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2 Overall objectives

MATHNEURO focuses on the applications of multi-scale dynamics to neuroscience. This involves the
modelling and analysis of systems with multiple time scales and space scales, as well as stochastic effects.
We look both at single-cell models, microcircuits and large networks. In terms of neuroscience, we are
mainly interested in questions related to synaptic plasticity and neuronal excitability, in particular in
the context of pathological states such as epileptic seizures and neurodegenerative diseases such as
Alzheimer.

Our work is quite mathematical but we make heavy use of computers for numerical experiments and
simulations. We have close ties with several top groups in biological neuroscience. We are pursuing the
idea that the "unreasonable effectiveness of mathematics" can be brought, as it has been in physics, to
bear on neuroscience.

Modeling such assemblies of neurons and simulating their behavior involves putting together a
mixture of the most recent results in neurophysiology with such advanced mathematical methods as
dynamical systems theory, bifurcation theory, probability theory, stochastic calculus, theoretical physics
and statistics, as well as the use of simulation tools.

We conduct research in the following main areas:

1. Neural networks dynamics

2. Mean-field and stochastic approaches

3. Neural fields

4. Slow-fast dynamics in neuronal models

5. Modeling neuronal excitability

6. Synaptic plasticity

7. Memory processes

8. Visual neuroscience

3 Research program

3.1 Neural networks dynamics

The study of neural networks is certainly motivated by the long term goal to understand how brain is
working. But, beyond the comprehension of brain or even of simpler neural systems in less evolved
animals, there is also the desire to exhibit general mechanisms or principles at work in the nervous
system. One possible strategy is to propose mathematical models of neural activity, at different space
and time scales, depending on the type of phenomena under consideration. However, beyond the mere
proposal of new models, which can rapidly result in a plethora, there is also a need to understand some
fundamental keys ruling the behaviour of neural networks, and, from this, to extract new ideas that can
be tested in real experiments. Therefore, there is a need to make a thorough analysis of these models. An
efficient approach, developed in our team, consists of analysing neural networks as dynamical systems.
This allows to address several issues. A first, natural issue is to ask about the (generic) dynamics exhibited
by the system when control parameters vary. This naturally leads to analyse the bifurcations [72] [73]
occurring in the network and which phenomenological parameters control these bifurcations. Another
issue concerns the interplay between the neuron dynamics and the synaptic network structure.

3.2 Mean-field and stochastic approaches

Modeling neural activity at scales integrating the effect of thousands of neurons is of central importance
for several reasons. First, most imaging techniques are not able to measure individual neuron activity
(microscopic scale), but are instead measuring mesoscopic effects resulting from the activity of several
hundreds to several hundreds of thousands of neurons. Second, anatomical data recorded in the cortex
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Figure 1: Simulations of the quasi-synchronous state of a stochastic neural network with N = 5000
neurons. Left: empirical distribution of membrane potential as a function (t , v). Middle: (raster plot)
spiking times as a function of neuron index and time. Right: several membrane potentials vi (t) as a
function of time for i ∈ [1,100]. Simulated with the Julia Package PDMP.jl from [16]. This figure has been
slightly modified from [13].

reveal the existence of structures, such as the cortical columns, with a diameter of about 50µm to 1mm,
containing of the order of one hundred to one hundred thousand neurons belonging to a few different
species. The description of this collective dynamics requires models which are different from individual
neurons models. In particular, when the number of neurons is large enough averaging effects appear,
and the collective dynamics is well described by an effective mean-field, summarizing the effect of the
interactions of a neuron with the other neurons, and depending on a few effective control parameters.
This vision, inherited from statistical physics requires that the space scale be large enough to include a
large number of microscopic components (here neurons) and small enough so that the region considered
is homogeneous.
Our group is developing mathematical and numerical methods allowing on one hand to produce dynamic
mean-field equations from the physiological characteristics of neural structure (neurons type, synapse
type and anatomical connectivity between neurons populations), and on the other so simulate these
equations; see Figure 1. These methods use tools from advanced probability theory such as the theory of
Large Deviations [60] and the study of interacting diffusions [3].

3.3 Neural fields

Neural fields are a phenomenological way of describing the activity of population of neurons by delayed
integro-differential equations. This continuous approximation turns out to be very useful to model large
brain areas such as those involved in visual perception. The mathematical properties of these equations
and their solutions are still imperfectly known, in particular in the presence of delays, different time
scales and noise.
Our group is developing mathematical and numerical methods for analysing these equations. These
methods are based upon techniques from mathematical functional analysis, bifurcation theory [19], [75],
equivariant bifurcation analysis, delay equations, and stochastic partial differential equations. We have
been able to characterize the solutions of these neural fields equations and their bifurcations, apply
and expand the theory to account for such perceptual phenomena as edge, texture [53], and motion
perception. We have also developed a theory of the delayed neural fields equations, in particular in the
case of constant delays and propagation delays that must be taken into account when attempting to
model large size cortical areas [17], [74]. This theory is based on center manifold and normal forms ideas
[18].

3.4 Slow-fast dynamics in neuronal models

Neuronal rhythms typically display many different timescales, therefore it is important to incorporate this
slow-fast aspect in models. We are interested in this modeling paradigm where slow-fast point models,
using Ordinary Differential Equations (ODEs), are investigated in terms of their bifurcation structure and
the patterns of oscillatory solutions that they can produce. To insight into the dynamics of such systems,
we use a mix of theoretical techniques — such as geometric desingularisation and centre manifold
reduction [64] — and numerical methods such as pseudo-arclength continuation [57]. We are interested
in families of complex oscillations generated by both mathematical and biophysical models of neurons.
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Figure 2: Excitability threshold as slow manifolds in a simple spiking model, namely the FitzHugh-
Nagumo model, (top panels) and in a simple bursting model, namely the Hindmarsh-Rose model
(bottom panels). This figure is unpublished.

In particular, so-called mixed-mode oscillations (MMOs) [11], [55, 63], which represent an alternation
between subthreshold and spiking behaviour, and bursting oscillations [56, 61], also corresponding to
experimentally observed behaviour [54]; see Figure 2. We are working on extending these results to
spatio-temporal neural models [2].

3.5 Modeling neuronal excitability

Excitability refers to the all-or-none property of neurons [59, 62]. That is, the ability to respond nonlinearly
to an input with a dramatic change of response from “none” — no response except a small perturbation
that returns to equilibrium — to “all” — large response with the generation of an action potential or
spike before the neuron returns to equilibrium. The return to equilibrium may also be an oscillatory
motion of small amplitude; in this case, one speaks of resonator neurons as opposed to integrator
neurons. The combination of a spike followed by subthreshold oscillations is then often referred to
as mixed-mode oscillations (MMOs) [55]. Slow-fast ODE models of dimension at least three are well
capable of reproducing such complex neural oscillations. Part of our research expertise is to analyse
the possible transitions between different complex oscillatory patterns of this sort upon input change
and, in mathematical terms, this corresponds to understanding the bifurcation structure of the model.
Furthermore, the shape of time series of this sort with a given oscillatory pattern can be analysed within
the mathematical framework of dynamic bifurcations; see the section on slow-fast dynamics in Neuronal
Models. The main example of abnormal neuronal excitability is hyperexcitability and it is important to
understand the biological factors which lead to such excess of excitability and to identify (both in detailed
biophysical models and reduced phenomenological ones) the mathematical structures leading to these
anomalies. Hyperexcitability is one important trigger for pathological brain states related to various
diseases such as chronic migraine [66], epilepsy [67] or even Alzheimer’s Disease [65]. A central central
axis of research within our group is to revisit models of such pathological scenarios, in relation with a
combination of advanced mathematical tools and in partnership with biological labs.
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3.6 Synaptic Plasticity

Neural networks show amazing abilities to evolve and adapt, and to store and process information. These
capabilities are mainly conditioned by plasticity mechanisms, and especially synaptic plasticity, inducing
a mutual coupling between network structure and neuron dynamics. Synaptic plasticity occurs at many
levels of organization and time scales in the nervous system [52]. It is of course involved in memory and
learning mechanisms, but it also alters excitability of brain areas and regulates behavioral states (e.g.,
transition between sleep and wakeful activity). Therefore, understanding the effects of synaptic plasticity
on neurons dynamics is a crucial challenge.
Our group is developing mathematical and numerical methods to analyse this mutual interaction. On the
one hand, we have shown that plasticity mechanisms [9, 15], Hebbian-like or STDP, have strong effects
on neuron dynamics complexity, such as synaptic and propagation delays [17], dynamics complexity
reduction, and spike statistics.

