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2 Overall objectives

2.1 Presentation

The general objective of the Toccata project is to promote formal specification and computer-assisted
proof in the development of software that requires high assurance in terms of safety and correctness
with respect to its intended behavior. Such safety-critical software appears in many application domains
like transportation (e.g., aviation, aerospace, railway, and more and more in cars), communication
(e.g., internet, smartphones), health devices, etc. The number of tasks performed by software is quickly
increasing, together with the number of lines of code involved. Given the need of high assurance of safety
in the functional behavior of such applications, the need for automated (i.e., computer-assisted) methods
and techniques to bring guarantee of safety became a major challenge. In the past and at present, the
most widely used approach to check safety of software is to apply heavy test campaigns, which take a
large part of the costs of software development. Yet they cannot ensure that all the bugs are caught, and
remaining bugs may have catastrophic causes (e.g., the Heartbleed bug in OpenSSL library discovered in
2014 https://en.wikipedia.org/wiki/Heartbleed).

Generally speaking, software verification approaches pursue three goals: (1) verification should be
sound, in the sense that no bugs should be missed, (2) verification should not produce false alarms, or
as few as possible, (3) it should be as automatic as possible. Reaching all three goals at the same time
is a challenge. A large class of approaches emphasizes goals (2) and (3): testing, run-time verification,
symbolic execution, model checking, etc. Static analysis, such as abstract interpretation, emphasizes
goals (1) and (3). Deductive verification emphasizes (1) and (2). The Toccata project is mainly interested
in exploring the deductive verification approach, although we also consider the other ones in some cases.

In the past decade, there have been significant progress made in the domain of deductive program
verification. They are emphasized by some success stories of application of these techniques on industrial-
scale software. For example, the Atelier B system was used to develop part of the embedded software of the
Paris metro line 14 [39] and other railway-related systems; a formally proved C compiler was developed
using the Coq proof assistant [58]; the L4-verified project developed a formally verified micro-kernel
with high security guarantees, using analysis tools on top of the Isabelle/HOL proof assistant [57]. A
bug in the JDK implementation of TimSort was discovered using the KeY environment [52] and a fixed
version was proved sound. Another sign of recent progress is the emergence of deductive verification
competitions (e.g., VerifyThis [1]). Finally, recent trends in the industrial practice for development of
critical software is to require more and more guarantees of safety, e.g., the new DO-178C standard for
developing avionics software adds to the former DO-178B the use of formal models and formal methods.
It also emphasizes the need for certification of the analysis tools involved in the process.

3 Research program

Panorama of Deductive Verification There are two main families of approaches for deductive verifi-
cation. Methods in the first family build on top of mathematical proof assistants (e.g., Coq, Isabelle) in
which both the model and the program are encoded; the proof that the program meets its specification is
typically conducted in an interactive way using the underlying proof construction engine. Methods from
the second family proceed by the design of standalone tools taking as input a program in a particular
programming language (e.g., C, Java) specified with a dedicated annotation language (e.g., ACSL [36],
JML [45]) and automatically producing a set of mathematical formulas (the verification conditions) which
are typically proved using automatic provers (e.g., Z3 [61], Alt-Ergo [48], CVC4 [35]).

The first family of approaches usually offers a higher level of assurance than the second, but also
demands more work to perform the proofs (because of their interactive nature) and makes them less
easy to adopt by industry. Moreover, they generally do not allow to directly analyze a program written
in a mainstream programming language like Java or C. The second kind of approaches has benefited in
the past years from the tremendous progress made in SAT and SMT solving techniques, allowing more
impact on industrial practices, but suffers from a lower level of trust: in all parts of the proof chain (the
model of the input programming language, the VC generator, the back-end automatic prover), potential
errors may appear, compromising the guarantee offered. Moreover, while these approaches are applied
to mainstream languages, they usually support only a subset of their features.

https://en.wikipedia.org/wiki/Heartbleed
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Overall Goals of the Toccata Project One of our original skills is the ability to conduct proofs by using
automatic provers and proof assistants at the same time, depending on the difficulty of the program, and
specifically the difficulty of each particular verification condition. We thus believe that we are in a good
position to propose a bridge between the two families of approaches of deductive verification presented
above. Establishing this bridge is one of the goals of the Toccata project: we want to provide methods and
tools for deductive program verification that can offer both a high amount of proof automation and a high
guarantee of validity. Indeed, an axis of research of Toccata is the development of languages, methods
and tools that are themselves formally proved correct. Recent advances in the foundations of deductive
verification include various aspects such as reasoning efficiently on bitvector programs [7] or providing
counterexamples when a proof does not succeed [49].

A specifically challenging aspect of deductive verification methods is how one does deal with memory
mutation in general, an issue that appear under various similar form such the reasoning on mutable
data structures or on concurrent programs, with the common denominator of the tracking of memory
change on shared data. The ability to track aliasing is also a key for the ability of specifying programs and
conduct proofs using the advanced notion of ghost code [6].

In industrial applications, numerical calculations are very common (e.g. control software in trans-
portation). Typically they involve floating-point numbers. Some of the members of Toccata have an
internationally recognized expertise on deductive program verification involving floating-point com-
putations. Our past work includes a new approach for proving behavioral properties of numerical C
programs using Frama-C/Jessie [34], various examples of applications of that approach [43], the use of the
Gappa solver for proving numerical algorithms [50], an approach to take architectures and compilers into
account when dealing with floating-point programs [44, 63]. We contributed to the CompCert verified
compiler, regarding the support for floating-point operations [2]. We also contributed to the Handbook
of Floating-Point Arithmetic [62]. A representative case study is the analysis and the proof of both the
method error and the rounding error of a numerical analysis program solving the one-dimension acoustic
wave equation [41] [40]. We published a reference book on the verification of floating-point algorithms
with Coq [3]. Our experience led us to a conclusion that verification of numerical programs can benefit a
lot from combining automatic and interactive theorem proving [42, 43, 51]. Verification of numerical
programs is another main axis of Toccata.

Deductive program verification methods are built upon theorem provers to decide whether a ex-
pected proof obligation on a program is a valid mathematical proposition, hence working on deductive
verification requires a certain amount of work on the aspect of design of theorem provers. We are involved
in particular in the Alt-Ergo SMT solver, for which we designed an original approach for reasoning on
arithmetic facts [5] [10] ; and the Gappa tool dedicated to reasoning on rounding errors in floating-point
computations [8]. Proof by reflection is also a powerful approach for advanced reasoning about programs
[9].

In the past, we have been more and more involved in the development of significantly large case
studies and applications, such as for example the verification of matrix multiplication algorithms [4], the
design of verified OCaml librairies [46], the realization of a platform for verification of shell scripts [37], or
the correct-by-construction design of an efficient library for arbitrary-precision arithmetic [9].

Our scientific programme detailed below is structured into four axes:

1. Foundations and spreading of deductive program verification;

2. Reasoning on mutable memory in program verification;

3. Verification of Computer Arithmetic;

4. Spreading Formal Proofs.

Let us conclude with more general considerations about our agenda of the next four years: we want
to keep on

• with general audience actions;

• industrial transfer, in particular through an extension of the perimeter of the ProofInUse joint lab.
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3.1 Foundations and spreading of deductive program verification

Permanent researchers: S. Conchon, J.-C. Filliâtre, C. Marché, G. Melquiond, A. Paskevich
This axis covers the central theme of the team: deductive verification, from the point of view of its

foundations but also our will to spread its use in software development. The general motto we want to
defend is “deductive verification for the masses”. A non-exhaustive list of subjects we want to address is
as follows.

• The verification of general-purpose algorithms and data structures: the challenge is to discover
adequate invariants to obtain a proof, in the most automatic way as possible, in the continuation
of the current VOCaL project and the various case studies presented in Axis 4 below.

• Uniform approaches to obtain correct-by-construction programs and libraries, in particular by
automatic extraction of executable code (in OCaml, C, CakeML, etc.) from verified programs, and
including innovative general methods like advanced ghost code, ghost monitoring, etc.

• Automated reasoning dedicated to deductive verification, so as to improve proof automation;
improved combination of interactive provers and fully automated ones, proof by reflection.

• Improved feedback in case of proof failures: based on generation of counterexamples, or symbolic
execution, or possibly randomized techniques à la quickcheck.

• Reduction of the trusted computing base in our toolchains: production of certificates from au-
tomatic proofs, for goal transformations (like those done by Why3), and from the generation of
VCs

A significant part of the work achieved in this axis is related to the Why3 toolbox and its ecosystem,
displayed on Figure 1. The boxes in red background correspond to the tools we develop in the Toccata
team.

