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1 Team members, visitors, external collaborators
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• Pascal Chossat [CNRS, Emeritus, HDR]

• Olivier Faugeras [Inria, Emeritus, HDR]

• Maciej Krupa [Université Côte d’Azur, Senior Researcher, HDR]

• Simona Olmi [Inria, Starting Research Position, Jan 2021]

• Romain Veltz [Inria, Researcher, until Apr 2021]

Post-Doctoral Fellow

• Mattia Sensi [Inria, From 12/2021]

PhD Students

• Louisiane Lemaire [Inria]

• Yuri Rodrigues [Univ Côte d’Azur, until Jun 2021]

• Halgurd Taher [Inria]

Technical Staff

• Emre Baspinar [Inria, Engineer, until Mar 2021]

Interns and Apprentices

• Efstathios Pavlidis [Univ Côte d’Azur, from Mar 2021]

Administrative Assistant

• Marie-Cecile Lafont [Inria]

External Collaborators

• Daniele Avitabile [Université libre d’Amsterdam - Pays-Bas, until Nov 2021, HDR]

• Emre Baspinar [CNRS, from Apr 2021]

2 Overall objectives

MATHNEURO focuses on the applications of multi-scale dynamics to neuroscience. This involves the
modelling and analysis of systems with multiple time scales and space scales, as well as stochastic effects.
We look both at single-cell models, microcircuits and large networks. In terms of neuroscience, we are
mainly interested in questions related to synaptic plasticity and neuronal excitability, in particular in
the context of pathological states such as epileptic seizures and neurodegenerative diseases such as
Alzheimer.

Our work is quite mathematical but we make heavy use of computers for numerical experiments and
simulations. We have close ties with several top groups in biological neuroscience. We are pursuing the
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idea that the "unreasonable effectiveness of mathematics" can be brought, as it has been in physics, to
bear on neuroscience.

Modeling such assemblies of neurons and simulating their behavior involves putting together a
mixture of the most recent results in neurophysiology with such advanced mathematical methods as
dynamical systems theory, bifurcation theory, probability theory, stochastic calculus, theoretical physics
and statistics, as well as the use of simulation tools.

We conduct research in the following main areas:

1. Neural networks dynamics

2. Mean-field and stochastic approaches

3. Neural fields

4. Slow-fast dynamics in neuronal models

5. Modeling neuronal excitability

6. Synaptic plasticity

7. Memory processes

8. Visual neuroscience

3 Research program

3.1 Neural networks dynamics

The study of neural networks is certainly motivated by the long term goal to understand how brain is
working. But, beyond the comprehension of brain or even of simpler neural systems in less evolved
animals, there is also the desire to exhibit general mechanisms or principles at work in the nervous
system. One possible strategy is to propose mathematical models of neural activity, at different space
and time scales, depending on the type of phenomena under consideration. However, beyond the mere
proposal of new models, which can rapidly result in a plethora, there is also a need to understand some
fundamental keys ruling the behaviour of neural networks, and, from this, to extract new ideas that can
be tested in real experiments. Therefore, there is a need to make a thorough analysis of these models. An
efficient approach, developed in our team, consists of analysing neural networks as dynamical systems.
This allows to address several issues. A first, natural issue is to ask about the (generic) dynamics exhibited
by the system when control parameters vary. This naturally leads to analyse the bifurcations [52] [53]
occurring in the network and which phenomenological parameters control these bifurcations. Another
issue concerns the interplay between the neuron dynamics and the synaptic network structure.

3.2 Mean-field and stochastic approaches

Modeling neural activity at scales integrating the effect of thousands of neurons is of central importance
for several reasons. First, most imaging techniques are not able to measure individual neuron activity
(microscopic scale), but are instead measuring mesoscopic effects resulting from the activity of several
hundreds to several hundreds of thousands of neurons. Second, anatomical data recorded in the cortex
reveal the existence of structures, such as the cortical columns, with a diameter of about 50µm to 1mm,
containing of the order of one hundred to one hundred thousand neurons belonging to a few different
species. The description of this collective dynamics requires models which are different from individual
neurons models. In particular, when the number of neurons is large enough averaging effects appear,
and the collective dynamics is well described by an effective mean-field, summarizing the effect of the
interactions of a neuron with the other neurons, and depending on a few effective control parameters.
This vision, inherited from statistical physics requires that the space scale be large enough to include a
large number of microscopic components (here neurons) and small enough so that the region considered
is homogeneous.
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Figure 1: Simulations of the quasi-synchronous state of a stochastic neural network with N = 5000
neurons. Left: empirical distribution of membrane potential as a function (t , v). Middle: (raster plot)
spiking times as a function of neuron index and time. Right: several membrane potentials vi (t) as a
function of time for i ∈ [1,100]. Simulated with the Julia Package PDMP.jl from [18]. This figure has been
slightly modified from [14].

Our group is developing mathematical and numerical methods allowing on one hand to produce dynamic
mean-field equations from the physiological characteristics of neural structure (neurons type, synapse
type and anatomical connectivity between neurons populations), and on the other so simulate these
equations; see Figure 1. These methods use tools from advanced probability theory such as the theory of
Large Deviations [44] and the study of interacting diffusions [3].

3.3 Neural fields

Neural fields are a phenomenological way of describing the activity of population of neurons by delayed
integro-differential equations. This continuous approximation turns out to be very useful to model large
brain areas such as those involved in visual perception. The mathematical properties of these equations
and their solutions are still imperfectly known, in particular in the presence of delays, different time
scales and noise.
Our group is developing mathematical and numerical methods for analysing these equations. These
methods are based upon techniques from mathematical functional analysis, bifurcation theory [21], [55],
equivariant bifurcation analysis, delay equations, and stochastic partial differential equations. We have
been able to characterize the solutions of these neural fields equations and their bifurcations, apply
and expand the theory to account for such perceptual phenomena as edge, texture [38], and motion
perception. We have also developed a theory of the delayed neural fields equations, in particular in the
case of constant delays and propagation delays that must be taken into account when attempting to
model large size cortical areas [19], [54]. This theory is based on center manifold and normal forms ideas
[20].