3.7 Memory processes

The processes by which memories are formed and stored in the brain are multiple and not yet fully
understood. What is hypothesised so far is that memory formation is related to the activation of certain
groups of neurons in the brain. Then, one important mechanism to store various memories is to associate
certain groups of memory items with one another, which then corresponds to the joint activation of
certain neurons within different subgroup of a given population. In this framework, plasticity is key
to encode the storage of chains of memory items. Yet, there is no general mathematical framework to
model the mechanism(s) behind these associative memory processes. We are aiming at developing such
a framework using our expertise in multi-scale modelling, by combining the concepts of heteroclinic
dynamics, slow-fast dynamics and stochastic dynamics.

The general objective that we wish to purse in this project is to investigate non-equilibrium phe-
nomena pertinent to memory storage and retrieval. Earlier work, including the paper by team members
[1], has shown that heteroclinic cycles can play an organizing role in the dynamics of firing rate models.
Our goal is to explore other formulations to show the correspondence between the firing rate and other
modeling contexts.

4 Application domains

The project underlying MathNeuro revolves around pillars of neuronal behaviour –excitability, plasticity,
memory– in link with the initiation and propagation of pathological brain states in diseases such as
cortical spreading depression (in link with certain forms of migraine with aura), epileptic seizures and
Alzheimer’s Disease.

5 New results

5.1 Neural Networks as dynamical systems

5.1.1 A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-
and-Fire to Hodgkin-Huxley models
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Participants Mallory Carlu (NeuroPSI - Institut des Neurosciences Paris-Saclay,
France), Omar Chehab ( ENS Paris Saclay - Ecole Normale Supérieure
Paris-Saclay, France), Leonardo Dalla Porta (IDIBAPS - Institut
d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain),
Damien Depannemaecker (NeuroPSI - Institut des Neurosciences Paris-
Saclay, France), Charlotte Héricé (University of Strathclyde, Glasgow,
UK), Maciej Jedynak (GIN - Grenoble Institut des Neurosciences, France),
Elif Köksal Ersöz (LSTI, INSERM, Rennes, France et Inria MathNeuro),
Paolo Muratore ( Sapienza University, Rome, Italy), Selma Souihel (In-
ria Biovision), Cristiano Capone ( INFN - Istituto Nazionale di Fisica
Nucleare, Rome, Italy, et NeuroPSI - Institut des Neurosciences Paris-
Saclay, France), Yan Zerlaut (NeuroPSI - Institut des Neurosciences
Paris-Saclay, France), Alain Destexhe (NeuroPSI - Institut des Neuro-
sciences Paris-Saclay, France), Matteo Di Volo (NeuroPSI - Institut des
Neurosciences Paris-Saclay, France).

We present a mean-field formalism able to predict the collective dynamics of large networks of conductance-
based interacting spiking neurons. We apply this formalism to several neuronal models, from the simplest
Adaptive Exponential Integrate-and-Fire model to the more complex Hodgkin-Huxley and Morris-Lecar
models. We show that the resulting mean-field models are capable of predicting the correct spontaneous
activity of both excitatory and inhibitory neurons in asynchronous irregular regimes, typical of cortical
dynamics. Moreover, it is possible to quantitatively predict the populations response to external stimuli in
the form of external spike trains. This mean-field formalism therefore provides a paradigm to bridge the
scale between population dynamics and the microscopic complexity of the individual cells physiology.

This work has been published in Journal of Neurophysiology and is available as [24].

5.1.2 Theta-Nested Gamma Oscillations in Next Generation Neural Mass Models

Participants Marco Segneri (LPTM, Cergy Paris Université, France),
Hongjie Bi (LPTM, Cergy Paris Université, France), Simona Olmi,
Alessandro Torcini (LPTM, Cergy Paris Université, France).

Theta-nested gamma oscillations have been reported in many areas of the brain and are believed to
represent a fundamental mechanism to transfer information across spatial and temporal scales. In a
series of recent experiments in vitro it has been possible to replicate with an optogenetic theta frequency
stimulation several features of cross-frequency coupling (CFC) among theta and gamma rhythms ob-
served in behaving animals. In order to reproduce the main findings of these experiments we have
considered a new class of neural mass models able to reproduce exactly the macroscopic dynamics of
spiking neural networks. In this framework, we have examined two set-ups able to support collective
gamma oscillations: namely, the pyramidal interneuronal network gamma (PING) and the interneuronal
network gamma (ING). In both set-ups we observe the emergence of theta-nested gamma oscillations
by driving the system with a sinusoidal theta-forcing in proximity of a Hopf bifurcation. These mixed
rhythms always display phase amplitude coupling. However, two different types of nested oscillations
can be identified: one characterized by a perfect phase locking between theta and gamma rhythms, cor-
responding to an overall periodic behavior; another one where the locking is imperfect and the dynamics
is quasi-periodic or even chaotic. From our analysis it emerges that the locked states are more frequent
in the ING set-up. In agreement with the experiments, we find theta-nested gamma oscillations for
forcing frequencies in the range [1:10] Hz, whose amplitudes grow proportionally to the forcing intensity
and which are clearly modulated by the theta phase. Furthermore, analogously to the experiments, the
gamma power and the frequency of the gamma-power peak increase with the forcing amplitude. At
variance with experimental findings, the gamma-power peak does not shift to higher frequencies by
increasing the theta frequency. This effect can be obtained, in our model, only by incrementing, at the
same time, also the stimulation power. An effect achieved by increasing the amplitude either of the noise

https://journals.physiology.org/doi/full/10.1152/jn.00399.2019
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or of the forcing term proportionally to the theta frequency. On the basis of our analysis both the PING
and the ING mechanism give rise to theta-nested gamma oscillations with almost identical features.

This work has been published in Frontiers in Computational Neuroscience and is available as [35].

5.1.3 Exact neural mass model for synaptic-based working memory

Participants Halgurd Taher, Alessandro Torcini (LPTM, Cergy Paris Université,
France), Simona Olmi.

A synaptic theory of Working Memory (WM) has been developed in the last decade as a possible alternative
to the persistent spiking paradigm. In this context, we have developed a neural mass model able to
reproduce exactly the dynamics of heterogeneous spiking neural networks encompassing realistic cellular
mechanisms for short-term synaptic plasticity. This population model reproduces the macroscopic
dynamics of the network in terms of the firing rate and the mean membrane potential. The latter quantity
allows us to gain insight of the Local Field Potential and electroencephalographic signals measured
during WM tasks to characterize the brain activity. More specifically synaptic facilitation and depression
integrate each other to efficiently mimic WM operations via either synaptic reactivation or persistent
activity. Memory access and loading are related to stimulus-locked transient oscillations followed by a
steady-state activity in the β−γ band, thus resembling what is observed in the cortex during vibrotactile
stimuli in humans and object recognition in monkeys. Memory juggling and competition emerge already
by loading only two items. However more items can be stored in WM by considering neural architectures
composed of multiple excitatory populations and a common inhibitory pool. Memory capacity depends
strongly on the presentation rate of the items and it maximizes for an optimal frequency range. In
particular we provide an analytic expression for the maximal memory capacity. Furthermore, the mean
membrane potential turns out to be a suitable proxy to measure the memory load, analogously to event
driven potentials in experiments on humans. Finally we show that the *γ* power increases with the
number of loaded items, as reported in many experiments, while θ and β power reveal non monotonic
behaviours. In particular, β and γ rhythms are crucially sustained by the inhibitory activity, while the θ
rhythm is controlled by excitatory synapses.

This work has been published in PLoS Computational Biology and is available as [36].

5.1.4 Control of synchronization in two-layer power grids

Participants Carl Totz (TU Berlin, Germany), Simona Olmi, Eckehard Schöll (TU
Berlin, Germany).