3.2 Reasoning on mutable memory in program verification

Permanent researchers: J.-C. Filliâtre, C. Marché, G. Melquiond, A. Paskevich
This axis concerns specifically the techniques for reasoning on programs where aliasing is the central

issue. It covers the methods based on type-based alias analysis and related memory models, on specific
program logics such as separation logics, and extended model-checking. It concerns the application on
analysis of C or C++ codes, on Ada codes involving pointers, but also concurrent programs in general.
The main topics planned are:

• The study of advanced type systems dedicated to verification, for controlling aliasing, and their use
for obtaining easier-to-prove verification conditions. Modern typing system in the style of Rust,
involving ownership and borrowing, will be considered.

• The design of front-ends of Why3 for the proofs of programs where aliasing cannot be fully con-
trolled statically, via adequate memory models, aiming in particular at extraction to C; and also for
concurrent programs.

• The continuation of fruitful work on concurrent parameterized systems, and its corresponding
specific SMT-based model-checking.

• Concurrent programming on weak memory models, on one hand as an extension of parameterized
systems above, but also in the specific context of OCaml multicore (http://ocamllabs.io/doc
/multicore.html).

• In particular in the context of the ProofInUse joint lab, design methods for Ada, C, C++ or Java using
memory models involving fine-grain analysis of pointers. Rust programs could be considered as
well.

http://ocamllabs.io/doc/multicore.html
http://ocamllabs.io/doc/multicore.html
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Figure 1: The Why3 ecosystem

3.3 Verification of Computer Arithmetic

Permanent researchers: S. Boldo, C. Marché, G. Melquiond
We of course want to keep this axis which is a major originality of Toccata. The main topics of the next

4 years will be:

• Fundamental studies concerning formalization of floating-point computations, algorithms, and
error analysis. Related to numerical integration, we will develop the relationships between mathe-
matical stability and floating-point stability of numerical schemes.

• A significant effort dedicated to verification of numerical programs written in C, Ada, C++. This in-
volves combining specifications in real numbers and computation in floating-point, and underlying
automated reasoning techniques with floating-point numbers and real numbers. A new approach
we have in mind concerns some variant of symbolic execution of both code and specifications
involving real numbers.

• We have not yet studied embedded systems. Our approach is first to tackle numerical filters. This
requires more results on fixed-point arithmetic and a careful study of overflows.

• Also a specific focus on arbitrary precision integer arithmetic, in the continuation of the ongoing
PhD thesis of R. Rieu-Helft.

3.4 Spreading Formal Proofs

Permanent researchers: S. Boldo, S. Conchon, J.-C. Filliâtre, C. Marché, G. Melquiond, A. Paskevich
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This axis covers applications in general. The applications we currently have in mind are:

• Hybrid Systems, i.e., systems mixing discrete and continuous transitions. This theme covers many
aspects such as general techniques for formally reasoning of differential equations, and extending
SMT-based reasoning. The challenge is to support both abstract mathematical reasoning and
concrete program execution (e.g., using floating-point representation). Hybrid systems will be a
common effort with other members of the future laboratory joint with LSV of ENS Cachan.

• Applied mathematics, in the continuation of the current efforts towards verification of Finite
Element Method. It has only been studied in the mathematical point of view during this period. We
plan to also consider their floating-point behavior and a demanding application is that of molecular
simulation exhibited in the new EMC2 project. The challenge here is both in the mathematics to be
formalized, in the numerical errors that have never been studied (and that may be huge in specific
cases), and in the size of the programs, which requires that our tools scale.

• Continuation of our work on analysis of shell scripts. The challenge is to be able to analyze a large
number of scripts (more than 30,000 in the corpus of Debian packages installation scripts) in an
automatic manner. An approach that will be considered is some form of symbolic execution.

• Explore proof tools for mathematics, in particular automated reasoning for real analysis (applica-
tion: formalization of the weak Goldbach conjecture), and in number theory.

• Obtain and distribute verified OCaml libraries, as expected outcome of the VOCaL project.

• Formalization of abstract interpretation and WP calculi: in the continuation of the former project
Verasco, and an ongoing project proposal joint with CEA List. The difficulty of achieving full
verification of such tools will be mitigated by use of certificate techniques.

4 Application domains

The application domains we target involve safety-critical software, that is where a high-level guarantee of
soundness of functional execution of the software is wanted. Currently our industrial collaborations or
impact mainly belong to the domain of transportation: aerospace, aviation, railway, automotive.

Generally speaking, we believe that our increasing industrial impact is a representative success for our
general goal of spreading deductive verification methods to a larger audience, and we are firmly engaged
into continuing such kind of actions in the future.

4.1 Safety-Critical Software in Transportation

Transfer to aeronautics: Airbus France Development of the control software of Airbus planes histor-
ically includes advanced usage of formal methods. A first aspect is the usage of the CompCert
verified compiler for compiling C source code. Our work in cooperation with Gallium team for the
safe compilation of floating-point arithmetic operations [2] is directly in application in this context.
A second aspect is the usage of the Frama-C environment for static analysis to verify the C source
code. In this context, both our tools Why3 and Alt-Ergo are indirectly used to verify C code.

Transfer to the community of Atelier B In the former ANR project BWare, we investigated the use of
Why3 and Alt-Ergo as an alternative back-end for checking proof obligations generated by Atelier B,
whose main applications are railroad-related https://www.atelierb.eu/en/. The transfer
effort continues nowadays through the FUI project LCHIP.

ProofInUse joint lab: transfer to the community of Ada development Through the creation of the ProofI-
nUse joint lab (https://www.adacore.com/proofinuse) in 2014, with AdaCore company
(https://www.adacore.com/), we have a growing impact on the community of industrial devel-
opment of safety-critical applications written in Ada. See the web page https://www.adacore.
com/industries for a an overview of AdaCore’s customer projects, in particular those involving

https://www.atelierb.eu/en/
https://www.adacore.com/proofinuse
https://www.adacore.com/
https://www.adacore.com/industries
https://www.adacore.com/industries
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the use of the SPARK Pro tool set. This impact involves both the use of Why3 for generating VCs on
Ada source codes, and the use of Alt-Ergo for performing proofs of those VCs.

The impact of ProofInUse can also be measured in term of job creation: the first two ProofInUse
engineers, D. Hauzar and C. Fumex, employed initially on Inria temporary positions, have now
been hired on permanent positions in AdaCore company. It is also interesting to notice that this
effort allowed AdaCore company to get new customers, in particular the domains of application
of deductive formal verification went beyond the historical domain of aerospace: application
in automotive (https://www.adacore.com/customers/toyota-itc-japan) cyber-security
(https://www.adacore.com/customers/multi-level-security-workstation), health
(artificial heart, https://www.adacore.com/customers/total-artificial-heart).

4.2 Classification Algorithms of the Parcoursup Platform

ParcourSup (https://www.parcoursup.fr/) is the French national digital system for the orientation
of new baccalaureate holders in institutions of higher education. This system uses specific algorithms
to establish candidate rankings for each institution they are applying to. These rankings are produced
according to the wishes of the candidates, the ranking of their applications by the establishments, taking
into account general constraints on scholarship rates and rates of non-residents.

The expected properties of the algorithms in question are documented in natural language (https:
//framagit.org/parcoursup/algorithmes-de-parcoursup/blob/master/doc/presentation
_algorithmes_parcoursup_2019.pdf). These algorithms are implemented in Java language, and
their source code (https://framagit.org/parcoursup/algorithmes-de-parcoursup) is freely
available under an open-source license.

In the year 2019 we have been involved in a project for verification of these algorithms. The choice of
the proof environment to prove the ParcourSup algorithms could have naturally turner to our Krakatoa
tool [60, 59], dedicated to Java, but this one is rather old: it only supports version 1.4 of Java (the Java code
of ParcoursSup requires version 8), and is not really maintained due to lack of users. Other similar proof
environments exist in the world, such as KeY [32] and VeriFast [53], but these tools do not support Java
version 8 yet. The most promising candidate was OpenJML [47], which supports Java version 8.

In addition, our experience in proof of programs leads us to think that to prove the ParcourSup code, it
is better to begin to consider an abstraction of the Java code, written directly in the intermediate language
of Why3, in order to focus from the start on writing formal specifications necessary, then the search for
the invariants to insert in the coded. The analysis with Why3 of 1-rate only algorithm allowed to validate
several of the properties stated in the specification.

Later on, an analysis of Java code with OpenJML identified risks of errors in execution due to capacity
overrun in calculations arithmetic. The proof of absence of run-time errors in this code was not fully
achieved, we had to modify the Java code slightly. The original code was correct, but beyond the capa-
bilities of OpenJML. The proof of the functional behavior of the Java code (properties described in the
specification document in French) could not be made due to OpenJML limitations.

We finally implemented a new protoype JML2Why3 to go further in the proof of functional properties
of the Java code. No only we were able to obtain again the proof of absence of overflow arithmetic and no
null pointer dereferencing, but we could formally establish the property that the final call order is indeed
a permutation (hence a bijection) of the initial list of wishes: in particular, no candidate can be forgotten
by the code.

A report details the conclusion of this analysis [29].

