Clément Moulin-Frier, obtained an Inria Cordi PhD grant. He
started his PhD thesis in November 2020 on model-based emergent communication in multi-agent reinforcement
learning.

Inria - Region Post-doctoral grant - Call 2020 Region of New Aquitania Hélène Sauzéon and Clément
Moulin-Frier obtained an post-doctoral grant for the project entitled " Personalized Intelligent Tutorial Systems (ITS)
for attention training: Modelling of personalization algorithms and effectiveness study" Masataka Sawayama started
his postdoctoral position in Janvier 2021

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

Member of the organizing committees Clément Moulin-Frier has co-organized the 1st SMILES (Sensorimotor
Interaction, Language and Embodiment of Symbols) workshop at ICDL 2020, Nov 2020, Valparaiso / Virtual, Chile.
https://sites.google.com/view/smiles-workshop/

11.1.2 Scientific events: selection

Member of the conference program committees PY Oudeyer was member of the program committee for
ICLR, AAAI, Neurips.

Reviewer Clément Moulin-Frier has reviewed for the ICRA conference.
Cédric Colas has reviewed for the ICML, ICLR and NeurIPS conferences.
PY Oudeyer was a reviewer for ICLR, AAAI, Neurips.
Didier Roy was a reviewer for PRUNE Conference (Poitiers) and RNRE (IFE ENS Lyon).

11.1.3 Journal

Member of the editorial boards PY Oudeyer was member of the editorial board of: IEEE Transactions on
Cognitive and Developmental Systems and Frontiers in Neurorobotics.

PY Oudeyer was co-editor of a Research Topic on "Modeling Play in Early Infant Development" in Frontiers in
Neurorobotics [31], as well as of a Research Topic on "Intrinsically Motivated Open-Ended Learning in Autonomous
Robots" in Frontiers in Neurorobotics [30].

Clément Moulin-Frier is co-editing a Research Topics in Frontiers: Emergent Behavior in Animal-inspired Robotics.
https://www.frontiersin.org/research-topics/13627/emergent-behavior-in-animal-inspired-r
obotics

Reviewer - reviewing activities Clément Moulin-Frier has reviewed for Journal of Artificial Intelligence Research
(JAIR)

Mayalen Etcheverry has reviewed for the Applied Intelligence (APIN) journal.
Rémy Portelas has reviewed for the IEEE Robotics and Automation Letters (RA-L) and the KI – Künstliche

Intelligenz journal.
PY Oudeyer reviewed for the journals: IEEE Transactions on Cognitive and Developmental Systems, Journal of

the Royal Society Interface, Child Development, Frontiers in Psychology, Handbook of Computational Psychology,
Motivation and Emotion

https://sites.google.com/view/smiles-workshop/
https://www.frontiersin.org/research-topics/13627/emergent-behavior-in-animal-inspired-robotics
https://www.frontiersin.org/research-topics/13627/emergent-behavior-in-animal-inspired-robotics
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11.1.4 Invited talks

Cédric Colas has given an invited talk on the EpidemiOptim project at DeepMind, in the context of an internal
seminar.

PY Oudeyer gave a keynote talk at the EGC conference in Brussels, on developmental machine learning, Jan.
2020, https://www.egc.asso.fr/non-classe/conferences-invitees-egc-2020.html,

PY Oudeyer gave an invited talk at the Deep RL Workshop of Neurips 2020, on intrinsically motivated goal-
conditioned reinforcement learngin, Dec. 2020, https://slideslive.com/38938095/machines-that-invent
-their-own-problems?ref=account-folder-62083-folders.

PY Oudeyer gave an invited seminar at the MIT embodied AI seminar, on developmental machine learning, Deep
RL and artificial curiosity, April 2020, https://www.youtube.com/watch?v=Jx6-DKXgAKU;

PY Oudeyer gave a keynote talk at the Crossmodal Learning Center Autumn School, on Developmental Machine
Learning, Curiosity and Deep RL, Dec. 2020. https://www.crossmodal-learning.org/home.html

PY Oudeyer gave an invited talk at the Brain and Cognition seminar at the University of Geneva, on Curiosity-
driven learning in humans and mahcines, Oct. 2020. https://listes.unige.ch/sympa/arc/brain-and-cogn
ition/2020-09/msg00000/BC_SEPT_OCT_NOV_DEC_2020.pdf

Didier Roy has given invited talks at Adaptiv’math project webinar, Class’code AI webinar, EPFL learning sciences
conference, on Flowers researches, on AI for education and education to AI.

Didier Roy has given invited talks at Réseau Canopé "Mardis du numérique" at Toulon, on computer science
basics and activities to teach computer science, robotics and AI.

Didier Roy has given invited talks at IFE ENS Lyon RNRE Conference.
Didier Roy was invited to participate to the CIDREE European Expert Meeting at IFE ENS Lyon. http://ww

w.cidree.org/cidree-expert-meeting-lyon-january-13-14-2020/. The CIDREE is CONSORTIUM OF
INSTITUTIONS FOR DEVELOPMENT AND RESEARCH IN EDUCATION IN EUROPE.

11.1.5 Leadership within the scientific community

PY Oudeyer was editor of the Cognitive and Developmental Systems newsletter of the Cognitive and Developmental
Systems Technical Committee of the IEEE CIS Society

PY Oudeyer was elected as Distinguised speaker of the IEEE Computational Ingelligence Society

11.1.6 Scientific expertise

PY Oudeyer was a reviewer for the European Commission (FET program), and the ANR.

11.1.7 Research administration

PY Oudeyer has been member of piloting committees of consortium projects Adaptiv’Maths and Perseverons (eFran)
on educational technologies.

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

PY Oudeyer gave a course on developmental reinforcement learning at ENSEIRB master on AI and machine learning
(3h), nov. 2019.

