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1 Team members, visitors, external collaborators

Research Scientists

• Florence Forbes [Team leader, Inria, Senior Researcher, from Apr 2020, HDR]

• Sophie Achard [CNRS, Senior Researcher, from Apr 2020, HDR]

• Julyan Arbel [Inria, Researcher, from Apr 2020, HDR]

• Stephane Girard [Inria, Senior Researcher, from Apr 2020, HDR]

Faculty Member

• Jean-Baptiste Durand [Institut polytechnique de Grenoble, Associate Professor, from Apr 2020]

Post-Doctoral Fellows

• Pascal Dkengne Sielenou [Inria, from Apr 2020]

• Antoine Usseglio-Carleve [Inria, from Apr 2020 until Sep 2020]

• Pierre Wolinski [Oxford, from Oct 2020]

PhD Students

• Karina Ashurbekova [Inria, from Apr 2020 until Jun 2020]

• Meryem Bousebata [Univ Grenoble Alpes, from Apr 2020]

• Fabien Boux [Univ Grenoble Alpes, from Apr 2020 until Aug 2020]

• Daria Bystrova [Univ Grenoble Alpes, from Apr 2020]

• Lucrezia Carboni [Univ Grenoble Alpes, from Oct 2020]

• Alexandre Constantin [Univ Grenoble Alpes, from Apr 2020]

• Benoit Kugler [Univ Grenoble Alpes, from Apr 2020]

• Hana Lbath [Univ Grenoble Alpes, from Oct 2020]

• Minh Tri Lê [Invensense, CIFRE, from Jun 2020]

• Theo Moins [Inria, from Oct 2020]

• Veronica Munoz Ramirez [Univ Grenoble Alpes, from Apr 2020 until Sep 2020]

• Giovanni Poggiato [Univ Grenoble Alpes, from Apr 2020]

• Mariia Vladimirova [Inria, from Apr 2020]

Technical Staff

• Fei Zheng [Inria, Engineer, from Apr 2020 until Sep 2020]

Interns and Apprentices

• Lucrezia Carboni [Univ Grenoble Alpes, from Apr 2020 until Jul 2020]

• Sami Djouadi [Univ Grenoble Alpes, from Apr 2020 until May 2020]

• Jiajie Li [Univ Grenoble Alpes, from Apr 2020 until Aug 2020]

• Tony Zheng [Inria, from Apr 2020 until Jul 2020]
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Administrative Assistants

• Geraldine Christin [Inria, from Dec 2020]

• Marion Ponsot [Inria, from Apr 2020 until Oct 2020]

Visiting Scientists

• Mario Beraha [Politecnico di Milano, from Oct 2020]

• Jonathan El-Methni [Université de Paris, from Oct 2020]

• Trung Tin Nguyen [Univ de Caen Basse-Normandie, from Sep 2020]

External Collaborator

• Sami Djouadi [Univ Grenoble Alpes, from Jun 2020 until Jul 2020]

2 Overall objectives

The STATIFY team focuses on statistics. Statistics can be defined as a science of variation where the
main question is how to acquire knowledge in the face of variation. In the past, statistics were seen
as an opportunity to play in various backyards. Today, the statistician sees his own backyard invaded
by data scientists, machine learners and other computer scientists of all kinds. Everyone wants to do
data analysis and some (but not all) do it very well. Generally, data analysis algorithms and associated
network architectures are empirically validated using domain-specific datasets and data challenges. While
winning such challenges is certainly rewarding, statistical validation lies on more fundamentally grounded
bases and raises interesting theoretical, algorithmic and practical insights. Statistical questions can be
converted to probability questions by the use of probability models. Once certain assumptions about the
mechanisms generating the data are made, statistical questions can be answered using probability theory.
However, the proper formulation and checking of these probability models is just as important, or even
more important, than the subsequent analysis of the problem using these models. The first question is
then how to formulate and evaluate probabilistic models for the problem at hand. The second question
is how to obtain answers after a certain model has been assumed. This latter task can be more a matter of
applied probability theory, and in practice, contains optimization and numerical analysis.

The STATIFY team aims at bringing strengths, at a time when the number of solicitations received by
statisticians increases considerably because of the successive waves of big data, data science and deep
learning. The difficulty is to back up our approaches with reliable mathematics while what we have is
often only empirical observations that we are not able to explain. Guiding data analysis with statistical
justification is a challenge in itself. STATIFY has the ambition to play a role in this task and to provide
answers to questions about the appropriate usage of statistics.

Often statistical assumptions do not hold. Under what conditions then can we use statistical methods
to obtain reliable knowledge? These conditions are rarely the natural state of complex systems. The
central motivation of STATIFY is to establish the conditions under which statistical assumptions and
associated inference procedures approximately hold and become reliable.

However, as George Box said "Statisticians and artists both suffer from being too easily in love with
their models". To moderate this risk, we choose to develop, in the team, expertise from different statistical
domains to offer different solutions to attack a variety of problems. This is possible because these domains
share the same mathematical food chain, from probability and measure theory to statistical modeling,
inference and data analysis.

Our goal is to exploit methodological resources from statistics and machine learning to develop
models that handle variability and that scale to high dimensional data while maintaining our ability to
assess their correctness, typically the uncertainty associated with the provided solutions. To reach this
goal, the team offers a unique range of expertise in statistics, combining probabilistic graphical models
and mixture models to analyze structured data, Bayesian analysis to model knowledge and regularize
ill-posed problems, non-parametric statistics, risk modeling and extreme value theory to face the lack, or
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impossibility, of precise modeling information and data. In the team, this expertise is organized to target
five key challenges:

1. Models for high dimensional, multimodal, heterogeneous data;

2. Spatial (structured) data science;

3. Scalable Bayesian models and procedures;

4. Understanding mathematical properties of statistical and machine learning methods;

5. The big problem of small data.

The first two challenges address sources of complexity coming from data, namely, the fact that observa-
tions can be: 1) high dimensional, collected from multiple sensors in varying conditions i.e. multimodal
and heterogeneous and 2) inter-dependent with a known structure between variables or with unknown
interactions to be discovered. The other three challenges focus on providing reliable and interpretable
models: 3) making the Bayesian approach scalable to handle large and complex data; 4) quantifying
the information processing properties of machine learning methods and 5) allowing to draw reliable
conclusions from datasets that are too small or not large enough to be used for training machine/deep
learning methods.

These challenges rely on our four research axes:

1. Models for graphs and networks;

2. Dimension reduction and latent variable modeling;

3. Bayesian modeling;

4. Modeling and quantifying extreme risk.

In terms of applied work, we will target high-impact applications in neuroimaging, environmental and
earth sciences.

3 Research program

3.1 Mixture models

Participants Jean-Baptiste Durand, Florence Forbes, Stephane Girard, Julyan Ar-
bel, Daria Bystrova, Giovanni Poggiato, Fabien Boux, Veronica Munoz
Ramirez, Benoit Kugler, Alexandre Constantin, Fei Zheng.

Keywords: Key-words: mixture of distributions, EM algorithm, missing data, conditional indepen-
dence, statistical pattern recognition, clustering, unsupervised and partially supervised learning..

In a first approach, we consider statistical parametric models, θ being the parameter, possibly multi-
dimensional, usually unknown and to be estimated. We consider cases where the data naturally divides
into observed data y = {y1, . . . , yn} and unobserved or missing data z = {z1, . . . , zn}. The missing data zi

represents for instance the memberships of one of a set of K alternative categories. The distribution of an
observed yi can be written as a finite mixture of distributions,

f (yi ;θ) =
K∑

k=1
P (zi = k;θ) f (yi | zi ;θ) . (1)

These models are interesting in that they may point out hidden variables responsible for most of the
observed variability and so that the observed variables are conditionally independent. Their estimation
is often difficult due to the missing data. The Expectation-Maximization (EM) algorithm is a general
and now standard approach to maximization of the likelihood in missing data problems. It provides
parameter estimation but also values for missing data.

Mixture models correspond to independent zi ’s. They have been increasingly used in statistical
pattern recognition. They enable a formal (model-based) approach to (unsupervised) clustering.
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3.2 Markov models

Participants Jean-Baptiste Durand, Florence Forbes, Karina Ashurbekova, Julyan Ar-
bel, Mariia Vladimirova.

Keywords: Key-words: graphical models, Markov properties, hidden Markov models, clustering,
missing data, mixture of distributions, EM algorithm, image analysis, Bayesian inference..

Graphical modelling provides a diagrammatic representation of the dependency structure of a joint
probability distribution, in the form of a network or graph depicting the local relations among variables.
The graph can have directed or undirected links or edges between the nodes, which represent the
individual variables. Associated with the graph are various Markov properties that specify how the graph
encodes conditional independence assumptions.

It is the conditional independence assumptions that give graphical models their fundamental modular
structure, enabling computation of globally interesting quantities from local specifications. In this way
graphical models form an essential basis for our methodologies based on structures.

The graphs can be either directed, e.g. Bayesian Networks, or undirected, e.g. Markov Random Fields.
The specificity of Markovian models is that the dependencies between the nodes are limited to the nearest
neighbor nodes. The neighborhood definition can vary and be adapted to the problem of interest. When
parts of the variables (nodes) are not observed or missing, we refer to these models as Hidden Markov
Models (HMM). Hidden Markov chains or hidden Markov fields correspond to cases where the zi ’s in (1)
are distributed according to a Markov chain or a Markov field. They are a natural extension of mixture
models. They are widely used in signal processing (speech recognition, genome sequence analysis) and in
image processing (remote sensing, MRI, etc.). Such models are very flexible in practice and can naturally
account for the phenomena to be studied.