4.3 Formal Analysis of Debian packages

Impactful results were produced in the context of the CoLiS project for the formal analysis of Debian
packages. A first important step was the version 2 of the design of the CoLiS language done by B. Becker,
C. Marché and other co-authors [38], that includes a modified formal syntax, a extended formal seman-
tics, together with the design of concrete and symbolic interpreters. Those interpreters are specified
and implemented in Why3, proved correct (following the initial approach for the concrete interpreter
published in 2018 [54] and an approach for symbolic interpretation [37]), and finally extracted to OCaml
code.

https://www.adacore.com/customers/toyota-itc-japan
https://www.adacore.com/customers/multi-level-security-workstation
https://www.adacore.com/customers/total-artificial-heart
https://www.parcoursup.fr/
https://framagit.org/parcoursup/algorithmes-de-parcoursup/blob/master/doc/presentation_algorithmes_parcoursup_2019.pdf
https://framagit.org/parcoursup/algorithmes-de-parcoursup/blob/master/doc/presentation_algorithmes_parcoursup_2019.pdf
https://framagit.org/parcoursup/algorithmes-de-parcoursup/blob/master/doc/presentation_algorithmes_parcoursup_2019.pdf
https://framagit.org/parcoursup/algorithmes-de-parcoursup
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To make the extracted code effective, it must be linked together with a library that implements a solver
for feature constraints [56], and also a library that formally specifies the behavior of basic UNIX utilities.
The latter library is documented in details in a research report [55].

A third result is a large verification campaign running the CoLiS toolbox on all the packages of the
current Debian distribution. The results of this campaign were reported in another article [15] that was
presented at TACAS conference in 2020. The most visible side effect of this experiment is the discovery of
bugs: more than 150 bug reports have been filled against various Debian packages.

4.4 Extensions of ProofInUse joint lab

The current plans for continuation of the ProofInUse joint lab (https://why3.gitlabpages.inria.f
r/proofinuse/) include extension at a larger perimeter than Ada applications. We started to collaborate
with the TrustInSoft company (https://trust-in-soft.com/) for the verification of C and C++ codes,
including the use of Why3 to design verified and reusable C libraries (ongoing CIFRE PhD thesis). We also
started to collaborate with Mitsubishi Electric in Rennes (http://www.mitsubishielectric-rce.eu/
xindex.php) for a specific usage of Why3 for verifying embedded devices (logic controllers).

5 Highlights of the year

5.1 Awards

• Raphaël Rieu-Helft obtained the “Distinguished Student Author” award at the International Sym-
posium on Symbolic and Algebraic Computation (ISSAC) Conference (https://www.sigsam.org
/Awards/ISSACAwards.html) for his paper [21] written jointly with G. Melquiond. ISSAC is the
top world conference on the domain of computer algebra.

• The Why3 software was awarded the “prix coup de cœur du Hub Open Source Systematic” https:
//systematic-paris-region.org/presse/why3-laureat-du-prix-coup-de-coeur-ac
ademique-du-hub-open-source-du-pole-systematic/

6 New software and platforms

6.1 New software

6.1.1 Alt-Ergo

Name: Automated theorem prover for software verification

Keywords: Software Verification, Automated theorem proving

Functional Description: Alt-Ergo is an automatic solver of formulas based on SMT technology. It is
especially designed to prove mathematical formulas generated by program verification tools, such
as Frama-C for C programs, or SPARK for Ada code. Initially developed in Toccata research team,
Alt-Ergo’s distribution and support are provided by OCamlPro since September 2013.

Release Contributions: the "SAT solving" part can now be delegated to an external plugin, new experi-
mental SAT solver based on mini-SAT, provided as a plugin. This solver is, in general, more efficient
on ground problems, heuristics simplification in the default SAT solver and in the matching (instan-
tiation) module, re-implementation of internal literals representation, improvement of theories
combination architecture, rewriting some parts of the formulas module, bugfixes in records and
numbers modules, new option "-no-Ematching" to perform matching without equality reasoning
(i.e. without considering "equivalence classes"). This option is very useful for benchmarks coming
from Atelier-B, two new experimental options: "-save-used-context" and "-replay-used-context".
When the goal is proved valid, the first option allows to save the names of useful axioms into a
".used" file. The second one is used to replay the proof using only the axioms listed in the corre-
sponding ".used" file. Note that the replay may fail because of the absence of necessary ground
terms generated by useless axioms (that are not included in .used file) during the initial run.

https://why3.gitlabpages.inria.fr/proofinuse/
https://why3.gitlabpages.inria.fr/proofinuse/
https://trust-in-soft.com/
http://www.mitsubishielectric-rce.eu/xindex.php
http://www.mitsubishielectric-rce.eu/xindex.php
https://www.sigsam.org/Awards/ISSACAwards.html
https://www.sigsam.org/Awards/ISSACAwards.html
https://systematic-paris-region.org/presse/why3-laureat-du-prix-coup-de-coeur-academique-du-hub-open-source-du-pole-systematic/
https://systematic-paris-region.org/presse/why3-laureat-du-prix-coup-de-coeur-academique-du-hub-open-source-du-pole-systematic/
https://systematic-paris-region.org/presse/why3-laureat-du-prix-coup-de-coeur-academique-du-hub-open-source-du-pole-systematic/
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URL: http://alt-ergo.lri.fr

Authors: Sylvain Conchon, Évelyne Contejean, Stéphane Lescuyer, Mohamed Iguernelala

Contact: Sylvain Conchon

Participants: Alain Mebsout, Évelyne Contejean, Mohamed Iguernelala, Stéphane Lescuyer, Sylvain
Conchon

Partner: OCamlPro

6.1.2 CoqInterval

Name: Interval package for Coq

Keywords: Interval arithmetic, Coq

Functional Description: CoqInterval is a library for the proof assistant Coq.

It provides several tactics for proving theorems on enclosures of real-valued expressions. The proofs
are performed by an interval kernel which relies on a computable formalization of floating-point
arithmetic in Coq.

The Marelle team developed a formalization of rigorous polynomial approximation using Taylor
models in Coq. In 2014, this library has been included in CoqInterval.

URL: http://coq-interval.gforge.inria.fr/

Publications: hal-00180138, hal-00797913, hal-01086460, hal-01289616, hal-01630143

Author: Guillaume Melquiond

Contact: Guillaume Melquiond

Participants: Assia Mahboubi, Érik Martin-Dorel, Guillaume Melquiond, Jean-Michel Muller, Laurence
Rideau, Laurent Théry, Micaela Mayero, Mioara Joldes, Nicolas Brisebarre, Thomas Sibut-Pinote

6.1.3 Coquelicot

Name: The Coquelicot library for real analysis in Coq

Keywords: Coq, Real analysis

Functional Description: Coquelicot is library aimed for supporting real analysis in the Coq proof as-
sistant. It is designed with three principles in mind. The first is the user-friendliness, achieved
by implementing methods of automation, but also by avoiding dependent types in order to ease
the stating and readability of theorems. This latter part was achieved by defining total function
for basic operators, such as limits or integrals. The second principle is the comprehensiveness of
the library. By experimenting on several applications, we ensured that the available theorems are
enough to cover most cases. We also wanted to be able to extend our library towards more generic
settings, such as complex analysis or Euclidean spaces. The third principle is for the Coquelicot
library to be a conservative extension of the Coq standard library, so that it can be easily combined
with existing developments based on the standard library.

URL: http://coquelicot.saclay.inria.fr/

Contact: Sylvie Boldo

Participants: Catherine Lelay, Guillaume Melquiond, Sylvie Boldo

http://alt-ergo.lri.fr
http://coq-interval.gforge.inria.fr/
https://hal.inria.fr/hal-00180138
https://hal.inria.fr/hal-00797913
https://hal.inria.fr/hal-01086460
https://hal.inria.fr/hal-01289616
https://hal.inria.fr/hal-01630143
http://coquelicot.saclay.inria.fr/
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6.1.4 Cubicle

Name: The Cubicle model checker modulo theories

Keywords: Model Checking, Software Verification

Functional Description: Cubicle is an open source model checker for verifying safety properties of array-
based systems, which corresponds to a syntactically restricted class of parametrized transition
systems with states represented as arrays indexed by an arbitrary number of processes. Cache
coherence protocols and mutual exclusion algorithms are typical examples of such systems.

URL: http://cubicle.lri.fr/

Contact: Sylvain Conchon

Participants: Alain Mebsout, Sylvain Conchon

6.1.5 Flocq

Name: The Flocq library for formalizing floating-point arithmetic in Coq

Keywords: Floating-point, Arithmetic code, Coq

Functional Description: The Flocq library for the Coq proof assistant is a comprehensive formalization
of floating-point arithmetic: core definitions, axiomatic and computational rounding operations,
high-level properties. It provides a framework for developers to formally verify numerical applica-
tions.

Flocq is currently used by the CompCert verified compiler to support floating-point computations.

