
2020
ACTIVITY REPORT

Project-Team

PARADYSE

RESEARCH CENTRE

Lille - Nord Europe

IN PARTNERSHIP WITH:

CNRS, Université de Lille

PARticles And DYnamical SystEms

IN COLLABORATION WITH: Laboratoire Paul Painlevé (LPP)

DOMAIN

Applied Mathematics, Computation and
Simulation

THEME

Numerical schemes and simulations



Contents

Project-Team PARADYSE 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 2

3 Research program 3
3.1 Time asymptotics: Stationary states, solitons, and stability issues . . . . . . . . . . . . . . . 3
3.2 Derivation of macroscopic laws from microscopic dynamics . . . . . . . . . . . . . . . . . . 3
3.3 Numerical methods: analysis and simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Application domains 4
4.1 Optical fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.3 Cold atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.4 Qualitative and quantitative properties of numerical methods . . . . . . . . . . . . . . . . . 6
4.5 Modeling of the liquid-solid transition and interface propagation . . . . . . . . . . . . . . . 6
4.6 Mathematical modeling for ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 New results 7
5.1 Traveling waves for some nonlocal 1D Gross–Pitaevskii equations with nonzero conditions

at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 The cubic Schrödinger regime of the Landau–Lifshitz equation with a strong easy-axis

anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.3 Self-similar shrinkers of the one-dimensional Landau–Lifshitz–Gilbert equation . . . . . . 8
5.4 Quantum optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.5 Exponential time-decay for discrete Fokker–Planck equations . . . . . . . . . . . . . . . . . 8
5.6 Numerical integration of the stochastic Manakov system . . . . . . . . . . . . . . . . . . . . 8
5.7 Linearly implicit high-order numerical methods for evolution problems . . . . . . . . . . . 9
5.8 Energy-preserving methods for nonlinear Schrödinger equations . . . . . . . . . . . . . . . 9
5.9 CLT for circular beta-ensembles at high temperature . . . . . . . . . . . . . . . . . . . . . . . 9
5.10 DLR equations and rigidity for the Sine-beta process . . . . . . . . . . . . . . . . . . . . . . . 9
5.11 Decay of solutions to one-dimensional nonlinear Schrödinger equations with white noise

dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.12 Uniform approximation of the 2d Navier-Stokes equation by stochastic interacting particle

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.13 Review on various dynamics of interacting particle systems . . . . . . . . . . . . . . . . . . . 10
5.14 Hydrodynamic limit for a chain with thermal and mechanical boundary forces . . . . . . . 10
5.15 Stefan problem for a non-ergodic facilitated exclusion process . . . . . . . . . . . . . . . . . 10
5.16 Non-equilibrium fluctuations of the weakly asymmetric normalized binary contact path

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.17 Non-existence results for semilinear elliptic problems . . . . . . . . . . . . . . . . . . . . . . 11
5.18 Lane–Emden problems with quadratic gradient terms . . . . . . . . . . . . . . . . . . . . . . 11

6 Partnerships and cooperations 11
6.1 Action de développement technologique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 ANR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3 LabEx CEMPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Dissemination 13
7.1 Promoting scientific activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7.1.1 Scientific events: organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.2 Member of the organizing committees . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.3 Member of the Editorial Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.4 Reviewer – reviewing activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



7.1.5 Invited talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.6 Leadership within the scientific community . . . . . . . . . . . . . . . . . . . . . . . . 14
7.1.7 Scientific expertise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.1.8 Research administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7.2 Teaching - Supervision - Juries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.2.1 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.2.2 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.2.3 Juries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.3 Popularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 Scientific production 15
8.1 Major publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.2 Publications of the year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.3 Cited publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



Project PARADYSE 1

Project-Team PARADYSE

Creation of the Project-Team: 2020 March 01

Keywords

Computer sciences and digital sciences

A6.1.1. – Continuous Modeling (PDE, ODE)

A6.1.2. – Stochastic Modeling

A6.1.4. – Multiscale modeling

A6.2.1. – Numerical analysis of PDE and ODE

A6.2.3. – Probabilistic methods

A6.5. – Mathematical modeling for physical sciences

Other research topics and application domains

B5.3. – Nanotechnology

B5.11. – Quantum systems

B6.2.4. – Optic technology

https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/OtherResearchTopicsandApplicationDomains.html


2 Inria Annual Report 2020
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2 Overall objectives

The PARADYSE team gathers mathematicians from different communities with the same motivation:
to provide a better understanding of dynamical phenomena involving particles. These phenomena
are described by fundamental models arising from several fields of physics. We shall focus on model
derivation, study of stationary states and asymptotic behaviors, as well as links between different levels
of description (from microscopic to macroscopic) and numerical methods to simulate such models.
Applications include nonlinear optics, thermodynamics and ferromagnetism. Research in this direction
has a long history, that we shall only partially describe in the sequel. We are confident that the fact that
we come from different mathematical communities (PDE theory, mathematical physics, probability
theory and numerical analysis), as well as the fact that we have strong and effective collaborations with
physicists, will bring new and efficient scientific approaches to the problems we plan to tackle and will
make our team strong and unique in the scientific landscape. Our goal is to obtain original and important
results on a restricted yet ambitious set of problems that we develop in this document.
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3 Research program

3.1 Time asymptotics: Stationary states, solitons, and stability issues

The team investigates the existence of solitons and their link with the global dynamical behavior for
nonlocal problems such as the Gross–Pitaevskii (GP) equation which arises in models of dipolar gases.
These models, in general, also introduce nonzero boundary conditions which constitute an additional
theoretical and numerical challenge. Numerous results are proved for local problems, and numerical
simulations allow to verify and illustrate them, as well as making a link with physics. However, most
fundamental questions are still open at the moment for nonlocal problems.

