
2020
ACTIVITY REPORT

Project-Team

INDES

RESEARCH CENTRE

Sophia Antipolis - Méditerranée

Secure Diffuse Programming

DOMAIN

Networks, Systems and Services,
Distributed Computing

THEME

Distributed programming and Software
engineering

Contents

Project-Team INDES 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 2

3 Research program 3
3.1 Parallelism, concurrency, and distribution . 3
3.2 Web, functional, and reactive programming . 3
3.3 Security of diffuse programs . 3

4 Application domains 3
4.1 Web . 3
4.2 Internet of Things . 4

5 Highlights of the year 4
5.1 Awards . 4

6 New software and platforms 4
6.1 Binsec/REL . 4
6.2 New software . 4

6.2.1 Bigloo . 4
6.2.2 Hop . 5
6.2.3 IFJS . 5
6.2.4 Hiphop.js . 5
6.2.5 Server-Side Protection against Third Party Web Tracking 6
6.2.6 webstats . 6
6.2.7 Skini . 6

7 New results 6
7.1 JavaScript Implementation . 7
7.2 Web Reactive Programming . 7

7.2.1 HipHop.js . 7
7.2.2 Interactive Music Composition . 8

7.3 Session Types . 8
7.3.1 Multiparty Sessions with Internal Delegation . 8
7.3.2 Global Types and Event Structure Semantics for Asynchronous Multiparty Sessions 9

7.4 Security Analysis of ElGamal Implementations . 9
7.5 Timing Leaks . 9

7.5.1 ClockworK: Timing Leaks in popular IoT application platforms 10
7.5.2 Spectre attacks . 10
7.5.3 Binsec/Rel . 10

8 Bilateral contracts and grants with industry 10
8.1 Bilateral grants with industry . 10

9 Partnerships and cooperations 11
9.1 International initiatives . 11

9.1.1 Inria associate team not involved in an IIL . 11
9.1.2 Inria international partners . 12

9.2 European initiatives . 12
9.2.1 FP7 & H2020 Projects . 12

9.3 National initiatives . 14
9.3.1 ANR CISC . 14
9.3.2 ANR PrivaWeb . 14

9.3.3 PIA ANSWER . 14

10 Dissemination 15
10.1 Promoting Scientific Activities . 15

10.1.1 Scientific Events: Organisation . 15
10.1.2 Invited Talks . 15
10.1.3 Leadership within the Scientific Community . 15
10.1.4 Research Administration . 15

10.2 Teaching - Supervision - Juries . 16
10.2.1 Teaching . 16
10.2.2 Supervision . 16
10.2.3 Juries . 16

10.3 Popularization . 16
10.3.1 Internal or external Inria responsibilities . 16

11 Scientific production 16
11.1 Major publications . 16
11.2 Publications of the year . 17

Project INDES 1

Project-Team INDES

Creation of the Team: 2009 January 01, updated into Project-Team: 2010 July 01

Keywords

Computer sciences and digital sciences

A1.3. – Distributed Systems

A2. – Software

A2.1. – Programming Languages

A2.1.1. – Semantics of programming languages

A2.1.3. – Object-oriented programming

A2.1.4. – Functional programming

A2.1.7. – Distributed programming

A2.1.9. – Synchronous languages

A2.1.12. – Dynamic languages

A2.2.1. – Static analysis

A2.2.5. – Run-time systems

A2.2.9. – Security by compilation

A4.3.3. – Cryptographic protocols

A4.6. – Authentication

A4.7. – Access control

Other research topics and application domains

B6.3.1. – Web

B6.4. – Internet of things

B9.5.1. – Computer science

B9.10. – Privacy

https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Inria Annual Report 2020

1 Team members, visitors, external collaborators

Research Scientists

• Manuel Serrano [Team leader, Inria, Senior Researcher, HDR]

• Ilaria Castellani [Inria, Researcher]

• Tamara Rezk [Inria, Researcher, HDR]

Faculty Member

• Gérard Berry [Collège de France, Emeritus, HDR]

PhD Students

• Lesly Ann Daniel [CEA]

• Mohamad El Laz [Inria, from Dec 2020]

• Jayanth Krishnamurthy [Inria]

• Heloise Maurel [Inria]

• Bertrand Petit [Pôle Emploi, until Aug 2020]

Technical Staff

• Yoon Seok Ko [Inria, Engineer]

Administrative Assistant

• Nathalie Bellesso [Inria]

External Collaborator

• Marc Feeley [Université de Montréal - Canada]

2 Overall objectives

The goal of the Indes team is to study models for diffuse computing and develop languages for secure
diffuse applications. Diffuse applications, of which Web 2.0 applications are a notable example, are
the new applications emerging from the convergence of broad network accessibility, rich personal
digital environment, and vast sources of information. Strong security guarantees are required for these
applications, which intrinsically rely on sharing private information over networks of mutually distrustful
nodes connected by unreliable media.

Diffuse computing requires an original combination of nearly all previous computing paradigms,
ranging from classical sequential computing to parallel and concurrent computing in both their syn-
chronous / reactive and asynchronous variants. It also benefits from the recent advances in mobile
computing, since devices involved in diffuse applications are often mobile or portable.

The Indes team contributes to the whole chain of research on models and languages for diffuse
computing, going from the study of foundational models and formal semantics to the design and im-
plementation of new languages to be put to work on concrete applications. Emphasis is placed on
correct-by-construction mechanisms to guarantee correct, efficient and secure implementation of high-
level programs. The research is partly inspired by and built around Hop, the web programming model
proposed by the former Mimosa team, which takes the web as its execution platform and targets interac-
tive and multimedia applications.

Project INDES 3

3 Research program

3.1 Parallelism, concurrency, and distribution

Concurrency management is at the heart of diffuse programming. Since the execution platforms are
highly heterogeneous, many different concurrency principles and models may be involved. Asynchronous
concurrency is the basis of shared-memory process handling within multiprocessor or multicore com-
puters, of direct or fifo-based message passing in distributed networks, and of fifo- or interrupt-based
event handling in web-based human-machine interaction or sensor handling. Synchronous or quasi-
synchronous concurrency is the basis of signal processing, of real-time control, and of safety-critical
information acquisition and display. Interfacing existing devices based on these different concurrency
principles within Hop or other diffuse programming languages will require better understanding of
the underlying concurrency models and of the way they can nicely cooperate, a currently ill-resolved
problem.

3.2 Web, functional, and reactive programming

We are studying new paradigms for programming Web applications that rely on multi-tier functional
programming. We have created a Web programming environment named Hop. It relies on a single for-
malism for programming the server-side and the client-side of the applications as well as for configuring
the execution engine.