PY Oudeyer gave a course on developmental learning at CogMaster cognitive science master (8h), nov. 2019.
PY Oudeyer gave a course on developmental learning at ENSC/ENSEIRB "option robot" master (3h), dec. 2019.
During the latest academic year, Hélène Sauzéon teached 96h in the BS. and master degrees in cognitive science

(Department of Mathematics & interaction, University of Bordeaux). She was (co-)responsible of 9 teaching units (3
in BS et 6 in Master).

N Díaz Rodríguez taught, at ENSTA, a total of 3.25 h in ROB313, 27h at IN104, 10.5 at IN102, 21h at IA301. She also
gave 42h at IG.2410 at the engineering school ISEP, and 3h course on Continual Learning and State Representation
Learning at the reinforcement learning course at ENSEIRB master on AI and machine learning (3h), nov. 2019.

Rémy Portelas and Tristan Karch gave a first year introductory course on programming at Université de Bordeaux
(64h), sep. 2020 to jan. 2021.

Didier Roy gave courses on computer science basics, and on computer science, robotics and AI activities for
education at Canton de Vaud teachers.

Clément Moulin-Frier gave courses on Robotics and AI at University Pompeu Fabra (Barcelona, Spain, Jan 2020,
10 hours) and Centre de Recherches Interdisciplaires (Paris, France, Apr 2020, 12 hours).

https://www.egc.asso.fr/non-classe/conferences-invitees-egc-2020.html
https://slideslive.com/38938095/machines-that-invent-their-own-problems?ref=account-folder-62083-folders
https://slideslive.com/38938095/machines-that-invent-their-own-problems?ref=account-folder-62083-folders
https://www.youtube.com/watch?v=Jx6-DKXgAKU
https://www.crossmodal-learning.org/home.html
https://listes.unige.ch/sympa/arc/brain-and-cognition/2020-09/msg00000/BC_SEPT_OCT_NOV_DEC_2020.pdf
https://listes.unige.ch/sympa/arc/brain-and-cognition/2020-09/msg00000/BC_SEPT_OCT_NOV_DEC_2020.pdf
http://www.cidree.org/cidree-expert-meeting-lyon-january-13-14-2020/
http://www.cidree.org/cidree-expert-meeting-lyon-january-13-14-2020/
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Maxime Adolphe gave courses on basics of AI (18h) at Ecole Nationale Supérieure de Cognitique (ENSC), sep.
2020 to jan.2021.

11.2.2 Supervision

• PhD defended: Cécile Mazon, "Des Technologies Numériques Pour L’inclusion Scolaire Des Collégiens Avec
TSA : des approches individuelles aux approches écosystémiques pour soutenir l’individu et ses aidants ",
University of Bordeaux (supervised by H. Sauzéon).

• PhD defended: Pierre-Antoine Cinquin, "Conception, intégration et validation de systèmes numériques
d’enseignement accessibles aux personnes en situation de handicap cognitif ", University of Bordeaux
(supervised by H. Sauzéon & P. Guitton).

• PhD in progress : Rémy Portelas, "Teacher algorithms for curriculum learning in Deep RL", beg. in sept. 2018
(supervisors: PY Oudeyer and K Hoffmann)

• PhD in progress: Cédric Colas, "Intrinsically Motivated Deep RL", beg. in sept. 2017 (supervisors: PY Oudeyer
and O Sigaud)

• PhD in progress: Tristan Karch, "Language acquisition in curiosity-driven Deep RL", beg. in sept. 2019
(supervisors: PY Oudeyer and C Moulin-Frier)

• PhD in progress: Alexander Ten, "Models of human curiosity-driven learning and exploration", beg. in sept.
2018 (supervisors: PY. Oudeyer and J. Gottlieb)

• PhD in progress: Laetitia Teodorescu, "Graph Neural Networks in Curiosity-driven Exploring Agents", beg. in
sept. 2020 (supervisors: PY. Oudeyer and K. Hoffman)

• PhD in progress: Maxime Adolphe, "Adaptive personalization in attention training systems", beg. in sept. 2020
(supervisors: H. Sauzéon and PY. Oudeyer)

• PhD in progress: Rania Abdelgani, "Fostering curiosity and meta-cognitive skills in educational technologies",
beg. in dec. 2020 (supervisors: H. Sauzéon and PY. Oudeyer.

• PhD in progress: Julius Taylor, "Emergent communication through curiosity-driven multi-agent reinforcement
learning", beg. in nov. 2020 (supervisor: C Moulin-Frier and PY Oudeyer)

• PhD in progress: Mayalen Etcheverry, "Automated Discovery of Self-Organized Structures", beg. in sept. 2020
(supervisor: PY Oudeyer)

• PhD in progress: Adrien Bennetot, "Explainable continual learning for autonomous driving", Sorbonne
University and ENSTA Paris (supervised by N Díaz Rodríguez & R Chatila).

• Master thesis defended: Anouche Banikyian "Curiosity, intrinsic motivation and spatial learning in children",
University of Bordeaux (supervised by H. Sauzéon).

• Master thesis defended: Mehdi Alaimi "New educational application for fostering curiosity-related question-
asking in children", University of Bordeaux (supervised by H. Sauzéon & PY Oudeyer).

• Master thesis defended: Juewan Wang "Can an accessible MOOC player improve the retention of disabled
students? A MOOC accessibility assessment based on analytic method ", University of Bordeaux (supervised
by H. Sauzéon & P. Guitton).

• Master thesis defended: Valentin Villecroze "Emergence of communication in multi-agent systems", Ecole
Polytechique (supervised by Clément Moulin-Frier).

• Master thesis defended: Younès Rabii "Conception d’un environnement de simulation écologiquement valide
pour agents autonomes", ENS Cognitique Bordeaux (supervised by Clément Moulin-Frier).

• Master thesis defended: Clément Romac "Automated Curriculum Learning: a Benchmark" (co-supervised by
R. Portelas and PY. Oudeyer)

• Master thesis defended: Laetitia Teodorescu, "SpatialSim: learning to recognize spatial configurations with
graph-neural networks", Telecom ParisTech (supervisor: PY. Oudeyer)

• Cédric Colas supervised two ENSC students for their master 1 project on Artificial Intelligence .