3.4 Slow-fast dynamics in neuronal models

Neuronal rhythms typically display many different timescales, therefore it is important to incorporate this
slow-fast aspect in models. We are interested in this modeling paradigm where slow-fast point models,
using Ordinary Differential Equations (ODEs), are investigated in terms of their bifurcation structure and
the patterns of oscillatory solutions that they can produce. To insight into the dynamics of such systems,
we use a mix of theoretical techniques — such as geometric desingularisation and centre manifold
reduction [48] — and numerical methods such as pseudo-arclength continuation [42]. We are interested
in families of complex oscillations generated by both mathematical and biophysical models of neurons.
In particular, so-called mixed-mode oscillations (MMOs) [12], [40, 47], which represent an alternation
between subthreshold and spiking behaviour, and bursting oscillations [41, 45], also corresponding to
experimentally observed behaviour [39]; see Figure 2. We are working on extending these results to
spatio-temporal neural models [2].

3.5 Modeling neuronal excitability

Excitability refers to the all-or-none property of neurons [43, 46]. That is, the ability to respond nonlinearly
to an input with a dramatic change of response from “none” — no response except a small perturbation
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Figure 2: Excitability threshold as slow manifolds in a simple spiking model, namely the FitzHugh-
Nagumo model, (top panels) and in a simple bursting model, namely the Hindmarsh-Rose model
(bottom panels). This figure is unpublished.

that returns to equilibrium — to “all” — large response with the generation of an action potential or
spike before the neuron returns to equilibrium. The return to equilibrium may also be an oscillatory
motion of small amplitude; in this case, one speaks of resonator neurons as opposed to integrator
neurons. The combination of a spike followed by subthreshold oscillations is then often referred to
as mixed-mode oscillations (MMOs) [40]. Slow-fast ODE models of dimension at least three are well
capable of reproducing such complex neural oscillations. Part of our research expertise is to analyse
the possible transitions between different complex oscillatory patterns of this sort upon input change
and, in mathematical terms, this corresponds to understanding the bifurcation structure of the model.
Furthermore, the shape of time series of this sort with a given oscillatory pattern can be analysed within
the mathematical framework of dynamic bifurcations; see the section on slow-fast dynamics in Neuronal
Models. The main example of abnormal neuronal excitability is hyperexcitability and it is important to
understand the biological factors which lead to such excess of excitability and to identify (both in detailed
biophysical models and reduced phenomenological ones) the mathematical structures leading to these
anomalies. Hyperexcitability is one important trigger for pathological brain states related to various
diseases such as chronic migraine [50], epilepsy [51] or even Alzheimer’s Disease [49]. A central central
axis of research within our group is to revisit models of such pathological scenarios, in relation with a
combination of advanced mathematical tools and in partnership with biological labs.

3.6 Synaptic Plasticity

Neural networks show amazing abilities to evolve and adapt, and to store and process information. These
capabilities are mainly conditioned by plasticity mechanisms, and especially synaptic plasticity, inducing
a mutual coupling between network structure and neuron dynamics. Synaptic plasticity occurs at many
levels of organization and time scales in the nervous system [37]. It is of course involved in memory and
learning mechanisms, but it also alters excitability of brain areas and regulates behavioral states (e.g.,
transition between sleep and wakeful activity). Therefore, understanding the effects of synaptic plasticity
on neurons dynamics is a crucial challenge.
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Our group is developing mathematical and numerical methods to analyse this mutual interaction. On the
one hand, we have shown that plasticity mechanisms [10, 17], Hebbian-like or STDP, have strong effects
on neuron dynamics complexity, such as synaptic and propagation delays [19], dynamics complexity
reduction, and spike statistics.

3.7 Memory processes

The processes by which memories are formed and stored in the brain are multiple and not yet fully
understood. What is hypothesised so far is that memory formation is related to the activation of certain
groups of neurons in the brain. Then, one important mechanism to store various memories is to associate
certain groups of memory items with one another, which then corresponds to the joint activation of
certain neurons within different subgroup of a given population. In this framework, plasticity is key
to encode the storage of chains of memory items. Yet, there is no general mathematical framework to
model the mechanism(s) behind these associative memory processes. We are aiming at developing such
a framework using our expertise in multi-scale modelling, by combining the concepts of heteroclinic
dynamics, slow-fast dynamics and stochastic dynamics.

The general objective that we wish to pursue in this project is to investigate non-equilibrium phe-
nomena pertinent to storage and retrieval of sequences of learned items. In previous work by team
members [9, 1, 15], it was shown that with a suitable formulation, heteroclinic dynamics combined with
slow-fast analysis in neural field systems can play an organizing role in such processes, making the model
accessible to a thorough mathematical analysis. Multiple choice in cognitive processes require a certain
flexibility in the neural network, which has recently been investigated in the submitted paper [31].

Our goal is to contribute to identify general processes under which cognitive functions can be orga-
nized in the brain.

4 Application domains

The project underlying MathNeuro revolves around pillars of neuronal behaviour –excitability, plasticity,
memory– in link with the initiation and propagation of pathological brain states in diseases such as
cortical spreading depression (in link with certain forms of migraine with aura), epileptic seizures and
Alzheimer’s Disease. Our work on memory processes can also potentially be applied to studying mental
disorders such as schizophrenia or obsessive disorder troubles.

5 Highlights of the year

The first three PhD students of the EPI MathNeuro, Louisiane Lemaire, Yuri Rodrigues and Halgurd Taher,
have all successfully defended their respective PhD in 2021. They all found postdoctoral positions, at
Humbolt University (Berlin, Germany), the University of Sussex (Brighton, UK) and Charité Medical
University (Berlin, Germany), respectively.

Simona Olmi, who held a Starting Research Position (SRP) in MathNeuro from 2018 to 2021, has
obtained a permanent position as researcher in Computational Neuroscience at the National Research
Council (CRN) in Florence, Italy.

6 New results

6.1 Neural Networks as dynamical systems

6.1.1 Patient-specific network connectivity combined with a next generation neural mass model to
test clinical hypothesis of seizure propagation
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Participants: Moritz Gerster (Institute for Theoretical Physics, Germany), Hal-
gurd Taher, Antonín Škoch (National Institute of Mental Heath,
Czech Republic), Jaroslav Hlinka (National Institute of Mental Heath,
Czech Republic), Maxime Guye (Centre de Résonance Magnétique Bi-
ologique et Médicale, France), Fabrice Bartolomei (Hôpital de la Ti-
mone, France), Viktor Jirsa (Institut de Neuroscience des Systèmes,
France), Anna Zakharova (Institute for Theoretical Physics, Germany),
Simona Olmi.