Hop is a functional language based on the SCHEME programming language. That is, it is a strict
functional language, fully polymorphic, supporting side effects, and dynamically type-checked. Hop is
implemented as an extension of the BIGLOO compiler that we develop. In the past, we have extensively
studied static analyses (type systems and inference, abstract interpretations, as well as classical compiler
optimizations) to improve the efficiency of compilation in both space and time.

As a Hop DSL, we have created HipHop, a synchronous orchestration language for web and IoT
applications. HipHop facilitates the design and programming of complex web/IoT applications by
smoothly integrating three computation models and programming styles that have been historically
developed in different communities and for different purposes: i) Transformational programs that simply
compute output values from input values, with comparatively simple interaction with their environment;
ii) asynchronous concurrent programs that perform interactions between their components or with
their environment with uncontrollable timing, using typically network-based communication; and
iii) synchronous reactive programs that react to external events in a conceptually instantaneous and
deterministic way.

3.3 Security of diffuse programs

The main goal of our security research is to provide scalable and rigorous language-based techniques
that can be integrated into multi-tier compilers to enforce the security of diffuse programs. Research on
language-based security has been carried on before in former Inria teams. In particular previous research
has focused on controlling information flow to ensure confidentiality.

Typical language-based solutions to these problems are founded on static analysis, logics, provable
cryptography, and compilers that generate correct code by construction. Relying on the multi-tier pro-
gramming language Hop that tames the complexity of writing and analysing secure diffuse applications,
we are studying language-based solutions to prominent web security problems such as code injection
and cross-site scripting, to name a few.

4 Application domains

4.1 Web

The Web is the natural application domain of the team. We are designing and implementing multitier
languages for helping the development of Web applications. We are creating static and dynamic analyses
for Web security. We are conducting empirical studies about privacy preservation on the Web.

4 Inria Annual Report 2020

4.2 Internet of Things

More recently, we have started focusing on Internet of Things (IoT) applications. They share many
similarities with Web applications so most of the methodologies and expertises we have developed for
the Web apply to IoT but the restricted hardware resources made available by many IoT devices demand
new developments and new research explorations.

5 Highlights of the year

5.1 Awards

Lesly Ann Daniel received the award “Jeunes Talents France” L’Oréal - UNESCO pour les femmes et la
science" for her work on automated program analysis for security.

6 New software and platforms

6.1 Binsec/REL

Name: Automatic Symbolic Analysis of Constant Time at Binary Level

Keyword: Cybersecurity

Functional Description: Binsec/Rel is an extension of the binary analysis plateform Binsec that imple-
ments relational symbolic execution (RelSE) for constant-time (CT) verification.

URL: https://github.com/binsec/Rel

Contact: Tamara Rezk

6.2 New software

6.2.1 Bigloo

Keyword: Compilers

Functional Description: Bigloo is a Scheme implementation devoted to one goal: enabling Scheme
based programming style where C(++) is usually required. Bigloo attempts to make Scheme
practical by offering features usually presented by traditional programming languages but not
offered by Scheme and functional programming. Bigloo compiles Scheme modules. It delivers
small and fast stand alone binary executables. Bigloo enables full connections between Scheme
and C programs, between Scheme and Java programs.

Release Contributions: modification of the object system (language design and implementation), new
APIs (alsa, flac, mpg123, avahi, csv parsing), new library functions (UDP support), new regular
expressions support, new garbage collector (Boehm’s collection 7.3alpha1).

URL: http://www-sop.inria.fr/teams/indes/fp/Bigloo/

Contact: Manuel Serrano

Participant: Manuel Serrano

https://github.com/binsec/Rel
http://www-sop.inria.fr/teams/indes/fp/Bigloo/

Project INDES 5

6.2.2 Hop

Keywords: Programming language, Multimedia, Iot, Web 2.0, Functional programming

Scientific Description: The Hop programming environment consists in a web broker that intuitively
combines in a single architecture a web server and a web proxy. The broker embeds a Hop inter-
preter for executing server-side code and a Hop client-side compiler for generating the code that
will get executed by the client.

An important effort is devoted to providing Hop with a realistic and efficient implementation.
The Hop implementation is validated against web applications that are used on a daily-basis.
In particular, we have developed Hop applications for authoring and projecting slides, editing
calendars, reading RSS streams, or managing blogs.

Functional Description: Multitier web programming language and runtime environment.

URL: http://hop.inria.fr

Contact: Manuel Serrano

Participant: Manuel Serrano

6.2.3 IFJS

Name: Infomation Flow monitor inlining for JavaScript

Keyword: Cybersecurity

Functional Description: The IFJS compiler is applied to JavaScript code. The compiler generates
JavaScript code instrumented with checks to secure code. The compiler takes into account special
features of JavaScript such as implicit type coercions and programs that actively try to bypass the
inlined enforcement mechanisms. The compiler guarantees that third-party programs cannot (1)
access the compiler internal state by randomizing the names of the resources through which it
is accessed and (2) change the behaviour of native functions that are used by the enforcement
mechanisms inlined in the compiled code.

URL: http://www-sop.inria.fr/indes/ifJS/

Contact: Tamara Rezk

6.2.4 Hiphop.js

Name: Hiphop.js

Keywords: Web 2.0, Synchronous Language, Programming language

Functional Description: HipHop.js is an Hop.js DLS for orchestrating web applications. HipHop.js helps
programming and maintaining Web applications where the orchestration of asynchronous tasks is
complex.

URL: http://hop-dev.inria.fr/hiphop

Contacts: Manuel Serrano, Gérard Berry

http://hop.inria.fr
http://www-sop.inria.fr/indes/ifJS/
http://hop-dev.inria.fr/hiphop

6 Inria Annual Report 2020

6.2.5 Server-Side Protection against Third Party Web Tracking

Keywords: Privacy, Web Application, Web, Architecture, Security by design, Program rewriting techniques

Functional Description: We present a new web application architecture that allows web developers to
gain control over certain types of third party content. In the traditional web application architecture,
a web application developer has no control over third party content. This allows the exchange of
tracking information between the browser and the third party content provider.

To prevent this, our solution is based on the automatic rewriting of the web application in such a
way that the third party requests are redirected to a trusted third party server, called the Middle Party
Server. It may be either controlled by a trusted party, or by a main site owner and automatically
eliminates third-party tracking cookies and other technologies that may be exchanged by the
browser and third party server

URL: http://www-sop.inria.fr/members/Doliere.Some/essos/

Contact: Francis Doliére Some

6.2.6 webstats

Name: Webstats

Keywords: Web Usage Mining, Statistic analysis, Security

Functional Description: The goal of this tool is to perform a large-scale monthly crawl of the top Alexa
sites, collecting both inline scripts (written by web developers) and remote scripts, and establishing
the popularity of remote scripts (such as Google Analytics and jQuery). With this data, we establish
whether the collected scripts are actually written in a subset of JavaScript by analyzing the different
constructs used in those scripts. Finally, we collect and analyze the HTTP headers of the different
sites visited, and provide statistics about the usage of HTTPOnly and Secure cookies, and the
Content Security Policy in top sites.