URL: http://flocq.gforge.inria.fr/

Publications: inria-00534854, hal-00743090, hal-00862689, hal-01091186, hal-01091189, hal-01632617

Authors: Guillaume Melquiond, Sylvie Boldo

Contacts: Sylvie Boldo, Guillaume Melquiond

Participants: Guillaume Melquiond, Pierre Roux, Sylvie Boldo

6.1.6 Gappa

Name: The Gappa tool for automated proofs of arithmetic properties

Keywords: Floating-point, Arithmetic code, Software Verification, Constraint solving

Functional Description: Gappa is a tool intended to help formally verifying numerical programs dealing
with floating-point or fixed-point arithmetic. It has been used to write robust floating-point filters
for CGAL and it is used to verify elementary functions in CRlibm. While Gappa is intended to be
used directly, it can also act as a backend prover for the Why3 software verification plateform or as
an automatic tactic for the Coq proof assistant.

URL: https://gappa.gitlabpages.inria.fr/

Publications: inria-00070739, inria-00344518, inria-00070330, tel-01094485, inria-00071232, inria-00432726,
ensl-00379167, ensl-00200830, hal-01110666, hal-01110669, hal-01632617

Contact: Guillaume Melquiond

Participant: Guillaume Melquiond

http://cubicle.lri.fr/
http://flocq.gforge.inria.fr/
https://hal.inria.fr/inria-00534854
https://hal.inria.fr/hal-00743090
https://hal.inria.fr/hal-00862689
https://hal.inria.fr/hal-01091186
https://hal.inria.fr/hal-01091189
https://hal.inria.fr/hal-01632617
https://gappa.gitlabpages.inria.fr/
https://hal.inria.fr/inria-00070739
https://hal.inria.fr/inria-00344518
https://hal.inria.fr/inria-00070330
https://hal.inria.fr/tel-01094485
https://hal.inria.fr/inria-00071232
https://hal.inria.fr/inria-00432726
https://hal.inria.fr/ensl-00379167
https://hal.inria.fr/ensl-00200830
https://hal.inria.fr/hal-01110666
https://hal.inria.fr/hal-01110669
https://hal.inria.fr/hal-01632617
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6.1.7 Why3

Name: The Why3 environment for deductive verification

Keywords: Formal methods, Trusted software, Software Verification, Deductive program verification

Functional Description: Why3 is an environment for deductive program verification. It provides a
rich language for specification and programming, called WhyML, and relies on external theorem
provers, both automated and interactive, to discharge verification conditions. Why3 comes with a
standard library of logical theories (integer and real arithmetic, Boolean operations, sets and maps,
etc.) and basic programming data structures (arrays, queues, hash tables, etc.). A user can write
WhyML programs directly and get correct-by-construction OCaml programs through an automated
extraction mechanism. WhyML is also used as an intermediate language for the verification of C,
Java, or Ada programs.

URL: http://why3.lri.fr/

Authors: Jean-Christophe Filliâtre, Guillaume Melquiond, Claude Marché, Andriy Paskevych, François
Bobot, Levs Gondelmans, Martin Clochard

Contacts: Jean-Christophe Filliâtre, Claude Marché

Participants: Andriy Paskevych, Claude Marché, François Bobot, Guillaume Melquiond, Jean-Christophe
Filliâtre, Levs Gondelmans, Martin Clochard

Partners: CNRS, Université Paris-Sud

6.1.8 Coq

Name: The Coq Proof Assistant

Keywords: Proof, Certification, Formalisation

Scientific Description: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and
co-inductive families, an impredicative sort and a hierarchy of predicative universes, making it a
very expressive logic. The calculus allows to formalize both general mathematics and computer
programs, ranging from theories of finite structures to abstract algebra and categories to program-
ming language metatheory and compiler verification. Coq is organised as a (relatively small) kernel
including efficient conversion tests on which are built a set of higher-level layers: a powerful proof
engine and unification algorithm, various tactics/decision procedures, a transactional document
model and, at the very top an IDE.

Functional Description: Coq provides both a dependently-typed functional programming language
and a logical formalism, which, altogether, support the formalisation of mathematical theories
and the specification and certification of properties of programs. Coq also provides a large and
extensible set of automatic or semi-automatic proof methods. Coq’s programs are extractible to
OCaml, Haskell, Scheme, ...

Release Contributions: Some highlights from this release are:

• Introduction of primitive persistent arrays in the core language, implemented using impera-
tive persistent arrays.

• Introduction of definitional proof irrelevance for the equality type defined in the SProp sort.

• Many improvements to the handling of notations, including number notations, recursive
notations and notations with bindings. A new algorithm chooses the most precise notation
available to print an expression, which might introduce changes in printing behavior.

See the Zenodo citation https://zenodo.org/record/4501022#.YB00r5NKjlw for more
information on this release.

http://why3.lri.fr/
https://zenodo.org/record/4501022#.YB00r5NKjlw
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News of the Year: Coq version 8.13 integrates many usability improvements, as well as extensions of the
core language. The main changes include:

• Introduction of primitive persistent arrays in the core language, implemented using impera-
tive persistent arrays.

• Introduction of definitional proof irrelevance for the equality type defined in the SProp sort.

• Cumulative record and inductive type declarations can now specify the variance of their
universes.

• Various bugfixes and uniformization of behavior with respect to the use of implicit arguments
and the handling of existential variables in declarations, unification and tactics.

• New warning for unused variables in catch-all match branches that match multiple distinct
patterns.

• New warning for Hint commands outside sections without a locality attribute, whose goal is
to eventually remove the fragile default behavior of importing hints only when using Require.
The recommended fix is to declare hints as export, instead of the current default global,
meaning that they are imported through Require Import only, not Require. See the following
rationale and guidelines for details.

• General support for boolean attributes.

• Many improvements to the handling of notations, including number notations, recursive
notations and notations with bindings. A new algorithm chooses the most precise notation
available to print an expression, which might introduce changes in printing behavior.

• Tactic improvements in lia and its zify preprocessing step, now supporting reasoning on
boolean operators such as Z.leb and supporting primitive integers Int63.

• Typing flags can now be specified per-constant / inductive.

• Improvements to the reference manual including updated syntax descriptions that match
Coq’s grammar in several chapters, and splitting parts of the tactics chapter to independent
sections.

See the changelog for an overview of the new features and changes, along with the full list of
contributors. https://coq.github.io/doc/v8.13/refman/changes.html#version-8-13

URL: http://coq.inria.fr/

Authors: Bruno Barras, Yves Bertot, Frédéric Besson, Pierre Corbineau, Cristina Cornes, Judicaël Courant,
Pierre Courtieu, Pierre Crégut, David Delahaye, Maxime Denes, Jean-Christophe Filliâtre, Julien
Forest, Emilio Jesus Gallego Arias, Gaëtan Gilbert, Georges Gonthier, Benjamin Grégoire, Hugo
Herbelin, Gérard Huet, Vincent Laporte, Pierre Letouzey, Assia Mahboubi, Pascal Manoury, Guil-
laume Melquiond, César Munoz, Chetan Murthy, Amokrane Saibi, Catherine Parent, Christine
Paulin Mohring, Pierre-Marie Pédrot, Loïc Pottier, Matthieu Sozeau, Arnaud Spiwack, Enrico Tassi,
Laurent Théry, Benjamin Werner, Théo Zimmermann

Contacts: Hugo Herbelin, Matthieu Sozeau

Participants: Yves Bertot, Frédéric Besson, Tej Chajed, Cyril Cohen, Pierre Corbineau, Pierre Courtieu,
Maxime Denes, Jim Fehrle, Julien Forest, Emilio Jesús Gallego Arias, Gaëtan Gilbert, Georges
Gonthier, Benjamin Grégoire, Jason Gross, Hugo Herbelin, Vincent Laporte, Olivier Laurent, Assia
Mahboubi, Kenji Maillard, Érik Martin-Dorel, Guillaume Melquiond, Pierre-Marie Pédrot, Clément
Pit-Claudel, Kazuhiko Sakaguchi, Vincent Semeria, Michael Soegtrop, Arnaud Spiwack, Matthieu
Sozeau, Enrico Tassi, Laurent Théry, Anton Trunov, Li-Yao Xia, Théo Zimmermann

Partners: CNRS, Université Paris-Sud, ENS Lyon, Université Paris-Diderot

https://coq.github.io/doc/v8.13/refman/changes.html#version-8-13
http://coq.inria.fr/
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7 New results

7.1 Foundations and Spreading of Deductive Program Verification

Certificates for Logic Transformations In a context of formal program verification, using automatic
provers, the trusted code base of verification environments is typically very broad. An environment
such as Why3 implements many complex procedures: generation of verification conditions, logical
transformations of proof tasks, and interactions with external provers. Considering only the logical
transformations of Why3, their implementation already amounts to more than 17,000 lines of
OCaml code. In order to increase our confidence in the correction of such a verification tool,
Garchery, Keller, Marché and Paskevich [23] proposed a mechanism of certifying transformations,
producing certificates that can be validated by an external tool, according to the skeptical approach.
They explored two methods to validate certificates: one based on a dedicated verifier developed in
OCaml, the other based on the universal proof checker Dedukti. A specificity of their certificates is
to be “small grains” and composable, which makes the approach incremental, allowing to gradually
add new certifying transformations.