Dynamics underlying epileptic seizures span multiple scales in space and time, therefore understanding
seizure mechanisms requires identifying the relations between seizure components within and across
these scales, together with the analysis of their dynamical repertoire. In this view, mathematical models
have been developed, ranging from single neuron to neural population. In this study, we consider a
neural mass model able to exactly reproduce the dynamics of heterogeneous spiking neural networks.
We combine mathematical modeling with structural information from non invasive brain imaging, thus
building large-scale brain network models to explore emergent dynamics and test the clinical hypothesis.
We provide a comprehensive study on the effect of external drives on neuronal networks exhibiting
multistability, in order to investigate the role played by the neuroanatomical connectivity matrices in
shaping the emergent dynamics. In particular, we systematically investigate the conditions under which
the network displays a transition from a low activity regime to a high activity state, which we identify with
a seizure-like event. This approach allows us to study the biophysical parameters and variables leading
to multiple recruitment events at the network level. We further exploit topological network measures
in order to explain the differences and the analogies among the subjects and their brain regions, in
showing recruitment events at different parameter values. We demonstrate, along with the example
of diffusion-weighted magnetic resonance imaging (dMRI) connectomes of 20 healthy subjects and 15
epileptic patients, that individual variations in structural connectivity, when linked with mathematical
dynamic models, have the capacity to explain changes in spatiotemporal organization of brain dynamics,
as observed in network-based brain disorders. In particular, for epileptic patients, by means of the
integration of the clinical hypotheses on the epileptogenic zone (EZ), i.e., the local network where highly
synchronous seizures originate, we have identified the sequence of recruitment events and discussed
their links with the topological properties of the specific connectomes. The predictions made on the basis
of the implemented set of exact mean-field equations turn out to be in line with the clinical pre-surgical
evaluation on recruited secondary networks.

This work has been published in Frontiers in Systems Neuroscience and is available as [27].

6.2 Mean field theory and stochastic processes

6.2.1 Cross-scale excitability in networks of quadratic integrate-and-fire neurons

Participants: Daniele Avitabile (VU Amsterdam, Netherlands, Inria MathNeuro),
Mathieu Desroches, G Bard Ermentrout (University of Pittsburgh,
USA).

From the action potentials of neurons and cardiac cells to the amplification of calcium signals in oocytes,
excitability is a hallmark of many biological signalling processes. In recent years, excitability in single cells
has been related to multiple-timescale dynamics through canards, special solutions which determine
the effective thresholds of the all-or-none responses. However, the emergence of excitability in large
populations remains an open problem. Here, we show that the mechanisms of excitability in an infinite
heterogeneous population of coupled quadratic integrate and fire (QIF) cells maintains echoes of the
mechanism for the individual components. We exploit the Ott-Antonsen ansatz to derive low-dimensional
dynamics for the coupled network and use it to describe the structure of canards via slow periodic forcing.
We demonstrate that the thresholds for onset and offset of population firing can be found in the same

https://doi.org/10.3389/fnsys.2021.675272
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way as those of the single cell. We combine theoretical and numerical analysis to develop a novel and
comprehensive framework for excitability in large populations.

This work has been submitted for publication and is available as [29].

6.2.2 Coherence resonance in neuronal populations: mean-field versus network model

Participants: Emre Baspinar, Leonard Schülen (TU Berlin, Germany), Simona Olmi,
Anna Zakharova (TU Berlin, Germany).

The counter-intuitive phenomenon of coherence resonance describes a non-monotonic behavior of the
regularity of noise-induced oscillations in the excitable regime, leading to an optimal response in terms
of regularity of the excited oscillations for an intermediate noise intensity. We study this phenomenon in
populations of FitzHugh-Nagumo (FHN) neurons with different coupling architectures. For networks of
FHN systems in excitable regime, coherence resonance has been previously analyzed numerically. Here
we focus on an analytical approach studying the mean-field limits of the locally and globally coupled
populations. The mean-field limit refers to the averaged behavior of a complex network as the number of
elements goes to infinity. We derive a mean-field limit approximating the locally coupled FHN network
with low noise intensities. Further, we apply mean-field approach to the globally coupled FHN network.
We compare the results of the mean-field and network frameworks for coherence resonance and find a
good agreement in the globally coupled case, where the correspondence between the two approaches is
sufficiently good to capture the emergence of anticoherence resonance. Finally, we study the effects of the
coupling strength and noise intensity on coherence resonance for both the network and the mean-field
model.

This work has been published in Physical Review E and is available as [24].

6.2.3 The one step fixed-lag particle smoother as a strategy to improve the prediction step of particle
filtering

Participants: Samuel Nyobe (University of Yaoundé, Cameroun), Fabien Campillo,
Serge Moto (University of Yaoundé, Cameroun), Vivien Rossi (CIRAD).

Sequential Monte Carlo methods have been a major breakthrough in the field of numerical signal
processing for stochastic dynamical state-space systems with partial and noisy observations. However,
these methods still present certain weaknesses. One of the most fundamental is the degeneracy of the
filter due to the impoverishment of the particles: the prediction step allows the particles to explore the
state-space and can lead to the impoverishment of the particles if this exploration is poorly conducted
or when it conflicts with the following observation that will be used in the evaluation of the likelihood
of each particle. In this article, in order to improve this last step within the framework of the classic
bootstrap particle filter, we propose a simple approximation of the one step fixed-lag smoother. At each
time iteration, we propose to perform additional simulations during the prediction step in order to
improve the likelihood of the selected particles.

This work has been submitted for publication and is available as [32].

6.2.4 A stochastic model of hippocampal synaptic plasticity with geometrical readout of enzyme
dynamics

Participants: Yuri Rodrigues, Cezar Tigaret (Cardiff University, UK),
Hélène Marie (Institut de Pharmacologie Moléculaire et Cellulaire,
France), Cian O’Donnell (University of Bristol, UK), Romain Veltz.

Discovering the rules of synaptic plasticity is an important step for understanding brain learning. Ex-
isting plasticity models are either 1) top-down and interpretable, but not flexible enough to account

https://dx.doi.org/10.1103/PhysRevE.103.032308
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for experimental data, or 2) bottom-up and biologically realistic, but too intricate to interpret and hard
to fit to data. We fill the gap between these approaches by uncovering a new plasticity rule based on a
geometrical readout mechanism that flexibly maps synaptic enzyme dynamics to plasticity outcomes. We
apply this readout to a multi-timescale model of hippocampal synaptic plasticity induction that includes
electrical dynamics, calcium, CaMKII and calcineurin, and accurate representation of intrinsic noise
sources. Using a single set of model parameters, we demonstrate the robustness of this plasticity rule by
reproducing nine published ex vivo experiments covering various spike-timing and frequency-dependent
plasticity induction protocols, animal ages, and experimental conditions. The model also predicts that in
vivo-like spike timing irregularity strongly shapes plasticity outcome. This geometrical readout modelling
approach can be readily applied to other excitatory or inhibitory synapses to discover their synaptic
plasticity rules.