The nonlinear Schrödinger (NLS) equation finds applications in numerous fields of physics. We
concentrate, in a continued collaboration with our colleagues from the physics department (PhLAM) of
the Université de Lille (UdL), in the framework of the Laboratoire d’Excellence CEMPI, on its applications
in nonlinear optics and cold atom physics. Issues of orbital stability and modulational instability are
central here.

Another typical example of problems that the team wishes to address concerns the Landau–Lifshitz
(LL) equation, which describes the dynamics of the spin in ferromagnetic materials. This equation is
a fundamental model in the magnetic recording industry [37] and solitons in magnetic media are of
particular interest as a mechanism for data storage or information transfer [39]. It is a quasilinear PDE
involving a function that takes values on the unit sphere S2 of R3. Using the stereographic projection, it
can be seen as a quasilinear Schrödinger equation and the questions about the solitons, their dynamics
and potential blow-up of solutions evoked above are also relevant in this context. This equation is
less understood than the NLS equation: even the Cauchy theory is not completely understood [33, 36].
In particular, the geometry of the target sphere imposes nonvanishing boundary conditions; even in
dimension one, there are kink-type solitons having different limits at ±∞.

3.2 Derivation of macroscopic laws from microscopic dynamics

The team investigates, from a microscopic viewpoint, the dynamical mechanism at play in the phe-
nomenon of relaxation towards thermal equilibrium for large systems of interacting particles. For
instance, a first step consists in giving a rigorous proof of the fact that a particle repeatedly scattered by
random obstacles through a Hamiltonian scattering process will eventually reach thermal equilibrium,
thereby completing previous works in this direction by the team. As a second step, similar models as the
ones considered classically will be defined and analyzed in the quantum mechanical setting, and more
particularly in the setting of quantum optics.

Another challenging problem is to understand the interaction of large systems with the boundaries,
which is responsible for most energy exchanges (forcing and dissipation), even though it is concentrated
in very thin layers. The presence of boundary conditions to evolution equations sometimes lacks under-
standing from a physical and mathematical point of view. In order to legitimate the choice done at the
macroscopic level of the mathematical definition of the boundary conditions, we investigate systems
of atoms (precisely chains of oscillators) with different local microscopic defects. We apply our recent
techniques to understand how anomalous (in particular fractional) diffusive systems interact with the
boundaries. For instance, the powerful tool given by Wigner functions that we already used has been
successfully applied to the derivation of anomalous behaviors in open systems (for instance in [35]). The
next step consists in developing an extension of that tool to deal with bounded systems provided with
fixed boundaries. We also intend to derive anomalous diffusion by adding long-range interactions to
diffusive models. There are very few rigorous results in this direction.

Finally, we aim at obtaining from a microscopic description the fractional porous medium equation
(FPME), a nonlinear variation of the fractional diffusion equation, involving the fractional Laplacian
instead of the usual one. Its rigorous study carries out many mathematical difficulties in treating at the
same time the nonlinearity and fractional diffusion. We want to make PDE theorists and probabilists
work together, in order to take advantage of the analytical results which went further ahead and are more
advanced than the statistical physics theory.

https://en.wikipedia.org/wiki/Soliton
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3.3 Numerical methods: analysis and simulations

The team addresses both questions of precision and numerical cost of the schemes for the numerical
integration of nonlinear evolution PDEs, such as the NLS equation. In particular, we aim at developing,
studying and implementing numerical schemes with high order that are more efficient for these problems.
We also want to contribute to the design and analysis of schemes with appropriate qualitative properties.
These properties may as well be “asymptotic-preserving” properties, energy-preserving properties, or
convergence to an equilibrium properties. Other numerical goals of the team include the numerical
simulation of standing waves of nonlinear nonlocal GP equations. We also keep on developing numerical
methods to efficiently simulate and illustrate theoretical results on instability, in particular in the context
of the modulational instability in optical fibers, where we study the influence of randomness in the
physical parameters of the fibers.

The team also designs simulation methods to estimate the accuracy of the physical description via
microscopic systems, by computing precisely the rate of convergence as the system size goes to infinity.
One method under investigation is related to cloning algorithms, which were introduced very recently
and turn out to be essential in molecular simulation.

4 Application domains

4.1 Optical fibers

In the propagation of light in optical fibers, the combined effect of nonlinearity and group velocity
dispersion (GVD) may lead to the destabilization of the stationary states (plane or continuous waves).
This phenomenon, known under the name of modulational instability (MI), consists in the exponential
growth of small harmonic perturbations of a continuous wave. MI has been pioneered in the 60s in the
context of fluid mechanics, electromagnetic waves as well as in plasmas, and it has been observed in
nonlinear fiber optics in the 80s. In uniform fibers, MI arises for anomalous (negative) GVD, but it may
also appear for normal GVD if polarization, higher order modes or higher order dispersion are considered.
A different kind of MI related to a parametric resonance mechanism emerges when the dispersion or the
nonlinearity of the fiber are periodically modulated.