URL: https://webstats.inria.fr

Contacts: Francis Doliére Some, Tamara Rezk, Nataliia Bielova

6.2.7 Skini

Name: Platform for creation and execution for audience participative music

Keywords: Music, Interaction, Web Application, Synchronous Language

Functional Description: Skini is a platform form designing et performing collaborative music. It is based
on two musical concept: pattern and orchestration. The orchestration is design using HipHop.js.

Release Contributions: Can be use for performance and création.

Contact: Bertrand Petit

7 New results

We have pursued the development of Hop and our study on efficient and secure JavaScript implementa-
tions.

http://www-sop.inria.fr/members/Doliere.Some/essos/
https://webstats.inria.fr

Project INDES 7

7.1 JavaScript Implementation

Inline caches and hidden classes are two essential components for closing the performance gap between
static languages such as Java, Scheme, or ML and dynamic languages such as JavaScript or Python. They
rely on the observation that for a particular object access located at a particular point of the program,
the shapes, usually referred to as the hidden classes, of accessed objects are likely to be the same. Taking
benefit of that invariant, they replace the expensive lookup the semantics of these languages normally
demand with one test, the inline cache, and a memory read indexed by an offset computed during
the last cache miss. These optimizations are essential but they are not general enough to cope with
JavaScript’s proxies. In particular, when the property name is itself unknown statically, inline cache-based
optimizations always take a slow path.

We have conducted an analysis that shown how to generalize inline caches to cope with an unknown
property name. We have exposed the general principle of the extension that we have then implemented.
We have conducted experiments using a modified version of the Hop JavaScript compiler that demon-
strated how the optimization is crucial for improving the performance of proxy objects (as they naturally
use dynamic property names extensively). This evaluation report shown that the modified Hop outper-
forms all other implementations of the language, including the most efficient commercial ones, by a
factor ranging from 2× to 100×. Even better, our optimizations are applicable to existing compilers as
they require only straightforward changes to runtime data structures; no complex analyses are required.

This study has been conducted in collaboration with Robby Findler in the context of the HipHopSec
Inria associated team. It has been published in a scientific conference [16].

We have also worked on new optimizations to apply to the Hop ahead-of-time compiler. Its new
version is due to be released during the first trimester.

7.2 Web Reactive Programming

7.2.1 HipHop.js

HipHop is a reactive JavaScript DSL on Hop. In the domain of reactive programming, causality errors
- wherein a signal’s presence/absence may depend circularly on another signal giving rise to causality
issues. Before the discussed work started on the HipHop compiler, the support by the HipHop run-time
for causality errors was limited to pointing out the presence of causal dependencies as an error during a
reaction by the HipHop machine and rejection of the program. Our work started on providing a more
elaborate debugging support for HipHop programmers.

HipHop and HipHop applications have been published in a conference paper this year [14].

This year, we have completed the implementation of the HipHop.js web reactive synchronous lan-
guage and we have mainly focused our effort on the programming and debugging environment.

Once the run-time rejects a program due to causality error, the HipHop program which is compiled
into set of nets called net-list, will have the nets that are not participating in a reaction. We take these
nets as a digraph and proceed with Depth First search algorithm to identify strongly connected compo-
nents among them using Tarjan’s algorithm. The nets in strongly connected components are the ones
participating in Causal cycles. Further, since a strongly connected component can have smaller sub
components which are strongly connected, we used the technique proposed by F. Bourdoncle to further
refine the strongly connected components to smaller sub components pointing to smallest causality
cycle that can be easily managed by the programmer. We take these smallers subcomponents and process
the information available in the nets to identify and point out the source locations that are contributing
to causality errors. The programmers can resolve these smaller cycles and then incrementally identify
next bigger cycle if any. Once the cycle locations are identified, we presented their locations with visual
markers on Emacs editor. Further, this approach was extended to popular IDEs like Vscode and Atom
editors. We are preparing a research paper that will describe this work.

Recently visual programming tool kits like Blockly have become very popular with non - cs background
programmers. We are extending HipHop programming to Blockly so that musicians can use HipHop
for interactive music generation. We intend to bring in the causality debugging support to Blockly
programmers as a future work.

8 Inria Annual Report 2020

7.2.2 Interactive Music Composition

Skini is a programming methodology and an execution environment for interactive structured music.
With this system, the composer programs his scores in the HipHop synchronous reactive language. They
are then executed, or played, in live concerts, in interaction with the audience. The system aims at helping
composers to find a good balance between the determinism of the compositions and the nondeterminism
of the interactions with the public. Each execution of a Skini score yields to a different but aesthetically
consistent interpretation.

This work raises many questions in the musical fields. How to combine composition and interaction?
How to control the musical style when the audience influences what is to play next? What are the possible
connections with generative music? These are important questions for the Skini system but they are out
of the scope of this work that focuses exclusively on the computer science aspects of the system. From
that perspective, the main questions are how to program the scores and in which language? General
purpose languages are inappropriate because their elementary constructs (i.e., variables, functions, loops,
etc.) do not match the constructions needed to express music and musical constraints. We show that
synchronous programming languages are a much better fit because they rely on temporal constructs that
can be directly used to represent musical scores and because their malleability enables composers to
experiment easily with artistic variations of their initial scores.

We have published a journal paper [12] that focuses on scores programming. It exposes the process a
composer should follow from his very first musical intuitions up to the generation of a musical artifact.
The paper presents some excerpts of the programming of a classical music composition that it then
precisely relates to an actual recording. Examples of techno music and jazz are also presented, with audio
artifact, to demonstrate the versatility of the system. Finally, brief presentations of past live concerts are
presented as an evidence of viability of the system. A second paper [17] focuses on the production of
generative music with Skini.

7.3 Session Types

Session types describe communication protocols involving two or more participants by specifying the
sequence of exchanged messages and their functionality (sender, receiver and type of carried data).
They may be viewed as the analogue, for concurrency and distribution, of data types for sequential
computation. Originally conceived as a static analysis technique for an enhanced version of the π-
calculus, session types have been subsequently embedded into a range of functional, concurrent, and
object-oriented programming languages.

The aim of session types is to ensure safety properties for sessions, such as the absence of com-
munication errors (no type mismatch in exchanged data) and deadlock-freedom (no standstill until all
participants are terminated). Multiparty session types often target also the liveness property of progress
or lock-freedom (no participant waits forever), which is stronger than deadlock-freedom.

While binary sessions can be described by a single session type, multiparty sessions require two
kinds of types: a global type that describes the whole session protocol, and local types that describe
the individual contributions of the participants to the protocol. The key requirement to achieve safety
properties such as the absence of communication errors and deadlock-freedom, is that the local types of
the processes implementing the participants be obtained as projections from the same global type. To
ensure progress, global types must satisfy additional well-formedness requirements.