This work has been submitted for publication and is available as [33].

6.2.5 Slow-fast dynamics in the mean-field limit of neural networks

Participants: Daniele Avitabile (VU Amsterdam, Inria MathNeuro), Emre Baspinar,
Fabien Campillo, Mathieu Desroches, Olivier Faugeras.

In the context of the Human Brain Project (HBP, see section 5.1.1.1. below), we have recruited Emre
Baspinar in December 2018 for a two-year postdoc, after which he stayed for a few more months on an
engineer contract in order to complete some papers. Within MathNeuro, Emre has worked on analysing
slow-fast dynamical behaviours in the mean-field limit of neural networks.
In a first project, he has been analysing the slow-fast structure in the mean-field limit of a network of
FitzHugh-Nagumo neuron models; the mean-field was previously established in [3] but its slow-fast
aspect had not been analysed. In particular, he has proved a persistence result of Fenichel type for slow
manifolds in this mean-field limit, thus extending previous work by Berglund et al. [35, 36]. A manuscript
is in preparation.
In a second project, he has been looking at a network of Wilson-Cowan systems whose mean-field limit is
an ODE, and he has studied elliptic bursting dynamics in both the network and the limit: its slow-fast
dissection, its singular limits and the role of canards. In passing, he has obtained a new characterisation
of ellipting bursting via the construction of periodic limit sets using both the slow and the fast singular
limits and unravelled a new singular-limit scenario giving rise to elliptic bursting via a new type of torus
canard orbits. A manuscript has been published in Chaos and is available as [22] (see below).

6.2.6 Theoretical and Computational methods for Stochastic Differential Equations describing net-
works of Hopfield neurons

Participants: Olivier Faugeras, James MacLaurin (NJIT, USA), Etienne Tanré (Inria).

We investigate large networks of Hopfield neurons under various assumptions about the underlying
network graphs (completely connected, sparsely connected, small world), the synaptic coefficients
(Gaussian or non-Gaussian distributed, independent, correlated), and the neuronal populations present
in the network (excitatory, inhibitory, balanced). These assumptions generate a large variety of different
behaviours that we are trying to analyse mathematically and numerically. The mathematics include
the description of the thermodynamics (meanfield) limit of these networks, when they exist, the type of
solutions of the limit equations, their bifurcations with respect to changes of the network parameters, the
fluctuations of the solutions to the network equations around the thermodynamics limit to understand
the finite size effects. Along with these theoretical efforts, we are developing simulation tools in the Julia
language with an eye on parallel implementations on GPUs to develop an intuition for the behaviours of
these networks and guide the mathematical analysis.

https://doi.org/10.1063/5.0037204
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6.3 Neural fields theory

6.3.1 A cortical-inspired sub-Riemannian model for Poggendorff-type visual illusions

Participants: Emre Baspinar, Luca Calatroni (Inria Morpheme),
Valentina Franceschi (University of Padova, Italy), Dario Prandi (CNRS,
Université Paris-Saclay, CentraleSupélec).

We consider Wilson-Cowan-type models for the mathematical description of orientation-dependent
Poggendorff-like illusions. Our modelling improves two previously proposed cortical-inspired ap-
proaches, embedding the sub-Riemannian heat kernel into the neuronal interaction term, in agreement
with the intrinsically anisotropic functional architecture of V1 based on both local and lateral connec-
tions. For the numerical realisation of both models, we consider standard gradient descent algorithms
combined with Fourier-based approaches for the efficient computation of the sub-Laplacian evolution.
Our numerical results show that the use of the sub-Riemannian kernel allows us to reproduce numerically
visual misperceptions and inpainting-type biases in a stronger way in comparison with the previous
approaches.

This work has been published in Journal of Imaging and is available as [23].

6.4 Slow-fast dynamics in Neuroscience

6.4.1 Canonical models for torus canards in elliptic burster

Participants: Emre Baspinar, Daniele Avitabile (VU Amsterdam, Inria MathNeuro),
Mathieu Desroches.

We revisit elliptic bursting dynamics from the viewpoint of torus canard solutions. We show that at the
transition to and from elliptic burstings, classical or mixed-type torus canards can appear, the difference
between the two being the fast subsystem bifurcation that they approach, saddle-node of cycles for
the former and subcritical Hopf for the latter. We first showcase such dynamics in a Wilson-Cowan
type elliptic bursting model, then we consider minimal models for elliptic bursters in view of finding
transitions to and from bursting solutions via both kinds of torus canards. We first consider the canonical
model proposed by Izhikevich (ref. [22] in the manuscript) and adapted to elliptic bursting by Ju, Neiman,
Shilnikov (ref. [24] in the manuscript), and we show that it does not produce mixed-type torus canards
due to a nongeneric transition at one end of the bursting regime. We therefore introduce a perturbative
term in the slow equation, which extends this canonical form to a new one that we call Leidenator and
which supports the right transitions to and from elliptic bursting via classical and mixed-type torus
canards, respectively. Throughout the study, we use singular flows (ε = 0) to predict the full system’s
dynamics (ε > 0 small enough). We consider three singular flows: slow, fast and average slow, so as
to appropriately construct singular orbits corresponding to all relevant dynamics pertaining to elliptic
bursting and torus canards.

This work has been published in Chaos and is available as [22].

6.4.2 Spike-adding and reset-induced canard cycles in adaptive integrate and fire models

Participants: Mathieu Desroches, Piotr Kowalczyk (University of Wrocław, Poland),
Serafim Rodrigues (Basque Center for Applied Mathematics, Spain).