Hidden Markov models are very useful in modelling spatial dependencies but these dependencies and
the possible existence of hidden variables are also responsible for a typically large amount of computation.
It follows that the statistical analysis may not be straightforward. Typical issues are related to the neigh-
borhood structure to be chosen when not dictated by the context and the possible high dimensionality of
the observations. This also requires a good understanding of the role of each parameter and methods
to tune them depending on the goal in mind. Regarding estimation algorithms, they correspond to an
energy minimization problem which is NP-hard and usually performed through approximation. We
focus on a certain type of methods based on variational approximations and propose effective algorithms
which show good performance in practice and for which we also study theoretical properties. We also
propose some tools for model selection. Eventually we investigate ways to extend the standard Hidden
Markov Field model to increase its modelling power.

3.3 Functional Inference, semi- and non-parametric methods

Participants Julyan Arbel, Daria Bystrova, Giovanni Poggiato, Stephane Girard, Flo-
rence Forbes, Antoine Usseglio Carleve, Pascal Dkengne Sielenou,
Meryem Bousebata, Sophie Achard
.

Keywords: Key-words: dimension reduction, extreme value analysis, functional estimation..

We also consider methods which do not assume a parametric model. The approaches are non-
parametric in the sense that they do not require the assumption of a prior model on the unknown
quantities. This property is important since, for image applications for instance, it is very difficult to
introduce sufficiently general parametric models because of the wide variety of image contents. Projection
methods are then a way to decompose the unknown quantity on a set of functions (e.g. wavelets). Kernel
methods which rely on smoothing the data using a set of kernels (usually probability distributions) are
other examples. Relationships exist between these methods and learning techniques using Support
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Vector Machine (SVM) as this appears in the context of level-sets estimation (see section 3.5). Such non-
parametric methods have become the cornerstone when dealing with functional data [66]. This is the case,
for instance, when observations are curves. They enable us to model the data without a discretization
step. More generally, these techniques are of great use for dimension reduction purposes (section 3.6).
They enable reduction of the dimension of the functional or multivariate data without assumptions on
the observations distribution. Semi-parametric methods refer to methods that include both parametric
and non-parametric aspects. Examples include the Sliced Inverse Regression (SIR) method [68] which
combines non-parametric regression techniques with parametric dimension reduction aspects. This
is also the case in extreme value analysis [65], which is based on the modelling of distribution tails (see
section 3.4). It differs from traditional statistics which focuses on the central part of distributions, i.e. on
the most probable events. Extreme value theory shows that distribution tails can be modelled by both a
functional part and a real parameter, the extreme value index.

3.4 Modelling extremal events

Extreme value theory is a branch of statistics dealing with the extreme deviations from the bulk of
probability distributions. More specifically, it focuses on the limiting distributions for the minimum or
the maximum of a large collection of random observations from the same arbitrary distribution. Let
X1,n ≤ . . . ≤ Xn,n denote n ordered observations from a random variable X representing some quantity of
interest. A pn-quantile of X is the value xpn such that the probability that X is greater than xpn is pn , i.e.
P (X > xpn ) = pn . When pn < 1/n, such a quantile is said to be extreme since it is usually greater than the
maximum observation Xn,n .

To estimate such quantiles therefore requires dedicated methods to extrapolate information beyond
the observed values of X . Those methods are based on Extreme value theory. This kind of issue appeared
in hydrology. One objective was to assess risk for highly unusual events, such as 100-year floods, starting
from flows measured over 50 years. To this end, semi-parametric models of the tail are considered:

P (X > x) = x−1/θ`(x), x > x0 > 0, (2)

where both the extreme-value index θ > 0 and the function `(x) are unknown. The function ` is a slowly
varying function i.e. such that

`(t x)

`(x)
→ 1 as x →∞ (3)

for all t > 0. The function `(x) acts as a nuisance parameter which yields a bias in the classical extreme-
value estimators developed so far. Such models are often referred to as heavy-tail models since the
probability of extreme events decreases at a polynomial rate to zero. It may be necessary to refine the
model (2,3) by specifying a precise rate of convergence in (3). To this end, a second order condition is
introduced involving an additional parameter ρ ≤ 0. The larger ρ is, the slower the convergence in (3) and
the more difficult the estimation of extreme quantiles.
More generally, the problems that we address are part of the risk management theory. For instance, in
reliability, the distributions of interest are included in a semi-parametric family whose tails are decreasing
exponentially fast. These so-called Weibull-tail distributions [10] are defined by their survival distribution
function:

P (X > x) = exp{−xθ`(x)}, x > x0 > 0. (4)

Gaussian, gamma, exponential and Weibull distributions, among others, are included in this family.
An important part of our work consists in establishing links between models (2) and (4) in order to
propose new estimation methods. We also consider the case where the observations were recorded
with a covariate information. In this case, the extreme-value index and the pn-quantile are functions of
the covariate. We propose estimators of these functions by using moving window approaches, nearest
neighbor methods, or kernel estimators.

3.5 Level sets estimation

Level sets estimation is a recurrent problem in statistics which is linked to outlier detection. In biology,
one is interested in estimating reference curves, that is to say curves which bound 90% (for example) of the
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population. Points outside this bound are considered as outliers compared to the reference population.
Level sets estimation can be looked at as a conditional quantile estimation problem which benefits from a
non-parametric statistical framework. In particular, boundary estimation, arising in image segmentation
as well as in supervised learning, is interpreted as an extreme level set estimation problem. Level sets
estimation can also be formulated as a linear programming problem. In this context, estimates are sparse
since they involve only a small fraction of the dataset, called the set of support vectors.

3.6 Dimension reduction

Our work on high dimensional data requires that we face the curse of dimensionality phenomenon.
Indeed, the modelling of high dimensional data requires complex models and thus the estimation of
high number of parameters compared to the sample size. In this framework, dimension reduction
methods aim at replacing the original variables by a small number of linear combinations with as small
as a possible loss of information. Principal Component Analysis (PCA) is the most widely used method
to reduce dimension in data. However, standard linear PCA can be quite inefficient on image data
where even simple image distortions can lead to highly non-linear data. Two directions are investigated.
First, non-linear PCAs can be proposed, leading to semi-parametric dimension reduction methods [67].
Another field of investigation is to take into account the application goal in the dimension reduction
step. One of our approaches is therefore to develop new Gaussian models of high dimensional data
for parametric inference [64]. Such models can then be used in a Mixtures or Markov framework for
classification purposes. Another approach consists in combining dimension reduction, regularization
techniques, and regression techniques to improve the Sliced Inverse Regression method [68].

4 Application domains

4.1 Image Analysis

Participants Veronica Munoz Ramirez, Florence Forbes, Stephane Girard, Fa-
bien Boux, Benoit Kugler, Alexandre Constantin.

As regards applications, several areas of image analysis can be covered using the tools developed in the
team. More specifically, in collaboration with team PERCEPTION, we address various issues in computer vi-
sion involving Bayesian modelling and probabilistic clustering techniques. Other applications in medical
imaging are natural. We work more specifically on MRI and functional MRI data, in collaboration with the
Grenoble Institute of Neuroscience (GIN). We also consider other statistical 2D fields coming from other
domains such as remote sensing, in collaboration with the Institut de Planétologie et d’Astrophysique
de Grenoble (IPAG) and the Centre National d’Etudes Spatiales (CNES). In this context, we worked on
hyperspectral and/or multitemporal images. In the context of the "pole de competivité" project I-VP, we
worked of images of PC Boards.

4.2 Biology, Environment and Medicine

Participants Florence Forbes, Stephane Girard, Jean-Baptiste Durand, Julyan Arbel,
Sophie Achard, Karina Ashurbekova, Fabien Boux, Veronica Munoz
Ramirez, Fei Zheng.

A third domain of applications concerns biology and medicine. We considered the use of mixture models
to identify biomakers. We also investigated statistical tools for the analysis of fluorescence signals in
molecular biology. Applications in neurosciences are also considered. In the environmental domain, we
considered the modelling of high-impact weather events and the use of hyperspectral data as a new tool
for quantitative ecology.

-
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5 Highlights of the year

The new Statify team has been officially created on April 1, 2020.

5.1 New projects

• A new ANR France/USA project entitled Q-FunC has been founded for 4 years 2020-2023. It
is coordinated by Sophie Achard and involves Statify, Grenoble Institute of Neuroscience and
University of California Santa-Barbara. The goal is to study spatiotemporal statistical models for
quantification and estimation of functional connectivity. The PhD of Hana Lbath has started in this
context.

• Sophie Achard is also the co-pi of a new MIAI chair for 2020-2023. The Statify part is to investigate
graph neural networks for brain connectivity exploration. The PhD of Lucrezia Carboni with Michel
Dojat from GIN has started in this context.

• A new 3-year project and contract coordinated by Stephane Girard has been signed with EDF. The
goal is to study the possibility to incorporate Bayesian statistic techniques into extreme value theory.
The PhD of Theo Moins has started in this context.

• Stephane Girard is also the PI of a new contract with Valeo on the use of extreme value theory in
the context of autonomous cars.

• A 2-year IDEX project coordinated by Julyan Arbel has been founded in collaboration with Judith
Rousseau at University of Oxford. The post-doc of Pierre Wolinski on Bayesian deep learning is in
this context.

• A three-year CIFRE contract has been signed in 2020 with TDK InvenSense for Ph.D thesis of Minh
Tri Lê, co-advised by Julyan Arbel with Etienne De Foras. The topic deals with constrained signal
processing using deep neural networks.

5.2 New responsabilities

Sophie Achard has been elected in November 2020 as the new director of the MSTIC pole at UGA.

