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2 Overall objectives

2.1 Introduction

Efficient processing, i.e., analysis, storage, access and transmission of visual content, with continuously
increasing data rates, in environments which are more and more mobile and distributed, remains a key
challenge of the signal and image processing community. New imaging modalities, High Dynamic Range
(HDR) imaging, multiview, plenoptic, light fields, 360o videos, generating very large volumes of data
contribute to the sustained need for efficient algorithms for a variety of processing tasks.

Building upon a strong background on signal/image/video processing and information theory, the
goal of the SIROCCO team is to design mathematically founded tools and algorithms for visual data
analysis, modeling, representation, coding, and processing, with for the latter area an emphasis on
inverse problems related to super-resolution, view synthesis, HDR recovery from multiple exposures,
denoising and inpainting. Even if 2D imaging is still within our scope, the goal is to give a particular
attention to HDR imaging, light fields, and 360o videos. The project-team activities are structured and
organized around the following inter-dependent research axes:

• Visual data analysis

• Signal processing and learning methods for visual data representation and compression

• Algorithms for inverse problems in visual data processing

• Distributed coding for interactive communication.

While aiming at generic approaches, some of the solutions developed are applied to practical problems
in partnership with industry (InterDigital, Ateme, Orange) or in the framework of national projects. The
application domains addressed by the project are networked visual applications taking into account
their various requirements and needs in terms of compression, of network adaptation, of advanced
functionalities such as navigation, interactive streaming and high quality rendering.

2.2 Visual Data Analysis

Most visual data processing problems require a prior step of data analysis, of discovery and modeling
of correlation structures. This is a pre-requisite for the design of dimensionality reduction methods, of
compact representations and of fast processing techniques. These correlation structures often depend
on the scene and on the acquisition system. Scene analysis and modeling from the data at hand is hence
also part of our activities. To give examples, scene depth and scene flow estimation is a cornerstone of
many approaches in multi-view and light field processing. The information on scene geometry helps
constructing representations of reduced dimension for efficient (e.g. in interactive time) processing of
new imaging modalities (e.g. light fields or 360o videos).
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2.3 Signal processing and learning methods for visual data representation and com-
pression

Dimensionality reduction has been at the core of signal and image processing methods, for a number
of years now, hence have obviously always been central to the research of Sirocco. These methods
encompass sparse and low-rank models, random low-dimensional projections in a compressive sensing
framework, and graphs as a way of representing data dependencies and defining the support for learning
and applying signal de-correlating transforms. The study of these models and signal processing tools
is even more compelling for designing efficient algorithms for processing the large volumes of high-
dimensionality data produced by novel imaging modalities. The models need to be adapted to the data
at hand through learning of dictionaries or of neural networks. In order to define and learn local low-
dimensional or sparse models, it is necessay to capture and understand the underlying data geometry, e.g.
with the help of manifolds and manifold clustering tools. It also requires exploiting the scene geometry
with the help of disparity or depth maps, or its variations in time via coarse or dense scene flows.

2.4 Algorithms for inverse problems in visual data processing

Based on the above models, besides compression, our goal is also to develop algorithms for solving a
number of inverse problems in computer vision. Our emphasis is on methods to cope with limitations of
sensors (e.g. enhancing spatial, angular or temporal resolution of captured data, or noise removal), to
synthesize virtual views or to reconstruct (e.g. in a compressive sensing framework) light fields from a
sparse set of input views, to recover HDR visual content from multiple exposures, and to enable content
editing (we focus on color transfer, re-colorization, object removal and inpainting). Note that view
synthesis is a key component of multiview and light field compression. View synthesis is also needed to
support user navigation and interactive streaming. It is also needed to avoid angular aliasing in some
post-capture processing tasks, such as re-focusing, from a sparse light field. Learning models for the data
at hand is key for solving the above problems.

2.5 Distributed coding for interactive communication

The availability of wireless camera sensors has also been spurring interest for a variety of applications
ranging from scene interpretation, object tracking and security environment monitoring. In such camera
sensor networks, communication energy and bandwidth are scarce resources, motivating the search
for new distributed image processing and coding solutions suitable for band and energy limited net-
working environments. Our goal is to address theoretical issues such as the problem of modeling the
correlation channel between sources, and to practical coding solutions for distributed processing and
communication and for interactive streaming.

3 Research program

3.1 Introduction

The research activities on analysis, compression and communication of visual data mostly rely on tools
and formalisms from the areas of statistical image modeling, of signal processing, of machine learning,
of coding and information theory. Some of the proposed research axes are also based on scientific
foundations of computer vision (e.g. multi-view modeling and coding). We have limited this section to
some tools which are central to the proposed research axes, but the design of complete compression
and communication solutions obviously rely on a large number of other results in the areas of motion
analysis, transform design, entropy code design, etc which cannot be all described here.

3.2 Data Dimensionality Reduction

Keywords: Manifolds, graph-based transforms, compressive sensing.

Dimensionality reduction encompasses a variety of methods for low-dimensional data embedding,
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such as sparse and low-rank models, random low-dimensional projections in a compressive sensing
framework, and sparsifying transforms including graph-based transforms. These methods are the corner-
stones of many visual data processing tasks (compression, inverse problems).

Sparse representations, compressive sensing, and dictionary learning have been shown to be powerful
tools for efficient processing of visual data. The objective of sparse representations is to find a sparse
approximation of a given input data. In theory, given a dictionary matrix A ∈ Rm×n , and a data b ∈ Rm

with m << n and A is of full row rank, one seeks the solution of min{‖x‖0 : Ax = b}, where ‖x‖0 denotes
the `0 norm of x, i.e. the number of non-zero components in x. A is known as the dictionary, its columns
a j are the atoms, they are assumed to be normalized in Euclidean norm. There exist many solutions
x to Ax = b. The problem is to find the sparsest solution x, i.e. the one having the fewest nonzero
components. In practice, one actually seeks an approximate and thus even sparser solution which
satisfies min{‖x‖0 : ‖Ax−b‖p ≤ ρ}, for some ρ ≥ 0, characterizing an admissible reconstruction error.

The recent theory of compressed sensing, in the context of discrete signals, can be seen as an effec-
tive dimensionality reduction technique. The idea behind compressive sensing is that a signal can be
accurately recovered from a small number of linear measurements, at a rate much smaller than what is
commonly prescribed by the Shannon-Nyquist theorem, provided that it is sparse or compressible in a
known basis. Compressed sensing has emerged as a powerful framework for signal acquisition and sensor
design, with a number of open issues such as learning the basis in which the signal is sparse, with the
help of dictionary learning methods, or the design and optimization of the sensing matrix. The problem
is in particular investigated in the context of light fields acquisition, aiming at novel camera design with
the goal of offering a good trade-off between spatial and angular resolution.

While most image and video processing methods have been developed for cartesian sampling grids,
new imaging modalities (e.g. point clouds, light fields) call for representations on irregular supports
that can be well represented by graphs. Reducing the dimensionality of such signals require designing
novel transforms yielding compact signal representation. One example of transform is the Graph Fourier
transform whose basis functions are given by the eigenvectors of the graph Laplacian matrix L = D−A,
where D is a diagonal degree matrix whose i th diagonal element is equal to the sum of the weights of
all edges incident to the node i , and A the adjacency matrix. The eigenvectors of the Laplacian of the
graph, also called Laplacian eigenbases, are analogous to the Fourier bases in the Euclidean domain and
allow representing the signal residing on the graph as a linear combination of eigenfunctions akin to
Fourier Analysis. This transform is particularly efficient for compacting smooth signals on the graph.
The problems which therefore need to be addressed are (i) to define graph structures on which the
corresponding signals are smooth for different imaging modalities and (ii) the design of transforms
compacting well the signal energy with a tractable computational complexity.

3.3 Deep neural networks

Keywords: Autoencoders, Neural Networks, Recurrent Neural Networks.

From dictionary learning which we have investigated a lot in the past, our activity is now evolving
towards deep learning techniques which we are considering for dimensionality reduction. We address
the problem of unsupervised learning of transforms and prediction operators that would be optimal in
terms of energy compaction, considering autoencoders and neural network architectures.

An autoencoder is a neural network with an encoder ge , parametrized by θ, that computes a represen-
tation Y from the data X , and a decoder gd , parametrized by φ, that gives a reconstruction X̂ of X (see
Figure below). Autoencoders can be used for dimensionality reduction, compression, denoising. When it
is used for compression, the representation need to be quantized, leading to a quantized representation
Ŷ = Q(Y ) (see Figure below). If an autoencoder has fully-connected layers, the architecture, and the
number of parameters to be learned, depends on the image size. Hence one autoencoder has to be
trained per image size, which poses problems in terms of genericity. To avoid this limitation, architectures
without fully-connected layer and comprising instead convolutional layers and non-linear operators,
forming convolutional neural networks (CNN) may be preferrable. The obtained representation is thus a
set of so-called feature maps.