We study a class of planar integrate and fire models called adaptive integrate and fire (AIF) models, which
possesses an adaptation variable on top of membrane potential, and whose subthreshold dynamics is
piecewise linear . These AIF models therefore have two reset conditions, which enable bursting dynamics
to emerge for suitable parameter values. Such models can be thought of as hybrid dynamical systems.
We consider a particular slow dynamics within AIF models and prove the existence of bursting cycles

https://doi.org/10.3390/jimaging7030041
https://doi.org/10.1063/5.0037204
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with N resets, for any integer N. Furthermore, we study the transition between N- and (N + 1)-reset cycles
upon vanishingly small parameter variations and prove (for N = 2) that such transitions are organised by
canard cycles. Finally, using numerical continuation we compute branches of bursting cycles, including
canard-explosive branches, in these AIF models, by suitably recasting the periodic problem as a two-point
boundary-value problem.

This work has been published in Nonlinear Dynamics and is available as [26].

6.4.3 Bursting in a next generation neural mass model with synaptic dynamics: a slow-fast approach

Participants: Halgurd Taher, Daniele Avitabile (VU Amsterdam, Netherlands, Inria
MathNeuro), Mathieu Desroches.

We report a detailed analysis on the emergence of bursting in a recently developed neural mass model
that takes short-term synaptic plasticity into account. The one being used here is particularly important,
as it represents an exact meanfield limit of synaptically coupled quadratic integrate & fire neurons, a
canonical model for type I excitability. In absence of synaptic dynamics, a periodic external current with a
slow frequency ε can lead to burst-like dynamics. The firing patterns can be understood using techniques
of singular perturbation theory, specifically slow-fast dissection. In the model with synaptic dynamics the
separation of timescales leads to a variety of slow-fast phenomena and their role for bursting is rendered
inordinately more intricate. Canards are one of the main slow-fast elements on the route to bursting.
They describe trajectories evolving nearby otherwise repelling locally invariant sets of the system and
are found in the transition region from subthreshold dynamics to bursting. For values of the timescale
separation nearby the singular limit ε= 0, we report peculiar jump-on canards, which block a continuous
transition to bursting. In the biologically more plausible regime of ε this transition becomes continuous
and bursts emerge via consecutive spike-adding transitions. The onset of bursting is of complex nature
and involves mixed-type like torus canards, which form the very first spikes of the burst and revolve
nearby fast-subsystem repelling limit cycles. We provide numerical evidence for the same mechanisms
to be responsible for the emergence of bursting in the quadratic integrate & fire network with plastic
synapses. The main conclusions apply for the network, owing to the exactness of the meanfield limit.

This work has been submitted for publication and is available as [34].

6.5 Mathematical modeling of neuronal excitability

6.5.1 Initiation of migraine-related cortical spreading depolarization by hyperactivity of GABAergic
neurons and NaV1.1 channels

Participants: Oana Chever (IPMC, Sophia Antipolis et Université Côte d’Azur,
France), Sarah Zerimeh (IPMC, Sophia Antipolis et Université Côte
d’Azur, France), Paolo Scalmani (Foundation IRCCS Neurological
Institute Carlo Besta, Milan, Italy), Louisiane Lemaire, Lara Pizza-
miglio (IPMC, Sophia Antipolis et Université Côte d’Azur, France),
Alexandre Loucif (IPMC, Sophia Antipolis et Université Côte d’Azur,
France), Marion Ayrault (IPMC, Sophia Antipolis et Université Côte
d’Azur, France), Martin Krupa (LJAD, Inria MathNeuro), Math-
ieu Desroches, Fabrice Duprat (IPMC, Sophia Antipolis et Université
Côte d’Azur, France), Isabelle Léna (IPMC, Sophia Antipolis et Univer-
sité Côte d’Azur, France), Sandrine Cestèle (IPMC, Sophia Antipolis et
Université Côte d’Azur, France), Massimo Mantegazza (IPMC, Sophia
Antipolis, Université Côte d’Azur et INSERM, France).

Spreading depolarizations (SDs) are involved in migraine, epilepsy, stroke, traumatic brain injury, and
subarachnoid hemorrhage. However, the cellular origin and specific differential mechanisms are not
clear. Increased glutamatergic activity is thought to be the key factor for generating cortical spreading

https://doi.org/10.1007/s11071-021-06441-z
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depression (CSD), a pathological mechanism of migraine. Here, we show that acute pharmacological
activation of N aV1.1 (the main Na+ channel of interneurons) or optogenetic-induced hyperactivity of
GABAergic interneurons is sufficient to ignite CSD in the neocortex by spiking-generated extracellular K+
build-up. Neither GABAergic nor glutamatergic synaptic transmission were required for CSD initiation.
CSD was not generated in other brain areas, suggesting that this is a neocortex-specific mechanism of
CSD initiation. Gain-of-function mutations of N aV1.1 (SCN1A) cause familial hemiplegic migraine type-3
(FHM3), a subtype of migraine with aura, of which CSD is the neurophysiological correlate. Our results
provide the mechanism linking N aV1.1 gain of function to CSD generation in FHM3. Thus, we reveal the
key role of hyperactivity of GABAergic interneurons in a mechanism of CSD initiation, which is relevant
as a pathological mechanism of Nav1.1 FHM3 mutations, and possibly also for other types of migraine
and diseases in which SDs are involved.

This work has been published in Journal of Clinical Investigation and is available as [25].
The extension of this work is the topic of the PhD of Louisiane Lemaire, who started in October 2018

and was successfully defended in December 2021. A first part of Louisiane’s PhD has been to improve and
extend the model published in [11] in a number of ways: replace the GABAergic neuron model used in
[11], namely the Wang-Buszáki model, by a more recent fast-spiking cortical interneuron model due to
Golomb and collaborators; implement the effect of the HM1a toxin used by M. Mantegazza to mimic the
genetic mutation of sodium channels responsible for the hyperactivity of the GABAergic neurons; take
into account ionic concentration dynamics (relaxing the hypothesis of constant reversal potentials) for
the GABAergic as well whereas in [11] this was done only for the Pyramidal neuron. Furthermore, another
mutation of this sodium channel leads to hyperactivity of the pyramidal neurons in a way that is akin to
epileptiform activity. The model by Louisiane Lemaire has been extended in order to account for this
pathological scenario as well. This required a great deal of modelling and calibration and the simulation
results are closer to the actual experiments by Mantegazza than in our previous study. An article has been
published ([28], see below).