We have pursued our work on multiparty session types along the two directions described below, in
collaboration with colleagues from the Universities of Turin and Eastern Piedmont.

7.3.1 Multiparty Sessions with Internal Delegation

We have investigated a new form of delegation for multiparty session calculi. Usually, delegation allows a
session participant to appoint a participant in another session to act on her behalf. In this view, delegation
is an inter-session mechanism which requires session interleaving. Hence it falls outside the descriptive
power of global types, which specify single multiparty sessions. As a consequence, properties such as
deadlock-freedom or lock-freedom are difficult to ensure in the presence of delegation. In our work, we
adopt a different view of delegation, by allowing participants to delegate tasks to each other within the
same multiparty session. This way, delegation occurs within a single session (whence the name “internal

Project INDES 9

delegation”) and may be captured by its global type. We present a session type system based on global
types with internal delegation, and show that it ensures the usual safety properties of multiparty sessions,
together with a progress property.

This work has been published in a special issue of the journal Theoretical Computer Science dedicated
to Maurice Nivat [11].

7.3.2 Global Types and Event Structure Semantics for Asynchronous Multiparty Sessions

In previous work we explored the relationship between synchronous multiparty sessions and Event
Structures (ESs), a well-known concurrency model introduced in the early 80’s. We considered a core
multiparty session calculus where sessions are described as networks of sequential processes (each
process implementing a participant), equipped with standard global types. We proposed an interpretation
of networks as Flow Event Structures (FESs), a subclass of Winskel’s Stable Event Structures, as well as an
interpretation of global types as Prime Event Structures (PESs), the simplest class of ESs. Since the syntax
of global types does not allow all the concurrency among communications to be explicitly represented,
the events of the associated PES need to be defined as equivalence classes of communication sequences
up to permutation equivalence. We showed that when a network is typable by a global type, the FES
semantics of the former is equivalent, in a precise technical sense, to the PES semantics of the latter.

In the work [21], we undertake a similar endeavour in the asynchronous setting. This involves
devising a new notion of global type for asynchronous sessions. The type system for asynchronous
sessions is expected to be more permissive than the one for synchronous sessions. For instance, consider
a session with two participants each of which wishes to first send a message to the other one and then
receive a message from the other one. This session is stuck if communication is synchronous but not if
communication is asynchronous.

We start by considering a core session calculus as in the synchronous case, where networks are
endowed with a queue and they act on this queue by performing outputs or inputs: an output stores
a message in the queue, while an input fetches a message from the queue. The intuition for our new
asynchronous global types is quite simple: to split communications in the type into outputs and inputs,
and to equip the type with a queue, thus mimicking very closely the behaviour of asynchronous networks.
The well-formedness conditions for global types must now take into account also the content of the
queue. Essentially, this amounts to requiring that each input appearing in the type be justified by a
preceding output in the type or by a message in the queue, and vice versa, that each output in the type or
message in the queue be matched by a corresponding input in the type.

The contribution of [21] is twofold: 1) We propose an original type system for asynchronous multi-
party sessions, which accounts for asynchronous communication in a more natural way than existing
approaches, while remaining decidable. Our type system ensures the classical safety properties of ses-
sions as well as progress; 2) We present an Event Structure semantics for asynchronous sessions and for
asynchronous global types, and we show that these two semantics agree.

This paper has been submitted for journal publication.

7.4 Security Analysis of ElGamal Implementations

The ElGamal encryption scheme is not only the most extensively used alternative to RSA, but is also
almost exclusively used in voting systems as an effective homomorphic encryption scheme. Being easily
adaptable to a wide range of cryptographic groups, the ElGamal encryption scheme enjoys homomorphic
properties while remaining semantically secure. This is subject to the upholding of the Decisional Diffie-
Hellman (DDH) assumption on the chosen group. We analyze 26 libraries that implement the ElGamal
encryption scheme and discover that 20 of them are semantically insecure as they do not respect the
Decisional Diffie-Hellman (DDH) assumption. From the five libraries that do satisfy the DDH assumption,
we identify and compare four different message encoding and decoding techniques.

7.5 Timing Leaks

Timing leaks have been a major concern for the security community. A common approach is to prevent
secrets from affecting the execution time, thus achieving security with respect to a strong, local attacker

10 Inria Annual Report 2020

who can measure the timing of program runs. However, this approach becomes restrictive as soon as
programs branch on a secret, it becomes ineffective both when compiler passes re-introduces branches
on secrets, or when an attacker exploits speculations. We have studied timing leaks in all of these different
scenarios.

7.5.1 ClockworK: Timing Leaks in popular IoT application platforms

This work focuses on timing leaks under remote execution. A key difference is that the remote attacker
does not have a reference point of when a program run has started or finished, which significantly restricts
attacker capabilities. We propose an extensional security characterization that captures the essence of
remote timing attacks. We identify patterns of combining clock access, secret branching, and output in a
way that leads to timing leaks. Based on these patterns, we design Clockwork, a monitor that rules out
remote timing leaks. We implement the approach for JavaScript, leveraging JSFlow, a state-of-the-art
information flow tracker. We demonstrate the feasibility of the approach on case studies with IFTTT, a
popular IoT app platform, and VJSC, an advanced JavaScript library for e-voting.

7.5.2 Spectre attacks

The constant-time programming discipline (CT) is a software-based countermeasure used for protecting
high assurance cryptographic implementations against timing side-channel attacks. Constant time
is effective (it protects against many known attacks), rigorous (it can be formalized using program
semantics), and amenable to automated verification. Yet, the advent of microarchitectural attacks
makes constant-time as it exists today far less useful. This work lays foundations for constant-time
programming in the presence of speculative and out-of-order execution. We present an operational
semantics and a formal definition of constant-time programs in this extended setting. Our semantics
eschews formalization of microarchitectural features (that are instead assumed under adversary control),
and yields a notion of constant-time that retains the elegance and tractability of the usual notion. We
demonstrate the relevance of our semantics in two ways: First, by contrasting existing Spectre-like attacks
with our definition of constant-time. Second, by implementing a static analysis tool, Pitchfork, which
detects violations of our extended constant-time property in real world cryptographic libraries

7.5.3 Binsec/Rel

Writing CT code is challenging as it demands to reason about pairs of execution traces (2- hypersafety
property) and it is generally not preserved by the compiler, requiring binary-level analysis. Unfortunately,
current verification tools for CT either reason at higher level (C or LLVM), or sacrifice bug-finding or
bounded-verification, or do not scale. We tackle the problem of designing an efficient binary-level verifica-
tion tool for CT providing both bug-finding and bounded-verification. The technique builds on relational
symbolic execution enhanced with new optimizations dedicated to information flow and binary-level
analysis, yielding a dramatic improvement over prior work based on symbolic execution. We implement
a prototype, BINSEC/REL, and perform extensive experiments on a set of 338 cryptographic implementa-
tions, demonstrating the benefits of our approach in both bug-finding and bounded-verification. Using
BINSEC/REL, we also automate a previous manual study of CT preservation by compilers. Interestingly,
we discovered that gcc -O0 and backend passes of clang introduce violations of CT in implementations
that were previously deemed secure by a state-of-the-art CT verification tool operating at LLVM level,
showing the importance of reasoning at binary-level.