As a follow-up of our work on MI in periodically modulated optical fibers, we investigate the effect of
random modulations in the diameter of the fiber on its dynamics. It is expected on theoretical grounds
that such random fluctuations can lead to MI and this has already been illustrated for some models
of the randomness. We investigate precisely the conditions under which this phenomenon can be
strong enough to be experimentally verified. For that purpose, we investigate different kinds of random
processes describing the modulations, taking into account the manner in which such modulations can
be created experimentally by our partners of the fiber facility of the PhLAM. This necessitates careful
modeling of the fiber and a precise numerical simulation of its behavior as well as a theoretical analysis
of the statistics of the fiber dynamics.

This application domain involves in particular S. De Bièvre and G. Dujardin.

4.2 Ferromagnetism

The Landau–Lifshitz equation describes the dynamics of the spin in ferromagnetic materials. This
equation is a fundamental model in the magnetic recording industry and solitons in magnetic media
are of particular interest as a mechanism for data storage or information transfer. Depending on the
properties of the material, the LL equation can include a dissipation term (the so-called Gilbert damping)
and different types of anisotropic terms. The (N -dimensional) LL equation belongs to a larger class
of nonlinear PDEs which are often referred to as geometric PDEs, and some related models are the
Schrödinger map equation and the harmonic heat flow. The main mathematical difficulties lie in the
facts that the spin function m takes values on the unit sphere S2 of R3, i.e. m : [0,T [×RN →S2 and that
there is the term m|∇m|2 in the equation, which is critical for the elliptic regularity theory in the energy
space. By using the stereographic projection, the LL equation can be seen as a quasilinear Schrödinger
equation and the questions about the solitons, their dynamics and potential blow-up of solutions evoked
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above are also relevant in this context. However, this equation is less understood than the NLS equation:
even the Cauchy theory is not completely understood.

We focus on the following aspects of the LL equation.

Solitons In the absence of Gilbert damping, the LL equation is Hamiltonian. Moreover, it is integrable in
the one-dimensional case and explicit formulas for solitons can be given. In the easy-plane case,
the orbital and asymptotic stability of these solitons have been established. However, the stability in
other cases, such as in biaxial ferromagnets, remains an open problem. In higher dimensional cases,
the existence of solitons is more involved. In a previous work, a branch of semitopological solitons
with different speeds has been obtained numerically in planar ferromagnets. A rigorous proof of
the existence of such solitons is established using perturbation arguments, provided that the speed
is small enough. However, the proof does not give information about their stability. We would like
to propose a variational approach to study the existence of the branch of solitons, that would lead
to the existence and stability of the whole branch of ground-state solitons as predicted. We also
investigate numerically the existence of other types of localized solutions for the LL equation, such
as excited states or vortices in rotation.

Approximative models An important physical conjecture is that the LL model is to a certain extent
universal, so that the nonlinear Schrödinger and Sine-Gordon equations can be obtained as its
various limiting cases. In a previous work, A. de Laire has proved a result in this direction and
established an error estimate in Sobolev norms, in any dimension. A next step is to produce
numerical simulations that will enlighten the situation and allow to prove further developments in
this direction.

Self-similar behavior Self-similar solutions have brought a lot of attention in the study on nonlinear
PDEs because they can provide some important information about the dynamics of the equation.
While self-similar expanders are related to nonuniqueness and long time description of solutions,
self-similar shrinkers are related to a possible singularity formation. However, there is not much
known about the self-similar solutions for the LL equation. A. de Laire and S. Gutierrez have studied
expander solutions and proved their existence and stability in the presence of Gilbert damping. We
will investigate further results about these solutions, as well as the the existence and properties of
self-similar shrinkers.

This application domain involves in particular A. de Laire and G. Dujardin.

4.3 Cold atoms

The cold atom team of the PhLAM Laboratory is reputed for having realized experimentally the so-called
Quantum Kicked Rotor, which provides a model for the phenomenon of Anderson localization. The
latter was predicted by Anderson in 1958, who received in 1977 a Nobel Prize for this work. Anderson
localization is the absence of diffusion of quantum mechanical wave functions (and of waves in general)
due to the presence of randomness in the medium in which they propagate. Its transposition to the
Quantum Kicked Rotor goes as follows: a freely moving quantum particle periodically subjected to a
“kick” will see its energy saturate at long times. In this sense, it “localizes” in momentum space since
its momenta do not grow indefinitely, as one would expect on classical grounds. In its original form,
Anderson localization applies to non-interacting quantum particles and the same is true for the saturation
effect observed in the Quantum Kicked Rotor.

The challenge is now to understand the effects of interactions between the atoms on the localiza-
tion phenomenon. Transposing this problem to the Quantum Kicked Rotor, this means describing
the interactions between the particles with a Gross–Pitaevskii equation, which is a NLS equation with
a local (typically cubic) nonlinearity. So the particle’s wave function evolves between kicks following
the Gross–Pitaevskii equation and not the linear Schrödinger equation, as is the case in the Quantum
Kicked Rotor. Preliminary studies for the Anderson model have concluded that in that case the local-
ization phenomenon gives way to a slow subdiffusive growth of the particle’s kinetic energy. A similar
phenomenon is expected in the nonlinear Quantum Kicked Rotor, but a precise understanding of the
dynamical mechanisms at work, of the time scale at which the subdiffusive growth will manifest itself and
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of the subdiffusive growth exponent is lacking. It is crucial to design and calibrate the experimental setup
intended to observe the phenomenon. The analysis of these questions poses considerable theoretical
and numerical challenges due to the difficulties involved in understanding and simulating the long term
dynamics of the nonlinear system. A collaboration of the team members with the PhLAM cold atoms
group is currently under way.