6.5.2 Modeling NaV1.1/SCN1A sodium channel mutations in a microcircuit with realistic ion con-
centration dynamics suggests differential GABAergic mechanisms leading to hyperexcitability
in epilepsy and hemiplegic migraine

Participants: Louisiane Lemaire, Martin Krupa (LJAD, Inria MathNeuro), Math-
ieu Desroches, Lara Pizzamiglio (IPMC, Sophia Antipolis, Univer-
sité Côte d’Azur et INSERM, France), Paolo Scalmani (Foundation IR-
CCS Neurological Institute Carlo Besta, Milan, Italy), Massimo Man-
tegazza (IPMC, Sophia Antipolis, Université Côte d’Azur et INSERM,
France).

Loss of function mutations of SCN1A, the gene coding for the voltage-gated sodium channel N aV1.1,
cause different types of epilepsy, whereas gain of function mutations cause sporadic and familial hemi-
plegic migraine type 3 (FHM-3). However, it is not clear yet how these opposite effects can induce
paroxysmal pathological activities involving neuronal networks’ hyperexcitability that are specific of
epilepsy (seizures) or migraine (cortical spreading depolarization, CSD). To better understand differential
mechanisms leading to the initiation of these pathological activities, we used a two-neuron conductance-
based model of interconnected GABAergic and pyramidal glutamatergic neurons, in which we incorpo-
rated ionic concentration dynamics in both neurons. We modeled FHM-3 mutations by increasing the
persistent sodium current in the interneuron and epileptogenic mutations by decreasing the sodium con-
ductance in the interneuron. Therefore, we studied both FHM-3 and epileptogenic mutations within the
same framework, modifying only two parameters. In our model, the key effect of gain of function FHM-3
mutations is ion fluxes modification at each action potential (in particular the larger activation of voltage-
gated potassium channels induced by the NaV1.1 gain of function), and the resulting CSD-triggering
extracellular potassium accumulation, which is not caused only by modifications of firing frequency. Loss
of function epileptogenic mutations, on the other hand, increase GABAergic neurons’ susceptibility to
depolarization block, without major modifications of firing frequency before it. Our modeling results
connect qualitatively to experimental data: potassium accumulation in the case of FHM-3 mutations

https://doi.org/10.1172/JCI142203
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and facilitated depolarization block of the GABAergic neuron in the case of epileptogenic mutations.
Both these effects can lead to pyramidal neuron hyperexcitability, inducing in the migraine condition
depolarization block of both the GABAergic and the pyramidal neuron. Overall, our findings suggest
different mechanisms of network hyperexcitability for migraine and epileptogenic N aV1.1 mutations,
implying that the modifications of firing frequency may not be the only relevant pathological mechanism.

This work has been published in PLoS Computational Biology and is available as [28].

6.5.3 Mathematical modeling of the neurotransmitter cycle, in link with neuronal excitability and
plasticity in both healthy and pathological states

Participants: Afia B Ali (School of Pharmacy, University College London, UK), Math-
ieu Desroches, Serafim RodriguesIkerbasque and BCAM, Bilbao, Spain
, Mattia Sensi.

The project is part of a long-standing collaboration between Mathieu Desroches (MathNeuro Project-
Team, Inria) and Serafim Rodrigues (MCEN research group, Basque Center for Applied Mathematics,
Bilbao, Spain) on neurotransmission and its possible disruptions [17] (see also [10]). Matti Sensi has
been recruited as postdoc in MathNeuro at the end of 2021 to work on this project. The work will be
organised around a modeling project on multi-timescale aspects of synaptic transmission, which can be
synchronous, asynchronous or spontaneous. Building on our already- existing modeling platform, we
will focus on two main extensions: the endocytotic part of the neurotransmitter cycle, and the integration
of glial activity into the model. This project is also related to the NeuroTransSF associated team between
MathNeuro and MCEN, and the extended model will be used (within a time horizon that goes beyond the
postdoc of Mattia Sensi) in the context of experiments performed by Afia Ali on early effects of Alzheimer’s
Disease.

6.6 Mathematical modeling of memory processes

6.6.1 Dynamic branching in a neural network model for probabilistic prediction of sequences

Participants: Elif Köksal Ersöz (INSERM, Rennes), Pascal Chossat (CNRS and Inria
MathNeuro), Martin Krupa (LJAD and Inria MathNeuro), Frédéric Lav-
igne (BCL, Université Côte d’Azur).

An important function of the brain is to adapt behavior by selecting between different predictions of
sequences of stimuli likely to occur in the environment. The present research studied the branching
behavior of a computational network model of populations of excitatory and inhibitory neurons, both
analytically and through simulations. Results show how synaptic efficacy, retroactive inhibition and
short-term synaptic depression determine the dynamics of choices between different predictions of
sequences having different probabilities. Further results show that changes in the probability of the
different predictions depend on variations of neuronal gain. Such variations allow the network to optimize
the probability of its predictions to changing probabilities of the sequences without changing synaptic
efficacy.

This work has been submitted for publication and is available as [31].

6.7 Modelling the visual system

6.7.1 Spatial and color hallucinations in a mathematical model of primary visual cortex

Participants: Olivier Faugeras, Anna Song (Imperial College London, UK), Ro-
main Veltz.

https://doi.org/10.1371/journal.pcbi.1009239
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We study a simplified model of the representation of colors in the primate primary cortical visual area V1.
The model is described by an initial value problem related to a Hammerstein equation. The solutions
to this problem represent the variation of the activity of populations of neurons in V1 as a function of
space and color. The two space variables describe the spatial extent of the cortex while the two color
variables describe the hue and the saturation represented at every location in the cortex. We prove
the well-posedness of the initial value problem. We focus on its stationary, i.e. independent of time,
and periodic in space solutions. We show that the model equation is equivariant with respect to the
direct product G of the group of the Euclidean transformations of the planar lattice determined by the
spatial periodicity and the group of color transformations, isomorphic to O(2), and study the equivariant
bifurcations of its stationary solutions when some parameters in the model vary. Their variations may be
caused by the consumption of drugs and the bifurcated solutions may represent visual hallucinations
in space and color. Some of the bifurcated solutions can be determined by applying the Equivariant
Branching Lemma (EBL) by determining the axial subgroups of G. These define bifurcated solutions
which are invariant under the action of the corresponding axial subgroup. We compute analytically these
solutions and illustrate them as color images. Using advanced methods of numerical bifurcation analysis
we then explore the persistence and stability of these solutions when varying some parameters in the
model. We conjecture that we can rely on the EBL to predict the existence of patterns that survive in large
parameter domains but not to predict their stability. On our way we discover the existence of spatially
localized stable patterns through the phenomenon of "snaking".