6 New results

6.1 Mixture models

6.1.1 Global implicit function theorems and the online EM algorithm

Participants Florence Forbes.

Joint work with: Hien Nguyen, La Trobe University Melbourne Australia.

The expectation–maximisation (EM) algorithm is an important tool for statistical computation. Due to
the changing nature of data, online and mini-batch variants of EM and EM-like algorithms have become
increasingly popular. The consistency of the estimator sequences that are produced by these EM variants
often rely on an assumption regarding the continuous differentiability of a parameter update function. In
many cases, the parameter update function is often not in closed form and may only be defined implicitly,
which makes the verification of the continuous differentiability property difficult. We demonstrate how a
global implicit function theorem can be used to verify such properties in the cases of finite mixtures of
distributions in the exponential family and more generally when the component specific distribution
admits a data augmentation scheme in the exponential family. We demonstrate the use of such a theorem
in the case of mixtures of beta distributions, gamma distributions, fully-visible Boltzmann machines and
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Student distributions. Via numerical simulations, we provide empirical evidence towards the consistency
of the online EM algorithm parameter estimates in such cases. Details can be found in [62].

6.1.2 Fast Bayesian Inversion for high dimensional inverse problems

Participants Florence Forbes, Benoit Kugler.

Joint work with: Sylvain Douté from Institut de Planétologie et d’Astrophysique de Grenoble (IPAG).

We investigated the use of learning approaches to handle Bayesian inverse problems in a computa-
tionally efficient way when the signals to be inverted present a moderately high number of dimensions
and are in large number. We proposed a tractable inverse regression approach which has the advantage to
produce full probability distributions as approximations of the target posterior distributions. In addition
to provide confidence indices on the predictions, these distributions allow a better exploration of inverse
problems when multiple equivalent solutions exist. We then showed how these distributions could be
used for further refined predictions using importance sampling, while also providing a way to carry out
uncertainty level estimation if necessary. The relevance of the proposed approach was illustrated both on
simulated and real data in the context of a physical model inversion in planetary remote sensing. The
approach showed interesting capabilities both in terms of computational efficiency and multimodal
inference. Details can be found in [60].

6.1.3 Bayesian inverse regression for vascular magnetic resonance fingerprinting

Participants Florence Forbes, Fabien Boux, Julyan Arbel.

Joint work with: Emmanuel Barbier from Grenoble Institute of Neuroscience.

Standard parameter estimation from vascular magnetic resonance fingerprinting (MRF) data is based
on matching the MRF signals to their best counterparts in a grid of coupled simulated signals and
parameters, referred to as a dictionary. To reach a good accuracy, the matching requires an informa-
tive dictionary whose cost, in terms of design, storage and exploration, is rapidly prohibitive for even
moderate numbers of parameters. In this work, we propose an alternative dictionary-based statistical
learning (DB-SL) approach made of three steps: 1) a quasi-random sampling strategy to produce effi-
ciently an informative dictionary, 2) an inverse statistical regression model to learn from the dictionary a
correspondence between fingerprints and parameters, and 3) the use of this mapping to provide both
parameter estimates and their confidence indices. The proposed DB-SL approach is compared to both
the standard dictionary-based matching (DBM) method and to a dictionary-based deep learning (DB-DL)
method. Performance is illustrated first on synthetic signals including scalable and standard MRF signals
with spatial undersampling noise. Then, vascular MRF signals are considered both through simulations
and real data acquired in tumor bearing rats. Overall, the two learning methods yield more accurate
parameter estimates than matching and to a range not limited to the dictionary boundaries. DB-SL in
particular resists to higher noise levels and provides in addition confidence indices on the estimates at no
additional cost. DB-SL appears as a promising method to reduce simulation needs and computational
requirements, while modeling sources of uncertainty and providing both accurate and interpretable
results. More details can be found in [18].

6.1.4 Unannounced Meal Detection for Artificial Pancreas Systems Using Extended Isolation Forest.
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Participants Florence Forbes, Fei Zheng.

Joint work with: Stéphane Bonnet from CEA Leti.

This study aims at developing an unannounced meal detection method for artificial pancreas, based
on a recent extension of Isolation Forest. The proposed method makes use of features accounting for
individual Continuous Glucose Monitoring (CGM) profiles and benefits from a two-threshold decision
rule detection. The advantage of using Extended Isolation Forest (EIF) instead of the standard one is
supported by experiments on data from virtual diabetic patients, showing good detection accuracy with
acceptable detection delays.

6.1.5 Dirichlet process mixtures under affine transformations of the data

Participants Julyan Arbel.

Joint work with: Riccardo Corradin and Bernardo Nipoti from Milano Bicocca, Italy.

Location-scale Dirichlet process mixtures of Gaussians (DPM-G) have proved extremely useful in
dealing with density estimation and clustering problems in a wide range of domains. Motivated by an
astronomical application, in this work we address the robustness of DPM-G models to affine transfor-
mations of the data, a natural requirement for any sensible statistical method for density estimation.
In [14], we first devise a coherent prior specification of the model which makes posterior inference
invariant with respect to affine transformation of the data. Second, we formalize the notion of asymptotic
robustness under data transformation and show that mild assumptions on the true data generating
process are sufficient to ensure that DPM-G models feature such a property. As a by-product, we derive
weaker assumptions than those provided in the literature for ensuring posterior consistency of Dirichlet
process mixtures, which could reveal of independent interest. Our investigation is supported by an exten-
sive simulation study and illustrated by the analysis of an astronomical dataset consisting of physical
measurements of stars in the field of the globular cluster NGC 2419.

6.1.6 Approximate Bayesian computation with surrogate posteriors

Participants Julyan Arbel, Florence Forbes.

Joint work with: Hien Nguyen, La Trobe University Melbourne Australia and Trung Tin Nguyen from
University Caen Normandy.

A key ingredient in approximate Bayesian computation (ABC) procedures is the choice of a discrep-
ancy that describes how different the simulated and observed data are, often based on a set of summary
statistics when the data cannot be compared directly. Unless discrepancies and summaries are available
from experts or prior knowledge, which seldom occurs, they have to be chosen and this can affect the
approximations. Their choice is an active research topic, which has mainly considered data discrepancies
requiring samples of observations or distances between summary statistics, to date. In this work, we in-
troduce a preliminary learning step in which surrogate posteriors are built from finite Gaussian mixtures
using an inverse regression approach. These surrogate posteriors are then used in place of summary
statistics and compared using metrics between distributions in place of data discrepancies. Two such
metrics are investigated, a standard L2 distance and an optimal transport-based distance. The whole
procedure can be seen as an extension of the semi-automatic ABC framework to functional summary
statistics. The resulting ABC quasi-posterior distribution is shown to converge to the true one, under
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standard conditions. Performance is illustrated on both synthetic and real data sets, where it is shown
that our approach is particularly useful when the posterior is multimodal. Details can be found in [55].

6.1.7 Joint supervised classification and reconstruction of irregularly sampled satellite image times
series

Participants Alexandre Constantin, Stephane Girard.

Joint work with: Mathieu Fauvel, INRAE
Recent satellite missions have led to a huge amount of earth observation data, most of them being

freely available. In such a context, satellite image time series have been used to study land use and land
cover information. However, optical time series, like Sentinel-2 or Landsat ones, are provided with an
irregular time sampling for different spatial locations, and images may contain clouds and shadows. Thus,
pre-processing techniques are usually required to properly classify such data. The proposed approach is
able to deal with irregular temporal sampling and missing data directly in the classification process. It is
based on Gaussian processes and allows to perform jointly the classification of the pixel labels as well as
the reconstruction of the pixel time series. The method complexity scales linearly with the number of
pixels, making it amenable in large scale scenarios. Experimental classification and reconstruction results
show that the method does not compete yet with state of the art classifiers but yields reconstructions
that are robust with respect to the presence of undetected clouds or shadows and does not require any
temporal preprocessing [52].

6.2 Semi and non-parametric methods

6.2.1 Subtle anomaly detection in MRI brain scans: Application to biomarkers extraction in patients
with de novo Parkinson’s disease

Participants Florence Forbes, Veronica Munoz Ramirez, Virgilio Kmetzsch Rosa E
Silva.

Joint work with: Michel Dojat from Grenoble Institute of Neuroscience and Elena Mora from CHUGA.

With the advent of recent deep learning techniques, computerized methods for automatic lesion
segmentation have reached performances comparable to those of medical practitioners. However, little
attention has been paid to the detection of subtle physiological changes caused by evolutive pathologies
such as neurodegenerative diseases. In this work, we investigated the ability of deep learning models to
detect anomalies in magnetic resonance imaging (MRI) brain scans of recently diagnosed and untreated
(de novo) patients with Parkinson’s disease (PD). We evaluated two families of auto-encoders, fully
convolutional and variational auto-encoders. The models were trained with diffusion tensor imaging
(DTI) parameter maps of healthy controls. Then, reconstruction errors computed by the models in
different brain regions allowed to classify controls and patients with ROC AUC up to 0.81. Moreover,
the white matter and the subcortical structures, particularly the substantia nigra, were identified as the
regions the most impacted by the disease, in accordance with the physio-pathology of PD. Our results
suggest that deep learning-based anomaly detection models, even trained on a moderate number of
images, are promising tools for extracting robust neuroimaging biomarkers of PD. Interestingly, such
models can be seamlessly extended with additional quantitative MRI parameters and could provide new
knowledge about the physio-pathology of neuro-degenerative diseases.

6.2.2 Estimation of extreme risk measures
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Participants Stephane Girard, Antoine Usseglio Carleve.

Joint work with: A. Daouia (Univ. Toulouse), L. Gardes (Univ. Strasbourg) and G. Stupfler (Ensai).

