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2 Overall objectives

2.1 General Objectives

The team aims at understanding the dynamics of neural systems at multiple scales and designs methods to
invent monitoring devices. The approach is inspired by systems neuroscience, which relates microscopic
modifications in neural systems to macroscopic changes in behavior. The team employs this system
neuroscience approach and develops models and data analysis tools in order to bridge the gap between
microscopic and mesoscopic, and mesoscopic and macroscopic/behavior activity. These bridges are
necessary to better understand neural systems under healthy and pathological conditions and, in turn,
discover new therapeutic targets and control the neural systems. They also may allow to develop data
monitors utilizing the derived principles. As a long-term goal, the team shall develop such devices in
medicine with application in general anesthesia and neuronal pathological conditions.

3 Research program

3.1 Main Objectives

The main challenge in computational neuroscience is the high complexity of neural systems. The brain
is a complex system and exhibits a hierarchy of interacting subunits. On a specific hierarchical level,
such subunits evolve on a certain temporal and spatial scale. The interactions of small units on a low
hierarchical level build up larger units on a higher hierarchical level evolving on a slower time scale
and larger spatial scale. By virtue of the different dynamics on each hierarchical level, until today the
corresponding mathematical models and data analysis techniques on each level are still distinct. Only
few analysis and modeling frameworks are known which link successfully at least two hierarchical levels.
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After extracting models for different description levels, they are typically applied to obtain simulated
activity which is supposed to reconstruct features in experimental data. Although this approach appears
straightforward, it presents various difficulties. Usually the models involve a large set of unknown param-
eters which determine the dynamical properties of the models. To optimally reconstruct experimental
features, it is necessary to formulate an inverse problem to extract optimally such model parameters
from the experimental data. Typically this is a rather difficult problem due to the low signal-to-noise
ratio in experimental brain signals. Moreover, the identification of signal features to be reconstructed by
the model is not obvious in most applications. Consequently an extended analysis of the experimental
data is necessary to identify the interesting data features. It is important to combine such a data analysis
step with the parameter extraction procedure to achieve optimal results. Such a procedure depends on
the properties of the experimental data and hence has to be developed for each application separately.
Machine learning approaches that attempt to mimic the brain and its cognitive processes have had a lot
of success in classification problems during the last decade. These hierarchical and iterative approaches
use non-linear functions, which imitate neural cell responses, to communicate messages between neigh-
boring layers. In our team, we work towards developing polysomnography-specific classifiers that might
help in linking the features of particular interest for building systems for sleep signal classification with
sleep mechanisms, with the accent on memory consolidation during the Rapid Eye Movement (REM)
sleep phase.

3.2 Challenges

Techniques for the implementation and analysis of models achieved promises to be able to construct
novel data monitors. This construction involves additional challenges and requires contact with realistic
environments. By virtue of the specific applications of the research, close contact to hospitals and
medical companies shall be established over a longer term in order to (i) gain deeper insight into the
specific application of the devices, (ii) build specific devices in accordance with the actual need, (iii)
develop/compare biologically realistic models from/to data recorded in vivo. Collaborations with local
and national hospitals and the pharmaceutical industry already exist.

3.3 Research Directions

• From the microscopic to the mesoscopic scale:
One research direction focuses on the relation of single-neuron activity on the microscopic scale to
the activity of neuronal populations. To this end, the team investigates the stochastic dynamics
of single neurons subject to external random inputs and involving random microscopic prop-
erties, such as random synaptic strengths and probability distributions of spatial locations of
membrane ion channels. Such an approach yields a stochastic model of single neurons and allows
the derivation of a stochastic neural population model.

This bridge between the microscopic and mesoscopic scale may be performed via two pathways.
The analytical and numerical treatment of the microscopic model may be called a bottom-up
approach, since it leads to a population activity model based on microscopic activity. This ap-
proach allows theoretical neural population activity to be compared to experimentally obtained
population activity. The top-down approach aims at extracting signal features from experimental
data gained from neural populations which give insight into the dynamics of neural populations
and the underlying microscopic activity. The work on both approaches represents a well-balanced
investigation of the neural system based on the systems properties.