8 Bilateral contracts and grants with industry

8.1 Bilateral grants with industry

The ANSWER project (Advanced aNd Secured Web Experience and seaRch) is lead by the QWANT search
engine and the Inria Sophia Antipolis Méditerranée research center. This proposal is the winner of the
"Grand Challenges du Numérique" (BPI) and aims to develop the new version of the search engine
http://www.qwant.com with radical innovations in terms of search criteria, indexed content and

http://www.qwant.com

Project INDES 11

privacy of users. Nataliia Bielova, Manuel Serrano and Tamara Rezk are involved in this project. The
project started on January 1, 2018. In the context of this project, we got

• with Arnaud Legout from the DIANA project-team a funding for a 3 years Ph.D. student to work
on Web tracking technologies and privacy protection. Imane Fouad, a former Indes member, was
hired to work on this project.

• a funding for 18 months Postdoc to work on Web application security. Yoon Seok Ko has worked on
this project as a postdoc.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Inria associate team not involved in an IIL

HipHopSec

Title: Secure Reactive IoT Programming

Duration: 2020 - 2021

Coordinator: Manuel Serrano

Partners: Northwestern University (Chicago, United States).

Inria contact: Manuel Serrano

Summary: Nowadays most applications are distributed, that is, they run on

several computers: a mobile device for the graphical user interface a gateway for storing data in a local
area; a remote server of a large cloud platform for resource demanding computing; an object connected
to Internet in the IoT (Internet of Things); etc. For many different reasons, this makes programming
much more difficult than it was when only a single computer was involved:

• Applications are composed of extensive lists of diverse components, each coming with their own
specification and imposing its own constraints on application development.

• Due to the distributed nature of the applications, developers have to implement appropriate
communication protocols, which is difficult to do correctly and securely.

• Communicating applications need to resort to parallelism to handle requests from their clients
with acceptable latency. No matter whether it is multi-threading (as in Java) or asynchronous
programming (as in JavaScript/Node.js), this style of programming is notoriously difficult and
error-prone.

The Indes, Northwestern, and College de France teams are studying programming languages and have
each created complementary solutions that address the aforementioned problems. Combined together,
they could lead to a robust and secure execution environment for the web and IoT programming. Indes
will bring its expertise in secure web programming, College de France its expertise in synchronous reactive
programming, Northwestern its expertise secure execution environments and run-time validation of
security properties of program executions. Finally Northwestern will contribute with its expertise in
medical descriptions, which will be the main application domain of the secure execution environment
the participants aim to develop.

The main objective of the collaboration is the development of a robust and secure integrated program-
ming environment for reactive applications suitable for web and IoT applications. The programming
of medical prescriptions will be our favored application domain. We will base our work on three pillars:
Hop.js, the contract system designed for the Racket language, and HipHop.js, a domain specific language
for reactive programming within Hop.js.

12 Inria Annual Report 2020

• HipHop.js has currently minimal integration with Hop.js and a rudimentary programming environ-
ment. We will continue the development of HipHop.js with the goal of turning it into a a usable and
reliable platform.

• The formal semantics of HipHop.js is based on rewriting logics, automata theory and Boolean
equations. Thus, HipHop.js programs can be verified using existing techniques based on the
satisfiability of logic formulas. Such techniques have been widely used for synchronous reactive
programs, but never before in the more dynamic world of web or medical applications.

• Supporting medical prescriptions as programs requires not only a language with special syntactic
abstractions to match the notations of the medical domain, but also a fundamentally new way to
think about prescription vs. computer programs. For example, medical personnel often modifies
prescriptions in the middle of a treatment. In linguistic terms this requires that the programming
language in use supports the ability to pause a program while it is running, modify its code, and
restart it from the point of the pause but with the modified version of the code, this in a guaranteed
consistent way. We hope to build such a programming language, with a semantics inspired by
synchronous-reactive programming in the style of HipHop.js but tailored to the medical domain.

• Contracts state precise properties of the interfaces of components and validate them at run time.
Over the last fifteen years, Racket developers, including those dealing with the language itself, have
used contracts extensively to validate properties that range from simple type-like constraints to
partial functional correctness and even security. Our goal is to design and implement a contract sys-
tem for Hop/HipHop.js that is as expressive as that of Racket. Hop/HipHop.js is based on Javascript,
a different linguistic setting than that of Racket; however, existing work on Javascript proxies and
macros has resulted in encouraging preliminary results on contracts for higher-order functions
and objects in Javascript. We aim at lifting and extending these result to Hop/HipHop.js. Given
an expressive contract system for Hop/HipHop.js, we will investigate: (i) how to state and enforce
security policies for Hop/HipHop.js applications with contracts; and (ii) how different compilation
and implementation techniques can alleviate existing performance issues of applications, a current
weakness that impedes the widespread adoption of contracts.

• Improving the quality of the code requires support from testing. S. You (working with C. Dimoulas
and R. Findler) is working on improving automated testing techniques. So far he has discovered a
new theoretical result showing how to use concolic testing for higher-order functions. This result
may have applications for testing in JavaScript and we are hopeful that we can leverage it to Hop.js.

9.1.2 Inria international partners

We are collaborating with Universidad de Chile (Santiago Chile) and Universidad Nacional del Centro
de la Provincia de Buenos Aires (Argentina) on the Detection strategies based on Software Metrics for
Multitier JavaScript. Our main collaborators are Alexandre Bergel and Santiago Vidal. This project was
due to end in 2019 but because of the political situation in Chile first, and Covid second, we have had
to suspend our collaboration for two years. We hope we will be able this year to complete the initiated
studies. If the context permit, M. Serrano will visit A. Bergel in December 2021. In the meantime S. Vidal
collaborates with T. Rezk and H. Maurel.

Declared Inria international partners Marc Feeley from University of Montréal is a recurrent visitor of
the team. Unfortunately, his visit of the year has been canceled for obvious reasons but it did not end our
collaboration. We are participating in weekly meetings with him and his student.