Low Cost High Integrity Platform The purpose of the LCHIP project [25] is to ease the development of
SIL4 certified systems and software, and to drastically reduce costs associated with their devel-
opment. To achieve this goal, LCHIP combines a complete development environment for the B
formal language and a safety executing platform.

LCHIP avoids most testing by taking care of the verification of the software (type check, proof,
compilation). The B method underlying this project enforces the development to be mathematically
sound by producing proof obligations (PO). Those logical fomulas are expressed in first order logic
extended with set theory and integer arithmetic. To target full proof automation of POs, the LCHIP
platform integrates several automatic theorem provers. As a proof-of-concept, a connection to
third-party provers has been conducted through the Why3 tool. This experiment produced excellent
results in terms of proof automation, in particular for the Alt-Ergo prover.

Simpler Proofs with Decentralized Invariants When verifying programs where the data have some re-
cursive structure, it is natural to make use of global invariants that are themselves recursively
defined. Though this is mathematically elegant, this makes the proofs more complex, as the
preservation of these invariants now requires induction. In particular, this makes the proofs less
amenable to automation. An alternative is to use local invariants attached to individual compo-
nents of the structure and which only involve a bounded number of elements. These are called
decentralized invariants. When the structure is updated, the footprint of the modification only
impacts a bounded number of invariants and reestablishing them does not require induction. In
this paper [13], Filliâtre illustrates this idea on three non-trivial programs, for which fully automated
proofs are achieved.

Abstraction and Genericity in Why3 The benefits of modularity in programming — abstraction barriers,
which allow hiding implementation details behind an opaque interface, and genericity, which
allows specializing a single implementation to a variety of underlying data types — apply just as well
to deductive program verification, with the additional advantage of helping the automated proof
search procedures by reducing the size and complexity of the premises and by instantiating and
reusing once-proved properties in a variety of contexts. Filliâtre and Paskevich wrote a paper [19]
demonstrating the modularity features of WhyML, the language of the program verification tool
Why3. Instead of separating abstract interfaces and fully elaborated implementations, WhyML
uses a single concept of module, a collection of abstract and concrete declarations, and a basic
operation of cloning which instantiates a module with respect to a given partial substitution, while
verifying its soundness. This mechanism brings into WhyML both abstraction and genericity, which
is illustrated on a small verified Bloom filter implementation, translated into executable idiomatic
C code.

Continuation Passing as an Abstract Syntax for Deductive Verification A. Paskevich proposed a con-
tinuation passing style to devise an extremely economical abstract syntax for a generic algorithmic
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language [31]. This syntax is flexible enough to naturally express conditionals,loops, (higher-order)
function calls, and exception handling. It is type-agnostic and state-agnostic, which means that
it can be combined with a wide range of type and effect systems. It is argued that this syntax is
also well suited for the purposes of deductive verification. Indeed, that work shows how this syntax
can be augmented in a natural way with specification annotations, ghost code, and side-effect
discipline. Rules of verification condition generation are defined for this syntax, and it appears
that the resulting formulas are nearly identical to what traditional approaches, like the weakest
precondition calculus, produce for the equivalent algorithmic constructions. This constitutes
a minimalistic yet versatile abstract syntax for annotated programs for which one can compute
verification conditions without sacrificing their size, legibility, and amenability to automated proof,
compared to more traditional methods. We believe that it makes it an excellent candidate for
internal code representation in program verification tools.

7.2 Reasoning on mutable memory in program verification

Ghost Monitors M. Clochard, C. Marché and A. Paskevich proposed a new approach to deductive pro-
gram verification based on auxiliary programs called ghost monitors. This technique is useful when
the syntactic structure of the target program is not well suited for verification, for example, when an
essentially recursive algorithm is implemented in an iterative fashion. This new approach consists
in implementing, specifying, and verifying an auxiliary program that monitors the execution of
the target program, in such a way that the correctness of the monitor entails the correctness of the
target. The ghost monitor maintains the necessary data and invariants to facilitate the proof. It
can be implemented and verified in any suitable framework, which does not have to be related to
the language of the target programs. This technique is also applicable when one wants to estab-
lish relational properties between two target programs written in different languages and having
different syntactic structure.

Ghost monitors can be used to specify and prove fine-grained properties about the infinite behaviors
of target programs. Since this cannot be easily done using existing verification frameworks, this
work introduces a dedicated language for ghost monitors, with an original construction to catch
and handle divergent executions. The soundness of the underlying program logic is established
using a particular flavor of transfinite games. This language and its soundness are formalized and
mechanically checked. [17]

Deductive program verification for a language with a Rust-like typing discipline When verifying pro-
grams using a mutable heap, it is often required to show that pointers do not alias each other,
ensuring there is only one way to modify structures in memory. This leads to cumbersome proof
obligations and makes verification much more challenging. Newer languages like Rust feature
pointers as well but prevent aliasing through the type system. This opens the door to simpler
approaches to verification, free of tedious proof obligations. In his master thesis, X. Denis proposed
a technique for the verification of Rust programs by translation to a functional language. The
challenge of this translation is the handling of mutable borrows: pointers which control of aliasing
in a region of memory. To overcome this, he used a technique inspired by prophecy variables to
predict the final values of borrows. [30]

Verification of Programs with Pointers in SPARK G.-A. Jaloyan (CEA), C. Dross (AdaCore), M. Maalej
(AdaCore), Y. Moy (AdaCore) et A. Paskevich introduced pointers to SPARK, a well-defined subset of
the Ada language, intended for formal verification [20]. In this work, the alias safety is ensured by a
permission-based static alias analysis method inspired by Rust’s borrow-checker and affine types.
This extension has been implemented in the SPARK GNATprove formal verification toolset for Ada.

Parameterized Model Checking on the TSO Weak Memory Model Modern multiprocessors and micro-
processors implement weak or relaxed memory models, in which the apparent order of memory
operation does not follow the sequential consistency (SC) proposed by Leslie Lamport. Any concur-
rent program running on such architecture and designed with an SC model in mind may exhibit
new behaviors during its execution, some of which may potentially be incorrect. For instance, a
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mutual exclusion algorithm, correct under an interleaving semantics, may no longer guarantee mu-
tual exclusion when implemented on a weaker architecture. Reasoning about the semantics of such
programs is a difficult task. Moreover, most concurrent algorithms are designed for an arbitrary
number of processes. D. Declerck, S. Conchon and F. Zaïdi proposed an approach to ensure the
correctness of such concurrent algorithms, regardless of the number of processes involved. It relies
on the Model Checking Modulo Theories framework, developed by Ghilardi and Ranise, which
allows for the verification of safety properties of parameterized concurrent programs, that is to say,
programs involving an arbitrary number of processes. This technology is extended with a theory
for reasoning about weak memory models. The result is an extension of the Cubicle model checker
called Cubicle-W, which allows the verification of safety properties of parameterized transition
systems running under a weak memory model similar to TSO. [12]

7.3 Verification of Computer Arithmetic

WhyMP, a Formally Verified Arbitrary-Precision Integer Library The WhyMP library implements some
algorithms of the GNU Multi-Precision library (GMP), the state-of-the-art C library for performing
computations on arbitrary-precision integers. WhyMP is written in WhyML, the programming
language offered by the Why3 software verification framework, and the functional correctness
of the algorithms is formally verified. The WhyML code is then extracted as a C library that is
binary-compatible with GMP and can be substituted to it in existing programs. Performance-wise,
it is competitive with the no-assembly version of GMP, for small and medium-sized inputs [21] [27].

Optimal Inverse Projection of Floating-Point Addition In a setting where we have intervals for the val-
ues of floating-point variables x, a, and b, we are interested in improving these intervals when
the floating-point equality x ⊕a = b holds. This problem is common in constraint propagation,
and called the inverse projection of the addition. D. Gallois-Wong, S. Boldo, and P. Cuoq proposed
floating-point theorems that provide optimal bounds for all the intervals [14].

Emulating round-to-nearest-ties-to-zero "augmented" floating- point operations The 2019 version of
the IEEE 754 Standard for Floating-Point Arithmetic recommends that new “augmented” operations
should be provided for the binary formats. These operations use a new “rounding direction”: round
to nearest ties-to-zero. S. Boldo, C. Lauter, and J.-M. Muller show how they can be implemented
using the currently available operations, using round-to-nearest ties-to-even with a partial formal
proof of correctness [11].