• From the mesoscopic to the macroscopic scale:
The other research direction aims to link neural population dynamics to macroscopic activity and
behavior or, more generally, to phenomenological features. This link is more indirect but a very
powerful approach to understand the brain, e.g., in the context of medical applications. Since real
neural systems, such as in mammals, exhibit an interconnected network of neural populations,
the team studies analytically and numerically the network dynamics of neural populations to gain
deeper insight into possible phenomena, such as traveling waves or enhancement and diminution
of certain neural rhythms. Electroencephalography (EEG) is a powerful brain imaging technique



4 Inria Annual Report 2020

to study the overall brain activity in real time non-invasively. However it is necessary to develop
robust techniques based on stable features by investigating the time and frequency domains of
brain signals. Two types of information are typically used in EEG signals: (i) transient events such
as evoked potentials, spindles and K-complexes and (ii) the power in specific frequency bands.

4 Application domains

4.1 Medical applications

Our research directions are motivated by applications with a high healthcare or social impact. They are
developed in collaboration with medical partners, neuroscientists and psychologists. Almost all of our
applications can be seen as neural interfaces which require the analysis and modeling of sensorimotor
rhythms.

4.1.1 Per-operative awareness during general anesthesia

Collaborators: Univ. Hospital of Nancy-Brabois/dept. Anesthesia & Resuscitation
During general anesthesia, brain oscillations change according to the anesthetic drug concentration.
Nowadays, 0.2 to 1.3% of patients regain consciousness during surgery and suffer from post-traumatic
disorders. Despite the absence of subject movements due to curare, an electroencephalographic analysis
of sensorimotor rhythms can help to detect an intention of movement. Within a clinical protocol, we are
working on a brain-computer interface adapted to the detection of intraoperative awareness.

4.1.2 Recovery after stroke

Collaborators: Regional Institute of Physical Medicine and Rehabilitation/Center for Physical Medicine
and Rehabilitation (Lay St Christophe), Univ. of Lorraine/PErSEUs.
Stroke is the main cause of acquired disability in adults. Neurosys aims at recovering limb control by
improving the kinesthetic motor imagery (KMI) generation of post-stroke patients. We propose to design
a KMI-based EEG neural interface which integrates complementary modalities of interactions such
as tangible and haptic ones to stimulate the sensorimotor loop. This solution would provide a more
engaging and compelling stroke rehabilitation training program based on KMI production.

4.1.3 Modeling Parkinson’s disease

Collaborators: Center for Systems Biomedicine (Luxembourg), Institute of Neurodegenerative Diseases
(Bordeaux), Human Performance & Robotics laboratory (California State Univ., Long Beach).
Effective treatment of Parkinson’s disease should be based on a realistic model of the disease. We are
currently developing a neuronal model based on Hodgkin-Huxley neurons reproducing to a certain extent
the pathological synchronization observed in basal ganglia in Parkinsonian rats. Moreover, our meso-
scopic models of plastic Central Pattern Generator neural circuitries involved in rhythmic movements
will allow us to reproduce incoherent coordination of limbs observed on humans affected by Parkinson’s
diseases like frozen gait, crouch gait. Our long-term objective is to understand how oscillatory activity in
the basal ganglia affects motor control in spinal structures.

4.1.4 Modeling propagation of epileptic spikes

Collaborators: Epileptology Unit of the CHRU Nancy (University hospital), CRAN (Research Center in
Automation and Signal Processing of Nancy). Effective treatment of patients with refractory epilepsy
requires a better understanding of the underlying neuronal mechanisms. In particular, it has been
observed that epileptic spikes propagate more easily during stage III sleep (slow wave sleep) than during
wakefulness, but the origin of these behaviours still remains misunderstood. At least both, a combina-
tion of anatomical structure/connectivity changes and changes in level of neurotransmitters, namely
functional connectivity, can cause the propagation. A better knowledge of the functional and structural
circuitry could allow a better targetting of structures to be treated, either surgically or pharmacologically,
and to better individually adapt the pharmacology to each patient according to their symptomatology.
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5 Highlights of the year

5.1 Awards

Sébastien Rimbert received the award for best student paper from IEEE and the Brain initiative at the
Brain-Machine Interfaces workshop of the 2020 IEEE International Conference on Systems, Man, and
Cybernetics (SMC’20). The article presents a comparative study based on guided and trial-and-error
approaches to generate kinesthetic motor imagery using a BCI-based learning environment [6].