In this work we suggest modeling the dynamics of power grids in terms of a two-layer network, and we use
the Italian high-voltage power grid as a proof-of-principle example. The first layer in our model represents
the power grid consisting of generators and consumers, while the second layer represents a dynamic
communication network that serves as a controller of the first layer. In particular, the dynamics of the
power grid is modeled by the Kuramoto model with inertia, while the communication layer provides
a control signal P c

i for each generator to improve frequency synchronization within the power grid.
We propose different realizations of the communication layer topology and different ways to calculate
the control signal. Then we conduct a systematic survey of the two-layer system against a multitude
of different realistic perturbation scenarios, such as disconnecting generators, increasing demand of
consumers, or generators with stochastic power output. When using a control topology that allows all
generators to exchange information, we find that a control scheme aimed to minimize the frequency
difference between adjacent nodes operates very efficiently even against the worst scenarios with the
strongest perturbations.

This work has been published in Physical Review E and is available as [37].

5.1.5 Modeling dopaminergic modulation of clustered gamma rhythms

https://www.frontiersin.org/articles/10.3389/fncom.2020.00047/full
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008533
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.102.022311
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Participants Denis Zakharov (Center for Cognition and Decision Making, HSE,
Moscow, Russia), Martin Krupa (UCA, LJAD, Inria MathNeuro),
Boris Gutkin (Laboratoire de Neurosciences Cognitives, ENS, Paris).

Gamma rhythm (20-100Hz) plays a key role in numerous cognitive tasks: working memory, sensory
processing and in routing of information across neural circuits. In comparison with lower frequency
oscillations in the brain, gamma-rhythm associated firing of the individual neurons is sparse and the
activity is locally distributed in the cortex. Such “weak” gamma rhythm results from synchronous
firing of pyramidal neurons in an interplay with the local inhibitory interneurons in a “pyramidal-
interneuron gamma” or PING. Experimental evidence shows that individual pyramidal neurons during
such oscillations tend to fire at rates below gamma, with the population showing clear gamma oscillations
and synchrony. One possible way to describe such features is that this gamma oscillation is generated
within local synchronous neuronal clusters. The number of such synchronous clusters defines the
overall coherence of the rhythm and its spatial structure. The number of clusters in turn depends on the
properties of the synaptic coupling and the intrinsic properties of the constituent neurons. We previously
showed that a slow spike frequency adaptation current in the pyramidal neurons can effectively control
cluster numbers. These slow adaptation currents are modulated by endogenous brain neuromodulators
such as dopamine, whose level is in turn related to cognitive task requirements. Hence we postulate that
dopaminergic modulation can effectively control the clustering of weak gamma and its coherence. In this
paper we study how dopaminergic modulation of the network and cell properties impacts the cluster
formation process in a PING network model.

This work has been published in Communications in Nonlinear Science and Numerical Simulation
and is available as [38].

5.2 Mean field theory and stochastic processes

5.2.1 Coherence resonance in neuronal populations: mean-field versus network model

Participants Emre Baspinar, Leonard Schülen (TU Berlin, Germany), Simona Olmi,
Anna Zakharova (TU Berlin, Germany).

The counter-intuitive phenomenon of coherence resonance describes a non-monotonic behavior of the
regularity of noise-induced oscillations in the excitable regime, leading to an optimal response in terms
of regularity of the excited oscillations for an intermediate noise intensity. We study this phenomenon in
populations of FitzHugh-Nagumo (FHN) neurons with different coupling architectures. For networks of
FHN systems in excitable regime, coherence resonance has been previously analyzed numerically. Here
we focus on an analytical approach studying the mean-field limits of the locally and globally coupled
populations. The mean-field limit refers to the averaged behavior of a complex network as the number of
elements goes to infinity. We derive a mean-field limit approximating the locally coupled FHN network
with low noise intensities. Further, we apply mean-field approach to the globally coupled FHN network.
We compare the results of the mean-field and network frameworks for coherence resonance and find a
good agreement in the globally coupled case, where the correspondence between the two approaches is
sufficiently good to capture the emergence of anticoherence resonance. Finally, we study the effects of the
coupling strength and noise intensity on coherence resonance for both the network and the mean-field
model.

This work has been submitted for publications and is available as [42].

5.2.2 Cross frequency coupling in next generation inhibitory neural mass models

Participants Andrea Ceni (University of Exeter, UK), Simona Olmi, Alessan-
dro Torcini (LPTM, Cergy Paris Université, France), David Angulo-
Garcia (Polytechnic University of Cartagena, Colombia).

https://doi.org/10.1016/j.cnsns.2019.105086
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Coupling among neural rhythms is one of the most important mechanisms at the basis of cognitive
processes in the brain. In this study, we consider a neural mass model, rigorously obtained from the
microscopic dynamics of an inhibitory spiking network with exponential synapses, able to autonomously
generate collective oscillations (COs). These oscillations emerge via a super-critical Hopf bifurcation, and
their frequencies are controlled by the synaptic time scale, the synaptic coupling, and the excitability of the
neural population. Furthermore, we show that two inhibitory populations in a master–slave configuration
with different synaptic time scales can display various collective dynamical regimes: damped oscillations
toward a stable focus, periodic and quasi-periodic oscillations, and chaos. Finally, when bidirectionally
coupled, the two inhibitory populations can exhibit different types of θ−γ cross-frequency couplings
(CFCs): phase-phase and phase-amplitude CFC. The coupling between θ and γ COs is enhanced in the
presence of an external θ forcing, reminiscent of the type of modulation induced in hippocampal and
cortex circuits via optogenetic drive.

This work has been published in Chaos and is available as [25].

5.2.3 Emergent excitability in populations of nonexcitable units

Participants Marzena Ciszak (CNR, Florence, Italy), Francesco Marino (CNR, Flo-
rence, Italy), Alessandro Torcini (LPTM, Cergy Paris Université, France),
Simona Olmi.

Population bursts in a large ensemble of coupled elements result from the interplay between the local
excitable properties of the nodes and the global network topology. Here, collective excitability and self-
sustained bursting oscillations are shown to spontaneously emerge in globally coupled populations of
nonexcitable units subject to adaptive coupling. The ingredients to observe collective excitability are
the coexistence of states with different degrees of synchronization joined to a global feedback acting,
on a slow timescale, against the synchronization (desynchronization) of the oscillators. These regimes
are illustrated for two paradigmatic classes of coupled rotators, namely, the Kuramoto model with and
without inertia. For the bimodal Kuramoto model we analytically show that the macroscopic evolution
originates from the existence of a critical manifold organizing the fast collective dynamics on a slow
timescale. Our results provide evidence that adaptation can induce excitability by maintaining a network
permanently out of equilibrium.

This work has been published in Physical Review E and is available as [27].

5.2.4 Long time behavior of a mean-field model of interacting neurons

Participants Quentin Cormier (Inria Tosca), Étienne Tanré (Inria), Romain Veltz.

We study the long time behavior of the solution to some McKean-Vlasov stochastic differential equation
(SDE) driven by a Poisson process. In neuroscience, this SDE models the asymptotic dynamics of the
membrane potential of a spiking neuron in a large network. We prove that for a small enough interaction
parameter, any solution converges to the unique (in this case) invariant measure. To this aim, we first
obtain global bounds on the jump rate and derive a Volterra type integral equation satisfied by this rate.
We then replace temporary the interaction part of the equation by a deterministic external quantity (we
call it the external current). For constant current, we obtain the convergence to the invariant measure.
Using a perturbation method, we extend this result to more general external currents. Finally, we prove
the result for the non-linear McKean-Vlasov equation.

This work has been published in Stochastic Processes and their Applications and is available as [28].

5.2.5 Hopf bifurcation in a Mean-Field model of spiking neurons

https://aip.scitation.org/doi/10.1063/1.5125216
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.102.050201
https://www.sciencedirect.com/science/article/pii/S0304414918306574?
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Participants Quentin Cormier (Inria), Etienne Tanré (Inria), Romain Veltz.