One of the most popular risk measures is the Value-at-Risk (VaR) introduced in the 1990’s. In statistical
terms, the VaR at level α ∈ (0,1) corresponds to the upper α-quantile of the loss distribution. The Value-
at-Risk however suffers from several weaknesses. First, it provides us only with a pointwise information:
VaR(α) does not take into consideration what the loss will be beyond this quantile. Second, random loss
variables with light-tailed distributions or heavy-tailed distributions may have the same Value-at-Risk.
Finally, Value-at-Risk is not a coherent risk measure since it is not subadditive in general. A first coherent
alternative risk measure is the Conditional Tail Expectation (CTE), also known as Tail-Value-at-Risk,
Tail Conditional Expectation or Expected Shortfall in case of a continuous loss distribution. The CTE is
defined as the expected loss given that the loss lies above the upper α-quantile of the loss distribution.
This risk measure thus takes into account the whole information contained in the upper tail of the
distribution.

However, the asymptotic normality of the empirical CTE estimator requires that the underlying
distribution possess a finite variance; this can be a strong restriction in heavy-tailed models which
constitute the favoured class of models in actuarial and financial applications. One possible solution in
very heavy-tailed models where this assumption fails could be to use the more robust Median Shortfall,
but this quantity is actually just a quantile, which therefore only gives information about the frequency of
a tail event and not about its typical magnitude. In [25], we construct a synthetic class of tail Lp -medians,
which encompasses the Median Shortfall (for p = 1) and Conditional Tail Expectation (for p = 2). We
show that, for 1 < p < 2, a tail Lp -median always takes into account both the frequency and magnitude of
tail events, and its empirical estimator is, within the range of the data, asymptotically normal under a
condition weaker than a finite variance. We extrapolate this estimator, along with another technique, to
proper extreme levels using the heavy-tailed framework. The estimators are showcased on a simulation
study and on a set of real fire insurance data showing evidence of a very heavy right tail.

Risk measures of a financial position are, from an empirical point of view, mainly based on quantiles.
Replacing quantiles with their least squares analogues, called expectiles, has recently received increasing
attention. The novel expectile-based risk measures satisfy all coherence requirements. We revisit their
extreme value estimation for heavy-tailed distributions. First, we estimate the underlying tail index via
weighted combinations of top order statistics and asymmetric least squares estimates. The resulting
expectHill estimators are then used as the basis for estimating tail expectiles and Expected Shortfall.
The asymptotic theory of the proposed estimators is provided, along with numerical simulations and
applications to actuarial and financial data [22].

The estimation of expectiles typically requires to consider non-explicit asymmetric least squares
estimates rather than the traditional order statistics used for quantile estimation. This makes the study
of the tail expectile process a lot harder than that of the standard tail quantile process. Under the
challenging model of heavy-tailed distributions, we derive joint weighted Gaussian approximations of
the tail empirical expectile and quantile processes. We then use this powerful result to introduce and
study new estimators of extreme expectiles and the standard quantile-based expected shortfall, as well
as a novel expectile-based form of expected shortfall. Our estimators are built on general weighted
combinations of both top order statistics and asymmetric least squares estimates. Some numerical
simulations and applications to actuarial and financial data are provided [23].

Currently available estimators of extreme expectiles are typically biased and hence may show poor
finite-sample performance even in fairly large samples. In [59], we focus on the construction of bias-
reduced extreme expectile estimators for heavy-tailed distributions. The rationale for our construction
hinges on a careful investigation of the asymptotic proportionality relationship between extreme expec-
tiles and their quantile counterparts, as well as of the extrapolation formula motivated by the heavy-tailed
context. We accurately quantify and estimate the bias incurred by the use of these relationships when
constructing extreme expectile estimators. This motivates the introduction of a class of bias-reduced
estimators whose asymptotic properties are rigorously shown, and whose finite-sample properties are
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assessed on a simulation study and three samples of real data from economics, insurance and finance.
The results are submitted for publication.

6.2.3 Conditional extremal events

Participants Stephane Girard, Antoine Usseglio Carleve.

Joint work with: G. Stupfler (Ensai), A. Ahmad, E. Deme and A. Diop (Université Gaston Berger, Sénégal).

The goal of the PhD thesis of Aboubacrene Ag Ahmad is to contribute to the development of theoretical
and algorithmic models to tackle conditional extreme value analysis, ie the situation where some covariate
information X is recorded simultaneously with a quantity of interest Y . In such a case, extreme quantiles
and expectiles are functions of the covariate. In [11], we consider a location-scale model for conditional
heavy-tailed distributions when the covariate is deterministic. First, nonparametric estimators of the
location and scale functions are introduced. Second, an estimator of the conditional extreme-value index
is derived. The asymptotic properties of the estimators are established under mild assumptions and their
finite sample properties are illustrated both on simulated and real data.

As explained in Paragraph 6.2.2, expectiles have recently started to be considered as serious candidates
to become standard tools in actuarial and financial risk management. However, expectiles and their
sample versions do not benefit from a simple explicit form, making their analysis significantly harder than
that of quantiles and order statistics. This difficulty is compounded when one wishes to integrate auxiliary
information about the phenomenon of interest through a finite-dimensional covariate, in which case the
problem becomes the estimation of conditional expectiles. In [26], we exploit the fact that the expectiles
of a distribution F are in fact the quantiles of another distribution E explicitly linked to F , in order to
construct nonparametric kernel estimators of extreme conditional expectiles. We analyze the asymptotic
properties of our estimators in the context of conditional heavy-tailed distributions. Applications to
simulated data and real insurance data are provided. The extension to functional covariates is investigated
in [58] and submitted for publication.

In [57], we build a general theory for the estimation of extreme conditional expectiles in heteroscedas-
tic regression models with heavy-tailed noise. Our approach is supported by general results of inde-
pendent interest on residual-based extreme value estimators in heavy-tailed regression models, and is
intended to cope with covariates having a large but fixed dimension. We demonstrate how our results can
be applied to a wide class of important examples, among which linear models, single-index models as
well as ARMA and GARCH time series models. Our estimators are showcased on a numerical simulation
study and on real sets of actuarial and financial data. The results are submitted for publication.

6.2.4 Dimension reduction for extremes

Participants Meryem Bousebata, Stephane Girard.

Joint work with: G. Enjolras (CERAG). In the context of the PhD thesis of Meryem Bousebata, we propose

a new approach, called Extreme-PLS, for dimension reduction in regression and adapted to distribution
tails. The objective is to find linear combinations of predictors that best explain the extreme values of the
response variable in a non-linear inverse regression model. The asymptotic normality of the Extreme-PLS
estimator is established in the single-index framework and under mild assumptions. The performance of
the method is assessed on simulated data. A statistical analysis of French farm income data, considering
extreme cereal yields, is provided as an illustration. The results are submitted for publication [49].

6.2.5 Estimation of the variability in the distribution tail
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Participants Stephane Girard.

Joint work with: L. Gardes (Univ. Strasbourg).

We propose a new measure of variability in the tail of a distribution by applying a Box-Cox trans-
formation of parameter p ≥ 0 to the tail-Gini functional. It is shown that the so-called Box-Cox Tail
Gini Variability measure is a valid variability measure whose condition of existence may be as weak as
necessary thanks to the tuning parameter p. The tail behaviour of the measure is investigated under a
general extreme-value condition on the distribution tail. We then show how to estimate the Box-Cox Tail
Gini Variability measure within the range of the data. These methods provide us with basic estimators
that are then extrapolated using the extreme-value assumption to estimate the variability in the very far
tails. The finite sample behavior of the estimators is illustrated both on simulated and real data. This
work is published in [24].

6.2.6 Extrapolation limits associated with extreme-value methods

Participants Stephane Girard.

Joint work with: L. Gardes (Univ. Strasbourg) and A. Dutfoy (EDF R&D).

In [13], we investigate the asymptotic behavior of the (relative) extrapolation error associated with
some estimators of extreme quantiles based on extreme-value theory. It is shown that the extrapolation
error can be interpreted as the remainder of a first order Taylor expansion. Necessary and sufficient
conditions are then provided such that this error tends to zero as the sample size increases. Interestingly,
in case of the so-called Exponential Tail estimator, these conditions lead to a subdivision of Gumbel
maximum domain of attraction into three subsets. In contrast, the extrapolation error associated with
Weissman estimator has a common behavior over the whole Fréchet maximum domain of attraction. First
order equivalents of the extrapolation error are then derived and their accuracy is illustrated numerically.

In [12], we propose a new estimator for extreme quantiles under the log-generalized Weibull-tail
model, introduced by Cees de Valk. This model relies on a new regular variation condition which, in some
situations, permits to extrapolate further into the tails than the classical assumption in extreme-value
theory. The asymptotic normality of the estimator is established and its finite sample properties are
illustrated both on simulated and real datasets.

6.2.7 Approximations of Bayesian nonparametric models

Participant Julyan Arbel, Daria Bystrova.

Joint work with: Stefano Favaro from Collegio Carlo Alberto, Turin, Italy, Guillaume Kon Kam King
and François Deslandes from MaIAGE - Mathématiques et Informatique Appliquées du Génome à
l’Environnement (INRAE Jouy-En-Josas)

In this work, we approximate predictive probabilities of Gibbs-type random probability measures,
or Gibbs-type priors, which are arguably the most “natural” generalization of the celebrated Dirichlet
prior. Among them the Pitman–Yor process certainly stands out for the mathematical tractability and
interpretability of its predictive probabilities, which made it the natural candidate in several applications.
Given a sample of size n, in this paper we show that the predictive probabilities of any Gibbs-type
prior admit a large n approximation, with an error term vanishing as o(1/n), which maintains the same
desirable features as the predictive probabilities of the Pitman–Yor process.