9.2 European initiatives

9.2.1 FP7 & H2020 Projects

SPARTA

Title: Special projects for advanced research and technology in Europe

Project INDES 13

Duration: February 2019 - January 2022

Coordinator: CEA

Partners:

• CENTRE D’EXCELLENCE EN TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNI-
CATION (Belgium)

• CESNET ZAJMOVE SDRUZENI PRAVNICKYCH OSOB (Czech Republic)

• COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)

• CONSIGLIO NAZIONALE DELLE RICERCHE (Italy)

• CONSORZIO INTERUNIVERSITARIO NAZIONALE PER L’INFORMATICA (Italy)

• CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI (Italy)

• CZ.NIC, ZSPO (Czech Republic)

• DIREZIONE GENERALE PER LE TECNOLOGIE DELLE COMUNICAZIONI E LA SICUREZZA
INFORMATICA - ISTITUTO SUPERIORE DELLE COMUNICAZIONI E DELLE TECNOLOGIE
DELL’INFORMAZIONE (Italy)

• FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG
E.V. (Germany)

• FUNDACIO EURECAT (Spain)

• FUNDACION CENTRO DE TECNOLOGIAS DE INTERACCION VISUAL Y COMUNICACIONES
VICOMTECH (Spain)

• FUNDACION TECNALIA RESEARCH & INNOVATION (Spain)

• GENEROLO JONO ZEMAICIO LIETUVOS KARO AKADEMIJA (Lithuania)

• INDRA SISTEMAS SA (Spain)

• INOV INESC INOVACAO - INSTITUTO DE NOVAS TECNOLOGIAS (Portugal)

• INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON (France)

• INSTITUTO SUPERIOR TECNICO (Portugal)

• ITTI SP ZOO (Poland)

• JOANNEUM RESEARCH FORSCHUNGSGESELLSCHAFT MBH (Austria)

• K AUNO TECHNOLOGIJOS UNIVERSITETAS (Lithuania)

• K ENTRO MELETON ASFALEIAS (Greece)

• LEONARDO - SOCIETA PER AZIONI (Italy)

• LIETUVOS KIBERNETINIU NUSIKALTIMU KOMPETENCIJU IR TYRIMU CENTRAS (Lithua-
nia)

• LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY (Luxembourg)

• MYKOLO ROMERIO UNIVERSITETAS (Lithuania)

• NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS" (Greece)

• NAUKOWA I AKADEMICKA SIEC KOMPUTEROWA - PANSTWOWY INSTYTUT BADAWCZY
(Poland)

• SECRETARIAT GENERAL DE LA DEFENSE ET DE LA SECURITE NATIONALE (France)

• STOWARZYSZENIE POLSKA PLATFORMA BEZPIECZENSTWA WEWNETRZNEGO (Poland)

• TARTU ULIKOOL (Estonia)

• TECHNIKON FORSCHUNGS- UND PLANUNGSGESELLSCHAFT MBH (Austria)

• TECHNISCHE UNIVERSITAET MUENCHEN (Germany)

14 Inria Annual Report 2020

• THALES SIX GTS FRANCE SAS (France)

• UNIVERSITAT KONSTANZ (Germany)

• UNIVERSITE DE NAMUR ASBL (Belgium)

• UNIVERSITE DU LUXEMBOURG (Luxembourg)

• V YSOKE UCENI TECHNICKE V BRNE (Czech Republic)

Inria contact: Thomas Jensen

Summary: In the domain of Cybersecurity Research and innovation, European scientists hold pioneering
positions in fields such as cryptography, formal methods, or secure components. Yet this excellence
on focused domains does not translate into larger-scale, system-level advantages. Too often, scattered
and small teams fall short of critical mass capabilities, despite demonstrating world-class talent
and results. Europe’s strength is in its diversity, but that strength is only materialised if we cooperate,
combine, and develop common lines of research. Given today’s societal challenges, this has become
more than an advantage – an urgent necessity. Various approaches are being developed to enhance
collaboration at many levels. Europe’s framework programs have sprung projects in cybersecurity
over the past thirty years, encouraging international cooperation and funding support actions. More
recently, the Cybersecurity PPP has brought together public institutions and industrial actors around
common roadmaps and projects. While encouraging, these efforts have highlighted the need to
break the mould, to step up investments and intensify coordination. The SPARTA proposal brings
together a unique set of actors at the intersection of scientific excellence, technological innovation,
and societal sciences in cybersecurity. Strongly guided by concrete and risky challenges, it will setup
unique collaboration means, leading the way in building transformative capabilities and forming
world-leading expertise centres. Through innovative governance, ambitious demonstration cases,
and active community engagement, SPARTA aims at re-thinking the way cybersecurity research is
performed in Europe across domains and expertise, from foundations to applications, in academia
and industry.</abstract>

9.3 National initiatives

9.3.1 ANR CISC

The CISC project (Certified IoT Secure Compilation) is funded by the ANR for 42 months, starting in April
2018. The goal of the CISC project is to provide strong security and privacy guarantees for IoT applications
by means of a language to orchestrate IoT applicatoins from the microcontroller to the cloud. Tamara
Rezk coordinates this project, and Manuel Serrano, Ilaria Castellani and Nataliia Bielova participate in the
project. The partners of this project are Inria teams Celtique, Indes and Privatics, and Collège de France.

9.3.2 ANR PrivaWeb

The PrivaWeb project (Privacy Protection and ePrivacy Compliance for Web Users) is funded by the ANR
JCJC program for 48 months, started in December 2018. PrivaWeb aims at developing new methods for
detection of new Web tracking technologies and new tools to integrate in existing Web applications that
seamlessly protect privacy of users.

Nataliia Bielova (PRIVATICS project-team) coordinates this project.

9.3.3 PIA ANSWER

The ANSWER project (Advanced aNd Secured Web Experience and seaRch) is funded by PIA program for
36 months, starting January 1, 2018. The aim of the ANSWER project is to develop the new version of the
http://www.qwant.com search engine by introducing radical innovations in terms of search criteria as
well as indexed content and users’ privacy. The partners of this project include QWANT and Inria teams
Wimmics, Indes, Neo and Diana.

http://www.qwant.com

Project INDES 15

10 Dissemination

10.1 Promoting Scientific Activities

10.1.1 Scientific Events: Organisation

• Tamara Rezk organized the 2020 Shonan meeting 159 on Web Security, together with Limin Jia
(Carnegie Melon University) and Sukyoung Ryu (KAIST), inviting experts in web security from
academy and industry. The meeting was canceled a week before its date due to COVID and moved
to March 2022;

General Chair, Scientific Chair

• Ilaria Castellani was the co-chair (together with Mohammad Reza Mousavi) of the workshop
TRENDS 2020, the annual event of the IFIP WG1.8 on Concurrency Theory, which took place
virtually on September 5, 2020, in association with the CONCUR 2020 conference (these events
were due to take place in Vienna but were turned into virtual events because of Covid). https:
//concurrency-theory.org/events/workshops/trends

Member of the Conference Program Committees

• Manuel Serrano was participating in the Program Committee of the ECOOP’20 conference.