This work has been accepted for publication in the "Comptes Rendus Mathématique" and is available
as [30].

7 Partnerships and cooperations

Participants: Fabien Campillo, Mathieu Desroches, Guillaume Girier (co-tutelle PhD
Student, BCAM, Spain and Inria MathNeuro), Serafim Rodrigues (iker-
basque & BCAM, Spain).

7.1 International initiatives

7.1.1 Inria associated team not involved in an IIL or an international program

NeuroTransSF

Title: NeuroTransmitter cycle: A Slow-Fast modeling approach

Duration: from 2019 to 2022

Coordinator: Serafim Rodrigues (srodrigues@bcamath.org)

Partners: Basque Center for Applied Mathematics (BCAM, Bilbao, Spain)

Inria contact: Mathieu Desroches

Summary: This associated team project proposes to deepen the links between two young research
groups, on strong Neuroscience thematics. This project aims to start from a joint work in which we
could successfully model synaptic transmission delays for both excitatory and inhibitory synapses,
matching experimental data, and to supplant it in two distinct directions. On the one hand, by
modeling the endocytosis so as to obtain a complete mathematical formulation of the presynaptic
neurotransmitter cycle, which will then be integrated within diverse neuron models (in particular
interneurons) hence allowing a refined analysis of their excitability and short-term plasticity
properties. On the other hand, by modeling the postsynaptic neurotransmitter cycle in link with
long-term plasticity and memory. We will incorporate these new models of synapse in different
types of neuronal networks and we will then study their excitability, plasticity and synchronization
properties in comparison with classical models. This project will benefit from strong experimental
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collaborations (UCL, Alicante) and it is coupled to the study of brain pathologies linked with
synaptic dysfunctions, in particular certain early signs of Alzheimer’s Disease. Our initiative also
contains a training aspect with two PhD student involved as well as a series of mini-courses which
we will propose to the partner institute on this research topic; we will also organize a "wrap-up"
workshop in Sophia at the end of it. Finally, the project is embedded within a strategic tightening
of our links with Spain with the objective of pushing towards the creation of a Southern-Europe
network for Mathematical, Computational and Experimental Neuroscience, which will serve as a
stepping stone in order to extend our influence beyond Europe. The web page of the associated
team is here. It contains the latest developments and new collaborations that have emerged from
this project.

7.2 International research visitors

7.2.1 Visits of international scientists

Other international visits to the team

Ernest Montbrió

Status (Associate Professor)

Institution of origin: Universitat Pompeu Fabra, Barcelona

Country: Spain

Dates: 8-10 December 2021

Context of the visit: He visited to participate to the thesis jury of Halgurd Taher (he was one of the
reviewers of the thesis) as well as to initiate a research collaboration with Mathieu Desroches.

Mobility program/type of mobility: research stay

7.2.2 Visits to international teams

Research stays abroad

Mathieu Desroches

Visited institution: BCAM, Bilbao

Country: Spain

Dates: 16-25 October 2021

Context of the visit: Collaboration with S. Rodrigues on the associated team NeuroTransSF project.

Mobility program/type of mobility: research stay

7.3 European initiatives

7.3.1 FP7 & H2020 projects

Human Brain Project (HBP)

Title: Human Brain Project Specific Grant Agreement 3

Duration: 3 years (March 2020 - March 2023)

Coordinator: EPFL

https://team.inria.fr/neurotranssf/
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Partners: See the web page of the project. Olivier Faugeras is leading the task T4.1.3 entitled “Meanfield
and population models” of the Worpackage W4.1 “Bridging Scales”.

Summary: Understanding the human brain is one of the greatest challenges facing 21st century science.
If we can rise to the challenge, we can gain profound insights into what makes us human, develop
new treatments for brain diseases and build revolutionary new computing technologies. Today, for
the first time, modern ICT has brought these goals within sight. The goal of the Human Brain Project,
part of the FET Flagship Programme, is to translate this vision into reality, using ICT as a catalyst
for a global collaborative effort to understand the human brain and its diseases and ultimately to
emulate its computational capabilities. The Human Brain Project will last ten years and will consist
of a ramp-up phase (from month 1 to month 36) and subsequent operational phases. This Grant
Agreement covers the ramp-up phase. During this phase the strategic goals of the project will be to
design, develop and deploy the first versions of six ICT platforms dedicated to Neuroinformatics,
Brain Simulation, High Performance Computing, Medical Informatics, Neuromorphic Computing
and Neurorobotics, and create a user community of research groups from within and outside the
HBP, set up a European Institute for Theoretical Neuroscience, complete a set of pilot projects
providing a first demonstration of the scientific value of the platforms and the Institute, develop the
scientific and technological capabilities required by future versions of the platforms, implement a
policy of Responsible Innovation, and a programme of transdisciplinary education, and develop
a framework for collaboration that links the partners under strong scien- tific leadership and
professional project management, providing a coherent European approach and ensuring effective
alignment of regional, national and European research and programmes. The project work plan
is organized in the form of thirteen subprojects, each dedicated to a specific area of activity. A
significant part of the budget will be used for competitive calls to complement the collective skills
of the Consortium with additional expertise.

8 Dissemination

8.1 Promoting scientific activities

8.1.1 Scientific events: organisation

General chair, scientific chair

Fabien Campillo is a founding member of the African scholarly Society on Digital Sciences (ASDS).

Member of the organizing committees

Mathieu Desroches was a member of the organizing committee of the international conference “Dy-
namics Days Europe” 2021, held in Nice on 23-27 August 2021.

Louisiane Lemaire was a member of the local organizing committee of the international conference
“Dynamics Days Europe” 2021, held in Nice on 23-27 August 2021.

Louisiane Lemaire was a member of the organizing committee of the PhD Seminar of the Inria Sophia
Antipolis Méditerranée Research Centre.

Halgurd Taher was a member of the local organizing committee of the international conference “Dy-
namics Days Europe” 2021, held in Nice on 23-27 August 2021.

Halgurd Taher was a member of the organizing committee of the PhD Seminar of the Inria Sophia
Antipolis Méditerranée Research Centre.