11.2.3 Juries

PY Oudeyer was a member of the admissibility jury of the CR1 competition at Inria Bordeaux Sud-Ouest
PY Oudeyer was a reviewer in the PhD juries of Shoko Ota (OIST, Okinawa, Japant, Title: "Intrinsic Motivation

in Creative Activity"), Japan; Benoit Choffin (Univ. Paris Saclay, Title: "Algorithmes d’espacement adaptatif de
l’apprentissage pour l’optimisation de la maitrise a long terme de composante de connaissance"); Alexis Jacq (EPFL,
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Switzerland, Title: "Mutual understanding in educational human-robot collaborations"); Thomas Moerlan (Univ,
Delft, Holland, Title: "The intersection of planning and learning").

PY Oudeyer was in the PhD "comité de suivi" of Ahmed Akazia (univ. Paris VI), Alexandre ChenuU (Univ. Paris
VI), Sylvia Pagliarni (Univ. Bordeaux), Arash Rashidi (Univ. Bordeaxu), Effie Segas (Univ. Bordeaux)

Hélène Sauzéon organized a selection commitee for recruitment of Assistant professor in Rehabilitative science
(University of Bordeaux).

Hélène Sauzéon was external member of a selection commitee for recruitment of Assistant professor in cognitive
psychology (University of Toulouse – LeMirail).

Hélène Sauzéon performed several scientific expertises for application requests such as HDR (ED SP2, University
of Bordeaux) or local careers advancement (University of Bordeaux).

N. Díaz Rodríguez was invited jury (President) of the PhD thesis "Deep Learning for Abnormal Movement
Detection using Wearable Sensors: Case Studies on Stereotypical Motor Movements in Autism and Freezing of Gait in
Parkinson’s Disease" in the University of Trento, Italy May 2019.

C Moulin-Frier was in the PhD "comité de suivi" of Marc-Antoine Georges (Université Grenoble Alpes).
C Moulin-Frier was reviewer of the PhD of Sock Ching Low, entitled "Giving Centre Stage to Top-Down Inhibitory

Mechanisms for Selective Attention", University Pompeu Fabra, Spain, Dec. 2020.

11.3 Popularization

11.3.1 Internal or external Inria responsibilities

Didier Roy was manager editor of a 370-pages computer science school textbook for kindergarten and elementary
schools (collaboration Inria/EPFL/Canton de Vaud, Switzerland)

Didier Roy was manager editor of the EPFL MOOC "E-NUM", major contribution to train people, especially
teachers, in computer science and digital sociology (collaboration Inria/EPFL/Canton de Vaud, Switzerland)

11.3.2 Articles and contents

Didier Roy and PY Oudeyer published an illustrated educational book on artificial intelligence and robotics for 7-8
years old children, Nathan, see https://www.nathan.fr/catalogue/fiche-produit.asp?ean13=978209259
3295 and https://dproy.wordpress.com/.

Didier Roy was one of the authors of the Inria White Paper "Education and Digital, Challenges and Issues"
https://hal.inria.fr/hal-03051329

Didier Roy was interviewed by Jérémy Dres, which was reported in a chapter of his comic "Les défis de
l’intelligence artificielle".

PY. Oudeyer and S. Forestier were interviewed and appeared in a video documentary on Netflix, called "Babies",
on models of infant development and curiosity-driven learning, https://en.wikipedia.org/wiki/Babies_(TV
_series).

PY Oudeyer was interviewed by S. Paoli, which was reported in a chapter of the book "Ce qui vient", http:
//www.editionslesliensquiliberent.fr/livre-Ce_qui_vient-9791020908940-1-1-0-1.html.

H. Sauzéon was interviewed to present her research activitivies on a large-audience blog post on https://www.
inria.fr/fr/helene-sauzeon-psychologie-realite-virtuelle.

H. Sauzéon was interviewed to present the results of the AIANA educational software to a large public on
https://www.inria.fr/fr/bilan-du-logiciel-aiana-des-resultats-dapprentissage-ameliores

C Moulin-Frier and L Chevillot wrote a large-audience web article on the new Exploratory Action ORIGINS:
Grounding Artificial Intelligence in the Origins of Human Behavior. https://www.inria.fr/fr/origins-ancr
er-lintelligence-artificielle-dans-les-origines-des-comportements-humains

Cédric Colas helped design a web interface for the EpidemiOptim project. Users can interact with lock-down
intervention strategies trained with machine learning to mitigate health and economic costs in the context of
simulated COVID-19 epidemics https://epidemioptim.bordeaux.inria.fr/. Users can see the effect of
various intervention strategies, can observe how they react to different parameters (sensitivity towards health vs
economic costs) and can design their own intervention strategies.

Mayalen Etcheverry wrote an interactive blogpost on the paper of Reinke et al. (2020) "Intrinsically Motivated
Discovery of Diverse Patterns in Self-Organizing Systems" published at ICLR 2020. https://developmentalsyste
ms.org/intrinsically_motivated_discovery_of_diverse_patterns.