6 New software and platforms

6.1 New software

6.1.1 OpenVIBE

Keywords: Neurosciences, Interaction, Virtual reality, Health, Real time, Neurofeedback, Brain-Computer
Interface, EEG, 3D interaction

Functional Description: OpenViBE is a free and open-source software platform devoted to the design,
test and use of Brain-Computer Interfaces (BCI). The platform consists of a set of software modules
that can be integrated easily and efficiently to design BCI applications. The key features of Open-
ViBE software are its modularity, its high performance, its portability, its multiple-user facilities
and its connection with high-end/VR displays. The designer of the platform enables users to build
complete scenarios based on existing software modules using a dedicated graphical language
and a simple Graphical User Interface (GUI). This software is available on the Inria Forge under
the terms of the AGPL licence, and it was officially released in June 2009. Since then, the Open-
ViBE software has already been downloaded more than 60000 times, and it is used by numerous
laboratories, projects, or individuals worldwide. More information, downloads, tutorials, videos,
documentations are available on the OpenViBE website.

Release Contributions: Python2 support dropped in favour of Python3 New feature boxes: - Riemannian
geometry - Multimodal Graz visualisation - Artefact detection - Features selection - Stimulation
validator

Support for Ubuntu 18.04 Support for Fedora 31

Contributions: - Encephalan driver: Alexey Minin from (UrFU) - GTec Unicorn driver: Anton
Andreev (Gipsa-Lab) - Box pybox-manager: Jimmy Leblanc & Yannis Bendi-Ouis (Polymont ITS)

News of the Year: Python2 support dropped in favour of Python3 New feature boxes: - Riemannian
geometry - Multimodal Graz visualisation - Artefact detection - Features selection - Stimulation
validator

Support for Ubuntu 18.04 Support for Fedora 31

URL: http://openvibe.inria.fr

Authors: Charles Garraud, Jérôme Chabrol, Thierry Gaugry, Cedric Riou, Yann Renard, Anatole Lécuyer,
Jozef Legény, Laurent Bonnet, Jussi Tapio Lindgren, Fabien Lotte, Thomas Prampart, Thibaut
Monseigne

Contacts: Anatole Lécuyer, Ana Bela Leconte

Participants: Cedric Riou, Thierry Gaugry, Anatole Lécuyer, Fabien Lotte, Jussi Tapio Lindgren, Laurent
Bougrain, Maureen Clerc, Théodore Papadopoulo

Partners: INSERM, GIPSA-Lab

http://openvibe.inria.fr
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6.1.2 SIRENE

Name: Neural network simulator

Keywords: Neural networks, Numerical simulations, Neurosciences

Scientific Description: SiReNe is a biological networks simulator that is based on a hybrid simulation
scheme that combines time-stepping second-order integration of Hodgkin-Huxley (HH) type
neurons with event-driven updating of the synaptic currents. As the HH model is a continuous
model, there is no explicit spike events. Thus, in order to preserve the accuracy of the integration
method, a spike detection algorithm is developed that accurately determines spike times. This
approach allows us to regenerate the outgoing connections at each event, thereby avoiding the
storage of the connectivity. Consequently, memory consumption is significantly reduced while
preserving execution time and accuracy of the simulations.

Functional Description: SiReNe is a biological neural network simulator. The simulator engine can
simulate any type of spiking neural network and is indeed more dedicated to the simulation of
biologically detailed models of neurons, such as conductance-based neurons, and synapses.