We study a family of non-linear McKean-Vlasov SDEs driven by a Poisson measure, modelling the mean-
field asymptotic of a network of generalized Integrate-and-Fire neurons. We give sufficient conditions to
have periodic solutions through a Hopf bifurcation. Our spectral conditions involve the location of the
roots of an explicit holomorphic function. The proof relies on two main ingredients. First, we introduce
a discrete time Markov Chain modeling the phases of the successive spikes of a neuron. The invariant
measure of this Markov Chain is related to the shape of the periodic solutions. Secondly, we use the
Lyapunov-Schmidt method to obtain self-consistent oscillations. We illustrate the result with a toy model
for which all the spectral conditions can be analytically checked.

This work has been submitted for publications and is available as [44].

5.2.6 Canard resonance: on noise-induced ordering of trajectories in heterogeneous networks of
slow-fast systems

Participants Otti d’Huys (Maastricht University, Netherlands), Ro-
main Veltz, Axel Dolcemascolo (Université Côte d’Azur, France),
Francesco Marino (CNR, Florence, Italy), Stéphane Barland (InPhyNi,
France).

We analyze the dynamics of a network of semiconductor lasers coupled via their mean intensity through
a nonlinear optoelectronic feedback loop. We establish experimentally the excitable character of a single
node, which stems from the slow-fast nature of the system, adequately described by a set of rate equations
with three well separated time scales. Beyond the excitable regime, the system undergoes relaxation
oscillations where the nodes display canard dynamics. We show numerically that, without noise, the
coupled system follows an intricate canard trajectory, with the nodes switching on one by one. While
incorporating noise leads to a better correspondence between numerical simulations and experimental
data, it also has an unexpected ordering effect on the canard orbit, causing the nodes to switch on closer
together in time. We find that the dispersion of the trajectories of the network nodes in phase space is
minimized for a non-zero noise strength, and call this phenomenon Canard Resonance.

This work has been published in Journal of Physics Photonics and is available as [29].

5.2.7 Effective low-dimensional dynamics of a mean-field coupled network of slow-fast spiking lasers

Participants Axel Dolcemascolo (INPHYNI, Nice), Alexandre Miazek (INPHYNI,
Nice), Romain Veltz, Francesco Marino (CNR, Florence, Italy),
Stéphane Barland (INPHYNI, Nice).

Low dimensional dynamics of large networks is the focus of many theoretical works, but controlled
laboratory experiments are comparatively very few. Here, we discuss experimental observations on a
mean-field coupled network of hundreds of semiconductor lasers, which collectively display effectively
low-dimensional mixed mode oscillations and chaotic spiking typical of slow-fast systems. We demon-
strate that such a reduced dimensionality originates from the slow-fast nature of the system and of the
existence of a critical manifold of the network where most of the dynamics takes place. Experimental
measurement of the bifurcation parameter for different network sizes corroborate the theory.

This work has been published in Physical Review E and is available as [30].

5.2.8 Asymptotic behaviour of a network of neurons with random linear interactions

https://iopscience.iop.org/article/10.1088/2515-7647/abcbe3
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.101.052208
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Participants Olivier Faugeras, Émilie Soret, Étienne Tanré (Inria).

We study the asymptotic behaviour for asymmetric neuronal dynamics in a network of linear Hopfield
neurons. The randomness in the network is modelled by random couplings which are centered i.i.d.
random variables with finite moments of all orders. We prove that if the initial condition of the network is
a set of i.i.d random variables with finite moments of all orders and independent of the synaptic weights,
each component of the limit system is described as the sum of the corresponding coordinate of the initial
condition with a centered Gaussian process whose covariance function can be described in terms of a
modified Bessel function. This process is not Markovian. The convergence is in law almost surely w.r.t.
the random weights. Our method is essentially based on the CLT and the method of moments.

This work has been submitted for publication and is available as [46].

5.2.9 On a toy network of neurons interacting through their dendrites

Participants Nicolas Fournier (LPSM, Sorbonne Université, Paris), Etienne Tanré (In-
ria), Romain Veltz.

Consider a large number n of neurons, each being connected to approximately N other ones, chosen at
random. When a neuron spikes, which occurs randomly at some rate depending on its electric potential,
its potential is set to a minimum value vmin, and this initiates, after a small delay, two fronts on the
(linear) dendrites of all the neurons to which it is connected. Fronts move at constant speed. When two
fronts (on the dendrite of the same neuron) collide, they annihilate. When a front hits the soma of a
neuron, its potential is increased by a small value wn . Between jumps, the potentials of the neurons are
assumed to drift in [vmi n ,∞), according to some well-posed ODE. We prove the existence and uniqueness
of a heuristically derived mean-field limit of the system when n, N →∞ with wn ' N−1/2. We make use
of some recent versions of the results of Deuschel and Zeitouni [58] concerning the size of the longest
increasing subsequence of an i.i.d. collection of points in the plan. We also study, in a very particular
case, a slightly different model where the neurons spike when their potential reach some maximum value
vmax , and find an explicit formula for the (heuristic) mean-field limit. This work has been accepted for
publication in Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques and is available as [31].

5.2.10 Bumps and oscillons in networks of spiking neurons

Participants Helmut Schmidt (Max Planck Institute for Human Cognitive and Brain
Science, Germany), Daniele Avitabile (VU Amsterdam, Inria Math-
Neuro).

We study localized patterns in an exact mean-field description of a spatially-extended network of
quadratic integrate-and-fire (QIF) neurons. We investigate conditions for the existence and stability
of localized solutions, so-called bumps, and give an analytic estimate for the parameter range where
these solutions exist in parameter space, when one or more microscopic network parameters are varied.
We develop Galerkin methods for the model equations, which enable numerical bifurcation analysis of
stationary and time-periodic spatially-extended solutions. We study the emergence of patterns composed
of multiple bumps, which are arranged in a snake-and-ladder bifurcation structure if a homogeneous
or heterogeneous synaptic kernel is suitably chosen. Furthermore, we examine time-periodic, spatially-
localized solutions (oscillons) in the presence of external forcing, and in autonomous, recurrently coupled
excitatory and inhibitory networks. In both cases we observe period doubling cascades leading to chaotic
oscillations.

This work has been published in Chaos and is available as [34].

https://projecteuclid.org/euclid.aihp/1584345629
https://aip.scitation.org/doi/full/10.1063/1.5135579
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5.2.11 Enhancing power grid synchronization and stability through time delayed feedback control
of solitary states

Participants Halgurd Taher, Simona Olmi, Eckehard Schöll (TU Berlin, Germany).

Effective upon acceptance for publication, copyright (including all rights hereunder and the right to
obtain copyright registration in the name of the copyright owner), the above article is hereby transferred
throughout the world and for the full term and all extensions and renewals thereof, to EUROPEAN CON-
TROL ASSOCIATION (EUCA) This transfer includes the right to adapt the article for use in conjunction
with computer systems and programs, including reproduction or publication in machine-readable form
and incorporation in retrieval systems. Some papers accepted for ECC are considered for subsequent
publication in the European Journal of Control (EJC). If the signing author has not been informed in
writing within three months of the closing date of the conference that the paper is being so considered,
he and his co-authors are free to submit the paper elsewhere, provided that full acknowledgement is
given in any subsequent publication to the original ECC Proceedings CD-ROM and to the conference.
Note: All copies, paper or electronic, or other use of the information must include an indication of the
EUCA copyright and a full citation of the ECC Proceedings source.

This work has been published in the proceedings of the 2020 IEEE European Control Conference
(ECC) and is available as [39].

5.2.12 Slow-fast dynamics in the mean-field limit of neural networks

Participants Daniele Avitabile (VU Amsterdam, Inria MathNeuro), Emre Baspinar,
Mathieu Desroches, Olivier Faugeras.