11.3.3 Education

Didier Roy has reviewed contents of the Class’code IAI MOOC.

https://www.nathan.fr/catalogue/fiche-produit.asp?ean13=9782092593295
https://www.nathan.fr/catalogue/fiche-produit.asp?ean13=9782092593295
https://dproy.wordpress.com/
https://hal.inria.fr/hal-03051329
https://en.wikipedia.org/wiki/Babies_(TV_series)
https://en.wikipedia.org/wiki/Babies_(TV_series)
http://www.editionslesliensquiliberent.fr/livre-Ce_qui_vient-9791020908940-1-1-0-1.html
http://www.editionslesliensquiliberent.fr/livre-Ce_qui_vient-9791020908940-1-1-0-1.html
https://www.inria.fr/fr/helene-sauzeon-psychologie-realite-virtuelle
https://www.inria.fr/fr/helene-sauzeon-psychologie-realite-virtuelle
https://www.inria.fr/fr/bilan-du-logiciel-aiana-des-resultats-dapprentissage-ameliores
https://www.inria.fr/fr/origins-ancrer-lintelligence-artificielle-dans-les-origines-des-comportements-humains
https://www.inria.fr/fr/origins-ancrer-lintelligence-artificielle-dans-les-origines-des-comportements-humains
https://epidemioptim.bordeaux.inria.fr/
https://developmentalsystems.org/intrinsically_motivated_discovery_of_diverse_patterns
https://developmentalsystems.org/intrinsically_motivated_discovery_of_diverse_patterns
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11.3.4 Interventions

P.-Y. Oudeyer, B. Clément and L. Teodorescu made interventions as part of the "Le Procès du robot" animation at
Cap Sciences. The goal was to present in layman’s terms the research done at the lab for an audience of junior high
school students and to foster discussion among them around an imagined scenario, about the legal responsibility of
a domestic robot having caused a minor accient in a home. The web page of the intervention can be found there:
https://www.cap-sciences.net/vous-etes/espace-enseignants/proces-robot.

Pierre-Yves Oudeyer made several popular science interventions in Ecole Primaire AygueMarine (Ayguemorte-
les-Graves), College de Cadillac (of which he is "parrain scientifique" in the context of "Maison des sciences").

12 Scientific production

12.1 Major publications

[1] A. Akakzia, C. Colas, P.-Y. Oudeyer, M. Chetouani and O. Sigaud. ‘Grounding Language to
Autonomously-Acquired Skills via Goal Generation’. In: ICLR 2021 - Ninth International
Conference on Learning Representation. Vienna / Virtual, Austria, May 2021. URL:
https://hal.inria.fr/hal-03121146.

[2] M. Alaimi, E. Law, K. D. Pantasdo, P.-Y. Oudeyer and H. Sauzéon. ‘Pedagogical Agents for Fostering
Question-Asking Skills in Children’. In: CHI ’20 - CHI Conference on Human Factors in Computing
Systems. Honolulu / Virtual, United States, Apr. 2020. DOI: 10.1145/3313831.3376776. URL:
https://hal.inria.fr/hal-03109511.

[3] H. Caselles-Dupré, M. Garcia-Ortiz and D. Filliat. ‘Symmetry-Based Disentangled Representation
Learning requires Interaction with Environments’. In: NeurIPS 2019. Vancouver, Canada, Dec.
2019. URL: https://hal.archives-ouvertes.fr/hal-02379399.

[4] C. Colas, P. Fournier, O. Sigaud, M. Chetouani and P.-Y. Oudeyer. ‘CURIOUS: Intrinsically Motivated
Modular Multi-Goal Reinforcement Learning’. In: International Conference on Machine Learning.
Long Beach, France, June 2019. URL: https://hal.archives-ouvertes.fr/hal-01934921.

[5] C. Colas, T. Karch, N. Lair, J.-M. Dussoux, C. Moulin-Frier, P. F. Dominey and P.-Y. Oudeyer.
‘Language as a Cognitive Tool to Imagine Goals in Curiosity-Driven Exploration’. In: NeurIPS
2020 - 34th Conference on Neural Information Processing Systems. Contains main article and
supplementaries. Vancouver / Virtual, Canada, Dec. 2020. URL: https://hal.archives-ouver
tes.fr/hal-03083158.

[6] C. Colas, O. Sigaud and P.-Y. Oudeyer. ‘GEP-PG: Decoupling Exploration and Exploitation in Deep
Reinforcement Learning Algorithms’. In: International Conference on Machine Learning (ICML).
Stockholm, Sweden, July 2018. URL: https://hal.inria.fr/hal-01890151.

[7] C. Craye, T. Lesort, D. Filliat and J.-F. Goudou. ‘Exploring to learn visual saliency: The RL-IAC
approach’. In: Robotics and Autonomous Systems 112 (Feb. 2019), pp. 244–259. URL: https://hal
.archives-ouvertes.fr/hal-01959882.

[8] M. Etcheverry, C. Moulin-Frier and P.-Y. Oudeyer. ‘Hierarchically Organized Latent Modules for
Exploratory Search in Morphogenetic Systems’. In: NeurIPS 2020 - 34th Conference on Neural
Information Processing Systems. Vancouver / Virtual, Canada, Dec. 2020. URL: https://hal.inr
ia.fr/hal-03099906.

[9] S. Forestier, Y. Mollard and P.-Y. Oudeyer. ‘Intrinsically Motivated Goal Exploration Processes with
Automatic Curriculum Learning’. working paper or preprint. Nov. 2017. URL: https://hal.arch
ives-ouvertes.fr/hal-01651233.

[10] J. Gottlieb and P.-Y. Oudeyer. ‘Towards a neuroscience of active sampling and curiosity’. In: Nature
Reviews Neuroscience 19.12 (Dec. 2018), pp. 758–770. URL: https://hal.inria.fr/hal-01965
608.