A Correctly-Rounded Fixed-Point-Arithmetic Dot-Product Algorithm Dot products are ubiquitous in
matrix computations, for instance in signal processing. We are especially interested in digital filters,
where they are the core operation. We therefore focus on fixed-point arithmetic, used in embedded
systems for time and energy efficiency. Common dot product algorithms ensure faithful rounding.
For the sake of accuracy and reproducibility, we want to ensure correct rounding. We developed an
algorithm that computes a correctly-rounded sum of products from inputs whose format is known
in advance [16]

7.4 Spreading Formal Proofs

Formal Analysis of Debian packages Several new results were produced in the context of the CoLiS
project for the formal analysis of Debian packages. A first important step is the version 2 of the
design of the CoLiS language done by B. Becker, C. Marché and other co-authors [38], that includes
a modified formal syntax, a extended formal semantics, together with the design of concrete and
symbolic interpreters. Those interpreters are specified and implemented in Why3, proved correct
(following the initial approach for the concrete interpreter published in 2018 [54] and the recent
approach for symbolic interpretation mentioned above [37]), and finally extracted to OCaml code.

To make the extracted code effective, it must be linked together with a library that implements a
solver for feature constraints [56], and also a library that formally specifies the behavior of basic
UNIX utilities. The latter library is documented in details in a research report [55].
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A third result is a large verification campaign running the CoLiS toolbox on all the packages of the
current Debian distribution. The results of this campaign were reported in another article [15] that
was presented at TACAS conference in 2020. The most visible side effect of this experiment is the
discovery of bugs: more than 150 bugs report have been filled against various Debian packages.

Functional Programming. At JFLA 2020, J.-C. Filliâtre gave a talk related to the elimination of non-tail
calls [22]. The example taken is that of a small recursive function to compute the height of a binary
tree. Several solutions to avoid a stack overflow are given, compared, and discussed according to
the programming language.

A Coq retrospective — at the heart of Coq architecture, the genesis of version 7.0 During Fall 1999, J.-
C. Filliâtre designed and implemented a new architecture for the Coq proof assistant, to isolate a
“kernel of trust”. This architecture is still in use today. In June 2020, J.-C. Filliâtre was invited speaker
at the Coq Workshop [24] to give an account on that work.

Formal Verification of “ParcourSup” algorithms. A first part of this work was the verification of the first
algorithm of Parcoursup using Why3. Most of the expected properties, taken from the public
description of Parcoursup’s algorithms, have been verified [33]. We then worked on the verification
of the Java source code of ParcourSup. The findings and lessons learnt are described in a report
[29].

An Early-Stage Prototype of a Key Server Developed using Why3 In the context of the VerifyThis Col-
laborative Long Term Challenge 2020 (https://verifythis.github.io/), we used the Why3
verification framework to design, from scratch, a simple but running prototype implementation
of a PGP key server. We exploit the ability of Why3 to extract OCaml code from verified WhyML
code so as to produce code that can be compiled into an executable. Our prototype is made
of a combination of unverified handwritten OCaml code and of WhyML code whose functional
behaviour is formally specified and proven correct [18].

8 Bilateral contracts and grants with industry

We have bilateral contracts which are closely related to a joint effort called the ProofInUse joint Laboratory.
The objective of ProofInUse is to provide verification tools, based on mathematical proof, to industry
users. These tools are aimed at replacing or complementing the existing test activities, whilst reducing
costs.

This joint laboratory is a follow-up of the former “LabCom ProofInUse” between Toccata and the
SME AdaCore, funded by the ANR programme “Laboratoires communs”, from April 2014 to March 2017
http://www.spark-2014.org/proofinuse.

8.1 ProofInUse-AdaCore Collaboration

Participants Claude Marché (contact), Jean-Christophe Filliâtre, Andrei Paskevich,
Guillaume Melquiond, Benedikt Becker.

This collaboration is a joint effort of the Inria project-team Toccata and the AdaCore company which
provides development tools for the Ada programming language. It is funded by a 5-year bilateral contract
from Jan 2019 to Dec 2023.

The SME AdaCore is a software publisher specializing in providing software development tools
for critical systems. A previous successful collaboration between Toccata and AdaCore enabled Why3
technology to be put into the heart of the AdaCore-developed SPARK technology.

The objective of ProofInUse-AdaCore is to significantly increase the capabilities and performances
of the Spark/Ada verification environment proposed by AdaCore. It aims at integration of verification
techniques at the state-of-the-art of academic research, via the generic environment Why3 for deductive
program verification developed by Toccata.

https://verifythis.github.io/
http://www.spark-2014.org/proofinuse
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8.2 ProofInUse-MERCE Collaboration

Participants Claude Marché (contact), Guillaume Melquiond, Cláudio Belo
Lourenço.

This bilateral contract is part of the ProofInUse effort. This collaboration joins efforts of the Inria
project-team Toccata and the company Mitsubishi Electric R&D (MERCE) in Rennes. It is funded by a
bilateral contract of 18 months from Nov 2019 to April 2021.

MERCE has strong and recognized skills in the field of formal methods. In the industrial context of
the Mitsubishi Electric Group, MERCE has acquired knowledge of the specific needs of the development
processes and meets the needs of the group in different areas of application by providing automatic
verification and demonstration tools adapted to the problems encountered.

The objective of ProofInUse-MERCE is to significantly improve on-going MERCE tools regarding the
verification of Programmable Logic Controllers and also regarding the verification of numerical C codes.

8.3 ProofInUse-TrustInSoft Collaboration

Participants Claude Marché (contact), Guillaume Melquiond.

This bilateral contract is part of the ProofInUse effort. This collaboration joins efforts of the Inria
project-team Toccata and the company TrustInSoft in Paris. It is funded by a bilateral contract of 18
months from Dec 2020 to April 2022.

TrustInSoft is an SME that offers the TIS-Analyzer environment for analysis of safety and security
properties of source codes written in C and C++ languages. A version of TIS-Analyzer is available online,
under the name TaaS (TrustInSoft as a Service, https://taas.trust-in-soft.com/).

The objective of ProofInUse-TrustInSoft is to integrate Deductive Verification in the platform TIS-
Analyzer, with a special interest in the generation of counterexample to help the user in case of proof
failure.

8.4 CEA-DAM Collaboration

Participants Sylvie Boldo (contact), Louise Ben Salem-Knapp.

A contract will be signed in 2021 between the CEA-DAM (“Direction des applications militaires”)
and Toccata about the management of the PhD thesis of Louise Ben Salem-Knapp with William Weens
(CEA-DAM) and Guillaume Perrin (CEA-DAM).

This topic of the PhD is between computer science and applied mathematics. We consider algorithms
from numerical analysis and verify their good behavior on computers. This behavior, proven by supposing
that the computations are perfect, could be put in fault by the problems of round-off errors and of
overflows due to computations in floating-point arithmetic. We plan to study the impact of round-
off errors in a hydrodynamic code. Hydrodynamics is the skeleton model of many physical models
used in industry. It contains numerous technical, mathematical and numerical difficulties, which does
not prevent its massive use in the simulation industry on increasingly complex problems. Today, the
resolution of such problems requires the use of super-calculators, as well as the implementation of
algorithms adapted to massively parallel calculation. The very large number of calculations required to
produce results raises the question of their numerical quality.

8.5 CIFRE contract with TrustInSoft company

https://taas.trust-in-soft.com/
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Participants Guillaume Melquiond (contact), Raphaël Rieu-Helft.

Jointly with the thesis of R. Rieu-Helft, supervised in collaboration with the TrustInSoft company, we
established a 3-year bilateral collaboration contract, that ended in November 2020. The aim is to design
methods that make it possible to design an arbitrary-precision integer library that, while competitive with
the state-of-the-art library GMP, is formally verified. Not only are GMP’s algorithm especially intricate
from an arithmetic point of view, but numerous tricks were also used to optimize them. We are using
the Why3 programming language to implement the algorithms, we are developing reflection-based
procedures to verify them, and we finally extract them as a C library that is binary-compatible with GMP
[9] [21]. The PhD thesis has been defended in Nov. 2020 [27].

9 Partnerships and cooperations

9.1 European Initiatives

9.1.1 FP7 & H2020 Projects

EMC2, ERC Synergy project

Title: Extreme-scale Mathematically-based Computational Chemistry

Duration: Nov 2019 - April 2026

Coordinators: E. Cances, L. Grigori, Y. Maday, and J. P. Piquemal

Partners:

• LJLL and LCT, Sorbonne Université (France)

• Cermics, ECOLE NATIONALE DES PONTS ET CHAUSSEES (France)

Inria contact: Laura Grigori

Summary: EMC2 is an ERC Synergy project that aims to overcome some of the current limitations in the
field of molecular simulation and aims to provide academic communities and industrial companies
with new generation, dramatically faster and quantitatively reliable molecular simulation software.
This will enable those communities to address major technological and societal challenges of the 21st
century in health, energy and the environment for instance.

https://erc-emc2.eu/

9.1.2 Collaborations in European Programs, except FP7 and H2020

• Program: COST (European Cooperation in Science and Technology).