This application domain involves in particular S. De Bièvre and G. Dujardin.

4.4 Qualitative and quantitative properties of numerical methods

Numerical simulation of multimode fibers The use of multimode fibers is a possible way to overcome
the bandwidth crisis to come in our worldwide communication network consisting in singlemode
fibers. Moreover, multimode fibers have applications in several other domains, such as high power fiber
lasers and femtosecond-pulse fiber lasers which are useful for clinical applications of nonlinear optical
microscopy and precision materials processing. From the modeling point of view, the envelope equations
are a system of nonlinear nonlocal coupled Schrödinger equations. For a better understanding of several
physical phenomena in multimode fibers (e.g. continuum generation, condensation) as well as for the
design of physical experiments, numerical simulations are an adapted tool. However, the huge number
of equations, the coupled nonlinearities and the nonlocal effects are very difficult to handle numerically.
Some attempts have been made to build and provide efficient numerical codes for such simulations.
However, there is room for improvement: one may want to go beyond MATLAB test codes, and to develop
an alternative parallelization to the existing ones, which could use the linearly implicit methods that we
plan to develop and analyze. In link with the application domain 4.1, we develop in particular a code
for the numerical simulation of the propagation of light in multimode fibers, using high-order efficient
methodss, that is to be used by the physics community.

This application domain involves in particular G. Dujardin and A. Roget.

Qualitative and long-time behavior of numerical methods We contribute to the design and analysis
of schemes with good qualitative properties. These properties may as well be “asymptotic-preserving”
properties, energy-preserving properties, decay properties, or convergence to an equilibrium properties.
In particular, we contribute to the design and analysis of numerically hypocoercive methods for Fokker–
Planck equations [14], as well as energy-preserving methods for hamiltonian problems [9].

This application domain involves in particular G. Dujardin.

High-order methods We contribute to the design of efficient numerical methods for the simulation of
evolution problems. In particular, we focus on a class of linearly implicit high-order methods, that have
been introduced for ODEs [29]. We wish both to extend their analysis to PDE contexts, and to analyze
their qualitative properties in such contexts.

This application domain involves in particular G. Dujardin.

4.5 Modeling of the liquid-solid transition and interface propagation

Analogously to so-called Kinetically Constrained Models (KCM) that have served as toy models for glassy
transitions, stochastic particle systems on a lattice can be used as toy models for a variety of physical
phenomena. Among them, the kinetically constrained lattice gases (KCLG) are models in which particles
jump randomly on a lattice, but are only allowed to jump if a local constraint is satisfied by the system.

Because of the hard constraint, the typical local behavior of KCLGs will differ significantly depending
on the value of local conserved fields (e.g. particle density), because the constraint will either be typically
satisfied, in which case the system is locally diffusive (liquid phase), or not, in which case the system
quickly freezes out (solid phase).

Such a toy model for liquid-solid transition is investigated by M. Simon, C. Erignoux and their co-
authors in [4] and [11]. The focus of these articles is the so-called facilitated exclusion process, which is
a terminology coined by physicists for a specific KCLG, in which particles can only jump on an empty
neighbor if another neighboring site is occupied. They derive the macroscopic behavior of the model,
and show that in dimension 1 the hydrodynamic limit displays a phase separated behavior where the
liquid phase progressively invades the solid phase.
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Both from a physics and mathematics point of view, much remains to be done regarding theses
challenging models: in particular, they present significant mathematical difficulties because of the way
the local physical constraints put on the system distort the equilibrium and steady-states of the model.
For this reason, M. Simon, C. Erignoux and A. Roget are currently trying to work with A. Shapira to
generate numerical results on generalizations of the facilitated exclusion process, in order to shine some
light on the microscopic and macroscopic behavior of these difficult models.

This application domain involves in particular C. Erignoux, A. Roget and M. Simon.

4.6 Mathematical modeling for ecology

This application domain is at the interface of mathematical modeling and numerics. Its object of study
is a set of concrete problems in ecology. The landscape of the south of Hauts-de-France is made of
agricultural land, encompassing forest patches and ecological corridors such as hedges. The issues are

• the study of the invasive dynamics and the control of a population of beetles which damages the
oaks and beeches of our forests;

• the study of native protected species (the purple wireworm and the pike-plum) which find refuge
in certain forest species.

Running numerics on models co-constructed with ecologists is also at the heart of the project. The
timescales of animals and plants are no different; the beetle larvae spend a few years in the earth before
moving. As a by-product, the mathematical model may tackle other major issues such as the interplay
between Heterogeneity, Diversity and Invasibility.

The models use Markov chains at a mesoscopic scale and evolution advection-diffusion equations at
a macroscopic scale.

This application domain involves O. Goubet. Interactions with Paradyse members concerned with
particle models and hydrodynamic limits are planned.