The other problems that we address with the help of neural networks are scene geometry and scene
flow estimation, view synthesis, prediction and interpolation with various imaging modalities. The



6 Inria Annual Report 2020

Figure 1: Illustration of an autoencoder.

problems are posed either as supervised or unsupervised learning tasks. Our scope of investigation
includes autoencoders, convolutional networks, variational autoencoders and generative adversarial
networks (GAN) but also recurrent networks and in particular Long Short Term Memory (LSTM) networks.
Recurrent neural networks attempting to model time or sequence dependent behaviour, by feeding back
the output of a neural network layer at time t to the input of the same network layer at time t+1, have
been shown to be interesting tools for temporal frame prediction. LSTMs are particular cases of recurrent
networks made of cells composed of three types of neural layers called gates.

Deep neural networks have also been shown to be very promising for solving inverse problems (e.g.
super-resolution, sparse recovery in a compressive sensing framework, inpainting) in image processing.
Variational autoencoders, generative adversarial networks (GAN), learn, from a set of examples, the latent
space or the manifold in which the images, that we search to recover, reside. The inverse problems can
be re-formulated using a regularization in the latent space learned by the network. For the needs of the
regularization, the learned latent space may need to verify certain properties such as preserving distances
or neighborhood of the input space, or in terms of statistical modeling. GANs, trained to produce images
that are plausible, are also useful tools for learning texture models, expressed via the filters of the network,
that can be used for solving problems like inpainting or view synthesis.

3.4 Coding theory

Keywords: OPTA limit (Optimum Performance Theoretically Attainable), Rate allocation, Rate-Distortion
optimization, lossy coding, joint source-channel coding multiple description coding, channel modeliza-
tion, oversampled frame expansions, error correcting codes..

Source coding and channel coding theory 1 is central to our compression and communication
activities, in particular to the design of entropy codes and of error correcting codes. Another field in
coding theory which has emerged in the context of sensor networks is Distributed Source Coding (DSC). It
refers to the compression of correlated signals captured by different sensors which do not communicate
between themselves. All the signals captured are compressed independently and transmitted to a central
base station which has the capability to decode them jointly. DSC finds its foundation in the seminal
Slepian-Wolf 2 (SW) and Wyner-Ziv 3 (WZ) theorems. Let us consider two binary correlated sources
X and Y . If the two coders communicate, it is well known from Shannon’s theory that the minimum
lossless rate for X and Y is given by the joint entropy H(X ,Y ). Slepian and Wolf have established in 1973
that this lossless compression rate bound can be approached with a vanishing error probability for long
sequences, even if the two sources are coded separately, provided that they are decoded jointly and that
their correlation is known to both the encoder and the decoder.

In 1976, Wyner and Ziv considered the problem of coding of two correlated sources X and Y , with
respect to a fidelity criterion. They have established the rate-distortion function R ∗X |Y (D) for the case
where the side information Y is perfectly known to the decoder only. For a given target distortion D,
R∗X |Y (D) in general verifies RX |Y (D) ≤ R∗X |Y (D) ≤ RX (D), where RX |Y (D) is the rate required to encode

1T. M. Cover and J. A. Thomas, Elements of Information Theory, Second Edition, July 2006.
2D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources.” IEEE Transactions on Information Theory, 19(4),

pp. 471-480, July 1973.
3A. Wyner and J. Ziv, “The rate-distortion function for source coding ith side information at the decoder.” IEEE Transactions on

Information Theory, pp. 1-10, January 1976.
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X if Y is available to both the encoder and the decoder, and RX is the minimal rate for encoding X without
SI. These results give achievable rate bounds, however the design of codes and practical solutions for
compression and communication applications remain a widely open issue.

4 Application domains

4.1 Overview

The application domains addressed by the project are:

• Compression with advanced functionalities of various imaging modalities

• Networked multimedia applications taking into account needs in terms of user and network
adaptation (e.g., interactive streaming, resilience to channel noise)

• Content editing, post-production, and computational photography.

4.2 Compression of emerging imaging modalities

Compression of visual content remains a widely-sought capability for a large number of applications. This
is particularly true for mobile applications, as the need for wireless transmission capacity will significantly
increase during the years to come. Hence, efficient compression tools are required to satisfy the trend
towards mobile access to larger image resolutions and higher quality. A new impulse to research in video
compression is also brought by the emergence of new imaging modalities, e.g. high dynamic range (HDR)
images and videos (higher bit depth, extended colorimetric space), light fields and omni-directional
imaging.

Different video data formats and technologies are envisaged for interactive and immersive 3D video
applications using omni-directional videos, stereoscopic or multi-view videos. The "omni-directional
video" set-up refers to 360-degree view from one single viewpoint or spherical video. Stereoscopic video
is composed of two-view videos, the right and left images of the scene which, when combined, can
recreate the depth aspect of the scene. A multi-view video refers to multiple video sequences captured
by multiple video cameras and possibly by depth cameras. Associated with a view synthesis method, a
multi-view video allows the generation of virtual views of the scene from any viewpoint. This property can
be used in a large diversity of applications, including Three-Dimensional TV (3DTV), and Free Viewpoint
Video (FVV). In parallel, the advent of a variety of heterogeneous delivery infrastructures has given
momentum to extensive work on optimizing the end-to-end delivery QoS (Quality of Service). This
encompasses compression capability but also capability for adapting the compressed streams to varying
network conditions. The scalability of the video content compressed representation and its robustness
to transmission impairments are thus important features for seamless adaptation to varying network
conditions and to terminal capabilities.

4.3 Networked visual applications

Free-viewpoint Television (FTV) is a system for watching videos in which the user can choose its viewpoint
freely and change it at anytime. To allow this navigation, many views are proposed and the user can
navigate from one to the other. The goal of FTV is to propose an immersive sensation without the
disadvantage of Three-dimensional television (3DTV). With FTV, a look-around effect is produced without
any visual fatigue since the displayed images remain 2D. However, technical characteristics of FTV are
large databases, huge numbers of users, and requests of subsets of the data, while the subset can be
randomly chosen by the viewer. This requires the design of coding algorithms allowing such a random
access to the pre-encoded and stored data which would preserve the compression performance of
predictive coding. This research also finds applications in the context of Internet of Things in which
the problem arises of optimally selecting both the number and the position of reference sensors and of
compressing the captured data to be shared among a high number of users.

Broadband fixed and mobile access networks with different radio access technologies have enabled
not only IPTV and Internet TV but also the emergence of mobile TV and mobile devices with internet
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capability. A major challenge for next internet TV or internet video remains to be able to deliver the
increasing variety of media (including more and more bandwidth demanding media) with a sufficient
end-to-end QoS (Quality of Service) and QoE (Quality of Experience).

4.4 Editing, post-production and computational photography

Editing and post-production are critical aspects in the audio-visual production process. Increased ways of
“consuming” visual content also highlight the need for content repurposing as well as for higher interaction
and editing capabilities. Content repurposing encompasses format conversion (retargeting), content
summarization, and content editing. This processing requires powerful methods for extracting condensed
video representations as well as powerful inpainting techniques. By providing advanced models, advanced
video processing and image analysis tools, more visual effects, with more realism become possible. Our
activies around light field imaging also find applications in computational photography which refers to
the capability of creating photographic functionalities beyond what is possible with traditional cameras
and processing tools.

5 Highlights of the year

5.1 Awards

• C. Guillemot has be award an ANR Chair on Artificial Intelligence forthe project DeepCIM (Deep
learning for computational imaging with emerging image modalities), Sept. 2020- Août 2023.

• Together with Tampere UNiv., MidSweden Univ. and TTechnical Univ. Berlin, the SIROCCO team
has been awarded a European Joint Doctorate project, Plenoptima, building on the ERC-CLIM and
financing 15 joint PhD degrees.

6 New software and platforms

6.1 New software

6.1.1 LMVS-Net

Name: LMVS-Net: Lightweight Neural Network for Monocular View Synthesis with Occlusion Handling

Keywords: Light fields, View synthesis, Deep learning

Functional Description: This code implements the method described in A Lightweight Neural Network
for Monocular View Synthesis with Occlusion Handling, allowing to perform monocular view
synthesis in a stereo setting. From one input image, it computes a view laterally located, left-side or
right-side, and with the required disparity range depending on user input. It is also able to retrieve
a disparity map from the input image, as well as a confidence map to distinguish the occluded
regions, as well as to evaluate the pixelwise accuracy of the prediction. The code was developed
using Keras and TensorFlow.