[11] A. Laversanne-Finot, A. Péré and P.-Y. Oudeyer. ‘Curiosity Driven Exploration of Learned
Disentangled Goal Spaces’. In: CoRL 2018 - Conference on Robot Learning. Zürich, Switzerland,
Oct. 2018. URL: https://hal.inria.fr/hal-01891598.

https://www.cap-sciences.net/vous-etes/espace-enseignants/proces-robot
https://hal.inria.fr/hal-03121146
https://doi.org/10.1145/3313831.3376776
https://hal.inria.fr/hal-03109511
https://hal.archives-ouvertes.fr/hal-02379399
https://hal.archives-ouvertes.fr/hal-01934921
https://hal.archives-ouvertes.fr/hal-03083158
https://hal.archives-ouvertes.fr/hal-03083158
https://hal.inria.fr/hal-01890151
https://hal.archives-ouvertes.fr/hal-01959882
https://hal.archives-ouvertes.fr/hal-01959882
https://hal.inria.fr/hal-03099906
https://hal.inria.fr/hal-03099906
https://hal.archives-ouvertes.fr/hal-01651233
https://hal.archives-ouvertes.fr/hal-01651233
https://hal.inria.fr/hal-01965608
https://hal.inria.fr/hal-01965608
https://hal.inria.fr/hal-01891598


Project FLOWERS 67

[12] T. Lesort, N. Díaz-Rodríguez, J.-F. Goudou and D. Filliat. ‘State Representation Learning for Control:
An Overview’. In: Neural Networks 108 (Dec. 2018), pp. 379–392. DOI: 10.1016/j.neunet.2018
.07.006. URL: https://hal.archives-ouvertes.fr/hal-01858558.

[13] M. E. Meade, J. G. Meade, H. Sauzéon and M. A. Fernandes. ‘Active Navigation in Virtual
Environments Benefits Spatial Memory in Older Adults’. In: Brain Sciences 9 (2019). DOI:
10.3390/brainsci9030047. URL: https://hal.inria.fr/hal-02049031.

[14] C. Moulin-Frier, J. Brochard, F. Stulp and P.-Y. Oudeyer. ‘Emergent Jaw Predominance in Vocal
Development through Stochastic Optimization’. In: IEEE Transactions on Cognitive and
Developmental Systems 99 (2017), pp. 1–12. DOI: 10 . 1109 / TCDS . 2017 . 2704912. URL:
https://hal.inria.fr/hal-01578075.

[15] A. Péré, S. Forestier, O. Sigaud and P.-Y. Oudeyer. ‘Unsupervised Learning of Goal Spaces for
Intrinsically Motivated Goal Exploration’. In: ICLR2018 - 6th International Conference on Learning
Representations. Vancouver, Canada, Apr. 2018. URL: https://hal.archives-ouvertes.fr/h
al-01891758.

[16] R. Portelas, C. Colas, K. Hofmann and P.-Y. Oudeyer. ‘Teacher algorithms for curriculum learning
of Deep RL in continuously parameterized environments’. In: CoRL 2019 - Conference on Robot
Learning. https://arxiv.org/abs/1910.07224. Osaka, Japan, Oct. 2019. URL: https://hal
.archives-ouvertes.fr/hal-02370165.

[17] R. Portelas, C. Colas, L. Weng, K. Hofmann and P.-Y. Oudeyer. ‘Automatic Curriculum Learning For
Deep RL: A Short Survey’. In: IJCAI 2020 - International Joint Conference on Artificial Intelligence.
Kyoto / Virtuelle, Japan, Jan. 2021. URL: https://hal.archives-ouvertes.fr/hal-0292363
5.

[18] C. Reinke, M. Etcheverry and P.-Y. Oudeyer. ‘Intrinsically Motivated Discovery of Diverse Patterns
in Self-Organizing Systems’. In: International Conference on Learning Representations (ICLR).
Source code and videos athttps : / / automated - discovery . github . io/. Addis Ababa,
Ethiopia, Apr. 2020. URL: https://hal.inria.fr/hal-02370003.

12.2 Publications of the year

International journals

[19] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-
López, D. Molina, R. Benjamins, R. Chatila and F. Herrera. ‘Explainable Artificial Intelligence (XAI):
Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI’. In: Information
Fusion 58 (June 2020). DOI: 10.1016/j.inffus.2019.12.012. URL: https://hal.archives-
ouvertes.fr/hal-02381211.

[20] L. Caroux, C. Consel, M. Merciol and H. Sauzéon. ‘Acceptability of notifications delivered to older
adults by technology-based assisted living services’. In: Universal Access in the Information Society
19 (2020), pp. 675–683. DOI: 10.1007/s10209-019-00665-y. URL: https://hal.inria.fr/h
al-02179319.

[21] P.-A. Cinquin, P. Guitton and H. Sauzéon. ‘Designing accessible MOOCs to expand educational
opportunities for persons with cognitive impairments’. In: Behaviour and Information Technology
(18th Mar. 2020). DOI: 10.1080/0144929X.2020.1742381. URL: https://hal.archives-ouv
ertes.fr/hal-02941651.

[22] L. Dupuy and H. Sauzéon. ‘Effects of an assisted living platform amongst frail older adults and
their caregivers: 6 months vs. 9 months follow-up across a pilot field study’. In: Gerontechnology
19.1 (15th Mar. 2020), pp. 16–27. DOI: 10.4017/gt.2020.19.1.003.00. URL: https://hal.in
ria.fr/hal-03102170.

[23] M. Eppe and P.-Y. Oudeyer. ‘Intelligent Behavior Depends on the Ecological Niche’. In: KI -
Künstliche Intelligenz (3rd Jan. 2021). DOI: 10 . 1007 / s13218 - 020 - 00696 - 1. URL:
https://hal.inria.fr/hal-03120583.

https://doi.org/10.1016/j.neunet.2018.07.006
https://doi.org/10.1016/j.neunet.2018.07.006
https://hal.archives-ouvertes.fr/hal-01858558
https://doi.org/10.3390/brainsci9030047
https://hal.inria.fr/hal-02049031
https://doi.org/10.1109/TCDS.2017.2704912
https://hal.inria.fr/hal-01578075
https://hal.archives-ouvertes.fr/hal-01891758
https://hal.archives-ouvertes.fr/hal-01891758
https://arxiv.org/abs/1910.07224
https://hal.archives-ouvertes.fr/hal-02370165
https://hal.archives-ouvertes.fr/hal-02370165
https://hal.archives-ouvertes.fr/hal-02923635
https://hal.archives-ouvertes.fr/hal-02923635
https://automated-discovery.github.io/
https://hal.inria.fr/hal-02370003
https://doi.org/10.1016/j.inffus.2019.12.012
https://hal.archives-ouvertes.fr/hal-02381211
https://hal.archives-ouvertes.fr/hal-02381211
https://doi.org/10.1007/s10209-019-00665-y
https://hal.inria.fr/hal-02179319
https://hal.inria.fr/hal-02179319
https://doi.org/10.1080/0144929X.2020.1742381
https://hal.archives-ouvertes.fr/hal-02941651
https://hal.archives-ouvertes.fr/hal-02941651
https://doi.org/10.4017/gt.2020.19.1.003.00
https://hal.inria.fr/hal-03102170
https://hal.inria.fr/hal-03102170
https://doi.org/10.1007/s13218-020-00696-1
https://hal.inria.fr/hal-03120583