In [37], we study the prior distribution induced on the number of clusters, which is key for prior speci-
fication and calibration. However, evaluating this prior is infamously difficult even for moderate sample
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size. We evaluate several statistical approximations to the prior distribution on the number of clusters for
Gibbs-type processes, a class including the Pitman-Yor process and the normalized generalized gamma
process. We introduce a new approximation based on the predictive distribution of Gibbs-type process,
which compares favourably with the existing methods. We thoroughly discuss the limitations of these
various approximations by comparing them against an exact implementation of the prior distribution of
the number of clusters.

We prove a monotonicity property of the Hurwitz zeta function which, in turn, translates into a chain
of inequalities for polygamma functions of different orders. We provide a probabilistic interpretation of
our result by exploiting a connection between Hurwitz zeta function and the cumulants of the exponential-
beta distribution.

6.2.8 Concentration inequalities

Participant Julyan Arbel, Stéphane Girard, Mariia Vladimirova.

Joint work with: Olivier Marchal from Université Jean Monnet and Hien Nguyen from La Trobe University
Melbourne Australia.

In this work, we investigate the sub-Gaussian property for almost surely bounded random variables.
If sub-Gaussianity per se is de facto ensured by the bounded support of said random variables, then
exciting research avenues remain open. Among these questions is how to characterize the optimal
sub-Gaussian proxy variance? Another question is how to characterize strict sub-Gaussianity, defined
by a proxy variance equal to the (standard) variance? We address the questions in proposing conditions
based on the study of functions variations. A particular focus is given to the relationship between strict
sub-Gaussianity and symmetry of the distribution. In particular, we demonstrate that symmetry is neither
sufficient nor necessary for strict sub-Gaussianity. In contrast, simple necessary conditions on the one
hand, and simple sufficient conditions on the other hand, for strict sub-Gaussianity are provided. These
results are illustrated via various applications to a number of bounded random variables, including
Bernoulli, beta, binomial, uniform, Kumaraswamy, and triangular distributions.

In [34], we propose the notion of sub-Weibull distributions, which are characterised by tails lighter
than (or equally light as) the right tail of a Weibull distribution. This novel class generalises the sub-
Gaussian and sub-Exponential families to potentially heavier-tailed distributions. Sub-Weibull distribu-
tions are parameterized by a positive tail index θ and reduce to sub-Gaussian distributions for θ = 1/2
and to sub-Exponential distributions for θ = 1. A characterisation of the sub-Weibull property based on
moments and on the moment generating function is provided and properties of the class are studied. An
estimation procedure for the tail parameter is proposed and is applied to an example stemming from
Bayesian deep learning.

6.2.9 Applications of semi and non-parametric methods in ecology and genomics

Participant Julyan Arbel, Daria Bystrova, Giovanni Poggiato.

Joint work with: Florian Privé and Bjarni Vilhjálmsson from National Center for Register-Based Research
(Aarhus, Denmark), Billur Bektaş and Wilfried Thuiller from LECA - Laboratoire d’Ecologie Alpine, James
S Clark from Nicholas School of the Environment, Duke University, USA, Alessandra Guglielmi from
POLIMI - Dipartimento di Matematica - POLIMI, Politecnico di Milano.

In [21], we investigate modelling species distributions over space and time which is one of the
major research topics in both ecology and conservation biology. Joint Species Distribution models
(JSDMs) have recently been introduced as a tool to better model community data, by inferring a residual
covariance matrix between species, after accounting for species’ response to the environment. However,
these models are computationally demanding, even when latent factors, a common tool for dimension
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reduction, are used. To address this issue, previous research proposed to use a Dirichlet process, a
Bayesian nonparametric prior, to further reduce model dimension by clustering species in the residual
covariance matrix. Here, we built on this approach to include a prior knowledge on the potential number
of clusters, and instead used a Pitman-Yor process to address some critical limitations of the Dirichlet
process. We therefore propose a framework that includes prior knowledge in the residual covariance
matrix, providing a tool to analyze clusters of species that share the same residual associations with
respect to other species. We applied our methodology to a case study of plant communities in a protected
area of the French Alps (the Bauges Regional Park), and demonstrated that our extensions improve
dimension reduction and reveal additional information from the residual covariance matrix, notably
showing how the estimated clusters are compatible with plant traits, endorsing their importance in
shaping communities.

In [31], we investigate modelling polygenic scores which have become a central tool in human genetics
research. LDpred is a popular method for deriving polygenic scores based on summary statistics and
a matrix of correlation between genetic variants. However, LDpred has limitations that may reduce
its predictive performance. Here we present LDpred2, a new version of LDpred that addresses these
issues. We also provide two new options in LDpred2: a "sparse" option that can learn effects that
are exactly 0, and an "auto" option that directly learns the two LDpred parameters from data. We
benchmark predictive performance of LDpred2 against the previous version on simulated and real data,
demonstrating substantial improvements in robustness and predictive accuracy compared to LDpred1.
We then show that LDpred2 also outperforms other polygenic score methods recently developed, with
a mean AUC over the 8 real traits analyzed here of 65.1%, compared to 63.8% for lassosum, 62.9% for
PRS-CS and 61.5% for SBayesR. Note that LDpred2 provides more accurate polygenic scores when run
genome-wide, instead of per chromosome. LDpred2 is implemented in R package bigsnpr.

6.3 Graphical and Markov models

6.3.1 Optimal shrinkage for robust covariance matrix estimators in a small sample size setting

Participants Sophie Achard, Karina Ashurbekova, Florence Forbes, An-
toine Usseglio Carleve.

When estimating covariance matrices, traditional sample covariance-based estimators are straightfor-
ward but suffer from two main issues: 1) a lack of robustness, which occurs as soon as the samples do
not come from a Gaussian distribution or are contaminated with outliers and 2) a lack of data when the
number of parameters to estimate is too large compared to the number of available observations, which
occurs as soon as the covariance matrix dimension is greater than the sample size. The first issue can be
handled by assuming samples are drawn from a heavy-tailed distribution, at the cost of more complex
derivations, while the second issue can be addressed by shrinkage with the difficulty of choosing the
appropriate level of regularization. In this work [48] we offer both a tractable and optimal framework
based on shrinked likelihood-based M-estimators. First, a closed-form expression is provided for a
regularized covariance matrix estimator with an optimal shrinkage coefficient for any sample distribution
in the elliptical family. Then, a complete inference procedure is proposed which can also handle both
unknown mean and tail parameter, in contrast to most existing methods that focus on the covariance
matrix parameter requiring pre-set values for the others. An illustration on synthetic and real data is
provided in the case of the t-distribution with unknown mean and degrees-of-freedom parameters.

6.3.2 Bayesian nonparametric models for hidden Markov random fields on non-Gaussian variables
and applications

Participants Julyan Arbel, Jean-Baptiste Durand, Florence Forbes.
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Joint work with: Hien Nguyen from La Trobe University Melbourne Australia and Grégoire Vincent from
IRD, AMAP, Montpellier, France

Hidden Markov random fields (HMRFs) have been widely used in image segmentation and more
generally, for clustering of data indexed by graphs. Dependent hidden variables (states) represent the
cluster identities and determine their interpretations. Dependencies between state variables are induced
by the notion of neighborhood in the graph. A difficult and crucial problem in HMRFs is the identification
of the number of possible states K . Recently, selection methods based on Bayesian non parametric
priors (Dirichlet processes) have been developed. They do not assume that K is bounded a priori,
thus allowing its adaptive selection with respect to the quantity of available data and avoiding costly
systematic estimation and comparison of models with different fixed values for K . Our previous work
[27] has focused on Bayesian nonparametric priors for HMRFs and continuous, Gaussian observations.
In this work, we consider extensions to non-Gaussian observed data. A first case is discrete data, typically
issued from counts. A second is exponential-distributed data. We defined and implemented Bayesian
nonparametric models for HMRFs with Poisson- and exponential-distributed observations. Inference is
achieved by Variational Bayesian Expectation Maximization (VBEM).

We proposed an application of the discrete-data model to a new risk mapping model for traffic
accidents in the region of Victoria, Australia [54]. The partition into regions using labels yielded by
HMRFs was interpreted using covariates, which showed a good discrimination with regard to labels.

As a perspective, Bayesian nonparametric models for hidden Markov random fields could be extended
to non-Poissonian models (particularly to account for zero-inflated and over-/under-dispersed cases of
application) and to regression models.

The exponential model was applied to leaf density estimation in forests and isolated trees subjected
to laser scans. The data are lengths of portions of laser beams between two hits of translucent materials
(mainly, leaves). The sampling space is discretized into voxels and under some specific assumptions,
the lengths have an exponential distribution with possible censoring if the beam leaves the voxel. The
added-value of HMRFs is to go beyond the assumption of independent voxels and taking into account
spatial dependencies between them, which are due to the underlying geometric structure of trees.

Current perspectives of this work include the improvement of the convergence in the VBEM algorithm,
since however the KL divergence between the posterior distribution and its approximation converges,
the sequence of optimizing parameters is shown to diverge in our current approach.

6.3.3 Bayesian nonparametric spatial prior for traffic crash risk mapping: a case study of Victoria,
Australia

Participants Jean-Baptiste Durand, Florence Forbes.

Joint work with: Hien Nguyen, Long Truong, Q. Phan from La Trobe University Melbourne Australia.