Publication: hal-02428602

Contact: Simon Evain

Participants: Simon Evain, Christine Guillemot

6.1.2 Compression of omnidirectional images on the sphere

Keywords: Image compression, Omnidirectional image

https://hal.inria.fr/hal-02428602
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Functional Description: This code implements a compression scheme of omnidirectional images. The
approach operates directly on the sphere, without the need to project the data on a 2D image. More
specifically, from the sphere pixelization, called healpix, the code implements the partition of the
set of pixels into blocks, a block scanning order, an intra prediction between blocks, and a Graph
Fourier Transform for each block residual. Finally, the image to be displayed in the viewport is
generated.

Authors: Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy

Contacts: Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy

6.1.3 Interactive compression for omnidirectional images and texture maps of 3D models

Keywords: Image compression, Random access

Functional Description: This code implements a new image compression algorithm that allows to
navigate within a static scene. To do so, the code provides access in the compressed domain to
any block and therefore allows extraction of any subpart of the image. This codec implements this
interactive compression for two image modalities: omnidirectional images and texture maps of 3D
models. For omnidirectional images the input is a 2D equirectangular projection of the 360 image.
The output is the image seen in the viewport. For 3D models, the input is a texture map and the 3D
mesh. The output is also the image seen in the viewport.

The code consists of three parts: (A) an offline encoder (B) an online bit extractor and (C) a decoder.
The offline encoder (i) partitions the image into blocks, (ii) optimizes the positions of the access
blocks, (iii) computes a set of geometry aware predictions for each block (to cover all possible
navigation paths), (iv) implements transform quantization for all blocks and their predictions, and
finally (v) evaluates the encoding rates. The online bit extractor (Part B) first computes the optimal
and geometry aware scanning order. Then it extracts in the bitstream, the sufficient amount of
information to allow the decoding of the requested blocks. The last part of the code is the decoder
(Part C). The decoder reconstructs the same scanning order as the one computed at the online bit
extractor. Then, the blocks are decoded (inverse transform, geometry aware predictions, ...) and
reconstructed. Finally the image in the viewport is generated.

Authors: Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy

Contacts: Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy

6.1.4 Monocular-LF-VS

Name: Neural Network with Adversarial Loss for Light Field Synthesis from a Single Image

Keywords: Light fields, Deep learning, View synthesis

Functional Description: The code implement a lightweight neural network architecture with an adver-
sarial loss for generating a fulllight field from one single image. The method is able to estimate
disparity maps and automatically identify occluded regions from one single image thanks to a dis-
parity confidence map based on forward-backward consistency checks. The disparity confidence
map also controls the use of an adversarial loss for occlusion handling. The approach outper-
forms reference methods when trained and tested on light field data. Besides,we also designed
the method so that it can efficiently generate a full light field from one single image, even when
trained only on stereo data. This allows us to generalize our approach for view synthesis to more
diversedata and semantics.

URL: http://clim.inria.fr/DataSoftware.html

Publication: hal-03024210

Contact: Simon Evain

Participants: Simon Evain, Christine Guillemot

http://clim.inria.fr/DataSoftware.html
https://hal.inria.fr/hal-03024210
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6.1.5 FDL-Compress

Name: FDL-Compress: Light Field Compression using Fourier Disparity Layers

Keywords: Light fields, Compression, Sparse decomposition

Functional Description: This code implements a compression method for light fields based on the
Fourier Disparity Layer representation. This light field representation consists in a set of layers
that can be efficiently constructed in the Fourier domain from a sparse set of views, and then
used to reconstruct intermediate viewpoints without requiring a disparity map. In the proposed
compression scheme, a subset oflight field views is encoded first and used to construct a Fourier
Disparity Layer model from which a second subset of views is predicted. After encoding and
decoding the residual of those pre-dicted views, a larger set of decoded views is available, allowing
us to refine the layer model in order to predict the next views with increased accuracy. The
procedure is repeated until the complete set of light field views is encoded.

URL: http://clim.inria.fr/DataSoftware.html

Publication: hal-02130487

Contact: Christine Guillemot

Participants: Elian Dib, Mikael Le Pendu, Christine Guillemot

6.1.6 LF-Slomo

Name: LF-Slomo: LF video temporal interpolation method

Keywords: Light fields, Learning, Temporal interpolation

Functional Description: This code implements a method for temporal interpolation of sparsely sampled
video light fields using dense scene flows. Given light fields at two time instants, the goal is to
interpolate an intermediate light field to form a spatially, angularly and temporally coherent light
field video sequence. We first compute angularly coherent bidirectional scene flows (4D-SFE
method) between the two input light fields. We then use the optical flows and the two light fields as
inputs to a convolutional neural network that synthesizes independently the views of the light field
at an intermediate time.

URL: http://clim.inria.fr/DataSoftware.html

Publication: hal-02924662v1

Contact: Christine Guillemot

Participants: Pierre David, Mikael Le Pendu, Christine Guillemot

6.1.7 LFVS

Name: LFVS: Light Field View Synthesis

Keywords: Light fields, View synthesis, Deep learning

Functional Description: The code implements a learning-based framework for light field view synthesis
from a subset of input views. Building upon a light-weight optical flow estimation network toobtain
depth maps, our method employs two reconstruction modules in pixel and feature domains respec-
tively. For the pixel-wise reconstruction, occlusions are explicitly handled by a disparity-dependent
interpolation filter, whereas in-painting on disoccluded areas is learned by convolutional layers.
Due to disparity inconsistencies, the pixel-based reconstruction may lead to blurriness in highly
textured areasas well as on object contours. On the contrary, the feature-based reconstruction well
performs on high frequencies,making the reconstruction in the two domains complementary. End-
to-end learning is finally performed including a fusion module merging pixel and feature-based
reconstruc-tions.

http://clim.inria.fr/DataSoftware.html
https://hal.inria.fr/hal-02130487
http://clim.inria.fr/DataSoftware.html
https://hal.inria.fr/hal-02924662v1
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URL: http://clim.inria.fr/DataSoftware.html

Publication: hal-02507722

Contact: Christine Guillemot

Participants: Jinglei Shi, Xiaoran Jiang, Christine Guillemot

6.1.8 LFDE-FLEX

Name: LFDE-FLEX: A Framework for Learning Based Depth from a Flexible Subset of Dense and Sparse
Light Field Views

Keywords: Light fields, Depth estimation, Deep learning

Functional Description: The code implements a learning based depth estimation framework suitable
for both densely and sparsely sampled light fields. The proposed framework consists of three
processing steps: initial depth estimation, fusion with occlusion handling, and refinement. The
estimation can be performed from a flexible subset of input views. The fusion of initial disparity
estimates, relying on two warping error measures, allows us to have an accurate estimation in
occluded regions and along the contours. In contrast with methods relying on the computation of
cost volumes, the proposed approach does not need any prior information on the disparity range.

Publication: hal-02155040

Contact: Jinglei Shi

Participants: Jinglei Shi, Xiaoran Jiang, Christine Guillemot

6.1.9 Rate-distortion optimized motion estimation for on the sphere compression of 360 videos

Keywords: Image compression, Omnidirectional video

Functional Description: This code implements a new video compression algorithm for omnidirectional
(360°) videos. The main originality of this algorithm is that the compression is performed directly
on the sphere. First, it saves computational complexity as it avoids to project the sphere onto a 2D
map, as classically done. Second, and more importantly, it allows to achieve a better rate-distortion
tradeoff, since neither the visual data nor its domain are distorted. This code implements an
extension from still images to videos of the on-the-sphere compression for omnidirectional still
images. In particular, it implements a novel rate-distortion optimized motion estimation algorithm
to perform motion compensation. The optimization is performed among a set of existing motion
models and a novel motion model called tangent-linear+t. Moreover, a finer search pattern, called
spherical-uniform, is also implemented for the motion parameters, which leads to a more accurate
block prediction. The novel algorithm leads to rate-distortion gains compared to methods based
on a unique motion model.

More precisely, this algorithm performs inter-prediction and contains (i) a motion estimation,
(ii) a motion compensation and computation of a residue, (iii) the encoding of this residue, (iv)
estimation of rate and distortion. Several visualization tools are also provided such as rate-distortion
curves, but also search pattern centers, and motion field.