68 Inria Annual Report 2020

[24] I. Freire, C. Moulin-Frier, M. Sanchez-Fibla, X. Arsiwalla and P. Verschure. ‘Modeling the formation
of social conventions from embodied real-time interactions’. In: PLoS ONE 15.6 (22nd June 2020),
e0234434. DOI: 10.1371/journal.pone.0234434. URL: https://hal.archives-ouvertes
.fr/hal-03050740.

[25] L. El-Hamamsy, F. Chessel-Lazzarotto, B. Bruno, D. Roy, T. Cahlikova, M. Chevalier, G. Parriaux,
J.-P. Pellet, J. Lanarès, J. D. Zufferey and F. Mondada. ‘A computer science and robotics integration
model for primary school: evaluation of a large-scale in-service K-4 teacher-training program’. In:
Education and Information Technologies (3rd Nov. 2020). DOI: 10.1007/s10639-020-10355-5.
URL: https://hal.inria.fr/hal-03142477.

[26] A. Heuillet, F. Couthouis and N. Díaz-Rodríguez. ‘Explainability in Deep Reinforcement Learning’.
In: Knowledge-Based Systems (28th Feb. 2021). URL: https://hal.archives-ouvertes.fr/ha
l-03059366.

[27] R. Kusters, D. Misevic, H. Berry, A. Cully, Y. Le Cunff, L. Dandoy, N. Díaz-Rodríguez, M. Ficher, J.
Grizou, A. Othmani, T. Palpanas, M. Komorowski, P. Loiseau, C. Moulin-Frier, S. Nanini, D. Quercia,
M. Sebag, F. Soulié Fogelman, S. Taleb, L. Tupikina, V. Sahu, J.-J. Vie and F. Wehbi. ‘Interdisciplinary
Research in Artificial Intelligence: Challenges and Opportunities’. In: Frontiers in Big Data 3
(23rd Nov. 2020). DOI: 10.3389/fdata.2020.577974. URL: https://hal.inria.fr/hal-031
11148.

[28] A. Laversanne-Finot, A. Péré and P.-Y. Oudeyer. ‘Intrinsically Motivated Exploration of Learned
Goal Spaces’. In: Frontiers in Neurorobotics 14 (12th Jan. 2021). DOI: 10.3389/fnbot.2020.5552
71. URL: https://hal.inria.fr/hal-03120618.

[29] S. Mick, A. Badets, P.-Y. Oudeyer, D. Cattaert and A. De Rugy. ‘Biological Plausibility of Arm Postures
Influences the Controllability of Robotic Arm Teleoperation’. In: Human Factors (18th Aug. 2020),
p. 001872082094161. DOI: 10.1177/0018720820941619. URL: https://hal.archives-ouver
tes.fr/hal-03001362.

[30] V. G. Santucci, P.-Y. Oudeyer, A. Barto and G. Baldassarre. ‘Editorial: Intrinsically Motivated Open-
Ended Learning in Autonomous Robots’. In: Frontiers in Neurorobotics 13 (17th Jan. 2020). DOI:
10.3389/fnbot.2019.00115. URL: https://hal.inria.fr/hal-03120597.

[31] P. Shaw, M. Lee, Q. Shen, K. Hirsh-Pasek, K. E. Adolph, P.-Y. Oudeyer and J. Popp. ‘Editorial:
Modeling Play in Early Infant Development’. In: Frontiers in Neurorobotics 14 (6th Aug. 2020). DOI:
10.3389/fnbot.2020.00050. URL: https://hal.inria.fr/hal-03120631.

International peer-reviewed conferences

[32] A. Akakzia, C. Colas, P.-Y. Oudeyer, M. Chetouani and O. Sigaud. ‘Grounding Language to
Autonomously-Acquired Skills via Goal Generation’. In: ICLR 2021 - Ninth International
Conference on Learning Representation. Vienna / Virtual, Austria, 4th May 2021. URL:
https://hal.inria.fr/hal-03121146.

[33] M. Alaimi, E. Law, K. D. Pantasdo, P.-Y. Oudeyer and H. Sauzéon. ‘Pedagogical Agents for Fostering
Question-Asking Skills in Children’. In: CHI ’20 - CHI Conference on Human Factors in Computing
Systems. Honolulu / Virtual, United States, 25th Apr. 2020. DOI: 10.1145/3313831.3376776.
URL: https://hal.inria.fr/hal-03109511.

[34] A. Appriou, J. Ceha, S. Pramij, D. Dutartre, E. Law, P.-Y. Oudeyer and F. Lotte. ‘Towards measuring
states of epistemic curiosity through electroencephalographic signals’. In: IEEE SMC 2020 - IEEE
International conference on Systems, Man and Cybernetics. Toronto / Virtual, Canada, 11th Oct.
2020. URL: https://hal.inria.fr/hal-02971795.