8.1.2 Journal

Member of the editorial boards

Mathieu Desroches is Review Editor of the journal Frontiers in Physiology (ImpactFactor 3.4).

https://dynamicsdays2021.univ-cotedazur.fr/Organization/#top
https://dynamicsdays2021.univ-cotedazur.fr/Organization/#top
https://dynamicsdays2021.univ-cotedazur.fr/Organization/#top
https://phd-seminars-sam.inria.fr/organisers-2/
https://phd-seminars-sam.inria.fr/organisers-2/
https://dynamicsdays2021.univ-cotedazur.fr/Organization/#top
https://dynamicsdays2021.univ-cotedazur.fr/Organization/#top
https://phd-seminars-sam.inria.fr/organisers-2/
https://phd-seminars-sam.inria.fr/organisers-2/
https://www.frontiersin.org/journals/physiology
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Olivier Faugeras is founder and editor-in-chief of the journal Mathematical Neuroscience and Applica-
tions, under the diamond model (no charges for authors and readers) supported by Episciences.

Reviewer - reviewing activities

Fabien Campillo acted as a reviewer for the Journal of Mathematical Biology.

Mathieu Desroches acted as a reviewer for the journals SIAM Journal on Applied Dynamical Systems
(SIADS), Journal of Mathematical Biology, PLoS Computational Biology, Journal of Nonlinear
Science, Nonlinear Dynamics, Physica D, Applied Mathematics Modelling, Journal of the European
Mathematical Society.

Martin Krupa acted as a reviewer for Proceedings of the National Academy of Sciences of the USA and
SIAM Journal on Applied Dynamical Systems (SIADS).

8.1.3 Invited talks

Mathieu Desroches gave a webinar talk entitled "Canards in neural networks and their mean-field
limits" at the Lowlands dynamics Seminar of VU Amsterdam, 25 November 2021

Louisiane Lemaire gave a webinar talk entitled "Mathematical Model of the Mutations of a Sodium
Channel (NaV1.1) Capturing Both Migraine and Epilepsy Scenarios" at the SIAM Conference on
Applications of Dynamical Systems (DS21), 27 May 2021.

Louisiane Lemaire gave a webinar talk entitled "Mathematical Model of the Mutations of a Sodium
Channel (NaV1.1) Capturing Both Migraine and Epilepsy Scenarios" at

- the virtual Society for Mathematical Biology annual meeting (SMB21), 14 June 2021;

- the 2021 International Conference on Mathematical Neuroscience - Digital Edition, 28 June 2021;

- the International Conference on Spreading Depolarization, 21 September 2021.

Halgurd Taher gave a webinar talk entitled "Emergence of Bursting and Slow-Fast Phenomena in a Next
Generation Neural Mass Model with Short-Term Synaptic Plasticity" at the SIAM Conference on
Applications of Dynamical Systems (DS21), 27 May 2021.

Halgurd Taher gave a webinar talk entitled "Bursting in a next generation neural mass model with
synaptic dynamics: a slow-fast approach" at the virtual Society for Mathematical Biology annual
meeting (SMB21), 15 June 2021.

Halgurd Taher gave a webinar talk entitled "Exact neural mass model for synaptic-based working mem-
ory" at

- the 2021 International Conference on Mathematical Neuroscience - Digital Edition, 28 June 2021;

- the 2021 CNS conference, 7 July 2021;

- the Dynamics Days Europe 2021 Conference, 27 August 2021;

- the Bernstein Conference, 22 September 2021.

8.1.4 Leadership within the scientific community

Fabien Campillo was member of the local committee in charge of the scientific selection of visiting
scientists (Comité NICE).

Mathieu Desroches was on the Scientific Committee of the Complex Systems Academy of the UCA JEDI
Idex.

https://mna.episciences.org/
https://mna.episciences.org/
https://www.episciences.org/
https://vu.nl/en/events/2021/lowlands-dynamics-seminar_25nov2021


18 Inria Annual Report 2021

8.2 Teaching - Supervision - Juries

8.2.1 Teaching

Master: Emre Baspinar, Dynamical Systems in the context of neuron models, (Lectures, example classes
and computer labs), 6 hours (Jan. 2021), M1 (Mod4NeuCog), Université Côte d’Azur, Sophia
Antipolis, France.

Master: Mathieu Desroches, Modèles Mathématiques et Computationnels en Neuroscience (Lectures,
example classes and computer labs), 12 hours (Feb. 2021), M1 (BIM), Sorbonne Université, Paris,
France.

Master: Mathieu Desroches, Dynamical Systems in the context of neuron models, (Lectures, example
classes and computer labs), 6 hours (Jan. 2021) and 9 hours (Nov.-Dec. 2021), M1 (Mod4NeuCog),
Université Côte d’Azur, Sophia Antipolis, France.

Master: Louisiane Lemaire, Modèles Mathématiques et Computationnels en Neuroscience (example
classes and computer labs), 6 hours (Feb 2021), M1 (BIM), Sorbonne Université, Paris, France.

8.2.2 Supervision

PhD completed: Louisiane Lemaire, “Multi-scale mathematical modeling of cortical spreading depres-
sion”, co-supervised by Mathieu Desroches and Martin Krupa, was successfully defended on 13
December 2021.

PhD completed: Yuri Rodrigues, "Unifying experimental heterogeneity in a geometrical synaptic plas-
ticity model”, co-supervised by Romain Veltz and Hélène Marie (IPMC, Sophia Antipolis), was
successfully defended on 30 June 2021.

PhD completed: Halgurd Taher, "Next generation neural mass models: working memory, all-brain
modelling and multi-timescale phenomena", co-supervised by Mathieu Desroches and Simona
Olmi, was successfully defended on 9 December 2021.

Master 1 internship: Efstathios Pavlidis, "Analysis of Mixed Mode Oscillations using multiple time-
scale dynamics: two case studies", co-supervised by Emre Baspinar, Mathieu Desroches and Martin
Krupa, April-May 2020.

Master 2 internship: Efstathios Pavlidis, "Multiple-timescale dynamics and mixed states in a model of
Bipolar Disorder", supervised by Mathieu Desroches, September 2021 - February 2022.

8.2.3 Juries

Mathieu Desroches was member of the jury and reviewer of the PhD of Mattia Sensi entitled "A Geomet-
ric Singular Perturbation approach to epidemic compartmental models", supervised by Andrea
Pugliese, University of Trento (Italy), 18 January 2021.

Mathieu Desroches was member of the jury of the PhD of Lou Zonca entitled "Modeling and analytical
computations of burst and interburst dynamics in neuronal networks, applications to neuron-glia
interactions and oscillatory brain rhythms", supervised by David Holcman, ENS Paris, 16 July 2021.
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