• Project acronym: EUTypes https://eutypes.cs.ru.nl/

• Project title: The European research network on types for programming and verification

• Duration: 2015-2019

• Coordinator: Herman Geuvers, Radboud University Nijmegen, The Netherlands

• Other partners: 36 members countries, see http://www.cost.eu/COST_Actions/ca/CA1512
3?parties

https://erc-emc2.eu/
https://eutypes.cs.ru.nl/
http://www.cost.eu/COST_Actions/ca/CA15123?parties
http://www.cost.eu/COST_Actions/ca/CA15123?parties
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• Abstract: Types are pervasive in programming and information technology. A type defines a formal
interface between software components, allowing the automatic verification of their connections,
and greatly enhancing the robustness and reliability of computations and communications. In rich
dependent type theories, the full functional specification of a program can be expressed as a type.
Type systems have rapidly evolved over the past years, becoming more sophisticated, capturing
new aspects of the behaviour of programs and the dynamics of their execution.

This COST Action will give a strong impetus to research on type theory and its many applications in
computer science, by promoting (1) the synergy between theoretical computer scientists, logicians
and mathematicians to develop new foundations for type theory, for example as based on the
recent development of "homotopy type theory”, (2) the joint development of type theoretic tools
as proof assistants and integrated programming environments, (3) the study of dependent types
for programming and its deployment in software development, (4) the study of dependent types
for verification and its deployment in software analysis and verification. The action will also tie
together these different areas and promote cross-fertilisation.

9.2 National Initiatives

9.2.1 ANR CoLiS

Participants Claude Marché (contact), Andrei Paskevich.

The CoLiS research project is funded by the programme “Société de l’information et de la communi-
cation” of the ANR, for a period of 60 months, starting on October 1st, 2015. http://colis.irif.univ-
paris-diderot.fr/

The project aims at developing formal analysis and verification techniques and tools for scripts. These
scripts are written in the POSIX or bash shell language. Our objective is to produce, at the end of the
project, formal methods and tools allowing to analyze, test, and validate scripts. For this, the project will
develop techniques and tools based on deductive verification and tree transducers stemming from the
domain of XML documents.

Partners: Université Paris-Diderot, IRIF laboratory (formerly PPS & LIAFA), coordinator; Inria Lille,
team LINKS

9.2.2 ANR Vocal

Participants Jean-Christophe Filliâtre (contact), Andrei Paskevich.

The Vocal research project is funded by the programme “Société de l’information et de la communica-
tion” of the ANR, for a period of 60 months, starting on October 1st, 2015. See https://vocal.lri.fr/

The goal of the Vocal project is to develop the first formally verified library of efficient general-purpose
data structures and algorithms. It targets the OCaml programming language, which allows for fairly
efficient code and offers a simple programming model that eases reasoning about programs. The library
will be readily available to implementers of safety-critical OCaml programs, such as Coq, Astrée, or Frama-
C. It will provide the essential building blocks needed to significantly decrease the cost of developing safe
software. The project intends to combine the strengths of three verification tools, namely Coq, Why3,
and CFML. It will use Coq to obtain a common mathematical foundation for program specifications, as
well as to verify purely functional components. It will use Why3 to verify a broad range of imperative
programs with a high degree of proof automation. Finally, it will use CFML for formal reasoning about
effectful higher-order functions and data structures making use of pointers and sharing.

Partners: team Gallium (Inria Paris-Rocquencourt), team DCS (Verimag), TrustInSoft, and OCamlPro.

9.2.3 FUI LCHIP

http://colis.irif.univ-paris-diderot.fr/
http://colis.irif.univ-paris-diderot.fr/
https://vocal.lri.fr/
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Participants Sylvain Conchon (contact).

LCHIP (Low Cost High Integrity Platform) is aimed at easing the development of safety critical
applications (up to SIL4) by providing: (i) a complete IDE able to automatically generate and prove
bounded complexity software (ii) a low cost, safe execution platform. The full support of DSLs and third
party code generators will enable a seamless deployment into existing development cycles. LCHIP gathers
scientific results obtained during the last 20 years in formal methods, proof, refinement, code generation,
etc. as well as a unique return of experience on safety critical systems design. http://www.clearsy.co
m/en/2016/10/4260/

Partners: 2 technology providers (ClearSy, OcamlPro), in charge of building the architecture of the
platform; 3 labs (IFSTTAR, LIP6, LRI), to improve LCHIP IDE features; 2 large companies (SNCF, RATP),
representing public ordering parties, to check compliance with standard and industrial railway use-case.

The project led by ClearSy has started in April 2016 and lasts 3 years. It is funded by BpiFrance as well
as French regions.

9.2.4 ANR PARDI

Participants Sylvain Conchon (contact).

Verification of PARameterized DIstributed systems. A parameterized system specification is a specifi-
cation for a whole class of systems, parameterized by the number of entities and the properties of the
interaction, such as the communication model (synchronous/asynchronous, order of delivery of message,
application ordering) or the fault model (crash failure, message loss). To assist and automate verification
without parameter instantiation, PARDI uses two complementary approaches. First, a fully automatic
model checker modulo theories is considered. Then, to go beyond the intrinsic limits of parameterized
model checking, the project advocates a collaborative approach between proof assistant and model
checker. http://pardi.enseeiht.fr/

The project led by Toulouse INP/IRIT started in 2016 and lasts for 4 years. Partners: Université Pierre
et Marie Curie (LIP6), Université Paris-Sud (LRI), Inria Nancy (team VERIDIS)

9.2.5 ANR NuSCAP

Participants Guillaume Melquiond (contact), Sylvie Boldo.

The last twenty years have seen the advent of computer-aided proofs in mathematics and this trend
is getting more and more important. They request various levels of numerical safety, from fast and
stable computations to formal proofs of the computations. Hovewer, the necessary tools and routines
are usually ad hoc, sometimes unavailable, or inexistent. On a complementary perspective, numerical
safety is also critical for complex guidance and control algorithms, in the context of increased satellite
autonomy. We plan to design a whole set of theorems, algorithms and software developments, that will
allow one to study a computational problem on all (or any) of the desired levels of numerical rigor. Key
developments include fast and certified spectral methods and polynomial arithmetic, with subsequent
formal verifications. There will be a strong feedback between the development of our tools and the
applications that motivate it. https://nuscap.gitlabpages.inria.fr/index.html

The project led by École Normale Supérieure de Lyon (LIP) has started in February 2021 and lasts
for 4 years. Partners: Inria (teams Aric, Galinette, Lfant, Marelle, Toccata), École Polytechnique (LIX),
Sorbonne Université (LIP6), Université Sorbonne Paris Nord (LIPN), CNRS (LAAS).

http://www.clearsy.com/en/2016/10/4260/
http://www.clearsy.com/en/2016/10/4260/
http://pardi.enseeiht.fr/
https://nuscap.gitlabpages.inria.fr/index.html
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10 Dissemination

10.1 Promoting Scientific Activities

10.1.1 Scientific Events: Selection

Chair of Conference Program Committees

• A. Paskevich, 6th Workshop on Formal Integrated Development Environment, F-IDE’2021

Member of the Conference Program Committees

• S. Boldo, 27th IEEE Symposium on Computer Arithmetic, ARITH’2020

• S. Boldo, 13th International Workshop on Numerical Software Verification, NSV’2021

• S. Boldo, Coq Workshop 2020

• S. Boldo, 28th IEEE Symposium on Computer Arithmetic, ARITH’2021

• S. Boldo, 13th NASA Formal Methods Symposium, NFM’2021

• J.-C. Filliâtre, Symposium on Languages, Applications and Technologies, SLATE 2020

• J.-C. Filliâtre, Verified Software: Theories, Tools, and Experiments, VSTTE 2020

• J.-C. Filliâtre, 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2020

• J.-C. Filliâtre, Verification, Model Checking, and Abstract Interpretation, VMCAI 2021

• J.-C. Filliâtre, 13th NASA Formal Methods Symposium, NFM’2021

• J.-C. Filliâtre, XXV Brazilian Symposium on Programming Languages, SBLP 2021

• J.-C. Filliâtre, Symposium on Languages, Applications and Technologies, SLATE 2021

• G. Melquiond, 27th IEEE Symposium on Computer Arithmetic, ARITH’2020

• G. Melquiond, 28th IEEE Symposium on Computer Arithmetic, ARITH’2021

Reviewer In 2020, the members of the Toccata team reviewed numerous papers for numerous interna-
tional conferences. Here is a non-exhaustive list.

• C. Marché: TACAS 2021

• G. Melquiond: ARITH 2020, CPP 2020, ISSAC 2020

• A. Paskevich: VMCAI 2021

10.1.2 Journal

Member of the Editorial Boards

• J.-C. Filliâtre, member of the editorial board of Journal of Functional Programming.