• Ilaria Castellani served in the Program Committee of the workshop PLACES 2020. http://places
20.by.di.fc.ul.pt/

• Tamara Rezk served in the Program Committee of ASIACCS 2020, MADWeb 2020, SecDev 2020,
ACISP 2020, and SecWeb 2020.

10.1.2 Invited Talks

• Manuel Serrano gave a keynote conference at the FDL conference about Web Reactive Programming
and HipHop.js (http://www.fdl-conference.org/).

10.1.3 Leadership within the Scientific Community

• Ilaria Castellani was the chair of the IFIP TC1 WG 1.8 on Concurrency Theory from June 2014 to
December 2020. http://www.ifip-tc1.org/
https://concurrency-theory.org/organizations/ifip

• Tamara Rezk is a member of the Steering Committee of the PriSC workshop.

10.1.4 Research Administration

• Manuel Serrano is vice-head of the Inria Evaluation Committee. As such he co-organizes all the
grants, promotions juries and the juries of the national recruiting campaigns. He also co-organizes
all the team evaluation seminars.

• Ilaria Castellani was the chair of the “jury d’admissibilité” for the recruitment of junior researchers
in the INRIA Centre of Grenoble Rhône Alpes.

• Ilaria Castellani is a member of INRIA’s “Comité Parité et Égalité des Chances”. In the Centre of
INRIA Sophia Antipolis, she is a member of the “Comité Scientifique du Colloquium”. Within UCA
(Université Côte d’Azur), she is a member of the organising committee of the “Forum Numerica”
seminar series.

https://concurrency-theory.org/events/workshops/trends
https://concurrency-theory.org/events/workshops/trends
http://places20.by.di.fc.ul.pt/
http://places20.by.di.fc.ul.pt/
http://www.fdl-conference.org/
http://www.ifip-tc1.org/
https://concurrency-theory.org/organizations/ifip

16 Inria Annual Report 2020

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Tamara Rezk taught two courses (master level) at University of Nice-Sophia Antipolis: Web Security
(28 ETD) and Cryptographic proofs (28 ETD).

10.2.2 Supervision

• Postdoc: Yoon Seok Ko, Secure JavaScript, 1/10/2018-, Tamara Rezk, Manuel Serrano.

• PhD in progress: Jayanth Krishnamurthy, Secure Reactive Web Programming, 12/09/2018, Manuel
Serrano.

• PhD in progress: Bertrand Petit, Musique Massivement Interactive, 12/09/2017, Manuel Serrano.
PhD defended in July 2020.

• PhD in progress : Héloïse Maurel, Statically Identifying Security Vulnerabilities using Deep Learning
1/10/2018, Tamara Rezk

• PhD in progress : Mohamad Ellaz, Implementation and analysis of cryptographic libraries, 1/12/2017,
Benjamin Grégoire and Tamara Rezk

• PhD in progress : Lesly-Ann Daniel, Security analysis of binary code, 1/10/2018, Sébastien Bardin
and Tamara Rezk

• PhD in progress : Adam Khayam, Semantics of Multitier Languages, 1/07/2019, Alan Schmitt and
Tamara Rezk

• PhD in progress: Ignacio Tiraboschi, Analysis for IoT Security, Xavier Rival and Tamara Rezk

10.2.3 Juries

• Tamara Rezk was a jury member of the national Inria competition CRCN/ISFP 2020.

• Tamara Rezk was a Phd jury member (Rapporteur) of Sebastian Poeplau (supervisor: Aurélien
Francillon), EURECOM, 2020.

10.3 Popularization

10.3.1 Internal or external Inria responsibilities

• Tamara Rezk was part of the Editorial Board of the blog Binaire of Le Monde.

11 Scientific production

11.1 Major publications

[1] N. Bielova and T. Rezk. ‘A Taxonomy of Information Flow Monitors’. In: International Conference
on Principles of Security and Trust (POST 2016). Ed. by F. Piessens and L. Viganò. Vol. 9635. LNCS -
Lecture Notes in Computer Science. Eindhoven, Netherlands: Springer, Apr. 2016, pp. 46–67. DOI:
10.1007/978-3-662-49635-0_3. URL: https://hal.inria.fr/hal-01348188.

[2] G. Boudol and I. Castellani. ‘Noninterference for Concurrent Programs and Thread Systems’. In:
Theoretical Computer Science 281.1 (2002), pp. 109–130.

[3] G. Boudol, Z. Luo, T. Rezk and M. Serrano. ‘Reasoning about Web Applications: An Operational
Semantics for HOP’. In: \sc ACM Transactions on Programming Languages and Systems (TOPLAS)
34.2 (2012).

https://doi.org/10.1007/978-3-662-49635-0_3
https://hal.inria.fr/hal-01348188

Project INDES 17

[4] S. Capecchi, I. Castellani and M. Dezani-Ciancaglini. ‘Information Flow Safety in Multiparty Ses-
sions’. In: Mathematical Structures in Computer Science. Special Issue: EXPRESS’11 26.8 (2015),
p. 43. DOI: 10.1017/S0960129514000619. URL: https://hal.inria.fr/hal-01237236.

[5] I. Castellani, M. Dezani-Ciancaglini and P. Giannini. ‘Concurrent Reversible Sessions’. In: CONCUR
2017 - 28th International Conference on Concurrency Theory. Vol. 85. CONCUR 2017. Roland Meyer
and Uwe Nestmann. Berlin, Germany, Sept. 2017, pp. 1–17. DOI: 10.4230/LIPIcs.CONCUR.2017
.30. URL: https://hal.inria.fr/hal-01639845.

[6] C. Fournet and T. Rezk. ‘Cryptographically sound implementations for typed information-flow se-
curity’. In: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008. 2008, pp. 323–335.

[7] M. Ngo, F. Piessens and T. Rezk. ‘Impossibility of Precise and Sound Termination-Sensitive Security
Enforcements’. In: SP 2018 - IEEE Symposium on Security and Privacy. San Francisco, United States:
IEEE, May 2018, pp. 496–513. DOI: 10.1109/SP.2018.00048. URL: https://hal.inria.fr/hal
-01928669.

[8] M. Serrano and G. Berry. ‘Multitier Programming in Hop - A first step toward programming 21st-
century applications’. In: Communications of the ACM 55.8 (Aug. 2012), pp. 53–59. DOI: 10.1145/2
240236.2240253. URL: http://cacm.acm.org/magazines/2012/8/153796-multitier-pro
gramming-in-hop/abstract.

[9] M. Serrano and V. Prunet. ‘A Glimpse of Hopjs’. In: 21th \sc ACM Sigplan Int’l Conference on
Functional Programming (ICFP). Nara, Japan, Sept. 2016, pp. 188–200. URL: http://dx.doi.org
/10.1145/2951913.2951916.