Authors: Alban Marie, Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy

Contacts: Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy

http://clim.inria.fr/DataSoftware.html
https://hal.inria.fr/hal-02507722
https://hal.inria.fr/hal-02155040
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6.1.10 4D-SFE

Name: 4D-SFE: 4D Scene Flow Estimator from Light Fields

Keywords: Light fields, Scene Flow, Motion analysis, Depth estimation

Functional Description: This software implements a method for scene flow estimation from light fields
by computing an optical flow, a disparity map and a disparity variation map for the whole light
field. It takes as inputs two consecutive frames from a light field video, as well as optical flow and
disparity maps estimated for each view of the light field (e.g. with a deep model like PWC-Net) and
saved as .flo files. First the light field is divided into 4D clusters called superrays, then a neighboring
weighted graph is built between the different clusters and finally a 4D affine model is fitted for
every cluster, using the initial estimations from the optical flow and disparity estimations that are
contained in the cluster and in the neighboring clusters.

Publication: hal-02506355

Contact: Christine Guillemot

Participants: Pierre David, Christine Guillemot, Mikael Le Pendu

6.2 New platforms

6.2.1 Acquisition of multi-view sequences for Free viewpoint Television

Participants Laurent Guillo, Thomas Maugey.

The scientific and industrial community is nowadays exploring new multimedia applications using 3D
data (beyond stereoscopy). In particular, Free Viewpoint Television (FTV) has attracted much attention
in the recent years. In those systems, user can choose in real time its view angle from which he wants to
observe the scene. Despite the great interest for FTV, the lack of realistic and ambitious datasets penalizes
the research effort. The acquisition of such sequences is very costly in terms of hardware and working
effort, which explains why no multi-view videos suitable for FTV has been proposed yet.

In the context of the project ADT ATeP 2016-2018 (funded by Inria), such datasets were acquired
and some calibration tools have been developed. First 40 omnidirectional cameras and their associated
equipments have been acquired by the team (thanks to Rennes Metropole funding). We have first focused
on the calibration of this camera, i.e., the development of the relationship between a 3D point and its
projection in the omnidirectional image. In particular, we have shown that the unified spherical model
fits the acquired omnidirectional cameras. Second, we have developed tools to calibrate the cameras in
relation to each other. Finally, we have made a capture of 3 multiview sequences that have been made
available to the community via a public web site.

6.2.2 CLIM processing toolbox

Participants Pierre Allain, Christine Guillemot, Laurent Guillo.

As part of the ERC Clim project, the EPI Sirocco is developing a light field processing toolbox. The
toolbox and libraries are developed in C++ and the graphical user interface relies on Qt. As input data,
this tool accepts both sparse light fields acquired with High Density Camera Arrays (HDCA) and denser
light fields captured with plenoptic cameras using microlens arrays (MLA). At the time of writing, in
addition to some simple functionalities, such as re-focusing, change of viewpoints, with different forms
of visualization, the toolbox integrates more advanced tools for scene depth estimation from sparse and
dense light fields, for super-ray segmentation and scene flow estimation, and for light field denoising and
angular interpolation using anisotropic diffusion in the 4D ray space. The toolbox is now being interfaced

https://hal.inria.fr/hal-02506355


Project SIROCCO 13

with the C/C++ API of the tensorflow platform, in order to execute deep models developed in the team for
scene depth and scene flow estimation, view synthesis, and axial super-resolution.

6.2.3 ADT: Interactive Coder of Omnidirectional Videos

Participants Sebastien Bellenous, Navid Mahmoudian Bidgoli, Thomas Maugey.

Figure 2: By nature, a video 360◦ cannot be seen entirely, because it covers all the direction. The developed
coding scheme will aim at 1) transmitting only what is necessary and 2) bringing no transmission rate
overhead.

In the Intercom project, we have studied the impact of interactivity on the coding performance. We
have, for example, tackled the following problem: is it possible to compress a 360◦ video (as shown in
Fig.2) once for all, and then partly extract and decode what is needed for a user navigation, while, keeping
good compression performance? After having derived the achievable theoretical bounds, we have built a
new omnidirectional video coder [12]. This original architecture enables to reduce significantly the cost
of interactivity compared to the conventional video coders. The project ICOV proposes to start from this
promising proof of concept and to develop a complete and well specified coder that is aimed to be shared
with the community.

7 New results

7.1 Visual Data Analysis

Keywords: Scene depth, Scene flows, 3D modeling, Light-fields, camera design, 3D point clouds.

7.1.1 Single sensor light field acquisition using coded masks

Participants Christine Guillemot, Guillaume Le Guludec, Ehsan Miandji, Hoai
Nam Nguyen.

We designed novel light field acquisition solutions based on coded masks placed in a compressive
sensing framework. We first developed a variational approach for reconstructing color light fields in
the compressed sensing framework with very low sampling ratio, using both coded masks and color
filter arrays (CFA) [21]. A coded mask is placed in front of the camera sensor to optically modulate



14 Inria Annual Report 2020

incoming rays, while a color filter array is assumed to be implemented at the sensor level to compress
color information. Hence, the light field coded projections, operated by a combination of the coded mask
and the CFA, measure incomplete color samples with a three times lower sampling ratio than reference
methods that assume full color (channel-by-channel) acquisition. We then derived adaptive algorithms
to directly reconstruct the light field from raw sensor measurements by minimizing a convex energy
composed of two terms. The first one is the data fidelity term which takes into account the use of CFAs in
the imaging model, and the second one is a regularization term which favors the sparse representation
of light fields in a specific transform domain. Experimental results show that the proposed approach
produces a better reconstruction both in terms of visual quality and quantitative performance when
compared to reference reconstruction methods that implicitly assume prior color interpolation of coded
projections.

We then developed a unifying image formation model that abstracts the architecture of most existing
compressive-sensing light-field cameras, equipped with single lens and coded masks, as an equivalent
multi-mask camera [15]. It allows to compare different designs with a number of criteria: compression
rate, light efficiency, measurement incoherence, as well as acquisition quality. Moreover, the underlying
multi-mask camera can be flexibly adapted for various applications, such as single and multiple acquisi-
tions, spatial super-resolution, parallax reconstruction, and color restoration. We also derived a generic
variational algorithm solving all these concrete problems by considering appropriate sampling operators.
We have also designed solutions for light field video cameras [9]. We have pursued this study by designing
deep learning architectures for light field reconstruction from a compressed set of measurements, and
for optilizing the color coded mask distribution.

7.1.2 Deep Light Field Acquisition Using Learned Coded Mask Distributions for Color Filter Array
Sensors

Participants Christine Guillemot, Guillaume Le Guludec, Ehsan Miandji.

Compressive light field photography enables light field acquisition using a single sensor by utilizing a
color coded mask. This approach is very cost effective since consumer-level digital cameras can be turned
into a light field camera by simply placing a coded mask between the sensor and the aperture plane and
solving an inverse problem to obtain an estimate of the original light field. We have developed a deep
learning architecture for compressive light field acquisition using a color coded mask and a sensor with
Color Filter Array (CFA). Unlike previous methods where a fixed mask pattern is used, our deep network
learns the optimal distribution of the color coded mask pixels. The proposed solution enables end-to-end
learning of the color-coded mask distribution and the reconstruction network, taking into account the
sensor CFA. Consequently, the resulting network can efficiently perform joint demosaicing and light
field reconstruction of images acquired with color-coded mask and a CFA sensor. Compared to previous
methods based on deep learning with monochrome sensors, as well as traditional compressive sensing
approaches using CFA sensors, we obtain superior color reconstruction of the light fields.

7.1.3 Compressive HDR Light Field Camera with Multiple ISO Sensors

Participants Christine Guillemot, Ehsan Miandji, Hoai Nam Nguyen.

We have proposed a new design for compressive HDR light field cameras, combining multiple ISO
photography with coded mask acquisition, placed in a compressive sensing framework. The proposed
camera model is based on a main lens, a multi-ISO sensor and a coded mask located in the optical path
between the main lens and the sensor (close to the sensor) that projects the spatio-angular information of
the light field onto the 2D sensor. The model encompasses different acquisition scenarios with different
ISO patterns and gains. In the experiments, we assume that the sensor has an in-built color filter array
(CFA), even if the model can enable other types of sensors (e.g. monochrome). We developed a dictionary-
based algorithm to jointly perform color demosaicing, light field angular information reconstruction and
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HDR samples recovery from the multiple ISO measurements. We also created two HDR light field data
sets: one synthetic dataset created using blender and a real light field dataset created from low dynamic
range (LDR) captures at multiple exposures. Experimental results show that, with a high compression
rate, the proposed method yields a higher light field reconstruction quality compared with a multiple
LDR captures, and compared with the fusion of light fields captured at different ISOs.

7.1.4 Scene flow estimation from light fields

Participants Pierre David, Christine Guillemot, Mikael Le Pendu.