We investigate the use of Bayesian nonparametric (BNP) models coupled with Markov random fields
(MRF) in a risk mapping context, to build partitions of the risk into homogeneous spatial regions. In
contrast to most existing methods, the proposed approach does not require an arbitrary commitment to
a specified number of risk classes and determines their risk levels automatically. We consider settings in
which the relevant information are counts and propose a so called BNP Hidden MRF (BNP-HMRF) model
that is able to handle such data. The model inference is carried out using a variational Bayes Expectation–
Maximisation algorithm and the approach is illustrated on traffic crash data in the state of Victoria,
Australia. The obtained results corroborate well with the traffic safety literature. More generally, the
model presented here for risk mapping offers an effective, convenient and fast way to conduct partition
of spatially localised count data. Details can be found in [54].

6.3.4 Hidden Markov models for the analysis of eye movements
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Participants Jean-Baptiste Durand, Sophie Achard.

Joint work with: Anne Guérin-Dugué (GIPSA-lab) and Benoit Lemaire (Laboratoire de Psychologie et
Neurocognition)
This research theme is supported by a LabEx PERSYVAL-Lab project-team grant.

In the last years, GIPSA-lab has developed computational models of information search in web-
like materials, using data from both eye-tracking and electroencephalograms (EEGs). These data were
obtained from experiments, in which subjects had to decide whether a text was related or not to a target
topic presented to them beforehand. In such tasks, reading process and decision making are closely
related. Statistical analysis of such data aims at deciphering underlying dependency structures in these
processes. Hidden Markov models (HMMs) have been used on eye-movement series to infer phases in
the reading process that can be interpreted as strategies or steps in the cognitive processes leading to
decision. In HMMs, each phase is associated with a state of the Markov chain. The states are observed
indirectly though eye-movements. Our approach was inspired by Simola et al. (2008) [70], but we used
hidden semi-Markov models for better characterization of phase length distributions (Olivier et al.,
2017) [69]. The estimated HMM highlighted contrasted reading strategies, with both individual and
document-related variability. New results were obtained in the standalone analysis of the eye-movements:
1) a statistical comparison between the effects of three types of texts was performed, considering texts
either closely related, moderately related or unrelated to the target topic; 2) a characterization of the
effects of the distance to trigger words on transition probabilities and 3) highlighting a predominant
intra-individual variability in scanpaths.

Our goal for this coming year is to use the segmentation induced by our eye-movement model to
obtain a statistical characterization of functional brain connectivity through simultaneous EEG recordings.
This should lead to some integrated models coupling EEG and eye movements within one single HMM
for better identification of strategies.

6.3.5 Assessing spatial dependencies in the effect of treatment on neurite growth

Participants Jean-Baptiste Durand, Sophie Achard, Jiajie Li.

Joint work with: Stéphane Belin, Homaira Nawabi, Sabine Chierici from Grenoble Institute of Neuro-
science.

The World Health Organization estimates that 250 000 to 500 000 new cases of spinal cord injuries
occur each year. People suffering from those lesions endure irreversible disabilities, as no treatment is
available to counteract the regenerative failure of mature Central Nervous System (CNS). Thus, promoting
neuronal growth, repair and functional recovery remains one of the greatest challenges for neurology,
patients and public health. Our partners at GIN (Grenoble Institute for Neurosciences) demonstrated that
doublecortin is a key factor for axon regeneration and neuronal survival. Short peptides could be used as a
treatment to enhance axon outgrowth. To test their potential effect on axonal growth, embryonic neurons
in culture are treated with those peptides. Neurons are then imaged and neurite length is quantified
automatically. The analysis of such data raises statistical questions to avoid bias in testing the relevance
of a given peptide. All neuronal cultures are not the same. Particularly, the proximity between neurons
is variable and likely to influence its intrinsic capability to grow. In such contexts, the usual test-based
methodology to compare treatments cannot be applied and has to be adapted.

In this work, we highlighted the first-order spatial stationarity of neurite lengths within a same
experiment, using HMRF models depicted in Subsection 6.3.3. Then we investigate spatial dependencies
between lengths of close neurites, highlighting the relevance of CAR models of J. Besag to account for the
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effect of neighbours’ lengths. This raises the question of choosing a relevant graph of dependencies in
CAR and several types of graphs were compared.

6.3.6 Modelling the effects of cultivars and treatments on the structure of apple trees

Participants Jean-Baptiste Durand.

Joint work with: Evelyne Costes, INRAE, AGAP, Montpellier, France and Martin Mészáros, Research and
Breeding Institute of Pomology Holovousy Ltd., Hořice, Czech Republic.

This study aims at characterizing the effects of cultivars and treatments on the structure of apple trees.
More specifically, tree trunks are issued from the following cultivars Rubinola, Topaz and Golden Delicious.
Each tree is fertilized one among these different nitrogen (N) doses: I) untreated (control), II) treated with
20 g N/tree/year, and III) treated with 30 g N/tree/year. We developed a modelling strategy inspired by
Meszaros in 2020: it is assumed that in every cultivar under every treatment, there exists an underlying
common sequence of development, which is indirectly observed through the following features attached
to each metamer (elementary entity) of the trunk: length class of axillary shoots, together with their
lateral and terminal flowering. This sequence is modelled by successions of zones along the trunks (zone
lengths, transitions and distributions of features within each zone). These assumptions lead to estimated
hidden semi-Markov chain (HSMC) models with similar definitions as in Subsection 6.3.4.

It now remains to model how the HSMC parameters depend on cultivars and treatments, which is
planned to be handled with generalized linear models.

6.3.7 Splitting models for multivariate count data

Participants Jean-Baptiste Durand.

Joint work with: Jean Peyhardi, Institut Montpelliérain Alexander Grothendieck, Montpellier, France and
Pierre Fernique, CIRAD, Agap, Montpellier, France

Modelling multivariate count data and their dependencies is a difficult problem, in absence of a
reference probabilistic model equivalent to the multivariate Gaussian in the continuous case, which
allows modelling arbitrary marginal and conditional independence properties among those representable
by graphical models while keeping probabilistic computations tractable (or even better, explicit).

In this work, we investigated the class of splitting distributions as the composition of a singular
multivariate distribution and a univariate distribution. It was shown that most common parametric
count distributions (multinomial, negative multinomial, multivariate hypergeometric, multivariate
negative hypergeometric, ...) can be written as splitting distributions with separate parameters for both
components, thus facilitating their interpretation, inference, the study of their probabilistic characteristics
and their extensions to regression models. We highlighted many probabilistic properties deriving from
the compound aspect of splitting distributions and their underlying algebraic properties. Parameter
inference and model selection are thus reduced to two separate problems, preserving time and space
complexity of the base models. Based on this principle, we introduced several new distributions. In
the case of multinomial splitting distributions, conditional independence and asymptotic normality
properties for estimators were obtained. Mixtures of splitting regression models were used on a mango
tree dataset in order to analyse its patchiness.

Conditional independence properties of estimators were obtained for sum and singular distribution
parameters for MLE and Bayesian estimators in the framework of multinomial splitting distributions
[29]. As a perspective, similar properties remain to be investigated for other cases of splitting (or possibly
sum) distributions and regression models. Moreover, this work could be used for learning graphical
models with discrete variables, which is an open issue. Although the graphical models for usual additive
convolution splitting distributions are trivial (either complete or empty), they could be used as building
blocks for partially directed acyclic graphical models. Therefore, some existing procedures for learning
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partially directed acyclic graphical models could be used for learning those based on convolution splitting
distributions and regressions. Such approaches could be used for instance to infer gene co-expression
network from RNA seq data sets.

6.3.8 Bayesian neural networks

Participants Julyan Arbel, Mariia Vladimirova.

Joint work with: Pablo Mesejo from University of Granada, Spain, Jakob Verbeek from Inria Grenoble
Rhône-Alpes, France.

We investigate deep Bayesian neural networks with Gaussian priors on the weights and ReLU-like
nonlinearities, shedding light on novel sparsity-inducing mechanisms at the level of the units of the
network, both pre- and post-nonlinearities. The main thrust of the paper is to establish that the units prior
distribution becomes increasingly heavy-tailed with depth. We show that first layer units are Gaussian,
second layer units are sub-Exponential, and we introduce sub-Weibull distributions to characterize the
deeper layers units. Bayesian neural networks with Gaussian priors are well known to induce the weight
decay penalty on the weights. In contrast, our result indicates a more elaborate regularisation scheme
at the level of the units. This result provides new theoretical insight on deep Bayesian neural networks,
underpinning their natural shrinkage properties and practical potential.

6.3.9 Brain connectivity

Participants Sophie Achard.

Joint work with: Emmanuel Barbier from GIN and Guillaume Becq from GIPSA-lab, Univ. Grenoble Alpes

In two recent publications [16] and [16], we evaluated the reliability of graph connectivity estimations
using wavelets. Under anesthesia, systemic variables and CBF are modified. How does this alter the
connectivity measures obtained with rs-fMRI? To tackle this question, we explored the effect of four
different anesthetics on Long Evans and Wistar rats with multimodal recordings of rs-fMRI, systemic
variables and CBF. After multimodal signal processing, we show that the blood-oxygen-level-dependent
(BOLD) variations and functional connectivity (FC) evaluated at low frequencies (0.031–0.25 Hz) do not
depend on systemic variables and are preserved across large interval of baseline CBF values. Based on
these findings, we found that most brain areas remain functionally active under any anesthetics, i.e.
connected to at least one other brain area, as shown by the connectivity graphs. In addition, we quantified
the influence of nodes by a measure of functional connectivity strength to show the specific areas targeted
by anesthetics and compare correlation values of edges at different levels. These measures enable us to
highlight the specific network alterations induced by anesthetics. Altogether, this suggests that changes
in connectivity could be evaluated under anesthesia, routinely used in the control of neurological injury.