In the context of the Human Brain Project (HBP, see section 5.1.1.1. below), we have recruited Emre
Baspinar in December 2018 for a two-year postdoc. Within MathNeuro, Emre is working on analysing
slow-fast dynamical behaviours in the mean-field limit of neural networks.
In a first project, he has been analysing the slow-fast structure in the mean-field limit of a network of
FitzHugh-Nagumo neuron models; the mean-field was previously established in [3] but its slow-fast
aspect had not been analysed. In particular, he has proved a persistence result of Fenichel type for slow
manifolds in this mean-field limit, thus extending previous work by Berglund et al. [50, 51]. A manuscript
is in preparation.
In a second project, he has been looking at a network of Wilson-Cowan systems whose mean-field limit is
an ODE, and he has studied elliptic bursting dynamics in both the network and the limit: its slow-fast
dissection, its singular limits and the role of canards. In passing, he has obtained a new characterisation
of ellipting bursting via the construction of periodic limit sets using both the slow and the fast singular
limits and unravelled a new singular-limit scenario giving rise to elliptic bursting via a new type of torus
canard orbits. A manuscript has been submitted for publication [41] (see below).

5.3 Neural fields theory

5.3.1 The hyperbolic model for edge and texture detection in the primary visual cortex

Participants Pascal Chossat.

The modelling of neural fields in the visual cortex involves geometrical structures which describe in
mathematical formalism the functional architecture of this cortical area. The case of contour detection
and orientation tuning has been extensively studied and has become a paradigm for the mathematical
analysis of image processing by the brain. Ten years ago an attempt was made to extend these models
by replacing orientation (an angle) with a second-order tensor built from the gradient of the image

https://ieeexplore.ieee.org/document/9143594
https://ieeexplore.ieee.org/document/9143594
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intensity and named the structure tensor. This assumption does not follow from biological observations
(experimental evidence is still lacking) but from the idea that the effectiveness of texture processing with
the stucture tensor in computer vision may well be exploited by the brain itself. The drawback is that
in this case the geometry is not Euclidean but hyperbolic instead, which complicates substantially the
analysis. The purpose of this review is to present the methodology that was developed in a series of
papers to investigate this quite unusual problem, specifically from the point of view of tuning and pattern
formation. These methods, which rely on bifurcation theory with symmetry in the hyperbolic context,
might be of interest for the modelling of other features such as color vision, or other brain functions.

This work has been published in Journal of Mathematical Neuroscience and is available as [26].

5.4 Slow-fast dynamics in Neuroscience

5.4.1 Inflection, Canards and Folded Singularities in Excitable Systems: Application to a 3D FitzHugh–Nagumo
Model

Participants Jone Uria Albizuri (BCAM, Bilbao, Spain), Mathieu Desroches, Mar-
tin Krupa (LJAD and Inria MathNeuro), Serafim Rodrigues (Ikerbasque
and BCAM, Bilbao, Spain).

Specific kinds of physical and biological systems exhibit complex Mixed-Mode Oscillations mediated
by folded-singularity canards in the context of slow-fast models. The present manuscript revisits these
systems, specifically by analysing the dynamics near a folded singularity from the viewpoint of inflection
sets of the flow. Originally, the inflection set method was developed for planar systems [Brøns and Bar-Eli
in Proc R Soc A 445(1924):305–322, 1994; Okuda in Prog Theor Phys 68(6):1827–1840, 1982; Peng et al. in
Philos Trans R Soc A 337(1646):275–289, 1991] and then extended to N -dimensional systems [Ginoux et
al. in Int J Bifurc Chaos 18(11):3409–3430, 2008], although not tailored to specific dynamics (e.g. folded
singularities). In our previous study, we identified components of the inflection sets that classify several
canard-type behaviours in 2D systems [Desroches et al. in J Math Biol 67(4):989–1017, 2013]. Herein,
we first survey the planar approach and show how to adapt it for 3D systems with an isolated folded
singularity by considering a suitable reduction of such 3D systems to planar non-autonomous slow-fast
systems. This leads us to the computation of parametrized families of inflection sets of one component of
that planar (non-autonomous) system, in the vicinity of a folded node or of a folded saddle. We then show
that a novel component of the inflection set emerges, which approximates and follows the axis of rotation
of canards associated to folded-node and folded-saddle singularities. Finally, we show that a similar
inflection-set component occurs in the vicinity of a delayed Hopf bifurcation, a scenario that can arise
at the transition between folded node and folded saddle. These results are obtained in the context of a
canonical model for folded-singularity canards and subsequently we show it is also applicable to complex
slow-fast models. Specifically, we focus the application towards the self-coupled 3D FitzHugh–Nagumo
model, but the method is generically applicable to higher-dimensional models with isolated folded
singularities, for instance in conductance-based models and other physical-chemical systems.

This work has been published in Journal of Nonlinear Science and is available as [20].

5.4.2 Local theory for spatio-temporal canards and delayed bifurcations

Participants Daniele Avitabile (VU Amsterdam, Inria MathNeuro), Math-
ieu Desroches, Romain Veltz, Martin Wechselberger (University of
Sydney, Australia).

We present a rigorous framework for the local analysis of canards and slow passages through bifurcations
in a wide class of infinite-dimensional dynamical systems with time-scale separation. The framework is
applicable to models where an infinite-dimensional dynamical system for the fast variables is coupled to
a finite-dimensional dynamical system for slow variables. We prove the existence of centre-manifolds
for generic models of this type, and study the reduced, finite-dimensional dynamics near bifurcations

https://mathematical-neuroscience.springeropen.com/articles/10.1186/s13408-020-0079-y
https://link.springer.com/article/10.1007%2Fs00332-020-09650-9
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of (possibly) patterned steady states in the layer problem. Theoretical results are complemented with
detailed examples and numerical simulations covering systems of local- and nonlocal-reaction diffusion
equations, neural field models, and delay-differential equations. We provide analytical foundations
for numerical observations recently reported in literature, such as spatio-temporal canards and slow-
passages through Hopf bifurcations in spatially-extended systems subject to slow parameter variations.
We also provide a theoretical analysis of slow passage through a Turing bifurcation in local and nonlocal
models.

This work has been published in SIAM Journal on Mathematical Analysis and is available as [21].

5.4.3 Pseudo-plateau bursting and mixed-mode oscillations in a model of developing inner hair
cells

Participants Harun Baldemir, Daniele Avitabile (VU Amsterdam, Inria MathNeuro),
Krasimira Tsaneva-Atanasova (University of Exeter, UK).

Inner hair cells (IHCs) are excitable sensory cells in the inner ear that encode acoustic information.
Before the onset of hearing IHCs fire calcium-based action potentials that trigger transmitter release
onto developing spiral ganglion neurones. There is accumulating experimental evidence that these
spontaneous firing patterns are associated with maturation of the IHC synapses and hence involved
in the development of hearing. The dynamics organising the IHCs’ electrical activity are therefore of
interest.
Building on our previous modelling work we propose a three-dimensional, reduced IHC model and carry
out non-dimensionalisation. We show that there is a significant range of parameter values for which
the dynamics of the reduced (three-dimensional) model map well onto the dynamics observed in the
original biophysical (four-dimensional) IHC model. By estimating the typical time scales of the variables
in the reduced IHC model we demonstrate that this model could be characterised by two fast and one
slow or one fast and two slow variables depending on biophysically relevant parameters that control
the dynamics. Specifically, we investigate how changes in the conductance of the voltage-gated calcium
channels as well as the parameter corresponding to the fraction of free cytosolic calcium concentration
in the model affect the oscillatory model bahaviour leading to transition from pseudo-plateau bursting to
mixed-mode oscillations. Hence, using fast-slow analysis we are able to further our understanding of this
model and reveal a path in the parameter space connecting pseudo-plateau bursting and mixed-mode
oscillations by varying a single parameter in the model.

This work has been published in Communications in Nonlinear Science and Numerical Simulation
and is available as [22].

5.4.4 Canonical models for torus canards in elliptic burster

Participants Emre Baspinar, Daniele Avitabile (VU Amsterdam, Inria MathNeuro),
Mathieu Desroches.