• G. Melquiond, member of the editorial board of Reliable Computing.
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Reviewer - Reviewing Activities In 2020, the members of the Toccata team reviewed numerous papers
for numerous international journals. Here is a non-exhaustive list.

• J.-C. Filliâtre: Journal of Functional Programming

• C. Marché: Journal of Automated Reasoning

• G. Melquiond: ACM Transactions on Mathematical Software

• A. Paskevich: Journal of Automated Reasoning

10.1.3 Invited Talks

• S. Boldo : Formal Methods in Mathematics / Lean Together 2020, January 6th–10th, Carnegie
Mellon University, in Pittsburgh, Pennsylvania.

• S. Boldo : CMAP, Palaiseau on Feb 4th.

• J.-C. Filliâtre : A Coq retrospective — at the heart of Coq architecture, the genesis of version 7.0 /
The Coq Workshop 2020.

10.1.4 Leadership within the Scientific Community

• S. Boldo, elected chair of the ARITH working group of the GDR-IM (a CNRS subgroup of computer
science) with L.-S. Didier (Univ. Toulon).

• S. Boldo, steering committee member of the IEEE International Symposium on Computer Arith-
metic.

• J.-C. Filliâtre, chair of IFIP WG 1.9/2.15 verified Software.

10.1.5 Scientific Expertise

• S. Boldo, member of the Inria DR recruitment committee.

• S. Boldo, member of the Inria CRCN national recruitment committee.

• S. Boldo, member of a recruitment committee for a full professor position at Université de Mont-
pellier.

• S. Boldo, member of the program committee for selecting postdocs of the maths/computer science
program of the Labex mathématique Hadamard.

• S. Boldo, member of the Scientific Council of CentraleSupélec.

• S. Boldo, member of the HCERES committee for evaluating the LaBRI laboratory, Bordeaux, Jan
18th-21st 2021

• S. Boldo, member of the CDT commission of Saclay (“commission de développement technologique”).

• J.-C. Filliâtre, external reviewer for a Canadian NSERC Grant.

• J.-C. Filliâtre, grading the entrance examination at X/ENS (“option informatique”).

• J.-C. Filliâtre, member of jury for Prix de thèse 2020 du GDR GPL

• C. Marché, member of a recruitment committee for a full professor position in computer science at
École Normale Supérieure de Paris-Saclay.

• G. Melquiond, member of the scientific commission of Inria Saclay, in charge of selecting candidates
for PhD grants, Post-doc grants, temporary leaves from universities (“délégations”).
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• G. Melquiond, elected member of the ED-STIC doctoral school from Université Paris-Saclay, in
charge of selecting candidates for PhD grants and monitoring PhD students.

• G. Melquiond, member of two recruitment committees (full professor position and full assistant
professor position) at École Polytechnique.

10.1.6 Research Administration

• S. Boldo, deputy scientific director (DSA) of Inria Saclay research center.

• S Boldo, member of the CLFP (“commission locale de formation permanente”).

• S. Boldo, member of the (national) Inria IES commission (”commission pour l’information et
l’édition scientifique”) about scientific edition and publication models.

• S. Boldo, member of the (temporary) council of the Computer Science Graduate School of Université
Paris-Saclay.

• S. Boldo, member of the CoDiReV Paris-Saclay (committee of the research heads of the Paris-Saclay
components and partners).

• S. Boldo, deputy member of the CFVU Paris-Saclay (“commission de la formation et de la vie
universitaire”).

• S. Boldo, member of the partners commission for the Digicosme Labex (“comité des tutelles du
labex Digicosme”).

• S. Boldo, member of the crisis unit of Inria Saclay.

• G. Melquiond, member of the committee for the monitoring of PhD students (“commission de suivi
doctoral”).

• A. Paskevich, member of the CCSU (“commission consultative de spécialistes de l’université”),
section 27, of Université Paris-Saclay.

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• S. Boldo, Floating-point Arithmetic and Beyond, 6h, M2, École Normale Supérieure de Lyon, France.

• S. Conchon and J.-C. Filliâtre, DIU Enseigner l’Informatique au Lycée, 2 weeks, rectorat de Versailles
(together with T. Balabonski and K. Nguyen).

• J.-C. Filliâtre, Langages de programmation et compilation, 25h, L3, École Normale Supérieure,
France.

• J.-C. Filliâtre, Les bases de l’algorithmique et de la programmation, 15h, L3, École Polytechnique,
France.

• J.-C. Filliâtre, Compilation, 18h, M1, École Polytechnique, France.

• Q. Garchery, Compilation, 24h, L3, Université Paris-Saclay, France.

• Q. Garchery, Programmation Fonctionnelle Avancée, 24h, L3, Université Paris-Saclay, France.

• Q. Garchery, Algorithmique, 10h, 2nd year, Polytech, Université Paris-Saclay, France.

• A. Lanco, Graph et Outils Logiques, 24h, L2, Université Paris-Saclay, France.

• A. Lanco, Introduction à la programmation fonctionnelle, 16h, L2, Université Paris-Saclay, France.

• A. Lanco, Programmation Fonctionnelle Avancée, 24h, L3, Université Paris-Saclay, France.



Project TOCCATA 25

• A. Lanco, Réseaux Avancés, 24h, L3, Université Paris-Saclay, France.

• C. Marché, https://wikimpri.dptinfo.ens-cachan.fr/doku.php: Proofs of Programs
https://marche.gitlabpages.inria.fr/lecture-deductive-verif/, 12h, M2, Master
Parisien de Recherche en Informatique (MPRI).

• G. Melquiond, Initiation à la recherche, 12h, M1, MPRI, École Normale Supérieure Paris-Saclay,
France.

• G. Melquiond, Floating-point Arithmetic and Beyond, 9h, M2, École Normale Supérieure de Lyon,
France.

• A. Paskevich, Vérification Déductive, 12h, M1, MPRI, Université Paris-Saclay, France.

• A. Paskevich, Principes de systèmes d’exploitation, 40h+54h, DUT2, IUT d’Orsay, Université Paris-
Saclay, France.

10.2.2 Supervision

• PhD: R. Rieu-Helft, “Développement et vérification de bibliothèques d’arithmétique entière en pré-
cision arbitraire”, since Oct. 2017, supervised by G. Melquiond and P. Cuoq (TrustInSoft), defended
in Nov. 2020 [27].

• PhD in progress: D. Gallois-Wong, “Vérification formelle et filtres numériques”, since Oct. 2017,
supervised by S. Boldo and T. Hilaire.

• PhD in progress: Q. Garchery, “Certification de la génération et de la transformation d’obligations
de preuve”, since Oct. 2018, supervised by C. Keller, C. Marché and A. Paskevich.

• PhD in progress: A. Lanco, “Stratégies pour la réduction forte”, since Oct. 2019, supervised by
T. Balabonski and G. Melquiond.

• PhD in progress: C. Pascutto, “Runtime and Deductive Verification of OCaml programs and appli-
cations to Mergeable Data Structures”, since June 2020, supervised by J.-C. Filliâtre.

• PhD in progress: L. Ben Salem-Knapp, “Erreurs d’arrondi sur un code d’hydrodynamique”, since
Oct. 2020, supervised by S. Boldo, W. Weens and G. Perrin.

• PhD in progress: X. Denis, “Deductive program verification for Rust”, since Oct. 2020, supervised
by J.-H. Jourdan and C. Marché.

• M2 Internship: X. Denis, “Deductive program verification for a language with a Rust-like typing
discipline”, Mar.-Aug. 2020, supervised by J.-H. Jourdan and C. Marché [30].

• L3 internship: J. Moreau (Université Paris-Saclay), “Vérification formelle d’une implémentation
OCaml du crible d’Euler”, Jun-Jul 2020, supervised by J.-C. Filliâtre.

• M1 Internship: C. Elya (Université Saint-Joseph de Beyrouth), “Translating WhyML to Scala”,
Summer 2020, supervised by J.-C. Filliâtre.

10.2.3 Juries

• S. Boldo, president of the PhD defense of Charlie Jacomme, ENS Paris-Saclay, Oct 16th

• S. Boldo, reviewer of the habilitation of Assia Mahboubi, Université de Nantes, Jan 5th 2021

10.3 Popularization

10.3.1 Education

Together with Thibaut Balabonski and Kim Nguyen, Sylvain Conchon and Jean-Christophe Filliâtre wrote
Numérique et Sciences Informatiques, 24 leçons avec exercices corrigés. Terminale [26] (Ellipses, 2020). It is
a second volume, the first one targeting the “classe de Première” (Ellipses, 2019).

https://wikimpri.dptinfo.ens-cachan.fr/doku.php
https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
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10.3.2 Interventions

Sylvie Boldo took part of a popularization radio program about computer science https://cause-comm
une.fm/podcast/libre-a-vous-74/ on September 2020.
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