[35] M. Etcheverry, C. Moulin-Frier and P.-Y. Oudeyer. ‘Hierarchically Organized Latent Modules for
Exploratory Search in Morphogenetic Systems’. In: NeurIPS 2020 - 34th Conference on Neural
Information Processing Systems. Vancouver / Virtual, Canada, 6th Dec. 2020. URL: https://hal
.inria.fr/hal-03099906.

https://doi.org/10.1371/journal.pone.0234434
https://hal.archives-ouvertes.fr/hal-03050740
https://hal.archives-ouvertes.fr/hal-03050740
https://doi.org/10.1007/s10639-020-10355-5
https://hal.inria.fr/hal-03142477
https://hal.archives-ouvertes.fr/hal-03059366
https://hal.archives-ouvertes.fr/hal-03059366
https://doi.org/10.3389/fdata.2020.577974
https://hal.inria.fr/hal-03111148
https://hal.inria.fr/hal-03111148
https://doi.org/10.3389/fnbot.2020.555271
https://doi.org/10.3389/fnbot.2020.555271
https://hal.inria.fr/hal-03120618
https://doi.org/10.1177/0018720820941619
https://hal.archives-ouvertes.fr/hal-03001362
https://hal.archives-ouvertes.fr/hal-03001362
https://doi.org/10.3389/fnbot.2019.00115
https://hal.inria.fr/hal-03120597
https://doi.org/10.3389/fnbot.2020.00050
https://hal.inria.fr/hal-03120631
https://hal.inria.fr/hal-03121146
https://doi.org/10.1145/3313831.3376776
https://hal.inria.fr/hal-03109511
https://hal.inria.fr/hal-02971795
https://hal.inria.fr/hal-03099906
https://hal.inria.fr/hal-03099906


Project FLOWERS 69

[36] N. Lair, C. Delgrange, D. Mugisha, J.-M. Dussoux, P.-Y. Oudeyer and P. F. Dominey. ‘User-in-the-
loop Adaptive Intent Detection for Instructable Digital Assistant’. In: IUI ’20: 25th International
Conference on Intelligent User Interfaces. Cagliari, Italy, 17th Mar. 2020, pp. 116–127. DOI: 10.11
45/3377325.3377490.. URL: https://hal.inria.fr/hal-03120611.

[37] R. Portelas, K. Hofmann and P.-Y. Oudeyer. ‘Trying Again Instead of Trying Longer: Prior Learning
for Automatic Curriculum Learning’. In: ICLR 2020 BeTR-RL (Beyond “Tabula Rasa” in
Reinforcement Learning ) workshop. Addis Abeba / Virtual, Ethiopia, 26th Apr. 2020. URL:
https://hal.inria.fr/hal-03099913.

[38] C. Reinke, M. Etcheverry and P.-Y. Oudeyer. ‘Intrinsically Motivated Discovery of Diverse Patterns
in Self-Organizing Systems’. In: International Conference on Learning Representations (ICLR).
Addis Ababa, Ethiopia, 26th Apr. 2020. URL: https://hal.inria.fr/hal-02370003.

Conferences without proceedings

[39] P. Agarwal, A. Betancourt, V. Panagiotou and N. Díaz-Rodríguez. ‘Egoshots, an ego-vision life-
logging dataset and semantic fidelity metric to evaluate diversity in image captioning models’. In:
ICLR 2020 - 8th International Conference on Learning Representations. Addis Ababa / Virtual,
Ethiopia, 26th Apr. 2020. URL: https://hal.archives-ouvertes.fr/hal-02864865.

[40] A. Bennetot, V. Charisi and N. Díaz-Rodríguez. ‘Should artificial agents ask for help in human-
robot collaborative problem-solving?’ In: Brain-PIL Workshop - ICRA2020. Paris, France, 1st June
2020. URL: https://hal.archives-ouvertes.fr/hal-02871356.

[41] H. Caselles-Dupré, M. Garcia Ortiz and D. Filliat. ‘Object Detection for Embodied Agents using
Sensory Commutativity of Action Sequences’. In: NeurIPS 2020 Workshop on BabyMind.
Vancouver / Virtual, Canada, 11th Dec. 2020. URL:
https://hal.archives-ouvertes.fr/hal-03123933.

[42] H. Caselles-Dupré, M. Garcia Ortiz and D. Filliat. ‘On the Sensory Commutativity of Action
Sequences for Embodied Agents’. In: Workshop on Learning in Artificial Open Worlds at ICML20.
Online, France, 18th July 2020. URL: https://hal.archives-ouvertes.fr/hal-03123920.

[43] C. Colas, T. Karch, N. Lair, J.-M. Dussoux, C. Moulin-Frier, P. F. Dominey and P.-Y. Oudeyer.
‘Language as a Cognitive Tool to Imagine Goals in Curiosity-Driven Exploration’. In: NeurIPS
2020 - 34th Conference on Neural Information Processing Systems. Vancouver / Virtual, Canada,
20th Feb. 2020. URL: https://hal.archives-ouvertes.fr/hal-03083158.

[44] N. Díaz-Rodríguez and G. Pisoni. ‘Accessible Cultural Heritage through Explainable Artificial
Intelligence’. In: PATCH 2020 - 11th Workshop on Personalized Access to Cultural Heritage. Genova
/ Virtual, Italy, 17th July 2020. URL: https://hal.archives-ouvertes.fr/hal-02864501.

[45] N. Duminy and S. M. Nguyen. ‘Découverte et exploitation de la hiérarchie des tâches par
motivation intrinsèque’. In: Réunion "Apprentissage et Robotique". Visioconférence, France:
http://www.gdr-isis.fr/index.php?page=reunion&idreunion=424, 22nd June 2020. URL:
https://hal-imt-atlantique.archives-ouvertes.fr/hal-02894956.

[46] M. Etcheverry, P.-Y. Oudeyer and C. Reinke. ‘Progressive growing of self-organized hierarchical
representations for exploration’. In: ICLR 2020 workshop: Beyond tabula rasa in Reinforcement
Learning. Addis Ababa / Virtual, Ethiopia, 27th Apr. 2021. URL: https://hal.inria.fr/hal-03
122039.