Scene flows can be seen as 3D extensions of optical flows by also giving the variation in depth along
time in addition to the optical flow. Scene flows are tools needed for temporal processing of light fields.
Estimating dense scene flows in light fields poses obvious problems of complexity due to the very large
number of rays or pixels. This is even more difficult when the light field is sparse, i.e., with large disparities,
due to the problem of occlusions.

We have developed a local 4D affine model to represent scene flows, taking into account light field
epipolar geometry. The model parameters are estimated per cluster in the 4D ray space. This model led
to the development of a dense scene flow estimation method from light fields [6]. The local 4D affine
parameters are in this case derived by fitting the model on initial motion and disparity estimates obtained
by using 2D dense optical flow estimation techniques. We have shown that the model is very effective
for estimating scene flows from 2D optical flows (see Fig.3). The model regularizes the optical flows and
disparity maps, and interpolates disparity variation values in occluded regions. The proposed model
allows us to benefit from deep learning-based 2D optical flow estimation methods while ensuring scene
flow geometry consistency in the 4 dimensions of the light field [24].

Figure 3: Visual comparison of our method with respect to reference methods (PWC-Net: deep learning
method for optical flow estimation; oriented light field window (OLFW), Piece-wise Rigid Scene Model
(PRSM), Object Scene Flow (OSF)). First row: optical flows; Second row: disparity maps; Third row:
disparity variations. The red pixels are the occlusion mask where there is no ground truth disparity
variation available.

7.1.5 Depth estimation at the decoder in the MPEG-I standard

Participants Patrick Garus, Christine Guillemot, Thomas Maugey.
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Immersive video coding enables depth image-based rendering at the client side while minimizing
bitrate, pixel rate and complexity. In collaboration with Orange labs, we investigate whether the classical
approach of sending the geometry of a scene as depth maps is appropriate to serve this purpose. Previous
work shows that bypassing depth transmission entirely and estimating depths at the client side improves
the synthesis performance while saving bitrate and pixel rate. In order to understand if the encoder
side depth maps contain information that is beneficial to be transmitted, we have explored a hybrid
approach which enables partial depth map transmission using an RD-based decision in the depth coding
process. For each coding block, depth maps can either be transmitted or derived at the decoder side, thus
providing more control of the quality of rendered views. This approach reveals that partial depth map
transmission may improve the rendering performance but does not present a good compromise in terms
of compression efficiency. Building on this conclusion, we have addressed the remaining drawbacks of
decoder side depth estimation: complexity and depth map inaccuracy. We propose a novel system that
takes advantage of high quality depth maps at the server side by encoding them into lightweight features
that support the depth estimator at the client side. These features allow the reduction of the amount of
data that has to be handled during decoder side depth estimation by 87 %, which significantly speeds up
the cost computation and the energy minimization of the depth estimator. Furthermore, -46.0 % and
-37.9 % average synthesis BD-Rate gains are achieved compared to the classical approach with depth
maps estimated at the encoder.

7.1.6 Spherical feature extraction for 360 light field reconstruction from omni-directional fish-eye
camera captures

Participants Christine Guillemot, Fatma Hawary, Thomas Maugey.

With the increasing interest in wide-angle or 360° scene captures, the extraction of descriptors well
suited to the geometry of this content is a key problem for a variety of processing tasks. Algorithms
designed for feature extraction in 2D images are hardly applicable to 360◦ images or videos as they
do not well take into account their specific spherical geometry. To cope with this difficulty, it is quite
common to perform an equirectangular projection of the spherical content, and to compute spherical
features on projected and stitched content. However, this process introduces geometrical and stitching
distortions with implications on the efficiency of further processing such as camera pose estimation, 3D
point localization and depth estimation. Indeed, even if some algorithms, mainly feature descriptors,
tend to remap the projected images into a sphere, important radial distortions remain existent in the
processed data.

In a work published in [19], we have proposed to adapt the spherical model to the geometry of the 360◦
fish-eye camera, and avoid the stitching process. We have considered the angular coordinates of feature
points on the sphere for evaluation. We have assessed the precision of different operations such as camera
rotation angle estimation and 3D point depth calculation on spherical camera images. Experimental
results have shown that the proposed fish-eye adapted sphere mapping allows more stability in angle
estimation, as well as in 3D point localization, compared to the one on projected and stitched contents.

7.2 Signal processing and learning methods for visual data representation and com-
pression

Keywords: Sparse representation, data dimensionality reduction, compression, scalability, rate-distortion
theory.

7.2.1 A non-parametric sparse BRDF model

Participants Christine Guillemot, Ehsan Miandji.
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Our τ= 262 [log-plus] Our τ= 262 [log-plus-cosine] Bagher et al. reference

46.1956 dB 37.4564 dB 29.7606 dB

Table 1: Visual results and SNR values of one material example from our BRDF model with τ = 262
coefficients on two different BRDF mappings (log-plus and log-plus-cosine).

Accurate modeling of bidirectional reflectance distribution functions (BRDFs) is a key component in
photo-realistic and physically-based rendering. This paper presents a novel non-parametric BRDF
model based on a dictionary-learning approach, in which a set of basis functions (or atoms) is trained to
adapt to the space of BRDFs The proposed model is capable of accurately representing a wide range of
different materials. The basis functions are optimized to enable a high degree of sparsity in the BRDF
representation, i.e. most of the coefficients can be nullified while keeping the reconstruction error at
minimum. We evaluate our method on the MERL, DTU and RGL-EPFL BRDF databases. Experimental
results show that our approach results in ∼ 5dB higher SNR, on average, and significantly lower variance
during reconstruction and rendering compared to current state-of-the-art models (see Fig.1).

7.2.2 3D point cloud processing and plenoptic point cloud compression

Participants Christine Guillemot, Maja Krivokuca.

We have been developing a new method for the efficient representation and compression of colours
in plenoptic point clouds. A plenoptic point cloud is essentially a Surface Light Field representation on a
3D point cloud, such that for each spatial point (x, y, z) that defines the point cloud’s shape, there are
multiple colour values associated with this point, which represent the colour of that point as seen from
different viewpoints in 3D space [20] (see Fig.4 for a visual illustration of a plenoptic point cloud). The
few existing algorithms for plenoptic colour compression rely on the availability of a dense distribution
of viewpoints arranged in a regular, predictable manner around the 3D object represented by the point
cloud. However, in real-life capture scenarios, this assumption is not realistic. Real-life captures are more
likely to result in a sparse sampling of viewpoints, which may not be distributed in a regular manner
around the 3D object. Moreover, at each viewpoint, only certain spatial (x, y, z) points will be visible; the
remaining spatial points will be occluded. Therefore, the valid viewpoints are also likely to be in different
locations (angular positions) for different spatial points. For these reasons, we have been working on a
new representation and compression method for plenoptic point cloud colours, which can work with
both: the irregular, sparse viewpoints that are more likely in real-life captures; and the regular, dense
viewpoints that are more typical of computer-generated Surface Light Field data. Results are showing
that our compression algorithm may also be able to provide a notable improvement in rate-distortion
performance over the current state-of-the-art point cloud colour compression methods.

7.2.3 Low-rank models and representations for light fields

Participants Elian Dib, Christine Guillemot, Xiaoran Jiang, Mikael Le Pendu.

We have introduced a local low-rank approximation method using a parameteric disparity model
[7]. The local support of the approximation is defined by super-rays. Superrays can be seen as a set of
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Figure 4: Visual illustration of a plenoptic point cloud (left), and how a shiny section of this point cloud
looks different (has different colours) from different camera viewpoints.

super-pixels that are coherent across all light field views. The light field low-rank assumption depends on
how much the views are correlated, i.e. on how well they can be aligned by disparity compensation. We
have therefore introduced a disparity estimation method using a low-rank prior. We have considered a
parametric model describing the local variations of disparity within each super-ray, and alternatively
search for the best parameters of the disparity model and of the low-rank approximation. We have
assessed the proposed disparity parametric model, by considering an affine disparity model. We have
shown that using the proposed disparity parametric model and estimation algorithm gives an alignment
of superpixels across views that favours the low-rank approximation compared with using disparity
estimated with classical computer vision methods. The low-rank matrix approximation is then computed
on the disparity compensated super-rays using a singular value decomposition (SVD). A coding algorithm
has been developed for the different components of the proposed disparity-compensated low-rank
approximation [7].

7.2.4 Graph coarsening and dimensionality reduction for graph transforms of reduced complexity

Participants Christine Guillemot, Thomas Maugey, Mira Rizkallah.