[10] D. F. Somé, N. Bielova and T. Rezk. ‘On the Content Security Policy Violations due to the Same-
Origin Policy’. In: 26th International World Wide Web Conference, 2017 (WWW 2017) (Apr. 2017).
DOI: 10.1145/3038912.3052634. URL: https://hal.inria.fr/hal-01649526.

11.2 Publications of the year

International journals

[11] I. Castellani, M. Dezani-Ciancaglini, P. Giannini and R. Horne. ‘Global types with internal delega-
tion’. In: Theoretical Computer Science 807 (6th Feb. 2020), p. 26. DOI: 10.1016/j.tcs.2019.09.0
27. URL: https://hal.inria.fr/hal-02419937.

[12] B. Petit and M. Serrano. ‘Skini:Reactive Programming fo Interactive Structured Music’. In: The Art,
Science, and Engineering of Programming (8th June 2020). URL: https://hal.archives-ouvert
es.fr/hal-03105643.

International peer-reviewed conferences

[13] I. Bastys, M. Balliu, T. Rezk and A. Sabelfeld. ‘Clockwork: Tracking Remote Timing Attacks’. In:
In Proceedings of the IEEE Computer Security Foundations Symposium (CSF). Virtual, France,
22nd June 2020. URL: https://hal.inria.fr/hal-03141411.

[14] G. Berry and M. Serrano. ‘HipHop.js: (A)Synchronous reactive web programming’. In: PLDI ’20 - 41st
ACM SIGPLAN International Conference on Programming Language Design and Implementation.
London UK, United Kingdom, 15th July 2020, pp. 533–545. DOI: 10.1145/3385412.3385984. URL:
https://hal.inria.fr/hal-03047902.

[15] M. El Laz, B. Grégoire and T. Rezk. ‘Security Analysis of ElGamal Implementations’. In: 17th In-
ternational Conference on Security and Cryptography. Lieusaint - Paris, France, 8th July 2020,
pp. 310–321. DOI: 10.5220/0009817103100321. URL: https://hal.inria.fr/hal-03141511.

[16] M. Serrano and R. B. Findler. ‘Dynamic property caches: a step towards faster JavaScript proxy
objects’. In: CC ’20 - 29th International Conference on Compiler Construction. San Diego CA,
United States, 22nd Feb. 2020, pp. 108–118. DOI: 10.1145/3377555.3377888. URL: https://hal
.inria.fr/hal-03047893.

https://doi.org/10.1017/S0960129514000619
https://hal.inria.fr/hal-01237236
https://doi.org/10.4230/LIPIcs.CONCUR.2017.30
https://doi.org/10.4230/LIPIcs.CONCUR.2017.30
https://hal.inria.fr/hal-01639845
https://doi.org/10.1109/SP.2018.00048
https://hal.inria.fr/hal-01928669
https://hal.inria.fr/hal-01928669
https://doi.org/10.1145/2240236.2240253
https://doi.org/10.1145/2240236.2240253
http://cacm.acm.org/magazines/2012/8/153796-multitier-programming-in-hop/abstract
http://cacm.acm.org/magazines/2012/8/153796-multitier-programming-in-hop/abstract
http://dx.doi.org/10.1145/2951913.2951916
http://dx.doi.org/10.1145/2951913.2951916
https://doi.org/10.1145/3038912.3052634
https://hal.inria.fr/hal-01649526
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://hal.inria.fr/hal-02419937
https://hal.archives-ouvertes.fr/hal-03105643
https://hal.archives-ouvertes.fr/hal-03105643
https://hal.inria.fr/hal-03141411
https://doi.org/10.1145/3385412.3385984
https://hal.inria.fr/hal-03047902
https://doi.org/10.5220/0009817103100321
https://hal.inria.fr/hal-03141511
https://doi.org/10.1145/3377555.3377888
https://hal.inria.fr/hal-03047893
https://hal.inria.fr/hal-03047893

18 Inria Annual Report 2020

Conferences without proceedings

[17] B. Petit and M. Serrano. ‘Generative Music Using Reactive Programming’. In: International Com-
puter Music Conférence. Santiago, Chile, 21st July 2021. URL: https://hal.archives-ouvertes
.fr/hal-03105666.

Doctoral dissertations and habilitation theses

[18] B. Petit. ‘Time and duration : from synchronous reactive programming to music composition’.
Université Côte d’Azur, 2nd July 2020. URL: https://tel.archives-ouvertes.fr/tel-03135
288.

Reports & preprints

[19] A. Canteaut, M. A. Fernández, L. Maranget, S. Perin, M. Ricchiuto, M. Serrano and E. Thomé.
Évaluation des Logiciels. Inria, 14th Jan. 2021. URL: https://hal.inria.fr/hal-03110723.

[20] A. Canteaut, M. A. Fernández, L. Maranget, S. Perin, M. Ricchiuto, M. Serrano and E. Thomé.
Software Evaluation. Inria, 14th Jan. 2021. URL: https://hal.inria.fr/hal-03110728.

[21] I. Castellani, M. Dezani-Ciancaglini and P. Giannini. Global types and event structure semantics for
asynchronous multiparty sessions. 1st Feb. 2021. URL: https://hal.inria.fr/hal-03126627.

https://hal.archives-ouvertes.fr/hal-03105666
https://hal.archives-ouvertes.fr/hal-03105666
https://tel.archives-ouvertes.fr/tel-03135288
https://tel.archives-ouvertes.fr/tel-03135288
https://hal.inria.fr/hal-03110723
https://hal.inria.fr/hal-03110728
https://hal.inria.fr/hal-03126627

	Project-Team INDES
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Parallelism, concurrency, and distribution
	Web, functional, and reactive programming
	Security of diffuse programs

	Application domains
	Web
	Internet of Things

	Highlights of the year
	Awards

	New software and platforms
	Binsec/REL
	New software
	Bigloo
	Hop
	IFJS
	Hiphop.js
	Server-Side Protection against Third Party Web Tracking
	webstats
	Skini

	New results
	JavaScript Implementation
	Web Reactive Programming
	HipHop.js
	Interactive Music Composition

	Session Types
	Multiparty Sessions with Internal Delegation
	Global Types and Event Structure Semantics for Asynchronous Multiparty Sessions

	Security Analysis of ElGamal Implementations
	Timing Leaks
	 ClockworK: Timing Leaks in popular IoT application platforms
	 Spectre attacks
	Binsec/Rel

	Bilateral contracts and grants with industry
	Bilateral grants with industry

	Partnerships and cooperations
	International initiatives
	Inria associate team not involved in an IIL
	Inria international partners

	European initiatives
	FP7 & H2020 Projects

	National initiatives
	ANR CISC
	ANR PrivaWeb
	PIA ANSWER

	Dissemination
	Promoting Scientific Activities
	Scientific Events: Organisation
	Invited Talks
	Leadership within the Scientific Community
	Research Administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Internal or external Inria responsibilities

	Scientific production
	Major publications
	Publications of the year