5 New results

5.1 Traveling waves for some nonlocal 1D Gross–Pitaevskii equations with nonzero
conditions at infinity

The nonlocal Gross–Pitaevskii equation is a model that appears naturally in several areas of quantum
physics, for instance in the description of superfluids and in optics when dealing with thermo-optic
materials because the thermal nonlinearity is usually highly nonlocal. A. de Laire and P. Mennuni have
considered a nonlocal family of Gross–Pitaevskii equations in dimension one, and they have provided
in [22] conditions on the nonlocal interaction such that there is a branch of traveling waves solutions
with non-vanishing conditions at infinity. Moreover, they showed that the branch is orbitally stable. In
this manner, this result generalizes known properties for the contact interaction given by a Dirac delta
function. Their proof relies on the minimization of the energy at fixed momentum.

5.2 The cubic Schrödinger regime of the Landau–Lifshitz equation with a strong
easy-axis anisotropy

It is well-known that the dynamics of biaxial ferromagnets with a strong easy-axis anisotropy is essentially
governed by the cubic Schrödinger equation. A. de Laire and P. Gravejat provided in [21] a rigorous
justification to this observation, continuing with the work started in [8]. More precisely, they showed
the convergence of the solutions to the Landau-Lifshitz equation for biaxial ferromagnets towards the
solutions to the cubic Schrödinger equation in the regime of an easy-axis anisotropy. This result holds for
solutions to the Landau–Lifshitz equation in high-order Sobolev spaces. By introducing high-order energy
quantities with good symmetrization properties, they derived the convergence from the consistency of
the Landau–Lifshitz equation with the Sine-Gordon equation by using well-tailored energy estimates.
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In this regime, they additionally classified the one-dimensional solitons of the Landau-Lifshitz equa-
tion and quantified their convergence towards the solitons of the one-dimensional cubic Schrödinger
equation.

5.3 Self-similar shrinkers of the one-dimensional Landau–Lifshitz–Gilbert equa-
tion

A. de Laire and S. Gutierrez continue their investigation begun in in [6] concerning the existence and
properties of self-similar solutions to the Landau–Lifshitz–Gilbert (LLG) equation, which is a PDE describ-
ing the dynamics for the magnetization in ferromagnetic materials. In [17], they performed an analytical
study of self-shrinker solutions of the one-dimensional LLG equation and showed that there is a unique
smooth family of backward self-similar solutions, up to symmetries. In addition, they obtained their
asymptotics and proved that the trajectories of the self-similar profiles converge to great circles on the
sphere S2, at an exponential rate.

In particular, their results provide examples of blow-up in finite time, where the singularity develops
due to rapid oscillations forming limit circles.

Let us mention that the results in paragraphs 5.2 and 5.3 are presented in A. de Laire’s “Habilitation à
diriger des recherches” [25], defended in October 2020.

5.4 Quantum optics

In previous works, S. De Bièvre and his co-authors introduced a new measure of the nonclassicality of
the quantum states of an optical field, the so-called “ordering sensitivity” of the state, that measures the
fluctuations of its Wigner function. In [7], S. De Bièvre and his postdoc A. Hertz, re-interpret the ordering
sensitivity in terms of another physical property of the quantum states of an optical field, namely their
quadrature coherence scale. It is shown in particular that a large such coherence scale is responsible for
very fast environmental decoherence of the state. In [18], S. De Bièvre, A. Hertz and N. Cerf, have further
explored the link between this new notion of nonclassicality and measures of entanglement, providing
upper bounds on the latter by the first. In [23], S. De Bièvre and his co-authors studied the effect of
interactions on the kicked rotor, providing a new approximate model to study the time-asymptotic nature
of the system.

5.5 Exponential time-decay for discrete Fokker–Planck equations

In the research direction exposed in Section 3.3, G. Dujardin and his co-authors proposed and studied
in [14] several discrete versions of homogeneous and inhomogeneous one-dimensional Fokker–Planck
equations. They proved in particular, for these discretizations of velocity and space, the exponential
convergence to the equilibrium of the solutions, for time-continuous equations as well as for time-
discrete equations. Their method uses new types of discrete Poincaré inequalities for a “two-direction”
discretization of the derivative in velocity. For the inhomogeneous problem, they adapted for the very
first time hypocoercive methods to the discrete level.

5.6 Numerical integration of the stochastic Manakov system

The stochastic Manakov system is a dispersive nonlinear system of PDEs that models the propagation of
light in an optical fiber with randomly varying birefringence.

In [27], G. Dujardin and his collaborators introduced a linearly implicit scheme for the time integration
of the stochastic Manakov system, that they analyzed and compared to the existing methods from the
literature. In particular, they proved that the strong order of the numerical approximation is 1/2 if the
nonlinear term in the system is globally Lipschitz-continuous. They also proved this numerical method
converges with order 1/2 in probability and with order 1/2− almost surely, in the case of the cubic
nonlinear coupling which is relevant in optical fibers. They also proposed a modification of their method
to obtain a mass-preserving scheme.