Graph-based transforms are powerful tools for signal representation and energy compaction. How-
ever, their use for high dimensional signals such as light fields poses obvious problems of complexity. To
overcome this difficulty, one can consider local graph transforms defined on supports of limited dimen-
sion, which may however not allow us to fully exploit long-term signal correlation. We have developed
methods to optimize local graph supports in a rate distortion sense for efficient light field compression.
A large graph support can be well adapted for compression efficiency, however at the expense of high
complexity. In this case, we use graph reduction techniques to make the graph transform feasible. We also
consider spectral clustering to reduce the dimension of the graph supports while controlling both rate
and complexity (see Fig.5 for an example of segmentation resulting from spectral clustering). We derived
the distortion and rate models which are then used to guide the graph optimization. We developped
a complete light field coding scheme based on the proposed graph optimization tools. Experimental
results show rate-distortion performance gains compared to the use of fixed graph support. The method
also provides competitive results when compared against HEVC-based and the JPEG Pleno light field
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coding schemes. WE also assess the method against a homography-based low rank approximation and a
Fourier disparity layer based coding method.

Figure 5: An example of obtained segmentation map.

7.2.5 Quantization-aware and attention-based deep decoder for image and light field compression

Participants Christine Guillemot, Xiaoran Jiang.

We present an image compression solution using a simple feed-forward neural network that can
generate images from randomly chosen and fixed noise. The network is composed of several elementary
blocks, each block containing a sequence of different operations: one convolutional layer, one upsam-
pling layer with scale factor 2, one non-linear activation layer (rectified linear units) ReLU6, one batch
normalization layer and finally a lightweight attention module which is used to better exploit cross-
channel and spatial meaningful features. Quantization-aware learning is applied, and the quantified
network parameters are then transmitted after applying entropy coding. The fact that the network is
highly under parameterized (the number of weight parameters is much smaller than the number of
pixels) makes the model a good candidate for image compression. We have observed that our method can
outperform the HEVC standard and be competitive against other state-of-the-art deep learning-based
compression methods. The scheme is now being extended to light field compression.

7.3 Algorithms for inverse problems in visual data processing

Keywords: Inpainting, view synthesis, super-resolution.

7.3.1 View synthesis in light fields and stereo set-ups

Participants Simon Evain, Christine Guillemot, Xiaoran Jiang, Jinglei Shi.

We have developed a learning-based framework for light field view synthesis from a subset of in-
put views [23]. Building upon a light-weight optical flow estimation network to obtain depth maps, our
method employs two reconstruction modules in pixel and feature domains respectively. For the pixel-wise
reconstruction, occlusions are explicitly handled by a disparity-dependent interpolation filter, whereas
inpainting on disoccluded areas is learned by convolutional layers. Due to disparity inconsistencies, the
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pixel-based reconstruction may lead to blurriness in highly textured areas as well as on object contours.
On the contrary, the feature-based reconstruction performs well on high frequencies, making the re-
construction in the two domains complementary. End-to-end learning is finally performed including
a fusion module merging pixel and feature-based reconstructions. Experimental results show that our
method achieves state-of-the-art performance on both synthetic and real-world datasets, moreover, it is
even able to extend light fields baseline by extrapolating high quality views without additional training.

We have also designed s lightweight neural network architecture with an adversarial loss for gen-
erating a fulllight field from one single image [18]. The method is able to estimate disparity maps and
automatically identifyoccluded regions from one single image thanks to a disparity confidence map
based on forward-backwardconsistency checks. The disparity confidence map also controls the use of an
adversarial loss for occlusionhandling. The approach outperforms reference methods when trained and
tested on light field data. Besides,we also designed the method so that it can efficiently generate a full
light field from one single image, evenwhen trained only on stereo data. This allows us to generalize our
approach for view synthesis to more diversedata and semantics.

7.3.2 Light field video temporal interpolation

Participants Pierre David, Christine Guillemot, Mikael Le Pendu.

We have addressed the problem of temporal interpola-tion of sparsely sampled video light fields using
dense sceneflows [17]. Given light fields at two time instants, the goal is to in-terpolate an intermediate
light field to form a spatially, angu-larly and temporally coherent light field video sequence. Wefirst
compute angularly coherent bidirectional scene flows be-tween the two input light fields. We then use
the optical flowsand the two light fields as inputs to a convolutional neuralnetwork that synthesizes inde-
pendently the views of the lightfield at an intermediate time. In order to measure the angularconsistency
of a light field, we propose a new metric based onepipolar geometry. Experimental results show that the
pro-posed method produces light fields that are angularly coher-ent while keeping similar temporal and
spatial consistency asstate-of-the-art video frame interpolation methods

7.3.3 Neural networks for inverse problems in 2D imaging

Participants Christine Guillemot, Aline Roumy, Alexander Sagel.

The Deep Image Prior has been recently introduced to solve inverse problems in image processing with
no need for training data other than the image itself. However, the original training algorithm of the
Deep Image Prior constrains the reconstructed image to be on a manifold described by a convolutional
neural network. For some problems, this neglects prior knowledge and can render certain regularizers
ineffective. We have developed an alternative approach that relaxes this constraint and fully exploits
all prior knowledge [22]. We have evaluated our algorithm on the problem of reconstructing a high-
resolution image from a downsampled version and observed a significant improvement over the original
Deep Image Prior algorithm.

7.4 Distributed coding for interactive communication

Keywords: Information theory, interactive communication, model selection, robust detection, Slepian-
Wolf coding, Wyner-Ziv coding.

7.4.1 Random Access in standardized video compression schemes: the random access versus com-
pression efficiency tradeoff and the optimal reference positioning problem



Project SIROCCO 21

Participants Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy.

Data acquired over long periods of time like High Definition (HD) videos or records from a sensor
over long time intervals, have to be efficiently compressed, to reduce their size. The compression has also
to allow efficient access to random parts of the data upon request from the users. Efficient compression
is usually achieved with prediction between data points at successive time instants. However, this creates
dependencies between the compressed representations, which is contrary to the idea of random access.
Prediction methods rely in particular on reference data points, used to predict other data points, and the
placement of these references balances compression efficiency and random access. Existing solutions to
position the references use ad hoc methods. In [16], we study this joint problem of compression efficiency
and random access. We introduce the storage cost as a measure of the compression efficiency and the
transmission cost for the random access ability. We show that the reference placement problem that
trades off storage with transmission cost is an integer linear programming problem, that can be solved
by standard optimizer. Moreover, we show that the classical periodic placement of the references is
optimal, when the encoding costs of each data point are equal and when requests of successive data
points are made. In this particular case, a closed form expression of the optimal period is derived. Finally,
the optimal proposed placement strategy is compared with an ad hoc method, where the references
correspond to sources where the prediction does not help reducing significantly the encoding cost. The
optimal proposed algorithm shows a bit saving of -20% with respect to the ad hoc method.

7.4.2 Interactive compression of omnidirectional images: a complete new and optimal framework
to solve the random access versus compression efficiency tradeoff problem

Participants Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy.

The random access versus compression efficiency tradeoff is the core of interactive compression. In
the preceding paragraph, the problem is solved while keeping standardized predictive coding schemes.
In [12] instead, we propose a new and optimal interactive compression scheme for omnidirectional
images. This requires two characteristics: efficient compression of data, to lower the storage cost, and
random access ability to extract part of the compressed stream requested by the user (for reducing the
transmission rate). In standardized compression schemes, data is predicted by a series of references
that have been pre-defined and compressed. There references are the only access points in the data.
This contrasts with the spirit of random accessibility. We propose a solution for this problem based
on incremental codes implemented by rate-adaptive channel codes. This scheme encodes the image
while adapting to any user request and leads to an efficient coding that is flexible in extracting data
depending on the available information at the decoder. Therefore, only the information that is needed
to be displayed at the user’s side is transmitted during the user’s request, as if the request was already
known at the encoder. The experimental results demonstrate that our coder obtains a better transmission
rate than the state-of-the-art tile-based methods at a small cost in storage. Moreover, the transmission
rate grows gradually with the size of the request and avoids a staircase effect, which shows the perfect
suitability of our coder for interactive transmission. This work has been cited in the IEEE MMTC Review
Letter of October 2020.

7.4.3 Model and rate selection in interactive compression: duality with the mismatched channel
coding problem and conjecture

Participants Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy.