We revisit elliptic bursting dynamics from the viewpoint of torus canard solutions. We show that at the
transition to and from elliptic burstings, classical or mixed-type torus canards can appear, the difference
between the two being the fast subsystem bifurcation that they approach, saddle-node of cycles for
the former and subcritical Hopf for the latter. We first showcase such dynamics in a Wilson-Cowan
type elliptic bursting model, then we consider minimal models for elliptic bursters in view of finding
transitions to and from bursting solutions via both kinds of torus canards. We first consider the canonical
model proposed by Izhikevich (ref. [22] in the manuscript) and adapted to elliptic bursting by Ju, Neiman,
Shilnikov (ref. [24] in the manuscript), and we show that it does not produce mixed-type torus canards
due to a nongeneric transition at one end of the bursting regime. We therefore introduce a perturbative
term in the slow equation, which extends this canonical form to a new one that we call Leidenator and
which supports the right transitions to and from elliptic bursting via classical and mixed-type torus
canards, respectively. Throughout the study, we use singular flows (ε = 0) to predict the full system’s

https://epubs.siam.org/doi/10.1137/19M1306610
https://doi.org/10.1016/j.cnsns.2019.104979
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dynamics (ε > 0 small enough). We consider three singular flows: slow, fast and average slow, so as
to appropriately construct singular orbits corresponding to all relevant dynamics pertaining to elliptic
bursting and torus canards.

This work has been submitted for publication and is available as [41].

5.4.5 Canard-induced complex oscillations in an excitatory network

Participants Elif Köksal Ersöz, Mathieu Desroches, Antoni Guillamon (Polytechnic
University of Catalunya, Spain), John Rinzel (Center for Neural Science
and Courant Institute of Mathematical Sciences, New York University,
USA), Joel Tabak (University of Exeter, UK).

In this work we have revisited a rate model that accounts for the spontaneous activity in the developing
spinal cord of the chicken embryo [69]. The dynamics is that of a classical square-wave burster, with
alternation of silent and active phases. Tabak et al. [69] have proposed two different three-dimensional
(3D) models with variables representing average population activity, fast activity-dependent synaptic
depression and slow activity-dependent depression of two forms. In [70, 68, 71] various 3D combinations
of these four variables have been studied further to reproduce rough experimental observations of
spontaneous rhythmic activity. In this work, we have first shown the spike-adding mechanism via canards
in one of these 3D models from [69] where the fourth variable was treated as a control parameter. Then
we discussed how a canard-mediated slow passage in the 4D model explains the sub-threshold oscillatory
behavior which cannot be reproduced by any of the 3D models, giving rise to mixed-mode bursting
oscillations (MMBOs); see [12]. Finally, we related the canard-mediated slow passage to the intervals of
burst and silent phase which have been linked to the blockade of glutamatergic or GABAergic/glycinergic
synapses over a wide range of developmental stages [71].

This work has been published in Journal of Mathematical Biology and is available as [33].

5.5 Mathematical modeling of neuronal excitability

5.5.1 GABAergic neurons and Na V 1.1 channel hyperactivity: a novel neocortex-specific mecha-
nism of Cortical Spreading Depression

Participants Oana Chever (IPMC, Sophia Antipolis et Université Côte d’Azur,
France), Sarah Zerimeh (IPMC, Sophia Antipolis et Université Côte
d’Azur, France), Paolo Scalmani (Foundation IRCCS Neurological
Institute Carlo Besta, Milan, Italy), Louisiane Lemaire, Alexan-
dre Loucif (IPMC, Sophia Antipolis et Université Côte d’Azur, France),
Marion Ayrault (IPMC, Sophia Antipolis et Université Côte d’Azur,
France), Martin Krupa (LJAD, Inria MathNeuro), Mathieu Desroches,
Fabrice Duprat (IPMC, Sophia Antipolis et Université Côte d’Azur,
France), Sandrine Cestèle (IPMC, Sophia Antipolis et Université Côte
d’Azur, France), Massimo Mantegazza (IPMC, Sophia Antipolis, Uni-
versité Côte d’Azur et INSERM, France).

Cortical spreading depression (CSD) is a pathologic mechanism of migraine. We have identified a novel
neocortex-specific mechanism of CSD initiation and a novel pathological role of GABAergic neurons.
Mutations of the N aV1.1 sodium channel (the SCN1A gene), which is particularly important for GABAergic
neurons’ excitability, cause Familial Hemiplegic Migraine type-3 (FHM3), a subtype of migraine with
aura. They induce gain-of-function of N aV1.1 and hyperexcitability of GABAergic interneurons in culture.
However, the mechanism linking these dysfunctions to CSD and FHM3 has not been elucidated. Here, we
show that N aV1.1 gain-of-function, induced by the specific activator Hm1a, or mimicked by optogenetic-
induced hyperactivity of cortical GABAergic neurons, is sufficient to ignite CSD by spiking-generated
extracellular K + build-up. This mechanism is neocortex specific because, with these approaches, CSD

https://link.springer.com/article/10.1007/s00285-020-01490-1
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was not generated in other brain areas. GABAergic and glutamatergic synaptic transmission is not
required for optogenetic CSD initiation, but glutamatergic transmission is implicated in CSD propagation.
Thus, our results reveal the key role of hyper-activation of N aV1.1 and GABAergic neurons in a novel
mechanism of CSD initiation, which is relevant for FHM3 and possibly also for other types of migraine.

This work has been submitted for publication and is available as [43].
The extension of this work is the topic of the PhD of Louisiane Lemaire, who started in October 2018.

A first part of Louisiane’s PhD has been to improve and extend the model published in [10] in a number
of ways: replace the GABAergic neuron model used in [10], namely the Wang-Buszáki model, by a more
recent fast-spiking cortical interneuron model due to Golomb and collaborators; implement the effect of
the HM1a toxin used by M. Mantegazza to mimic the genetic mutation of sodium channels responsible for
the hyperactivity of the GABAergic neurons; take into account ionic concentration dynamics (relaxing the
hypothesis of constant reversal potentials) for the GABAergic as well whereas in [10] this was done only
for the Pyramidal neuron. Furthermore, another mutation of this sodium channel leads to hyperactivity
of the pyramidal neurons in a way that is akin to epileptiform activity. The model by Louisiane Lemaire
has been extended in order to account for this pathological scenario as well. This required a great deal of
modelling and calibration and the simulation results are closer to the actual experiments by Mantegazza
than in our previous study. A manuscript is about to be submitted.

5.6 Mathematical modeling of memory processes

5.6.1 Neuronal mechanisms for sequential activation of memory items: Dynamics and reliability

Participants Elif Köksal Ersöz (INSERM, Rennes), Carlos Aguilar Melchor (Amaris Re-
search Unit, Biot, France), Pascal Chossat (CNRS and Inria MathNeuro),
Martin Krupa (LJAD and Inria MathNeuro), Frédéric Lavigne (BCL,
Université Côte d’Azur).

In this article we present a biologically inspired model of activation of memory items in a sequence.
Our model produces two types of sequences, corresponding to two different types of cerebral functions:
activation of regular or irregular sequences. The switch between the two types of activation occurs
through the modulation of biological parameters, without altering the connectivity matrix. Some of the
parameters included in our model are neuronal gain, strength of inhibition, synaptic depression and
noise. We investigate how these parameters enable the existence of sequences and influence the type of
sequences observed. In particular we show that synaptic depression and noise drive the transitions from
one memory item to the next and neuronal gain controls the switching between regular and irregular
(random) activation.

This work has been published in PLoS one and is available as [32].

5.7 Modelling the visual system

5.7.1 A sub-Riemannian model of the visual cortex with frequency and phase

Participants Emre Baspinar, Alessandro Sarti (CAMS, EHESS, Paris, France), Gio-
vanna Citti (University of Bologna, Italy).

In this paper we present a novel model of the primary visual cortex (V1) based on orientation, frequency
and phase selective behavior of the V1 simple cells. We start from the first level mechanisms of visual
perception: receptive profiles. The model interprets V1 as a fiber bundle over the 2-dimensional retinal
plane by introducing orientation, frequency and phase as intrinsic variables. Each receptive profile on the
fiber is mathematically interpreted as a rotated, frequency modulated and phase shifted Gabor function.
We start from the Gabor function and show that it induces in a natural way the model geometry and the
associated horizontal connectivity modeling the neural connectivity patterns in V1. We provide an image
enhancement algorithm employing the model framework. The algorithm is capable of exploiting not

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231165
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only orientation but also frequency and phase information existing intrinsically in a 2-dimensional input
image. We provide the experimental results corresponding to the enhancement algorithm.