In [28], G. Dujardin and his collaborators developed, analyzed and implemented a numerical method
based on the Lie–Trotter formula for the integration of the stochastic Manakov system. In particular, they
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proved that the strong order of the numerical approximation is 1/2 if the nonlinear term in the system is
globally Lipschitz. They also proved that this splitting scheme converges with order 1/2 in probability,
and converges almost surely with order 1/2− as well. They provided numerical experiments to compare
the efficiency of this scheme with existing methods from the literature, and they investigated numerically
the possible blow-up in finite time of solutions to this SPDE system.

These two results enter the research axis of Section 3.3.

5.7 Linearly implicit high-order numerical methods for evolution problems

G. Dujardin and his collaborator derived in [29] a new class of numerical methods for the time integration
of evolution equations set as Cauchy problems of ODEs or PDEs, in the research direction detailed in
Section 3.3. The systematic design of these methods mixes the Runge–Kutta collocation formalism with
collocation techniques, in such a way that the methods are linearly implicit and have high order. The fact
that these methods are implicit allows to avoid CFL conditions when the large systems to integrate come
from the space discretization of evolution PDEs. Moreover, these methods are expected to be efficient
since they only require to solve one linear system of equations at each time step, and efficient techniques
from the literature can be used to do so.

5.8 Energy-preserving methods for nonlinear Schrödinger equations

G. Dujardin and his co-authors have revisited and extended relaxation methods for nonlinear Schrödinger
equations (NLS). The classical relaxation method for NLS is an energy-preserving method and a mass-
preserving method. Moreover, it is only linearly implicit. A first proof of the second-order accuracy
was achieved in [9]. Moreover, the method was extended to enable to treat noncubic nonlinearities,
nonlocal nonlinearities, as well as rotation terms. The resulting methods are still energy-preserving and
mass-preserving. Moreover, they are shown to have second-order accuracy numerically. These new
methods are compared with fully implicit, mass-and energy-preserving methods of Crank and Nicolson.

The results presented in this paper follow the research direction of Section 3.3.

5.9 CLT for circular beta-ensembles at high temperature

In [34], A. Hardy and G. Lambert have obtained a central limit theorem for the 2D Coulomb gas particle
system constrained on a circle in the high temperature regime. An interesting feature is that the limiting
variance interpolates between the Lebesgue L2 norm, corresponding to the infinite temperature setting,
and the Sobolev H 1/2 semi-norm, corresponding to the zero temperature regime.

5.10 DLR equations and rigidity for the Sine-beta process

The work [13] by A. Hardy and his collaborators, recently accepted for publication in Communications
on Pure and Applied Mathematics, provides a “statistical physics” description of the sine-β process by
means of Dobroshin–Lanford–Ruelle (DLR) equations. This basically allows to give a meaning to the
natural infinite configurations process on the real line in the 2D Coulomb interaction, provided there is a
unique solution to the DLR equation which turns out to be true in this setting.

5.11 Decay of solutions to one-dimensional nonlinear Schrödinger equations with
white noise dispersion

Together with S. Dumont and Y. Mammeri [15], O. Goubet investigated the asymptotic behavior of the
solution to the one-dimensional Schrödinger equations with stochastic modulation and polynomial
nonlinearity. They showed that if the initial data is small enough and the degree of nonlinearity large
enough, then the expectation of the solution converges to 0 when time tends to infinity with the same
speed as that of the solution to the linearized equation. It should be noted that this speed of convergence
is half as fast as that of the corresponding deterministic equation.
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5.12 Uniform approximation of the 2d Navier-Stokes equation by stochastic inter-
acting particle systems

M. Simon and co-authors considered in [16] an interacting particle system modeled as a system of N
stochastic differential equations driven by Brownian motions. They proved that the (mollified) empirical
process converges, uniformly in time and space variables, to the solution of the two-dimensional Navier–
Stokes equations written in vorticity form. The proofs follow a semigroup approach.

5.13 Review on various dynamics of interacting particle systems

M. Simon and co-authors presented in the ESAIM Proceedings a collection of recent results covering
various aspects of the dynamical properties of interacting particle systems [10], namely:

• the hydrodynamic limit of a facilitated exclusion process;

• a cut-off phenomenon for the mixing time of the weakly asymmetric exclusion process;

• a study of the infection time in the Duarte model;

• the study of a front propagation in the FA-1 f model.

5.14 Hydrodynamic limit for a chain with thermal and mechanical boundary forces

In a collaboration with S. Olla and T. Komorowski, [20], M. Simon proved the hydrodynamic limit for
an harmonic chain with a random exchange of momentum that conserves the kinetic energy but not
the momentum. The system is open and subject to two thermostats at the boundaries and to external
tension. Under a diffusive scaling of space-time, the authors proved that the empirical profiles of the two
locally conserved quantities, the volume stretch and the energy, converge to the solution of a nonlinear
diffusive system of conservative partial differential equations.

5.15 Stefan problem for a non-ergodic facilitated exclusion process

In [4], M. Simon, O. Blondel and C. Erignoux investigated the general hydrodynamics for the facilitated
exclusion process whose supercritical phase’s hydrodynamics has been previously investigated in [11].
This process is similar to the celebrated symmetric simple exclusion process, except that a particle is only
allowed to jump to a neighboring site if its other neighbor is occupied by a particle. This hard constraint
on the particle’s motion has a number of consequences on the microscopic and macroscopic behavior of
the system. In particular, under the critical density ρc = 1/2, the system quickly freezes out and particles
stop moving.