Interactive compression refers to the problem of compressing data while sending only the part
requested by the user. In this context, the challenge is to perform the extraction in the compressed

https://mmc.committees.comsoc.org/files/2021/01/IEEE-ComSoc-MMTC-Comm-Review-October-2020.pdf
https://mmc.committees.comsoc.org/files/2021/01/IEEE-ComSoc-MMTC-Comm-Review-October-2020.pdf
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domain directly. Theoretical results exist, but they assume that the true distribution is known. In practical
scenarios instead, the distribution must be estimated. In [11], we first formulate the model selection
problem for interactive compression and show that it requires to estimate the excess rate incurred by
mismatched decoding. Then, we propose a new expression to evaluate the excess rate of mismatched
decoding in a practical case of interest: when the decoder is the belief- propagation algorithm. We
also propose a novel experimental setup to validate this closed-form formula. We show a good match
for practical interactive compression schemes based on fixed-length Low-Density Parity-Check (LDPC)
codes. This new formula is of great importance to perform model and rate selection.

7.4.4 Random access to a compressed database, under the constraint of massive requests

Participants Thomas Maugey, Aline Roumy.

In [13], we study the compression problem with Massive Random Access (MRA). A set of correlated
sources is encoded once for all and stored on a server while a large number of clients access various
subsets of these sources. Due to the number of concurrent requests, the server is only able to extract
a bitstream from the stored data: no re-encoding can be performed before the transmission of the
data requested by the clients. First, we formally define the MRA framework and propose to model the
constraints on the way subsets of sources may be accessed by a navigation graph. We introduce both
storage and transmission costs to characterize the performance of MRA. We then propose an Incremental
coding Based Extractable Compression (IBEC) scheme. We first show that this scheme is optimal in terms
of achievable storage and transmission costs. Second, we propose a practical implementation of our
IBEC scheme based on rate-compatible LDPC codes. Experimental results show that our IBEC scheme
can almost reach the same transmission costs as in traditional point-to-point source coding schemes,
while having a reasonable overhead in terms of storage cost.

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

CIFRE contract with Orange labs. on compression of immersive content

Participants Patrick Garus, Christine Guillemot, Thomas Maugey.

• Title : Compression of immersive content

• Research axis : 7.1.5

• Partners : Orange labs. (F. Henry), Inria-Rennes.

• Funding : Orange, ANRT.

• Period : Jan.2019-Dec.2021.

The goal of this Cifre contract is to develop novel compression methods for 6 DoF immersive video
content. This implies investigating depth estimation and view synthesis methods that would be robust to
quantization noise, for which deep learning solutions are being considered. This also implies developing
the corresponding coding mode decisions based on rate-distortion criteria.
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CIFRE contract with Ateme on neural networks for video compression

Participants Christine Guillemot, Yiqun Liu, Aline Roumy.

• Title : Neural networks for video compression of reduced complexity

• Partners : Ateme (T. Guionnet, M. Abdoli), Inria-Rennes.

• Funding : Ateme, ANRT.

• Period : Aug.2020-Jul.2023.

The goal of this Cifre contract is to investigate deep learning architectures for the inference of coding
modes in video compression algorithms with the ultimate goal of reducing the encoder complexity. The
first step addresses the problem of Intra coding modes and quad-tree partitioning inference. The next
step will consider Inter coding modes taking into account motion and temporal information.

Contract LITCHIE with Airbus on deep learning for satellite imaging

Participants Denis Bacchus, Christine Guillemot, Arthur Lecert, Aline Roumy.

• Title : Deep learning methods for low light vision

• Partners : Airbus (R. Fraisse), Inria-Rennes.

• Funding : BPI.

• Period : Sept.2020-Aug.2023.

The goal of this contract is to investigate deep learning methods for low light vision with sattelite imaging.
The SIROCCO team focuses on two complementary problems: compression of low light images and
restoration under conditions of low illumination, and hazing. The problem of low light image enhance-
ment implies handling various factors simultaneously including brightness, contrast, artifacts and noise.
We investigate solutions coupling the retinex theory, assuming that observed images can be decomposed
into reflectance and illumination, with machine learning methods. We address the compression problem
taking into account the processing tasks considered on the ground such as the restoration task, leading to
an end-to-end optimization approach.

Research collaboration contract with Mediakind on Multiple profile encoding optimization

Participants Reda Kaafarani, Thomas Maugey, Aline Roumy.

• Title : Multiple profile encoding optimization

• Partners : Mediakind, Inria-Rennes.

• Funding : Mediakind.

• Period : Dec.2020-May.2021.

The goal of the research contract is to compress and deliver video, while adapting the quality to the
available bandwidth and/or the user screen resolution. This contract is a pre-thesis contract.



24 Inria Annual Report 2020

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Inria international partners

Declared Inria International Partners: The SIROCCO team is collaborating with the following interna-
tional partners:

• Univ. of MidSweden, in the context of the Guest Professorship of C. Guillemot.

Informal International Partners: The SIROCCO team is collaborating with the following international
partners:

• Univ. of Linkoping, with the team of Prof. J. Unger, on HDR light field imaging with multi-ISO
sensors

• EPFL, with the team of Prof. P. Frossard and his student R. Azevedo, on graph signal processing and
learning on graphs

• X’ian Univ., with the team of Prof. Z. Xiao, on light field descriptors and axial super-resolution

• University College London (UCL), with Prof. L. Toni.

Informal National Partners: The SIROCCO team is collaborating with the following national partners:

• L2S, CentraleSupelec, with Prof. Michel Kieffer,

• ETIS laboratory UMR 8051, Cergy Pontoise, with Mael Le Treust.

9.2 International research visitors

The team has had the visit of

• S. Hajisharif, Univ. of Linkoping, in the context of the ERC-CLIM project.

9.2.1 Visits of international scientists

Research Stays Abroad: Three members of the SIROCCO team (A. Roumy, N. Mahmoudian Bidgoli, and
T. Maugey) have spent 2 weeks visiting the team of P. Frossard at EPFL, in Feb. 2020.

9.3 European initiatives

9.3.1 FP7 & H2020 Projects

ERC-CLIM

Participants Pierre David, Elian Dib, Simon Evain, Christine Guillemot, Lau-
rent Guillo, Fatma Hawary, Xiaoran Jiang, Maja Krivokuca, Guil-
laume Le Guludec, Ehsan Miandji, Hoai Nam Nguyen, Mira Rizkallah,
Jinglei Shi.

• Title : Computational Light field Imaging.

• Research axis : 7.1.4, 7.1.6, 7.1.1, 7.2.3, 7.2.4, 7.2.2, 7.3.1, 7.3.3

• Partners : Inria-Rennes

• Funding : European Research Council (ERC) advanced grant
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• Period : Sept. 2016 - Aug. 2021.

All imaging systems, when capturing a view, record different combinations of light rays emitted by the
environment. In a conventional camera, each sensor element sums all the light rays emitted by one point
over the lens aperture. Light field cameras instead measure the light along each ray reaching the camera
sensors and not only the sum of rays striking each point in the image. In one single exposure, they capture
the geometric distribution of light passing through the lens. This process can be seen as sampling the
plenoptic function that describes the intensity of the light rays interacting with the scene and received by
an observer at every point in space, along any direction of gaze, for all times and every wavelength.

The recorded flow of rays (the light field) is in the form of high-dimensional data (4D or 5D for static
and dynamic light fields). The 4D/5D light field yields a very rich description of the scene enabling ad-
vanced creation of novel images from a single capture, e.g. for computational photography by simulating
a capture with a different focus and a different depth of field, by simulating lenses with different apertures,
by creating images with different artistic intents. It also enables advanced scene analysis with depth and
scene flow estimation and 3D modeling. The goal of the ERC-CLIM project is to develop algorithms for
the entire static and video light fields processing chain. The planned research includes the development
of:

• Acquisition methods and novel coded-mask based camera models,

• Novel low-rank or graph-based models for dimensionality reduction and compression

• Deep learning methods for scene analysis (e.g. scene depth and scene flow estimation)

• Learning methods for solving a range of inverse problems: denoising, super-resolution, axial
super-resolution, view synthesis.

9.4 National initiatives

9.4.1 Project Action Exploratoire "Data Repurposing"

Participants Anju Jose Tom, Thomas Maugey.

Lossy compression algorithms trade bits for quality, aiming at reducing as much as possible the
bitrate needed to represent the original source (or set of sources), while preserving the source quality.
In the exploratory action "DARE", we propose a novel paradigm of compression algorithms, aimed at
minimizing the information loss perceived by the final user instead of the actual source quality loss, under
compression rate constraints.

In a first work published in [14], we first introduced the concept of perceived information (PI), which
reflects the information perceived by a given user experiencing a data collection, and which is evaluated
as the volume spanned by the sources features in a personalized latent space. This enabled us to formalize
the rate-PI optimization problem and propose an algorithm to solve this compression problem. Finally,
we validate our algorithm against benchmark solutions with simulation results, showing the gain in taking
into account users’ preferences while also maximizing the perceived information in the feature domain.