Release Contributions: Initial version of the software.

News of the Year: Design and implementation of the hybrid simulation scheme and the regeneration of
the connectivity.

URL: https://sirene.gitlabpages.inria.fr/sirene/

Publication: hal-03041616

Contacts: Sylvain Contassot-Vivier, Dominique Martinez

Participants: Sylvain Contassot-Vivier, Dominique Martinez, Nathalie Azevedo Carvalho, Laure Buhry

Partners: Loria, CNRS, Université de Lorraine

7 New results

7.1 From the microscopic to the mesoscopic scale

Participants: Laure Buhry, Amélie Aussel, Nathalie Azevedo Carvalho, Dominique Martinez (CNRS), Radu
Ranta (Univ. Lorraine, CRAN).
In collaboration with Louis Maillard (Univ. Lorraine, CRAN, CHRU Nancy), Louise Tyvaert (Univ. Lorraine,
CRAN, CHRU Nancy), Olivier Aron (Univ. Lorraine, CRAN, CHRU Nancy), Sylvain Contassot-Vivier (Univ.
Lorraine), Jérome Baufreton (Institut des Maladies Neurodégénératives, Bordeaux)

7.1.1 Hippocampal oscillatory activity

Healthy hippocampus We have extensively studied the parameter space of the detailed anatomical and
mathematical model of the hippocampal formation for the generation of healthy hippocampal activity
we developed in [8] using design of experiment techniques in order to refine the parameter choices for a
more realistic modeling. A paper is under preparation.

Epilepsy of the mesial temporal lobe We have then extended the "healthy hippocampus model" to in-
clude pathological changes observed in temporal lobe epilepsy, the future goal being to better understand
the generation and propagation of epileptic activity throughout the brain, and therefore to investigate
new potential therapeutic targets.

The mechanisms underlying the generation of hippocampal epileptic seizures and interictal events
during the sleep-wake cycle are not yet fully understood. Based on our previous computational modeling
work of the hippocampal formation based on realistic topology and synaptic connectivity[8], we study
the role of network specificity and channel pathological conditions of the epileptic hippocampus in the

https://sirene.gitlabpages.inria.fr/sirene/
https://hal.inria.fr/hal-03041616
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generation and maintenance of seizures and interictal oscillations. Indeed, the epilepsies of the mesial
temporal lobe are associated with hippocampal neuronal and axonal loss, mossy fiber sprouting and
channelopathies, namely impaired potassium and chlore dynamics. We show, through the simulations of
hippocampal activity during slow-wave sleep and wakefulness that: (i) both mossy fiber sprouting and
sclerosis account for epileptic seizures, (ii) high hippocampal sclerosis with low sprouting suppresses
seizures, (iii) impaired potassium and chloride dynamics have little influence on the generation of
seizures, (iv) but do have an influence on interictal spikes that decreases with high mossy fiber sprouting.
A manuscript is currently under revision for the Journal of Computational Neuroscience.

7.1.2 Event-driven simulation of large scale neural models with on-demand connectivity genera-
tion

Accurate simulations of brain structures is a major problem in neuroscience. Many works are dedicated
to design better models or to develop more efficient simulation schemes. In the article [2], we propose
to combine time-stepping numerical integration of Hodgkin-Huxley type neurons with event-driven
updating of the synaptic currents. A spike detection method was also developed to determine the spike
time more precisely in order to preserve the second-order Runge-Kutta methods. This hybrid approach
allows us to regenerate the outgoing connections at each event, thereby avoiding the storage of the
connectivity. Consequently, memory consumption and execution time are significantly reduced while
preserving accurate simulations, especially spike times of detailed point neuron models. The efficiency of
the method has been demonstrated on the simulation of 106 interconnected MSN neurons with Parkinson
disease. The resulting SiReNe software is available on GitLab https://sirene.gitlabpages.inria.f
r/sirene.