The purpose of this work is to investigate the macroscopic invasion of the frozen phase by the
ergodic phase, and the authors were able to prove that starting from a profile with both supercritical and
subcritical regions, the hydrodynamics for the facilitated exclusion process is given by a Stefan problem:
the diffusive supercritical phase progressively invades the subcritical phase via flat interfaces, until either
one of the phases disappears.

5.16 Non-equilibrium fluctuations of the weakly asymmetric normalized binary
contact path process

In [32], X. Xue and L. Zhao further investigated the problem studied in [38], where the authors proved a
law of large numbers for the empirical measure of the weakly asymmetric normalized binary contact
path process on Zd , d ≥ 3, and then conjectured that a central limit theorem should hold under a non-
equilibrium initial condition. They proved that the aforesaid conjecture is true when the dimension d of
the underlying lattice and the infection rate λ of the process are sufficiently large.
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5.17 Non-existence results for semilinear elliptic problems

Establishing nonexistence results of nontrivial solutions to partial differential equations is of fundamental
importance, either from the theoretical point of view or also for the applications. In the context of
semilinear Dirichlet boundary value problems (posed in bounded domains of the Euclidean space),
the classical identity by Pohozaev provides a nonexistence result if the following three conditions hold:
the dimension of the Euclidean space is greater or equal than three, the domain is star-shaped and the
nonlinearity has non-positive primitive. In the work [24], S. López-Martínez and A. Molino proved with a
different technique that the first two conditions may be removed, so they obtained a nonexistence result
for any smooth bounded domain and in any dimension assuming only the condition on the nonlinearity.
As an application, they proved that the unique solution to the dissipative Sine-Gordon equation tends to
zero in the energy norm as the time diverges.

5.18 Lane–Emden problems with quadratic gradient terms

Semilinear Dirichlet boundary value problems with a power-like nonlinearity with superlinear growth are
called Lane–Emden problems in the literature. These problems are classical and have been widely studied
since the pioneering work by Ambrosetti and Rabinowitz, in which existence of nontrivial solutions is
established via the Mountain Pass Theorem. In the work [30], S. López-Martínez considered a Lane-
Emden problem perturbed with a lower order term with natural growth in the gradient of the solution.
For these modified Lane–Emden problems, it has been previously observed in the literature that the
structure of the solutions may differ or not from the one of the classical semilinear problem, depending
such differences depending on on the parameters of the equation. The main achievement in [30] is the
fact that the new approach allows to consider lower order terms with non-constant coefficients and
singularities. The techniques are based on Topological Degree theory and the a priori estimates are
obtained via a blow-up method.

6 Partnerships and cooperations

6.1 Action de développement technologique

The team has a 2-year ADT project named “SIMPAPH” (2019–2021), the aim of which is the production of
a numerical code for multimode optical fibers and another code for the simulation of large systems of
particles. A. Roget is funded on this project.

6.2 ANR
ANR ODA project

Participants André de Laire.

• Title: Dispersive and random waves

• ANR reference: ANR-18-CE40-0020

• Coordinator: N. Tzvetkov, Université de Cergy-Pontoise

• Setpember 2018 – September 2022
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ANR BoB project

Participants Adrien Hardy.

• Title: Bayes on a Budget — big data and expensive models

• ANR reference: ANR-16-CE23-0003

• Coordinator: R. Bardenet, CNRS & Université de Lille

• Duration: October 2016 – October 2020

ANR JCJC project MICMOV

Participants Marielle Simon (project coordinator).

• Title: MICroscopic description of MOVing interfaces

• Type: Mathématiques (CE40) 2019

• ANR reference: ANR-19-CE40-0012

• Duration: February 2020 – January 2024

MATMOVIN project cofunded by the European Union together with the “fonds de développement
régional”

Participants Marielle Simon (project coordinator).

• Title: Description microscopique des transitions de phase et interfaces mobiles : avancées mathé-
matiques

• Type: Post-doc grant of 2 years

• Duration: September 2020 – August 2022

ANR PRC MAMBO

Participants Olivier Goubet (coordinator).

• Title: MAthematical Modelling of Biological invasiOn

• O. Goubet has applied as Principal Investigator to an ANR PRC project related to mathematical
modeling in Ecology. This project gathers mathematicians from Lille and Amiens and ecologists
from Amiens.

• Project accepted for Phase 2 — to be submitted on Apr 26, 2021
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6.3 LabEx CEMPI

Through its affiliation to the Laboratoire Paul Painlevé (LPP), the PARADYSE team is involved in the
LabEx CEMPI, a common project between the LPP and the laboratoire de Physique des Lasers, Atomes et
Molécules (PhLAM). In particular, S. De Bièvre is a member of the executive committee of the LabEx.

• Title: Centre Européen pour les Mathématiques la Physique et leurs Interactions

• ANR reference: 11-LABX-007

• Coordinator: E. Fricain (LPP, Université de Lille)

• Duration: February 2012 – December 2024 (project renewed in 2019)

• Partners: Laboratoire Paul Painlevé (LPP) and Laser Physics department (PhLAM), université de
Lille

• Budget: 6 960 395 euros

7 Dissemination

7.1 Promoting scientific activities

7.1.1 Scientific events: organisation

A. de Laire co-organized the “Journée des Doctorants en Mathématiques du Nord-Pas-de-Calais 2020”,
on Friday September 11 2020, at Auditorium du Musée des Beaux-Arts (Musée des Beaux-Arts de Calais).
Link to the event’s webpage: https://indico.math.cnrs.fr/event/5629/timetable.