9.4.2 IA Chair: DeepCIM- Deep learning for computational imaging with emerging image modali-
ties

Participants Rita Fermanian, Christine Guillemot, Brandon Lebon, Mikael Le
Pendu.

The project aims at leveraging recent advances in three fields: image processing, computer vision and
machine (deep) learning. It will focus on the design of models and algorithms for data dimensionality
reduction and inverse problems with emerging image modalities. The first research challenge will
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concern the design of learning methods for data representation and dimensionality reduction. These
methods encompass the learning of sparse and low rank models, of signal priors or representations
in latent spaces of reduced dimensions. This also includes the learning of efficient and, if possible,
lightweight architectures for data recovery from the representations of reduced dimension. Modeling
joint distributions of pixels constituting a natural image is also a fundamental requirement for a variety
of processing tasks. This is one of the major challenges in generative image modeling, field conquered
in recent years by deep learning. Based on the above models, our goal is also to develop algorithms for
solving a number of inverse problems with novel imaging modalities. Solving inverse problems to retrieve
a good representation of the scene from the captured data requires prior knowledge on the structure
of the image space. Deep learning based techniques designed to learn signal priors, tcan be used as
regularization models.

9.4.3 Interactive Communication (INTERCOM): Massive random access to subsets of compressed
correlated data

Participants Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy.

• Partners : Inria-Rennes (Sirocco team and i4S team); LabSTICC, IMT Atlantique, Signal & Com-
munications Department; External partners: L2S, CentraleSupelec, Univ. Paris Sud; EPFL, Signal
Processing Laboratory (LTS4).

• Funding : Labex CominLabs.

• Period : Oct. 2016 - Dec. 2020.

This project aims to develop novel compression techniques allowing massive random access to large
databases. Indeed, we consider a database that is so large that, to be stored on a single server, the data
have to be compressed efficiently, meaning that the redundancy/correlation between the data have to be
exploited. The dataset is then stored on a server and made available to users that may want to access
only a subset of the data. Such a request for a subset of the data is indeed random, since the choice of the
subset is user-dependent. Finally, massive requests are made, meaning that, upon request, the server can
only perform low complexity operations (such as bit extraction but no decompression/compression).
Algorithms for two emerging applications of this problem are being developed: Free-viewpoint Television
(FTV) and massive requests to a database collecting data from a large-scale sensor network (such as
Smart Cities).

10 Dissemination

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

Member of the organizing committees C. Guillemot has been a member

• as keynote chair of the organizing committee of IEEE MultiMedia Signal Processing (MMSP) work-
shop, Tampere, Sept. 2020.

10.1.2 Scientific events: selection

Member of the conference program committees C. Guillemot has been a member

• of the program committe of the workshop "New Trends in Image Restoration and Enhancement
and challenges" held together with CVPR, June 2020.

• of the award committee of IEEE International Conference on Image Processing, Oct. 2020.
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• of the program committee of the International Conference on 3D Immersion (IC3D), Dec. 2020.

A. Roumy has been a member of

• the technical program committee of the CVPR 2020 workshop on New Trends in Image Restoration
and Enhancement (NTIRE),

• the technical program committee of the ECCV 2020 workshop and challenges on Advances in Image
manipulation (AIM),

• the technical program committee of the IEEE International Conference on Communications (ICC)
2020, Workshop on Machine Learning in Wireless Communications (ML4COM).

10.1.3 Journal

Member of the editorial boards

• C. Guillemot is Senior Area Editor (SAE) of EEE Trans. on Image Processing.

• C. Guillemot is associate editor of the Int. Journal of Mathematical Imaging and Vision.

• Thomas Maugey is Associate Editor of the EURASIP Journal on Advanced Signal Processing

• A. Roumy is associate editor of IEEE Trans. on Image Processing.

• A. Roumy is associate editor of the Springer Annals of Telecommunications.

10.1.4 Leadership within the scientific community

• C. Guillemot is responsible of the theme « compression et protection des données images » for the
realization of the encyclopedia SCIENCES of the publisher ISTE/Wiley (2019-2021).

• A. Roumy is a member of the IEEE IVMSP technical committee.

• A. Roumy is a Local Liaison Officer for the European Association for Signal Processing (EURASIP).

• A. Roumy is a member of the Executive board of the National Research group in Image and Signal
Processing (GRETSI).

10.1.5 Research administration

• C. Guillemot has been member of the jury of recrutment of an assistant Prof. at IMT-Atlantique,
May 2020.

• C. Guillemot has been a member of the Inria prizes of academy of sciences, Sept. 2020.

• C. Guillemot has been member of the CRCN jury of the Rennes Bretagne Atlantique center, Apr.
2020

• C. Guillemot has been member of the jury of admission of CRCN, July 2020.

• A. Roumy is a member of Inria evaluation committee,

• A. Roumy has been a member of the Inria Delegation committee of the Rennes Bretagne Atlantique
center, Febr. 2020,

• A. Roumy has been member of the CRCN/ISFP jury of the Bordeaux Sud Ouest center, June 2020,

• A. Roumy has been member of the CRCN/ISFP jury of the Nancy Grand Est center, June 2020,

• A. Roumy has been member of the CRCN/ISFP jury of the Grenoble Rhone Alpes center, June 2020.
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10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Master: C. Guillemot, courses on compression sensing and inverse problems, 6 hours, Midsweden
Univ., Sweden.

• Master: T. Maugey, course on 3D models in a module on advanced video, 4 hours (2018-2019), 12
hours (2019-2020), M2 SISEA, Univ. of Rennes 1, France.

• Master: T. Maugey, course on Image compression, 10 hours (2019-2020), M2 SISEA, Univ. of Rennes
1, France.

• Master: T. Maugey, course on Representation, editing and perception of digital images, 12 hours,
M2 SIF, Univ. of Rennes 1, France.

• Engineering degree: A. Roumy, Sparse methods in image and signal processing, 13 hours, INSA
Rennes, 5th year, Mathematical engineering, France.

• Master: A. Roumy, Foundations of smart sensing, 13.5 hours, ENSAI, Master of Science in Statistics
for Smart Data, France.

• Master: A. Roumy, Information theory, 15 hours, University Rennes 1, SIF master, France.

• Master: A. Roumy, High dimensional statistical learning, 9 hours, University Rennes 1, SIF Master,
France.

10.2.2 Juries

• C. Guillemot has been reviewer of the PhDs of:

– M. P. Dimopoulou, Univ. Cöte d’Azur, Dec. 2020

– R. Verhack, Technical Univ. Berlin, Apr. 2020

– S. Vagharshakyan, Tampere Univ., Feb. 2020

– A. El Rhammad, Univ. Rennes 1, Feb. 2020

– A. Alperovich, Univ. of Konstanz, Jan. 2020

11 Scientific production

11.1 Major publications

[1] S. Evain and C. Guillemot. ‘A Lightweight Neural Network for Monocular View Generation with
Occlusion Handling’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (Dec.
2019), pp. 1–14. DOI: 10.1109/TPAMI.2019.2960689. URL: https://hal.archives-ouvertes
.fr/hal-02428602.

[2] R. Farrugia and C. Guillemot. ‘Light Field Super-Resolution using a Low-Rank Prior and Deep
Convolutional Neural Networks’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2019), pp. 1–15. DOI: 10.1109/TPAMI.2019.2893666. URL: https://hal.archives-ouverte
s.fr/hal-01984843.
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922099. URL: https://hal.archives-ouvertes.fr/hal-02130555.

[5] E. Vural and C. Guillemot. ‘Out-of-sample generalizations for supervised manifold learning for
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11.2 Publications of the year

International journals

[6] P. David, M. Le Pendu and C. Guillemot. ‘Scene Flow Estimation from Sparse Light Fields Using a
Local 4D Affine Model’. In: IEEE Transactions on Computational Imaging (Mar. 2020), pp. 1–15. DOI:
10.1109/TCI.2020.2981200. URL: https://hal.archives-ouvertes.fr/hal-02506355.

[7] E. Dib, M. Le Pendu, X. Jiang and C. Guillemot. ‘Local low rank approximation with a parametric
disparity model for light field compression’. In: IEEE Transactions on Image Processing 29 (2020),
pp. 9641–9653. DOI: 10.1109/TIP.2020.3029655. URL: https://hal.archives-ouvertes.fr
/hal-02954202.

[8] R. Farrugia and C. Guillemot. ‘A Simple Framework to Leverage State-Of-The-Art Single-Image
Super-Resolution Methods to Restore Light Fields’. In: Signal Processing: Image Communication.
Elsevier Journal on Signal Processing: Image Communication, 80 (Feb. 2020), pp. 1–11. DOI: 10.10
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