7 Bilateral contracts and grants with industry

7.1 Bilateral contracts with industry

Contract with EDF (2020-2023). Julyan Arbel and Stéphane Girard are the advisors of the PhD thesis of
Théo Moins founded by EDF. The goal is to investigate sensitivity analysis and extrapolation limits
in extreme-value theory Bayesian methods. The financial support for STATIFY is of 150 keuros.

Contract with TDK-Invensense (2020-2023). Julyan Arbel is the advisor of the PhD thesis of Minh Tri
Lê founded by TDK-Invensense. The goal is to apply deep learning methods on small size systems,
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thus investigating compression methods in deep learning. The financial support for STATIFY is of
150 keuros.

Contract with VALEO (2018-2020). Stéphane Girard and Pascal Dkengne Sielenou are involved in a
study with Valeo to assess the relevance of extreme-value theory in the calibration of sensors for
autonomous cars. The financial support for STATIFY is of 200 keuros.

8 Partnerships and cooperations

8.1 International initiatives

8.1.1 Inria International Labs

STATIFY is involved in the Inria associate team SIMERG2E (Statistical Inference for the Management of
Extreme Risks, Genetics and Global Epidemiology) headed by Stéphane Girard, 2015-2020, part of the
LIRIMA international lab, and together with LERSTAD, Université Gaston Berger (Senegal). Two research
axes are explored: 1) Spatial extremes, application to management of extreme risks. We address the
definition of new risk measures, the study of their properties in case of extreme events and their estimation
from data and covariate information. Our goal is to obtain estimators accounting for possible variability,
both in terms of space and time, which is of prime importance in many hydrological, agricultural
and energy contexts. 2) Classification, application to genetics and global epidemiology. We address the
challenge to build statistical models in order to test association between diseases and human host genetics
in a context of genome-wide screening. Adequate models should allow to handle complexity in genomic
data (correlation between genetic markers, high dimensionality) and additional statistical issues present
in data collected from a family-based longitudinal survey (non-independence between individuals due
to familial relationship and non-independence within individuals due to repeated measurements on a
same person over time).

8.1.2 Inria associate team not involved in an IIL

LANDER: Title: Latent Analysis, Adversarial Networks, and DimEnsionality Reduction - International
Partner (Institution - Laboratory - Researcher): Start year: 2019. See also: https://team.inria.fr/mi
stis/projects/lander/

The collaboration is based on three main points, in statistics, machine learning and applications:
1) clustering and classification (mixture models), 2) regression and dimensionality reduction (mixture
of regression models and non parametric techniques) and 3) high impact applications (neuroimaging
and MRI). Our overall goal is to collectively combine our resources and data in order to develop tools
that are more ubiquitous and universal than we could have previously produced, each on our own. A
wide class of problems from medical imaging can be formulated as inverse problems. Solving an inverse
problem means recovering an object from indirect noisy observations. Inverse problems are therefore
often compounded by the presence of errors (noise) in the data but also by other complexity sources such
as the high dimensionality of the observations and objects to recover, their complex dependence structure
and the issue of possibly missing data. Another challenge is to design numerical implementations that
are computationally efficient. Among probabilistic models, generative models have appealing properties
to meet all the above constraints. They have been studied in various forms and rather independently
both in the statistical and machine learning literature with different depths and insights, from the well
established probabilistic graphical models to the more recent (deep) generative adversarial networks
(GAN). The advantages of the latter being primarily computational and their disadvantages being the
lack of theoretical statements, in contrast to the former. The overall goal of the collaboration is to build
connections between statistical and machine learning tools used to construct and estimate generative
models with the resolution of real life inverse problems as a target. This induces in particular the need to
help the models scale to high dimensional data while maintaining our ability to assess their correctness,
typically the uncertainty associated to the provided solutions.

https://team.inria.fr/mistis/projects/lander/
https://team.inria.fr/mistis/projects/lander/
https://team.inria.fr/mistis/projects/lander/
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Informal international partners The context of our research is also the collaboration between STATIFY

and a number of international partners.
The main other active international collaborations in 2020 are with:

• E. Deme and A. Diop from Gaston Berger University in Senegal.

• Guillaume Kon Kam King, Stefano Favaro, Pierpaolo De Blasi, Collegio Carlo Alberto, Turin, Italy.

• Igor Prünster, Antonio Lijoi, and Riccardo Corradin Bocconi University, Milan, Italy.

• Bernardo Nipoti, Trinity College Dublin, Ireland.

• Stephen Walker, University of Texas at Austin, USA.

• Alex Petersen, University of California Santa Barbara, USA.

• Dimitri van de Ville, EPFL, University of Geneva, Switzerland.

8.1.3 Participation in other international programs

Sophie Achard is coPI of the ANR project (PRCI) QFunC in partnership with University of Santa Barbara
(USA) and Université de Lausanne (Switzerland). The aim of the project is to build spatio-temporal
models for brain connectivity. The financial support for Statify is 260000 euros.

8.2 National initiatives

ANR STATIFY is involved in the 4-year ANR project ExtremReg (2019-2023) hosted by Toulouse University.
This research project aims to provide new adapted tools for nonparametric and semiparametric modeling
from the perspective of extreme values. Our research program concentrates around three central themes.
First, we contribute to the expanding literature on non-regular boundary regression where smoothness
and shape constraints are imposed on the regression function and the regression errors are not assumed
to be centred, but one-sided. Our second aim is to further investigate the study of the modern extreme
value theory built on the use of asymmetric least squares instead of traditional quantiles and order
statistics. Finally, we explore the less-discussed problem of estimating high-dimensional, conditional
and joint extremes

The financial support for STATIFY is about 15.000 euros.
STATIFY is also involved in the ANR project GAMBAS (2019-2023) hosted by Cirad, Montpellier. The

project Generating Advances in Modeling Biodiversity And ecosystem Services (GAMBAS) develops
statistical improvements and ecological relevance of joint species distribution models. The project
supports the PhD thesis of Giovanni Poggiato.

Grenoble Idex projects STATIFY is involved in a transdisciplinary project NeuroCoG and in a newly
accepted cross-disciplinary project (CDP) Risk@UGA. F. Forbes is also a member of the executive com-
mittee and responsible for the Data Science for life sciences work package in another project entitled
Grenoble Alpes Data Institute.

• The main objective of the RISK@UGA project is to provide some innovative tools both for the
management of risk and crises in areas that are made vulnerable because of strong interdepen-
dencies between human, natural or technological hazards, in synergy with the conclusions of
Sendai conference. The project federates a hundred researchers from Human and Social Sciences,
Information & System Sciences, Geosciences and Engineering Sciences, already strongly involved
in the problems of risk assessment and management, in particular natural risks. The PhD thesis of
Meryem Bousebata is one of the eleven PhDs funded by this project.

• The NeuroCoG project aims at understanding the biological, neurophysiological and functional
bases of behavioral and cognitive processes in normal and pathological conditions, from cells to
networks and from individual to social cognition. No decisive progress can be achieved in this area
without an aspiring interdisciplinary approach. The interdisciplinary ambition of NeuroCoG is

https://neurocog.univ-grenoble-alpes.fr/
https://data-institute.univ-grenoble-alpes.fr/


Project STATIFY 23

particularly strong, bringing together the best scientists, engineers and clinicians at the crossroads
of experimental and life sciences, human and social sciences and information and communication
sciences, to answer major questions on the workings of the brain and of cognition. One of the
work package entitled InnobioPark is dedicated to Parkinson’s Disease. The PhD thesis of Veronica
Munoz Ramirez is one of the three PhDs in this work package.

• The Grenoble Alpes Data Institute aims at undertaking groundbreaking interdisciplinary research
focusing on how data change science and society. It combines three fields of data-related research
in a unique way: data science applied to spatial and environmental sciences, biology, and health
sciences; data-driven research as a major tool in Social Sciences and Humanities; and studies
about data governance, security and the protection of data and privacy. In this context, a 2-year
multi-disciplinary projects has been granted in November 2018 to Mistis in collaboration with the
Grenoble Institute of Neuroscience. The objective of this project is to develop a statistical learning
technique that is able to solve a problem of tracking and analyzing a large population of single
molecules. The main difficulties are: 1) the large number of observations to analyse, 2) the noisy
nature of the signals, 3) the definition of a quality index to allow the elimination of poor-quality data
and false positive signals. We also aim at providing a powerful, well-documented and open-source
software, that will be user-friendly for non-specialists.

In the context of the Idex associated with the Université Grenoble Alpes, Alexandre Constantin was
awarded half a PhD funding from IRS (Initiatives de Recherche Stratégique), 50 keuros.
In the context of the MIAI (Multidisciplinary Institute in Artificial Intelligence) institute and its open call
to sustain the development and promotion of AI, Stéphane Girard was awarded a grant of 4500 euros for
his project "Simulation of extreme values by AI generative models. Application to banking risk" joint with
CMAP, Ecole Polytechnique.
In the context of the MIAI (Multidisciplinary Institute in Artificial Intelligence) institute and its open call
to sustain the development and promotion of AI, Julyan Arbel was awarded a grant of 5000 euros for his
project "Bayesian deep learning".
Julyan Arbel was awarded a grant of 10000 euros for his project "Bayesian nonparametric modeling".

8.2.1 Networks

MSTGA and AIGM INRA (French National Institute for Agricultural Research) networks: F. Forbes and
J.B Durand are members of the INRA network called AIGM (ex MSTGA) network since 2006, http:
//carlit.toulouse.inra.fr/AIGM, on Algorithmic issues for Inference in Graphical Models. It is
funded by INRA MIA and RNSC/ISC Paris. This network gathers researchers from different disciplines.
MISTIS co-organized and hosted 2 of the network meetings in 2008 and 2015 in Grenoble.