[47] T. Karch, C. Colas, L. Teodorescu, C. Moulin-Frier and P.-Y. Oudeyer. ‘Deep Sets for Generalization
in RL’. In: Beyond Tabula Rasa in Reinforcement Learning: agents that remember adapt and
generalize, Workshop at ICLR. Addis Ababa, Ethiopia, 20th Mar. 2020. URL: https://hal.inria
.fr/hal-03120669.

[48] C. Moulin-Frier and P.-Y. Oudeyer. ‘Multi-Agent Reinforcement Learning as a Computational
Tool for Language Evolution Research: Historical Context and Future Challenges’. In: COMARL
AAAI 2020-2021 - Challenges and Opportunities for Multi-Agent Reinforcement Learning, AAAI
Spring Symposium Series. Palo Alto, California / Virtual, United States, 22nd Feb. 2021. URL:
https://hal.archives-ouvertes.fr/hal-03051029.

https://doi.org/10.1145/3377325.3377490.
https://doi.org/10.1145/3377325.3377490.
https://hal.inria.fr/hal-03120611
https://hal.inria.fr/hal-03099913
https://hal.inria.fr/hal-02370003
https://hal.archives-ouvertes.fr/hal-02864865
https://hal.archives-ouvertes.fr/hal-02871356
https://hal.archives-ouvertes.fr/hal-03123933
https://hal.archives-ouvertes.fr/hal-03123920
https://hal.archives-ouvertes.fr/hal-03083158
https://hal.archives-ouvertes.fr/hal-02864501
http://www.gdr-isis.fr/index.php?page=reunion
https://hal-imt-atlantique.archives-ouvertes.fr/hal-02894956
https://hal.inria.fr/hal-03122039
https://hal.inria.fr/hal-03122039
https://hal.inria.fr/hal-03120669
https://hal.inria.fr/hal-03120669
https://hal.archives-ouvertes.fr/hal-03051029


70 Inria Annual Report 2020

[49] V. Palli-Thazha, D. Filliat and J. Ibañez-Guzmán. ‘Trajectory Prediction of Traffic Agents:
Incorporating context into machine learning approaches’. In: VTC2020-Spring- 2020 IEEE 91st
Vehicular Technology Conference. Antwerp / Virtual, Belgium, 25th May 2020. URL:
https://hal.archives-ouvertes.fr/hal-03021420.

[50] R. Portelas, C. Colas, L. Weng, K. Hofmann and P.-Y. Oudeyer. ‘Automatic Curriculum Learning For
Deep RL: A Short Survey’. In: IJCAI 2020 - International Joint Conference on Artificial Intelligence.
Kyoto / Virtuelle, Japan, 7th Jan. 2021. URL: https://hal.archives-ouvertes.fr/hal-0292
3635.

[51] T. Sun, L. Gong, X. Li, S. Xie, Z. Chen, Q. Hu and D. Filliat. ‘RobotDrlSim: A real time robot
simulation platform for reinforcement learning and human interactive demonstration learning’.
In: MSOTA 2020 - 3rd International Conference on Modeling, Simulation and Optimization
Technologies and Applications. Beijing / Virtual, China, 22nd Nov. 2020. URL: https://hal.arc
hives-ouvertes.fr/hal-03021400.

[52] L. N. Vallée, S. M. Nguyen, C. Lohr, I. Kanellos and O. Asseu. ‘How An Automated Gesture Imitation
Game Can Improve Social Interactions With Teenagers With ASD’. In: IEEE ICRA Workshop on
Social Robotics for Neurodevelopmental Disorders. Paris, France, 2nd June 2020. URL: https://h
al-imt-atlantique.archives-ouvertes.fr/hal-02894330.

[53] V. Villecroze and C. Moulin-Frier. ‘Studying the joint role of partial observability and channel
reliability in emergent communication’. In: 1st SMILES (Sensorimotor Interaction, Language and
Embodiment of Symbols) workshop, ICDL 2020. Valparaiso / Virtual, Chile: https://sites.goo
gle.com/view/smiles-workshop/, 2nd Nov. 2020. URL: https://hal.archives-ouvertes
.fr/hal-03100681.

Scientific books

[54] G. Giraudon, P. Guitton, M. Romero, D. Roy and T. Viéville. Éducation et numérique, Défis et enjeux.
Livre Blanc Inria. https://medsci-sites.inria.fr/education-et-numerique, 10th Dec.
2020, p. 137. URL: https://hal.inria.fr/hal-03051329.

Scientific book chapters

[55] C. Mazon and H. Sauzéon. ‘Use of mobile technologies with children with ASD’. In: Numérique et
Autisme. Les éditions INSHEA, 2021. URL: https://hal.inria.fr/hal-03120323.

Reports & preprints

[56] C. Colas, A. Akakzia, P.-Y. Oudeyer, M. Chetouani and O. Sigaud. Language-Conditioned Goal
Generation: a New Approach to Language Grounding in RL. 6th Jan. 2021. URL: https://hal.inr
ia.fr/hal-03099887.

[57] C. Colas, B. P. Hejblum, S. Rouillon, R. Thiébaut, P.-Y. Oudeyer, C. Moulin-Frier and M. Prague.
EpidemiOptim: a Toolbox for the Optimization of Control Policies in Epidemiological Models. 2020.
URL: https://hal.inria.fr/hal-03099898.

[58] C. Colas, T. Karch, O. Sigaud and P.-Y. Oudeyer. Intrinsically Motivated Goal-Conditioned
Reinforcement Learning: a Short Survey. 6th Jan. 2021. URL:
https://hal.inria.fr/hal-03099891.

[59] S. Doncieux, N. Bredeche, L. K. Le Goff, B. Girard, A. Coninx, O. Sigaud, M. Khamassi, N. Díaz-
Rodríguez, D. Filliat, T. Hospedales, A. E. Eiben and R. Duro. DREAM Architecture: a Developmental
Approach to Open-Ended Learning in Robotics. 12th May 2020. URL: https://hal.archives-ou
vertes.fr/hal-02562103.
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