This work has been published in The Journal of Mathematical Neuroscience and is available as [23].

6 Partnerships and cooperations

6.1 International initiatives

6.1.1 Inria associate team not involved in an IIL

NeuroTransSF

Title: NeuroTransmitter cycle: A Slow-Fast modeling approach

Duration: 2019 - 2022

Coordinator: Mathieu Desroches

Partners:

• Mathematical, Computational and Experimental Neuroscience (MCEN) research group,
Basque Center for Applied Mathematics (BCAM) (Spain)

Inria contact: Mathieu Desroches

Summary: This associated team project proposes to deepen the links between two young research
groups, on strong Neuroscience thematics. This project aims to start from a joint work in which we
could successfully model synaptic transmission delays for both excitatory and inhibitory synapses,
matching experimental data, and to supplant it in two distinct directions. On the one hand, by
modeling the endocytosis so as to obtain a complete mathematical formulation of the presynaptic
neurotransmitter cycle, which will then be integrated within diverse neuron models (in particular
interneurons) hence allowing a refined analysis of their excitability and short-term plasticity
properties. On the other hand, by modeling the postsynaptic neurotransmitter cycle in link with
long-term plasticity and memory. We will incorporate these new models of synapse in different
types of neuronal networks and we will then study their excitability, plasticity and synchronisation
properties in comparison with classical models. This project will benefit from strong experimental
collaborations (UCL, Alicante) and it is coupled to the study of brain pathologies linked with
synaptic dysfunctions, in particular certain early signs of Alzheimer’s Disease. Our initiative also
contains a training aspect with two PhD student involved as well as a series of mini-courses which
we will propose to the partner institute on this research topic; we will also organise a "wrap-up"
workshop in Sophia at the end of it. Finally, the project is embedded within a strategic tightening
of our links with Spain with the objective of pushing towards the creation of a Southern-Europe
network for Mathematical, Computational and Experimental Neuroscience, which will serve as a
stepping stone in order to extend our influence beyond Europe. The webpage of the associated
team is here. It contains the latest developments and new collaborations that have emerged from
this project.

6.2 International research visitors

6.2.1 Visits of international scientists

As part of the NeuroTransSF associated team, Prof. Serafim Rodrigues (BCAM) has visited the MathNeuro
team in February 2020 and in October 2020, for two weeks each time.

https://link.springer.com/article/10.1186/s13408-020-00089-6
https://team.inria.fr/neurotranssf/
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6.2.2 Visits to international teams

• Mathieu Desroches and Emre Baspinar have visited VU Amsterdam (Netherlands) to work with
external collaborator Dr. Daniele Avitabile on their joint projects related to multiple-timescale
dynamics of neuronal networks and their mean-field limits (see Results), in the context of the
Human Brain Project SGA2 initiative. Two visits were organised, in February 2020 and in October
2020.

• Mathieu Desroches visited Prof. Serafim Rodrigues in the context of the NeuroTransSF associated
team in July, August and September 2020. Two visits were funded by the associated team, the last
one was funded by BCAM.

6.3 European initiatives

6.3.1 FP7 & H2020 Projects

HBP SGA2

Title: Human Brain Project Specific Grant Agreement 3

Duration: 3 years (March 2020 - March 2023)

Coordinator: EPFL

Partners: See the webpage of the project. Olivier Faugeras is leading the task T4.1.3 entitled “Meanfield
and population models” of the Worpackage W4.1 “Bridging Scales”.

Inria contact: Romain Veltz

Summary: Understanding the human brain is one of the greatest challenges facing 21st century science.
If we can rise to the challenge, we can gain profound insights into what makes us human, develop
new treatments for brain diseases and build revolutionary new computing technologies. Today, for
the first time, modern ICT has brought these goals within sight. The goal of the Human Brain Project,
part of the FET Flagship Programme, is to translate this vision into reality, using ICT as a catalyst
for a global collaborative effort to understand the human brain and its diseases and ultimately
to emulate its computational capabilities. The Human Brain Project will last ten years and will
consist of a ramp-up phase (from month 1 to month 36) and subsequent operational phases. This
Grant Agreement covers the ramp-up phase. During this phase the strategic goals of the project
will be to design, develop and deploy the first versions of six ICT platforms dedicated to Neuroin-
formatics, Brain Simulation, High Performance Computing, Medical Informatics, Neuromorphic
Computing and Neurorobotics, and create a user community of research groups from within and
outside the HBP, set up a European Institute for Theoretical Neuroscience, complete a set of pilot
projects providing a first demonstration of the scientific value of the platforms and the Institute,
develop the scientific and technological capabilities required by future versions of the platforms,
implement a policy of Responsible Innovation, and a programme of transdisciplinary education,
and develop a framework for collaboration that links the partners under strong scientific leadership
and professional project management, providing a coherent European approach and ensuring
effective alignment of regional, national and European research and programmes. The project work
plan is organized in the form of thirteen subprojects, each dedicated to a specific area of activity. A
significant part of the budget will be used for competitive calls to complement the collective skills
of the Consortium with additional expertise.

6.4 National initiatives

• ANR ChaMaNe, "Enjeux mathématiques issus des neurosciences", duration: 4 years, Coordinator
Name : Delphine Salort (Sorbonne Université). Webpages: webpage on the ANR website, Project
webpage.

Partners’ list:

https://www.humanbrainproject.eu/en/
https://anr.fr/Project-ANR-19-CE40-0024
http://www.lcqb.upmc.fr/salort/
http://www.lcqb.upmc.fr/salort/
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- Partner 1 (CQB Biologie Computationnelle et Quantitative, Sorbonne Université, France);

- Partner 2 (LJAD, Université Côte d’Azur, France)

7 Dissemination

7.1 Promoting scientific activities

7.1.1 Scientific events: organisation

General chair, scientific chair

• Fabien Campillo is a founding member of the African scholarly Society on Digital Sciences (ASDS).

Member of the organizing committees

• Mathieu Desroches was a member of the organizing committee of the online international confer-
ence “Dynamics Days Digital 2020”, which took place on 24-27 August 2020 and gathered online
about 600 participants.

• Mathieu Desroches is member of the organizing committee of the international conference “Dy-
namics Days Europe” 2021, to be held in Nice on 23-27 August 2021 [postponed from 2020 due to
the covid-19 pandemic].

• Mathieu Desroches is member of the organzing committee of the “Bilbao Neuroscience and
Computational Biology Workshop”, to be held in Bilbao on 1-4 June 2021 [postponed from 2020
due to the covid-19 pandemic].

• Louisiane Lemaire is a member of the organizing committee of the PhD Seminar of the Inria Sophia
Antipolis Méditerranée Research Centre.

• Halgurd Taher is a member of the organizing committee of the PhD Seminar of the Inria Sophia
Antipolis Méditerranée Research Centre.

• Romain Veltz is member of the advisory board of ICMNS (International conference on Mathematical
Neuroscience)

7.1.2 Journal

Member of the editorial boards

• Mathieu Desroches is Review Editor of the journal Frontiers in Physiology (Impact Factor 3.4).

• Mathieu Desroches was Guest Editor of the journal Communications in Nonlinear Science and
Numerical Simulation (Impact Factor 4.1) for a special issue on "Excitable dynamics in neural and
cardiac systems", published in July 2020.

• Olivier Faugeras has created a new open access journal, Mathematical Neuroscience and Applica-
tions, under the diamond model (no charges for authors and readers) supported by Episciences.

• Romain Veltz is member of the Editorial Board of the journal Mathematical Neurosciences and
Applications.

Reviewer - reviewing activities

• Fabien Campillo acts as a reviewer for Journal of Mathematical Biology.