9 Dissemination

9.1 Promoting scientific activities

9.1.1 Scientific events: organisation

General chair, scientific chair

• Florence Forbes was a member of the scientific committee of Bayes Comp 2020, a biennial confer-
ence sponsored by the ISBA section of the same name link.

• Julyan Arbel was a member of the scientific committee of Statistical Methods for Post Genomic Data
analysis (SMPGD), link, and a member of the scientific program committee of the International
Conference of Computational and Methodological Statistics (CMStat) link.

Member of the organizing committees

• Julyan Arbel organized the session entitled ‘Bayesian Machine Learning’ at the 13th International
Conference of Computational and Methodological Statistics (CMStat), University of London, UK
(December 2020).

http://carlit.toulouse.inra.fr/AIGM
http://carlit.toulouse.inra.fr/AIGM
http://users.stat.ufl.edu/~jhobert/BayesComp2020/Conf_Website/#about
https://smpgd.fr/scientific_committee
http://www.cmstatistics.org/CMStatistics2020/committees.php
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• Julyan Arbel is organizing bi-weekly One World seminar on Approximate Bayesian computation
(ABC) link.

9.1.2 Journal

Member of the editorial boards

• Julyan Arbel is Associate Editor of Bayesian Analysis since 2019.

• Julyan Arbel and Florence Forbes are Associate Editors of Australian and New Zealand Journal of
Statistics since 2019.

• Julyan Arbel is Associate Editor of Statistics & Probability Letters since 2019.

• Julyan Arbel is Associate Editor of Computational Statistics & Data Analysis since 2020.

• Florence Forbes is Associate Editor of Computational Statistics & Data Analysis since 2017.

• Stéphane Girard is Associate Editor of Dependence Modelling (De Gruyter) since 2015.

• Stéphane Girard is Associate Editor of Journal of Multivariate Analysis (Elsevier) depuis 2016.

• Stéphane Girard is Associate Editor of Revstat - Statistical Journal since 2019.

Reviewer - reviewing activities

• Julyan Arbel has been a rewiewer for the Annals of Statistics, Biometrika, JASA (Journal of the Amer-
ican Statistical Association), Journal of Multivariate Analysis, Scandinavian Journal of Statistics,
Stochastic Processes and their Applications, IEEE Transactions on Signal Processing, IEEE Access,
Econometrics and Statistics, and for the following machine learning conferences: Conference on
Neural Information Processing Systems (NeurIPS), International Conference on Machine Learning
(ICML), Conference on Learning Representations (ICLR), Symposium on Advances in Approximate
Bayesian Inference (AABI), and for the US Army Research Office (ARO), and for a book on Bayesian
nonparametrics published by CRC Press.

• Stéphane Girard has been a rewiewer for JASA (Journal of the American Statistical Association),
JSPI (Journal of Statistical Planning and Inference) and EJS (Electronic Journal of Statistics).

• Florence Forbes has been a reviewer for IEEE Transactions PAMI and Statistics & Computing.

9.1.3 Invited talks

• Julyan Arbel was an invited speaker at 13th International Conference of Computational and Method-
ological Statistics (CMStat), University of London, UK, December.

• Julyan Arbel was an invited speaker at Statistics Seminar Series in the School of Mathematics &
Statistics, University College Dublin, November 23.

• Stéphane Girard was an invited speaker at StressTest-2020: International Workshop on Stress Test
and Risk Management [42].

• Florence Forbes was an invited speaker at the AppliBUGS group Seminar (link).

https://warwick.ac.uk/fac/sci/statistics/news/upcoming-seminars/abcworldseminar/
http://genome.jouy.inra.fr/applibugs/applibugs.rencontres.html
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9.1.4 Scientific expertise

• Julyan Arbel is a scientific committee member of the Data Science axis of Persyval Labex (Machine
learning: fundamentals and applications, and Data linking, sharing and privacy), since 2019.

• Stéphane Girard was a member of the committee in charge of hiring a Professor at LJK, Université
Grenoble-Alpes.

• Stéphane Girard acted as an expert of NWO projects evaluation (Netherlands Organisation for
Scientific Research).

• Florence Forbes was a member of the committee in charge of hiring professors and teaching
assistants at Ecole Polytechnique, Paris.

• Florence Forbes acted as an expert for the tenure application of Lo Bin Chang at Ohio University,
USA.

• Florence Forbes acted as a reviewer for Charles University, Prague.

• Florence Forbes is a member of the Helmholtz AI Cooperation Unit advisory committee (link),
2019-present.

• Florence Forbes is a member of the EURASIP Technical Area Committee BISA (Biomedical Image &
Signal Analytics) since January 2021 for a 3 years duration.

9.2 Teaching - Supervision - Juries

9.2.1 Teaching

• Licence : Stéphane Girard, Principe et Méthodes Statistiques, 18 ETD, L3 level, Ensimag. Grenoble-
INP, France.

• Master : Stéphane Girard, Statistique Inférentielle Avancée, 18 ETD, M1 level, Ensimag. Grenoble-
INP, France.

• Master and PhD course: Julyan Arbel, Bayesian nonparametrics and Bayesian deep learning, Master
Mathématiques Apprentissage et Sciences Humaines (M*A*S*H), Université PSL (Paris Sciences &
Lettres), 25 ETD. Bayesian deep learning, Master Intelligence Artificielle, Systèmes, Données (IASD),
Université PSL (Paris Sciences & Lettres), 12 ETD.

• Master and PhD course: Julyan Arbel, Bayesian machine learning, Master Mathématiques Vision et
Apprentissage Master MVA, École normale supérieure Paris-Saclay, 36 ETD.

• Master: Jean-Baptiste Durand, Statistics and probability, 192H, M1 and M2 levels, Ensimag Greno-
ble INP, France. Head of the MSIAM M2 program, in charge of the data science track.

• Jean-Baptiste Durand is a faculty member at Ensimag, Grenoble INP.

• Sophie Achard M1 course Théorie des graphes et réseaux sociaux, M1 level, MIASHS, Université
Grenoble Alpes (UGA), 14 ETD.

9.2.2 Supervision

• PhD defended: Aboubacrène Ag Ahmad "Modélisation semi-paramétrique des extrêmes condition-
nels", [46], September 2020, Stéphane Girard and Alio Diop, Université Gaston Berger, Sénégal.

• PhD defended: Veronica Munoz,"Extraction de signatures dans les données IRM de patients parkin-
soniens de novo", Florence Forbes and Michel Dojat, Université Grenoble Alpes, December 2020.

• PhD defended: Fabien Boux,"Développement de méthodes statistiques pour l’imagerie IRM finger-
printing", Florence Forbes and Emmanuel Barbier, Université Grenoble Alpes, December 2020.

https://helmholtz.ai/
http://math.ens-paris-saclay.fr/version-francaise/formations/master-mva/contenus-/master-mva-cours-2019-2020-161721.kjsp?RH=1242430202531
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• PhD in progress: Benoit Kugler, "Massive hyperspectral images analysis by inverse regression of
physical models", Florence Forbes and Sylvain Douté, Université Grenoble Alpes, started on October
2018.

• PhD in progress: Mariia Vladimirova, “Prior specification for Bayesian deep learning models and
regularization implications”, started on October 2018, Julyan Arbel and Jakob Verbeek, Université
Grenoble Alpes.

• PhD in progress: Théo Moins "Quantification bayésienne des limites d’extrapolation en statistique
des valeurs extrêmes", started on October 2020, Stéphane Girard and Julyan Arbel, Université
Grenoble Alpes.

• PhD in progress: Michael Allouche "Simulation d’extrêmes par modèles génératifs et applications
aux risques bancaires", started on April 2020, Stéphane Girard and Emmanuel Gobet, Ecole Poly-
technique.

• PhD in progress: Meryem Bousebata "Bayesian estimation of extreme risk measures: Implication for
the insurance of natural disasters", started on October 2018, Stéphane Girard and Geffroy Enjolras,
Université Grenoble Alpes.

• PhD in progress: Alexandre Constantin "Analyse de séries temporelles massives d’images satellitaires
: Applications à la cartographie des écosystèmes", started on November 2018, Stéphane Girard and
Mathieu Fauvel, Université Grenoble Alpes.

• PhD in progress: Daria Bystrova, “Joint Species Distribution Modeling: Dimension reduction us-
ing Bayesian nonparametric priors”, started on October 2019, Julyan Arbel and Wilfried Thuiller,
Université Grenoble Alpes.

• PhD in progress: Giovanni Poggiatto, “Scalable Approaches for Joint Species Distribution Modeling”,
started on November 2019, Julyan Arbel and Wilfried Thuiller, Université Grenoble Alpes.

• PhD in progress: Minh Tri Lê, “Constrained signal processing using deep neural networks for
MEMs sensors based applications.”, started on September 2020, Julyan Arbel and Etienne de Foras,
Université Grenoble Alpes, CIFRE Invensense.

9.2.3 Juries

• Florence Forbes has been reviewer for the PhD thesis of Faustine Bousquet (Universite de Mont-
pellier), Raphaelle Momal (Université Paris-Saclay), Nikola Hrelja (Ecole Polytechnique), Maxime
Vono (Université de Toulouse) and Thi Khuyen Le (Université Aix-Marseille).

• Florence Forbes has been a member of the PhD committee of Bruno Meriaux (Université Paris-
Saclay) and of the HDR committee of Jean-Baptiste Durand (Université Grenoble Alpes).

• Sophie Achard has been reviewer for the HDR of Julien Modolo (Université Rennes 1).

10 Scientific production

10.1 Major publications
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