O. Goubet will organize the scientific meeting of the Fédération de Recherche in Mathematics in
Hauts-de-France. Due to the pandemic situation this is not confirmed at this date.

7.1.2 Member of the organizing committees

O. Goubet is member of the organizing committee of two international conferences:

• “Analyse appliquée et modélisation”, Monastir, Tunisia, scheduled in October 2021
http://dimenza.perso.math.cnrs.fr/zahrouni.html

• a conference in the honor of S. Nicaise, Valenciennes, scheduled in November 2021
https://nicaise2021.sciencesconf.org/

7.1.3 Member of the Editorial Boards

• S. De Bièvre is Associate Editor of the Journal of Mathematical Physics

• O. Goubet is Associate Editor of the Journal of Mathematical Studies

• O. Goubet is Associate Editor of Advances in Nonlinear Analysis

• O. Goubet is Associate Editor for the DCDS-S Special Issue in memory of E. Zahrouni. The Special
Editorial Board is A. Miranville, F. Ben Nasr, O. Goubet and P. Poullet.

7.1.4 Reviewer – reviewing activities

All permanent members of the PARADYSE team work as referees for many of the main scientific publica-
tions in analysis, probability and statistical physics.

7.1.5 Invited talks

The paradyse team members take active part in numerous scientific conferences, workshops and semi-
nars, and in particular give frequent talks both in France and abroad.

https://indico.math.cnrs.fr/event/5629/timetable
http://dimenza.perso.math.cnrs.fr/zahrouni.html
https://nicaise2021.sciencesconf.org/


14 Inria Annual Report 2020

7.1.6 Leadership within the scientific community

O. Goubet is the president of Société de Mathématiques Appliquées et Industrielles.

7.1.7 Scientific expertise

A. de Laire served as reviewer for the evaluation of research at Charles University (Prague, Czech republic).

7.1.8 Research administration

A. de Laire and S. De Bièvre are both members of “Conseil de Laboratoire Paul Painlevé” at Université de
Lille.

S. De Bièvre is member of the executive committee of the LabEx CEMPI.

7.2 Teaching - Supervision - Juries

7.2.1 Teaching

The Paradyse team teaches various undergraduate level courses in several partner universities and
Grandes Écoles. We only make explicit mention here of the Master courses (level M1-M2) and the doctoral
courses.

• Master: O. Goubet and A. de Laire, “Modélisation et Approximation par Différences Finies”, M1,
Université de Lille.

• Master: M. Simon, “Introduction à la physique statistique”, M2, Université de Lille

• Master: M. Simon, “Markov Chains and Applications”, Université de Lille and École Centrale Lille
(before 2019-2020)

• Doctoral School: S. De Bièvre, “Quantum information”, 12h

• Master: O. Goubet, “Markov Chains and Applications”, Université de Lille and École Centrale Lille
(2020-2021)

• Master: O. Goubet “Etude de problèmes elliptiques et paraboliques”, M1, Université de Lille

In addition, A. de Laire was in charge of the Master 2 of Applied Mathematics at Université de Lille
until August 2020. S. De Bièvre represents (since 2018) the department of Mathematics in the organization
of the newly created Master of Data Science of EC Lille, Université de Lille and IMT.

7.2.2 Supervision

• A. de Laire is the post-doc advisor of S. López Martinez, on the study of nonlocal Gross-Pitaevski
equations. This post-doctoral research visit is funded by Inria from October 2020 until April 2022.

• M. Simon and C. Erignoux are the post-doc advisors of L. Zhao. This post-doctoral research visit is
funded by the Tremplin ERC project MATMOVIN (2020–2022).

• G. Dujardin is co-advising the PhD dissertation of A. Nahas, on the numerical simulation of multi-
species Bose-Einstein condensates (2019–2022, funded by the Region Hauts-de-France and the
LabEx CEMPI).

• G. Dujardin co-advised the M1 internship of Esther Rubinowitz (June – July 2020), which was
funded by the PARADYSE team.

• C. Erignoux, G. Dujardin and M. Simon supervize the work of A. Roget in the context of the ADT
SIMPAPH.

• O. Goubet is co-advising the PhD dissertation of G. Delvoye on mathematical modeling for ecology.
This PhD was supported by the Région Hauts-de-France (2017–2020)
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• O. Goubet is co-advising the PhD dissertation of M. Abidi on logarithmic Schrödinger equations.
This PhD is supported (1998–2021) by the Région Hauts-de-France.

• O. Goubet is co-advising the PhD dissertation of A. Masset on the shallow water equations with
Coriolis term. This PhD is supported (2019–2022) by Université Picardie Jules Verne.

7.2.3 Juries

• G. Dujardin served as a reviewer in the jury of the PhD thesis of Sami Siraj-Dine, at École des Ponts
ParisTech, co-advised by Éric Cancès, Clotilde Fermanian-Kammerer and Antoine Levitt, defended
on December 17, 2020, entitled “Dynamics of electrons in 2D materials”.

7.3 Popularization

G. Dujardin collaborated in a comic strip popularizing the work of the team in optical fibers for the
“magazine du centre Inria de Lille” in 2020.
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