7.1.3 Modeling and simulation of basal ganglia

In close collaboration with neurophysiologists in Bordeaux who provided us with in vitro and in vivo
data in rats, we developed a mathematical model of two neuron types, namely the arkypallidal and
prototypic neurons, that are characteristic from the external globus pallidus (GPe), structure involved in
the generation and amplification of Parkinson’s pathological oscillations.

In order to optimize the parameters of the model, we adapted the stochastic optimization methods
proposed by Laure Buhry in [10].

These neuron models where then included into a large-scale model of the basal ganglia we simulated
with SiReNe. We are currently comparing and fitting our simulation results with biological experimental
data.

7.2 From the Mesoscopic to the Macroscopic Scale

Participants: Laurent Bougrain, Sébastien Rimbert, Oleksii Avilov, Geoffrey Canron.
In collaboration with Stéphanie Fleck (Univ. Lorraine), Fabien Lotte (POTIOC, Inria Bordeaux).

7.2.1 Learning How to Generate Kinesthetic Motor Imagery Using a BCI-based Learning Environ-
ment: a Comparative Study Based on Guided or Trial-and-Error Approaches

Kinesthetic Motor Imagery (KMI) is a mental task which, if performed properly, can be very relevant in
sports training or rehabilitation with a Brain-Computer Interface (BCI). Unfortunately, this mental task
is generally complex to perform and can lead to a high degree of variability in its execution, reducing
its potential benefits. The reason why the task of KMI is so difficult to perform is because there is no
standardized way of instructing the subject in this mental task. In [6], we present an innovative BCI called
Grasp-IT thought to support the learning of the KMI task, and the evaluation of two different learning
methods: (i) a first one guided by an experimenter and based on the notion of progressiveness and (ii)
a second one where the learners are alone and practice by trial and error. Our findings based on EEG
analyses and subjective questionnaires validate the design of the Grasp-IT BCI and open up perspectives
on KMI learning modalities.

https://sirene.gitlabpages.inria.fr/sirene
https://sirene.gitlabpages.inria.fr/sirene
https://sirene.gitlabpages.inria.fr/sirene
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7.2.2 Multiclass Classification Based on Combined Motor Imageries

Motor imagery (MI) allows the design of self-paced brain–computer interfaces, which can potentially
afford an intuitive and continuous interaction. However, the implementation of non-invasive MI-based
BCIs with more than three commands is still a difficult task. First, the number of MIs for decoding different
actions is limited by the constraint of maintaining an adequate spacing among the corresponding sources,
since the electroencephalography (EEG) activity from near regions may add up. Second, EEG generates
a rather noisy image of brain activity, which results in a poor classification performance. In [3], we
propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e.,
MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of
the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI
and MC2SMI approaches. We recorded EEG signals from seven healthy subjects during an 8-class EEG
experiment including the rest condition and all possible combinations using the left hand, right hand,
and feet. The proposed multilabel approaches convert the original 8-class problem into a set of three
binary problems to facilitate the use of the CSP algorithm. In the case of the MC2CMI method, each
binary problem groups together in one class all the MIs engaging one of the three selected body parts,
while the rest of MIs that do not engage the same body part are grouped together in the second class. In
this way, for each binary problem, the CSP algorithm produces features to determine if the specific body
part is engaged in the task or not. Finally, three sets of features are merged together to predict the user
intention by applying an 8-class linear discriminant analysis. The MC2SMI method is quite similar, the
only difference is that any of the combined MIs is considered during the training phase, which drastically
accelerates the calibration time. For all subjects, both the MC2CMI and the MC2SMI approaches reached
a higher accuracy than the classic pair-wise (PW) and one-vs.-all (OVA) methods. Our results show that,
when brain activity is properly modulated, multilabel approaches represent a very interesting solution to
increase the number of commands, and thus to provide a better interaction.