• Mathieu Desroches acts as a reviewer for SIAM Journal on Applied Dynamical Systems (SIADS), Jour-
nal of Mathematical Biology, PLoS Computational Biology, Journal of Nonlinear Science, Nonlinear
Dynamics, Physica D, Journal of Mathematical Neuroscience.

https://www.danieleavitabile.com/ddd2020/
https://wp.bcamath.org/bioncb20/
https://wp.bcamath.org/bioncb20/
https://phd-seminars-sam.inria.fr/organisers-2/
https://phd-seminars-sam.inria.fr/organisers-2/
https://phd-seminars-sam.inria.fr/organisers-2/
https://phd-seminars-sam.inria.fr/organisers-2/
https://www.frontiersin.org/journals/physiology
https://www.sciencedirect.com/journal/communications-in-nonlinear-science-and-numerical-simulation/vol/86/suppl/C
https://www.sciencedirect.com/journal/communications-in-nonlinear-science-and-numerical-simulation/vol/86/suppl/C
https://mna.episciences.org/
https://mna.episciences.org/
https://www.episciences.org/
https://mna.episciences.org
https://mna.episciences.org
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• Martin Krupa acts as a reviewer for Proceedings of the National Academy of Sciences of the USA
(PNAS) and SIADS.

• Romain Veltz acts as a reviewer for Neural Computation, eLife, SIADS, PNAS, Journal of the Royal
Society Interface, Plos Computational Biology, Journal of Mathematical Neurosciences, Acta Appli-
candae Mathematicae.

7.1.3 Invited talks

• Emre Baspinar gave a talk entitled “Elliptic bursting and torus canards: singular limits, single-cell
models, network and mean-field models” at the online conference Dynamical Days Digital 2020, 24
August 2020.

• Mathieu Desroches gave a talk entitled “Slow-fast analysis of neural bursters: old and new” at the
Modelife Workshop: Non-linear dynamics in neuroscience, Université Côte d’Azur (Nice), 4 March
2020.

• Mathieu Desroches gave a webinar talk entitled “Slow-fast analysis of neural bursters” at the Centre
for Applied Mathematics in Bioscience and Medicine (CAMBAM), McGill University, 22 May 2020.

• Louisiane Lemaire gave a talk entitled “Mathematical modeling of the mutations of a sodium
channel causing either migraine or epilepsy” at the online conference Dynamical Days Digital 2020,
25 August 2020.

• Yuri Rodrigues gave a talk entitled “Protein dynamics in synaptic plasticity prediction” at the online
conference Dynamical Days Digital 2020, 25 August 2020.

• Halgurd Taher gave a talk entitled “Multi-timescale analysis of a neural mass model with short-term
synaptic plasticity” at the online conference Dynamical Days Digital 2020, 25 August 2020.

• Halgurd Taher presented a poster entitled “Exact neural mass model for synaptic-based working
memory” at the online Bernstein Conference 2020, 1 October 2020.

• Halgurd Taher gave a talk entitled “Exact neural mass model for synaptic-based working memory”
at the online satellite workshop “Exact mean field formulation of complex (neural) networks” of
the Complex Systems Society 2020 Conference, 9 December 2020.

• Halgurd Taher gave a talk entitled “The magical number 5” at the PhD seminar of the Inria Sophia
Antipolis Méditerranée Research Center, 14 December 2020.

• Romain Veltz gave a talk entitled “Analysis of a neural field model for color perception unify-
ing assimilation and contrast” at the Modelife Workshop: Non-linear dynamics in neuroscience,
Université Côte d’Azur (Nice), 4 March 2020.

• Romain Veltz gave a talk at The Canadian Mathematical Society Winter Meeting in December 2020,
"Mean field study of stochastic spiking neural networks"

• Romain Veltz gave a talk at Colloqium MAP5 Université Paris Descartes in January 2021, "Some
recent results on models of networks of spiking neurons"

7.1.4 Scientific expertise

• Fabien Campillo was member of the local committee in charge of the scientific selection of visiting
scientists (Comité NICE).

• Mathieu Desroches was on the Advisory Board of the Complex Systems Academy of the UCA JEDI
Idex.

https://www.danieleavitabile.com/ddd2020/
https://math.unice.fr/~guerrier/Workshop/modelife-workshop-non-lin-neurosci
https://www.danieleavitabile.com/ddd2020/
https://www.danieleavitabile.com/ddd2020/
https://www.danieleavitabile.com/ddd2020/
https://abstracts.g-node.org/conference/BC20/abstracts#/groups/P
http://ccs2020.web.auth.gr/
https://phd-seminars-sam.inria.fr/events/phd-seminars-iii-3/?mc_id=104
https://phd-seminars-sam.inria.fr/events/phd-seminars-iii-3/?mc_id=104
https://math.unice.fr/~guerrier/Workshop/modelife-workshop-non-lin-neurosci
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7.2 Teaching - Supervision - Juries

7.2.1 Teaching

• Master: Emre Baspinar, Dynamical Systems in the context of neuron models, (Lectures, example
classes and computer labs), 3 hours (Dec. 2020), M1 (Mod4NeuCog), Université Côte d’Azur, Sophia
Antipolis, France.

• Master: Mathieu Desroches, Modèles Mathématiques et Computationnels en Neuroscience (Lec-
tures, example classes and computer labs), 12 hours, M1 (BIM), Sorbonne Université, Paris, France.

• Master: Mathieu Desroches, Dynamical Systems in the context of neuron models, (Lectures,
example classes and computer labs), 8 hours (Jan. 2020) and 10 hours (Nov.-Dec. 2020), M1
(Mod4NeuCog), Université Côte d’Azur, Sophia Antipolis, France.

• Master: Romain Veltz, Mathematical Methods for Neurosciences, 20 hours, M2 (MVA), Sorbonne
Université, Paris, France.

• Spring School: Romain Veltz gave a lecture on “Meanfield models of stochastic spiking neural
networks” at the EITN spring school, Paris, 2020, invited by Alain Destexhe.

7.2.2 Supervision

• PhD in progress : Louisiane Lemaire, “Multi-scale mathematical modeling of cortical spreading
depression”, started in October 2018, co-supervised by Mathieu Desroches and Martin Krupa.

• PhD in progress: Yuri Rodrigues, “Towards a model of post synaptic excitatory synapse”, started in
March 2018, co-supervised by Romain Veltz and Hélène Marie (IPMC, Sophia Antipolis).

• PhD in progress: Halgurd Taher, “Next generation neural-mass models”, started in November 2018,
co-supervised by Mathieu Desroches and Simona Olmi.

• PhD in progress: Guillaume Girier, “Mathematical, computational and experimental study of neural
excitability”, started in October 2020, based in BCAM - Basque Center for Applied Mathematics
(Bilbao, Spain), co-supervised by Serafim Rodrigues (BCAM) and Mathieu Desroches. Co-tutelle
agreement between the University of the Basque Country (UPV-EHU) and the Université Côte
d’Azur (UCA) in progress.

• PhD defended on 15 January 2021: Quentin Cormier, “Biological spiking neural networks”, started
in September 2017, co-supervised by Romain Veltz and Etienne Tanré (Inria).

• PhD in progress: Pascal Helson, “Study of plasticity laws with stochastic processes”, started in
September 2016, co-supervised by Romain Veltz and Etienne Tanré (Inria).

• PhD in progress: Samuel Nyobe, “Inférence dans les modèles de Markov cachés : Application en
foresterie”, started in October 2017, co-supervised by Fabien Campillo, Serge Moto (University of
Yaoundé, Camerun) and Vivien Rossi (CIRAD).

• Master 2 internship: Guillaume Girier, Master 2 student from the BIM-BMC Master of Sorbonne
Université (Paris), March-June 2020, on “Integrator and resonator neurons: a new approach”,
supervised by Mathieu Desroches and Boris Gutkin (ENS Paris).

• Master 1 internship: Mostafa Oukati Sadegh, Master 1 student of the MSc Mod4NeuCog (UCA)
on “Bringing statistical inference to mechanistic models of neural circuits”, supervised by Romain
Veltz.

7.2.3 Juries

• Romain Veltz was member of the Jury (as co-supervisor with E. Tanré) of the PhD of Quentin
Cormier (Inria Sophia Antipolis) entitled "Long time behavior of a mean-field model of interacting
spiking neurons", Inria Sophia Antipolis, 15 January 2021.

http://www.lcqb.upmc.fr/BIM/M1.html
https://www-sop.inria.fr/members/Mathieu.Desroches/teaching/Mod4NeuCogJeanPierre/
http://romainveltz.pythonanywhere.com/teaching/
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