7.2.3 Deep Learning Techniques to Improve Intraoperative Awareness Detection from Electroen-
cephalographic Signals

Every year, millions of patients regain consciousness during surgery and can potentially suffer from
post-traumatic disorders. We recently showed that the detection of motor activity during a median
nerve stimulation from electroencephalographic signals could be used to alert the medical staff that a
patient is waking up and trying to move under general anesthesia [11, 12]. In [4] and [9], we measure the
accuracy and false positive rate in detecting motor imagery of several deep learning models (EEGNet,
deep convolutional network and shallow convolutional network) directly trained on filtered EEG data.
We compare them with efficient non-deep approaches, namely, a linear discriminant analysis based on
common spatial patterns, the minimum distance to Riemannian mean algorithm applied to covariance
matrices, a logistic regression based on a tangent space projection of covariance matrices (TS+LR). The
EEGNet improves significantly the classification performance comparing to other classifiers (p-value <
0.01); moreover, it outperforms the best non-deep classifier (TS+LR) by 7.2% in accuracy. This approach
promises to improve intraoperative awareness detection during general anesthesia.

7.2.4 Guidelines to use Transfer Learning for Motor Imagery Detection

Brain-Computer Interfaces based on Motor imagery have shown promising results for motor recovery,
intraoperative awareness detection or assistive technology control. However, they suffer from several
limitations due to the high variability of electroencephalographic signals, mainly lengthy and tedious
calibration times usually required for each new day of use, and a lack of reliability for all users. Such
problems can be addressed, to some extent, using transfer learning algorithms. However, the performance
of such algorithms has been very variable so far, and when they can be safely used is still unclear.
Therefore, we studied in [5] the performance of various state-of-the-art Riemannian transfer learning
algorithms on a MI-BCI database (30 users), for various conditions: 1) supervised and unsupervised
transfer learning; 2) for various amount of available training EEG data for the target domain; 3) intra-
session or inter-session transfer; 4) for both users with good and less good MI-BCI performance. From
such experiments, we derived guidelines about when to use which algorithm. Re-centering the target
data is effective as soon as a few samples of this target set are taken into account. This is true even for
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an intra-session transfer learning. Likewise, re-centering is particularly useful for subjects who have
difficulty producing stable motor imagery from session to session.

8 Partnerships and cooperations

8.1 National initiatives

8.1.1 ANR

• Program: PRCE CES 33 (interaction, robotics)

• Project acronym: Grasp-IT

• Project title: Design and evaluation of a tangible and haptic brain-computer interface for upper
limb rehabilitation after stroke

• Duration: Jan 2020 - Jan 2024

• Coordinator: Laurent Bougrain (Neurosys)

• Other partners: 4 research teams (UL/Perseus, Inria/Camin, Inria/Hybrid) and 3 centers or hospital
departments for physical medicine and rehabilitation (IRR/CMPR Lay St Christophe, CHU Rennes,
CHU Toulouse) and 1 manufacturer of 3D printers (Alchimies/OpenEdge)

• Abstract: This project aims to recover upper limb control improving the kinesthetic motor imagery
(KMI) generation of post-stroke patients using a tangible and haptic interface within a gamified
Brain-Computer Interface (BCI) training environment. (i) This innovative KMI-based BCI will
integrate complementary modalities of interactions such as tangible and haptic interactions in a
3D printable flexible orthosis. We propose to design and test usability (including efficacy towards
the stimulation of the motor cortex) and acceptability of this multimodal BCI. (ii) The GRASP-IT
project proposes to design and integrate a gamified non-immersive virtual environment to interact
with. This multimodal solution should provide a more meaningful, engaging and compelling
stroke rehabilitation training program based on KMI production. (iii) In the end, the project
will integrate and evaluate neurofeedbacks, within the gamified multimodal BCI in an ambitious
clinical evaluation with 75 hemiplegic patients in 3 different rehabilitation centers in France.
The GRASP-IT project represents a challenge for the industrial 3D printing field. The materials of
the 3D printable orthosis, allowing the integration of haptic-tangible interfaces, will come from a
joint R & D work performed by the companies Alchimies and Open Edge.

8.2 Regional initiatives

Within the Contrat de Projet État Région (CPER) IT2MP 2015-2020 on Technological innovations, modeling
and Personalized Medicine, we are contributing on platform SCIARAT (cognitive stimulation, Ambient
Intelligence, Robotic assistance and Telemedicine) observing electroencephalographic activity of humans
during motor tasks. The acquisition of a new 64-channel EEG system has been approved.

9 Dissemination

9.1 Promoting scientific activities

9.1.1 Invited talks

Workshop on brain-machine interfaces organized by the NeurotechX community (May 13, 2020): Laurent
Bougrain presented OpenViBE as an open-source software to work with EEG and other bioelectric signals.

Workshop on brain-machine interfaces and disabilities organized by the French task force on Robotics
and health (On July 2, 2020): Laurent Bougrain presented machine learning techniques to characterize
motor brain electrical activity for control and rehabilitation.
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Workshop on brain-machine interfaces organized jointly by the CNRS, the Academy of Technologies
and the National Academy of Medicine (November 2, 2020): Laurent Bougrain presented two projects
on the detection of peroperative awareness and the design and evaluation of a haptic and tangible
brain-computer interface for stroke patients.

9.1.2 Leadership within the scientific community

Laurent Bougrain is a member of the Board of Directors of the scientific society CORTICO for the promo-
tion of Brain-Computer Interfaces in France.

Laurent Bougrain is a member of the steering committee of the research network in neuroscience of
the university of Lorraine.

9.1.3 Research administration

Laure Buhry is an elected member of the "Pôle Scientifique AM2I" council of university of Lorraine.

9.2 Teaching - Supervision - Juries

9.2.1 Teaching

• Engineering school: L. Bougrain, Brain-Computer Interfaces, 4.5h, 3rd year, Supelec, France

• Engineering school: L. Bougrain, Artificial Intelligence, 61h, 3rd year, Telecom Nancy, France

• Master: L. Buhry, Algorithms for Artificial Inteligence, 31h, Master of cognitive science, M1, Univer-
sity of Lorraine, France

• Master: L. Buhry, Fundamental Artificial Intelligence and data mining, 18h, Master of cognitive
science, M1, University of Lorraine, France

• Master: L. Buhry, Memory and Machine Learning, 38h, Master of cognitive science, M1, University
of Lorraine, France

• Master: L. Buhry, Computational Neurosciences, 25h, Master of cognitive science/SCMN, M2,
University of Lorraine, France

• Master: L. Bougrain, Learning and reasoning in the uncertain, 32h, Master of computer science,
M2, University of Lorraine, France

• Licence: L. Buhry, Probability and statistics, 30h, L1 MIASHS, University of Lorraine, France

• Licence: L. Buhry, Artificial Intelligence and problem solving, 25h, L3 MIASHS, University of
Lorraine, France

• Licence: L. Bougrain, programming on mobile devices, 17h, Licence of computer science, L3,
University of Lorraine, France

9.2.2 Supervision

• PhD in progress (defense 18 February 2021): Oleksii Avilov, Deep learning methods for motor
imagery detection from raw EEG: applications to brain-computer interfaces, June 1st 2018, Patrick
Hénaff, Laurent Bougrain and Anton Popov (Kiev Polytechnic institute).

• PhD in progress: Nathalie Azevedo Carvalho, a biologically plausible computer model of pathologi-
cal neuronal oscillations observed in Parkinson’s disease, November 1st 2018, Dominique Martinez
and Laure Buhry.
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9.2.3 Juries

• Marouane Arrais, "Stimulation cérébrale multi-sites: Modèles dynamiques et applications aux
crises d’épilepsie", Ph.D. thesis Rennes 1 Univ., LTSI-INSERM UMR S1099, 15-12-2020 (Laure Buhry
examiner)

9.3 Popularization

9.3.1 Articles and contents

Inria News and events (13 Nov. 2020). Grasp-IT: a brain-computer interface for improving stroke rehabili-
tation. Sébastien Rimbert et Laurent Bougrain. https://www.inria.fr/en/grasp-it-brain-compu
ter-interface-improving-stroke-rehabilitation

10 Scientific production
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